
CS202 (003): Operating Systems
Concurrency IV

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

Advice for concurrent programming

Getting started
1. Identify unit of concurrency
2. Identify chunks of state
3. write down high-level main loop of each thread

Write down the synchronization constraints, and the type

Create a lock or CV for each constraint

Implement the methods, using the locks and CVs

1 CS 202, Fall 2024
2 Handout 5 (Class 6)
3
4 The previous handout demonstrated the use of mutexes and condition
5 variables. This handout demonstrates the use of monitors (which combine
6 mutexes and condition variables).
7
8 1. The bounded buffer as a monitor
9

10 // This is pseudocode that is inspired by C++.
11 // Don’t take it literally.
12
13 class MyBuffer {
14 public:
15 MyBuffer();
16 ~MyBuffer();
17 void Enqueue(Item);
18 Item = Dequeue();
19 private:
20 int count;
21 int in;
22 int out;
23 Item buffer[BUFFER_SIZE];
24 Mutex* mutex;
25 Cond* nonempty;
26 Cond* nonfull;
27 };
28
29 void
30 MyBuffer::MyBuffer()
31 {
32 in = out = count = 0;
33 mutex = new Mutex;
34 nonempty = new Cond;
35 nonfull = new Cond;
36 }
37
38 void
39 MyBuffer::Enqueue(Item item)
40 {
41 mutex.acquire();
42 while (count == BUFFER_SIZE)
43 cond_wait(&nonfull, &mutex);
44
45 buffer[in] = item;
46 in = (in + 1) % BUFFER_SIZE;
47 ++count;
48 cond_signal(&nonempty, &mutex);
49 mutex.release();
50 }
51
52 Item
53 MyBuffer::Dequeue()
54 {
55 mutex.acquire();
56 while (count == 0)
57 cond_wait(&nonempty, &mutex);
58
59 Item ret = buffer[out];
60 out = (out + 1) % BUFFER_SIZE;
61 −−count;
62 cond_signal(&nonfull, &mutex);
63 mutex.release();
64 return ret;
65 }
66

Sep 23, 24 8:59 Page 1/4handout05.txt
67
68 int main(int, char**)
69 {
70 MyBuffer buf;
71 int dummy;
72 tid1 = thread_create(producer, &buf);
73 tid2 = thread_create(consumer, &buf);
74
75 // never reach this point
76 thread_join(tid1);
77 thread_join(tid2);
78 return −1;
79 }
80
81 void producer(void* buf)
82 {
83 MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*>(buf);
84 for (;;) {
85 /* next line produces an item and puts it in nextProduced */
86 Item nextProduced = means_of_production();
87 sharedbuf−>Enqueue(nextProduced);
88 }
89 }
90
91 void consumer(void* buf)
92 {
93 MyBuffer* sharedbuf = reinterpret_cast<MyBuffer*>(buf);
94 for (;;) {
95 Item nextConsumed = sharedbuf−>Dequeue();
96
97 /* next line abstractly consumes the item */
98 consume_item(nextConsumed);
99 }
100 }
101
102 Key point: *Threads* (the producer and consumer) are separate from
103 *shared object* (MyBuffer). The synchronization happens in the
104 shared object.
105

