CS202 (003): Operating Systems
File System V

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

CLIENT SERVER

System Calls System Calls

VNODE/VFS VNODE/VFS

PC Filesystem 4.2 Filesystem || NFS Filesystem
' — RPC / XDR RPC / XDR
Disk

Floppy

Network
_—————

Figure 1

Transparency

Transparency requires that the system calls mean the same things

Gen

What if client A deletes a file and it (or another client) creates a
new one that uses the same i-node?

The server maintains a generation number in each i-node on disk

Every time an i-node is reallocated (used for a new file), its generation number is incremented

When a client gets a file handle (FH) through operations like LOOKUP, the current generation

number is included in that file handle

For every client request, the server compares two numbers:

1.

he generation number in the client's file handle

2. The current generation number stored in the i-node on disk

It they match: The request is va

It they don't match:

he client gets a "stale FI-

id and proceeds normally
" error when trying to READ() or WRI

Non-traditional Unix Semantics

Error returns on successtul operations

Non-traditional Unix Semantics

Close-to-open consistency

When client A writes and close a file, Client B will only see those changes after opening the file

Non-traditional Unix Semantics

Close-to-open consistency
Server must flush to the disk before returning

The server has to make sure, before returning:
1. Inode with new block # and new length safe on disk
2. Indirect block sate on disk
Writes have to be synchronous

Would this case performance issue?

Non-traditional Unix Semantics

Would this case performance issue?

N O / beca U Se th e re a re Ca Ch I n g (at the client; not all RPCs go to server. although write go to the server in NFSv3, they don’t cause disk accesses necessarily)

Read-caching Write-caching Caching of file attributes Caching of name->th mapping

(useful when re-reading files) (improve performance) (helps with command such as 'Is -I) (Caches path prefixes (e.g., /home/jo))

But, now you have to worry about coherence and semantics!

Close-to-open consistency

When client A writes and close a file, Client B will only see those changes after opening the file

Non-traditional Unix Semantics

Close-to-open consistency

When client A writes and close a file, Client B will only see those changes after opening the file

1. writing client forces dirty blocks during a close()
2. reading client checks with server during open(): “is this data current?”

mmm, why not a stronger guarantee?

Trading stronger guarantee for better performance!

Obviously, this might cause issues, for example:
1. Errors might occur on close() rather than write()
2. Legacy applications that don't check close() return values might fail
3. Certain usage patterns don't work well, such as using "tail -t" on one client
while another client writes to the file

Non-traditional Unix Semantics

Server failure

Previously: open(“some_file”, RD_ONLY) failed if “some_file” does not exist
Now: app might hang while trying to access the file

Deletion or permission change of open files

What is Client A deletes a file that Client B has “open”?

Previously: Client B reads still work (file exists until all clients close|) it)
Now: Client B reads falil

What is Client A make the file inaccessible to others while Client B has the file open()?

Previously: Nothing happens
Now: Client B reads falil

Security

NFS's only security measure is IP address veritication (which is quite weak)

Previously: Unix enforces read/write protections — cannot read my files w/o passwords
Now: Server believes whatever UID appears in NFS request (and anyone can put whatever in the request)

Not extremely vulnerable because of how FH works

Example structure (simplified):
struct file handle {

uint32 t filesystem 1id; // Random unique identifier It does not solve all types
uint32 t inode number; // File system location
uint32_t generation number; // Changes when inode is reused ot attack though!

uint8 t extra _data[20]; // Additional metadata

VU‘ﬂerab”itieS are teChnicaHy -ﬁxab‘e (strongauth,secureprotocols,...),
but hard to reconcile with the stateless design

