
CS202 (003): Operating Systems
Concurrency II

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last time

Managing Concurrency: the Key Problem

How do we avoid multiple threads accessing a shared resource at the same time?

A piece of code that access a shared resource and must not be concurrently executed by more than one thread is called a

Critical Section

How do we protect Critical Sections from concurrent execution?

Three (ideal) Properties of the Solution

Mutual Exclusion/Atomicity
Only one thread can be in critical section at a time

Progress
If no thread is executing in critical section, then one of the threads trying to enter a given critical

section will eventually get in

Bounded Waiting
Once a thread T starts trying to enter the critical section, there is a bound on the number of

other threads that may enter the critical section before T enters

So, what is the solution?
Key Idea

Once the thread of execution is executing inside the critical section,
no other thread of execution is executing there

lock()/unlock()	
enter()/leave()	

acquire()/release()
They all illustrate the same idea!

mutex_init(mutex_t*	m)	
mutex_lock(mutex_t*	m)	

mutex_unlock(mutex_t*	m)
Mutex (mutual exclusion objects)

pthread_mutex_init(…)	
pthread_mutex_lock(…)	
pthread_mutex_unlock(…)

POSIX Thread (pthread) Functions

How to implement these solutions?
“Easy” Implementation (on uniprocessor)

enter() -> disable interrupts
leave () -> re-enable interrupts

This prevents CPU from switching to another thread when the
current thread is exciting its critical section

We will study other implementation later!

Look at your new handout!

Mutex	list_mutex;	

insert(int	data)	{	
				List_elem*	l	=	new	List_elem;	
				l−>data	=	data;	

				acquire(&list_mutex);	

				l−>next	=	head;	
				head	=	l;	

				release(&list_mutex);	
}

Look at your new handout!
Mutex	mutex;	

void	producer	(void	*ignored)	{	
			for	(;;)	{	
						/*	next	line	produces	an	item	

and	puts	it	in	nextProduced	*/	
					nextProduced	=	means_of_production();	

					acquire(&mutex);	
					while	(count	==	BUFFER_SIZE)	{	
									release(&mutex);	
									yield();	/*	or	schedule()	*/	
									acquire(&mutex);	
					}	
			buffer	[in]	=	nextProduced;	
			in	=	(in	+	1)	%	BUFFER_SIZE;	
			count++;	
			release(&mutex);	

			}	
}

void	consumer	(void	*ignored)	{	
				for	(;;)	{	
						acquire(&mutex);	
						while	(count	==	0)	{	
								release(&mutex);	
								yield();	/*	or	schedule()	*/	
								acquire(&mutex);	
				}	

						nextConsumed	=	buffer[out];	
						out	=	(out	+	1)	%	BUFFER_SIZE;	
						count−−;	
						release(&mutex);	

						/*	next	line	abstractly	consumes	the	item	*/	
						consume_item(nextConsumed);	
				}	
}

Use of Mutex

Once we have mutex, we don’t have to worry about arbitrary interleaving

Because mutex allows us maintain certain type of invariants:

LinkedList

Producer/Consumer The 'count' accurately represents the number of items in the buffer

Only one thread can be modifying the head of the list

Going back to the Producer/Consumer example

What is the problem of using mutex?

Producer/Consumer keep checking the buffer state when it is full/empty

Tw
o

ty
pe

s
of

 s
yn

ch
ro

ni
za

tio
n

Mutual Exclusion

Scheduling Constraint:
Wait for some other thread to do sth

updating the count variable

waiting the buffer to have/empty something