Sep 23, 24 8:59 Page 2/4handout05.txt

Printed by Michael Walfish

Monday September 23, 2024 1/2handout05.txt

106 2. This monitor is a model of a database with multiple readers and
107 writers. The high−level goal here is (a) to give a writer exclusive
108 access (a single active writer means there should be no other writers
109 and no readers) while (b) allowing multiple readers. Like the previous
110 example, this one is expressed in pseudocode.
111
112 // assume that these variables are initialized in a constructor
113 state variables:
114 AR = 0; // # active readers
115 AW = 0; // # active writers
116 WR = 0; // # waiting readers
117 WW = 0; // # waiting writers
118
119 Condition okToRead = NIL;
120 Condition okToWrite = NIL;
121 Mutex mutex = FREE;
122
123 Database::read() {
124 startRead(); // first, check self into the system
125 Access Data
126 doneRead(); // check self out of system
127 }
128
129 Database::startRead() {
130 acquire(&mutex);
131 while((AW + WW) > 0){
132 WR++;
133 wait(&okToRead, &mutex);
134 WR−−;
135 }
136 AR++;
137 release(&mutex);
138 }
139
140 Database::doneRead() {
141 acquire(&mutex);
142 AR−−;
143 if (AR == 0 && WW > 0) { // if no other readers still
144 signal(&okToWrite, &mutex); // active, wake up writer
145 }
146 release(&mutex);
147 }
148
149 Database::write(){ // symmetrical
150 startWrite(); // check in
151 Access Data
152 doneWrite(); // check out
153 }
154
155 Database::startWrite() {
156 acquire(&mutex);
157 while ((AW + AR) > 0) { // check if safe to write.
158 // if any readers or writers, wait
159 WW++;
160 wait(&okToWrite, &mutex);
161 WW−−;
162 }
163 AW++;
164 release(&mutex);
165 }
166
167 Database::doneWrite() {
168 acquire(&mutex);
169 AW−−;
170 if (WW > 0) {
171 signal(&okToWrite, &mutex); // give priority to writers
172 } else if (WR > 0) {
173 broadcast(&okToRead, &mutex);
174 }
175 release(&mutex);
176 }
177
178 NOTE: what is the starvation problem here?

Sep 23, 24 8:59 Page 3/4handout05.txt
179
180 3. Shared locks
181
182 struct sharedlock {
183 int i;
184 Mutex mutex;
185 Cond c;
186 };
187
188 void AcquireExclusive (sharedlock *sl) {
189 acquire(&sl−>mutex);
190 while (sl−>i) {
191 wait (&sl−>c, &sl−>mutex);
192 }
193 sl−>i = −1;
194 release(&sl−>mutex);
195 }
196
197 void AcquireShared (sharedlock *sl) {
198 acquire(&sl−>mutex);
199 while (sl−>i < 0) {
200 wait (&sl−>c, &sl−>mutex);
201 }
202 sl−>i++;
203 release(&sl−>mutex);
204 }
205
206 void ReleaseShared (sharedlock *sl) {
207 acquire(&sl−>mutex);
208 if (!−−sl−>i)
209 signal (&sl−>c, &sl−>mutex);
210 release(&sl−>mutex);
211 }
212
213 void ReleaseExclusive (sharedlock *sl) {
214 acquire(&sl−>mutex);
215 sl−>i = 0;
216 broadcast (&sl−>c, &sl−>mutex);
217 release(&sl−>mutex);
218 }
219
220 QUESTIONS:
221 A. There is a starvation problem here. What is it? (Readers can keep
222 writers out if there is a steady stream of readers.)
223 B. How could you use these shared locks to write a cleaner version
224 of the code in the prior item? (Though note that the starvation
225 properties would be different.)

Sep 23, 24 8:59 Page 4/4handout05.txt

Printed by Michael Walfish

Monday September 23, 2024 2/2handout05.txt

- workers interact with a database
- readers never modify
- writers read an modify
- allow:

- many readers at once
OR

- only one writer (no reader)

Unit of concurrency?

Shared chunks of state?

What does main function looks like?

Synchronization constraints and objects?

Implementation of mutex

Peterson's algorithm

Disable interrupts

Spinlocks

Peterson’s Algorithm

- expensive (busy waiting)
- requires number of threads to be fixed statically

- assumes sequential consistency

volatile	bool	flag[2]	=	{false,	false};	
volatile	int	turn;

P0:						flag[0]	=	true;	
P0_gate:	turn	=	1;	
									while	(flag[1]	&&	turn	==	1)	
									{	
													//	busy	wait	
									}	
									//	critical	section	
									...	
								//	end	of	critical	section	
									flag[0]	=	false;	

P1:						flag[1]	=	true;	
P1_gate:	turn	=	0;	
									while	(flag[0]	&&	turn	==	0)	
									{	
													//	busy	wait	
									}	
								//	critical	section	
									...	
									//	end	of	critical	section	
									flag[1]	=	false;	

Disable Interrupts

- Works only on a single CPU
- Cannot expose to user processes

Spinlock
//	Abstract	Lock	Interface	
class	Lock	{	
				void	acquire();		//	Wait	until	lock	is	available,	then	take	it	
				void	release();		//	Release	the	lock	
}	

//	Spinlock	Implementation	
class	Spinlock	implements	Lock	{	
				private	int	flag	=	0;		//	0	=	unlocked,	1	=	locked	

				void	acquire()	{	
								…	
				}	

				void	release()	{	
								…	
				}	
}

Spinlock implementation I

struct	Spinlock	{	
				int	locked;	
}	

void	acquire(Spinlock	*lock)	{	
				while	(1)	{	
								if	(lock−>locked	==	0)	{	//	A	
												lock−>locked	=	1;	//	B	
												break;	
								}	
				}	
}	

void	release	(Spinlock	*lock)	{	
				lock−>locked	=	0;	
}

What is the problem?

Thread	1	A	
Thread	2	A	
Thread	2	B	
Thread	1	B

Violates mutual exclusion!

Spinlock implementation II
/*	pseudocode	*/	
int	xchg_val(addr,	value)	{	
				%rax	=	value;	
				xchg	(*addr),	%rax	
}	

void	acquire	(Spinlock	*lock)	{	
				pushcli();	/*	what	does	this	do?	*/	
				while	(1)	{	
				if	(xchg_val(&lock−>locked,	1)	==	0)	
								break;	
				}	
}	

void	release(Spinlock	*lock){	
				xchg_val(&lock−>locked,	0);	
				popcli();	/*	what	does	this	do?	*/	
}

(i) freeze all CPUs’ memory activity for address addr

(ii) temp	<−	*addr

(iii) *addr	<−	%rax	

(iv) %rax	<−	temp	

(v) un−freeze memory activity

Spinlock implementation II
/*	pseudocode	*/	
int	xchg_val(addr,	value)	{	
				%rax	=	value;	
				xchg	(*addr),	%rax	
}	

/*	optimization	in	acquire;	
call	xchg_val()	less	frequently	*/	
void	acquire(Spinlock*	lock)	{	
				pushcli();	
				while	(xchg_val(&lock−>locked,	1)	==	1)	{	
								while	(lock−>locked)	;	
				}	
}	

void	release(Spinlock	*lock){	
				xchg_val(&lock−>locked,	0);	
				popcli();	
}

Busy waits!

Starvation!

Mutex: spinlock + a queue

typedef	struct	thread	{	
				//	...	Entries	elided.	
				STAILQ_ENTRY(thread_t)	qlink;	//	Tail	queue	entry.	
}	thread_t;

struct	Mutex	{	
				//	Current	owner,	or	0	when	mutex	is	not	held.	
				thread_t	*owner;	

				//	List	of	threads	waiting	on	mutex	
				STAILQ(thread_t)	waiters;	

				//	A	lock	protecting	the	internals	of	the	mutex.	
				Spinlock	splock;	//	as	in	item	1,	above	
};

qlink is a field that allows each thread_t structure
to be part of a singly-linked tail queue.

qlink field in each thread_t is what allows
these threads to be linked into that queue

Mutex: spinlock + a queue

typedef	struct	thread	{	
				//	...	Entries	elided.	
				//	Tail	queue	entry.	
				STAILQ_ENTRY(thread_t)	qlink;	
}	thread_t;

struct	Mutex	{	
				//	Current	owner	
				//or	0	when	mutex	is	not	held.	
				thread_t	*owner;	

				//	List	of	threads	waiting	on	mutex	
				STAILQ(thread_t)	waiters;	

				//	A	lock	protecting		
		//the	internals	of	the	mutex.	

				Spinlock	splock;	
};

void	mutex_acquire(struct	Mutex	*m)	{	

				acquire(&m−>splock);	

				//	Check	if	the	mutex	is	held;	
				//	if	not,	current	thread	gets	mutex	and	returns	
				if	(m−>owner	==	0)	{	
								m−>owner	=	id_of_this_thread;	
								release(&m−>splock);	
				}	else	{	
								//	Add	thread	to	waiters.	
								STAILQ_INSERT_TAIL(&m−>waiters,		

									id_of_this_thread,		
									qlink);	

								//	Tell	the	scheduler	to	add		
	//	current	thread	to	the	list	of	blocked	threads.	

								sched_mark_blocked(&id_of_this_thread);	
								//	Unlock	spinlock.	
								release(&m−>splock);	
								//	Stop	executing	until	woken.	
								sched_swtch();	
								//	We	guaranteed	to	hold	the	mutex		

	//	when	we	are	here	
				}	
}

only one thread can modify the
mutex's internal state at a time

this thread is waiting and
shouldn’t be scheduled to run

allowing other threads to access
the mutex's internal state

This call switches to another
thread

This is because we can get here only if context−switched−TO, which itself can happen only if this thread is removed from the waiting queue, marked "unblocked", and set to be the owner (in mutex_release()
below). However, we might have held the mutex in lines 39−42 (if we were context−switched out after the spinlock release(), followed by being run as a result of another thread’s release of the mutex). But if

that happens, it just means that we are context−switched out an "extra" time before proceeding.

Mutex: spinlock + a queue

typedef	struct	thread	{	
				//	...	Entries	elided.	
				//	Tail	queue	entry.	
				STAILQ_ENTRY(thread_t)	qlink;	
}	thread_t;

struct	Mutex	{	
				//	Current	owner	
				//or	0	when	mutex	is	not	held.	
				thread_t	*owner;	

				//	List	of	threads	waiting	on	mutex	
				STAILQ(thread_t)	waiters;	

				//	A	lock	protecting		
		//the	internals	of	the	mutex.	

				Spinlock	splock;	
};

void	mutex_release(struct	Mutex	*m)	{	
				//	Acquire	the	spinlock	in	order	to	make	changes.	
				acquire(&m−>splock);	

				//	Assert	that	the	current	thread		
				//	actually	owns	the	mutex	
				assert(m−>owner	==	id_of_this_thread);	

				//	Check	if	anyone	is	waiting.	
				m−>owner	=	STAILQ_GET_HEAD(&m−>waiters);	

				//	If	so,	wake	them	up.	
				if	(m−>owner)	{	
								sched_wakeone(&m−>owner);	
								STAILQ_REMOVE_HEAD(&m−>waiters,	qlink);	
				}	

				//	Release	the	internal	spinlock	
				release(&m−>splock);	
}

only one thread can modify the
mutex's internal state at a time

safety check to prevent a thread from
releasing a mutex it doesn't own

get the first thread from the
waiters queue

making it ready to run.

The thread is removed from the
head of the waiters queue.

If there were no waiting threads,
the m->owner would be NULL,

effectively marking the mutex as
unheld.

Another implementation is covered in the textbook (https://pages.cs.wisc.edu/~remzi/OSTEP/threads-locks.pdf)

What makes a good mutex implementation?

Mechanism

Mechanism Pros Cons Best Use Case

Spinlock + Queue

- Efficient for both short and long waits
- Allows context switching
- Fair (FIFO ordering)
- Scalable to many threads

- More complex implementation
- Slightly higher overhead for uncontended
case

General-purpose locking
in multi-threaded

environments

Pure Spinlock - Very fast for short waits
- Simple implementation

- Wastes CPU cycles for long waits
- Starvation and contention

Very short-duration locks
with low contention

Disabling Interrupts - Simple to implement
- Guaranteed mutual exclusion

- Only works on single-processor systems
- Can increase interrupt latency
- Can't be used by user-level code

Low-level OS operations
on single-processor

systems

Peterson's Algorithm - Works without hardware support
- Guaranteed fairness

- Limited to two threads
- Busy-waiting (similar to spinlock)
- Can be less efficient on modern hardware

Educational purposes,
simple two-thread

synchronization

Next lecture: reading is
required!

(yes, we will quiz you about it at the beginning of the Thursday class)

