
CS202 (003): Operating Systems
File System IV

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

Journaling — redo logging (used by ext3 & ext4)

FS computes what would change due to a operation

FS computes where in the log it can write this transaction, and
writes a transactions begin record . Do not have to wait on this.

Superblock
and

Block Descriptors

Journal

Blocks

ext3 disk layout

TxnBegin: TID

Inode updates

Data Bitmap
updates

New data
block

TxnEnd: TID

ext3 journal layout

Figure 4: Redo logging in a filesystem

4

FS writes a record(s) with all the changes it computed in step 1.
FS must wait for changes and TxnBegin to finish written to the disk

Once step 3 finishes, the system writes a transaction end record

Once the TxnEnd has been written, the FS asynchronously performs
the actual FS changes “checkpointing”

Journaling — crash recovery of redo logging

FS starts scanning from the beginning of the log

Every time it finds a TxnBegin entry, it looks for the corresponding
TxnEnd entry

If matching (TxnBegin, TxnEnd) found, FS checkpoints the changes

Recovery is completed once the entire log is scanned

High-level idea:
read through the logs, find committed operations and apply them

How to check whether ops are committed? Look at TxnBegin and TxnEnd!
It is safe to apply the same redo log multiple times

What to log?

Logging can double the amount of data written to the disk
Ext3 and 4 allows user to choose what to log

Default: metadata only (assuming people are fine with data
loss after crash)

Can change to force data to be logged w/ metadata

Journaling — undo logging (Not used in isolation by any file system)

Write a TxBegin entry to the log

For each op, write instructions for how to undo any updates.
Changes to the block can be made right after writes finishes

Wait for in-place changes to finish for all blocks

Write a TxnEnd entry into the block

all changes have been written to the actual FS data structures

Journaling — crash recovery from undo logging

Scan to find all uncommitted transactions from the end of the log

For each such transaction, check whether undo entry is valid
(checksum)

Apply all valid undo entries found

disk back to a consistent state

Disadvantages

Benefits
Changes can be checkpoints to disk as soon as the undo log has been updated

— useful when the amount of buffer cache is low

A transaction is not committed until all dirty blocks have been flushed to their in-place targets

Redo logging vs. Undo logging

Disadvantages

Benefits
Changes can be checkpoints to disk as soon as the undo log has been updated

— useful when the amount of buffer cache is low

A transaction is not committed until all dirty blocks have been flushed to their in-place targets

Disadvantages

Benefits
A transaction can commit without all in-place updates (writes to actual disk locations) being completed

— useful when in-place updates might be scattered all over the disk

A transaction's dirty blocks need to be kept in the buffer-cache until the transaction commits
and all of the associated journal entries have been flushed to disk.

This might increase memory pressure.

Combining Redo/Undo Logging (Done by NFTS)

Goal: allow dirty buffers to be flushed as soon as their associated journal
entries are written. Transactions are committed as soon as logging is done

Reduce memory pressure when necessary, and have greater flexibility when scheduling disk writes

FS computes what would change due to a operation

FS computes where in the log it can write this transaction, and
writes a transactions begin record . Do not have to wait on this.

FS writes both a redo log entry and an undo log entry for each of the
changes computed in Step 1.

In-place changes can be made once the log information is written.

Once TxnBegin and logs are written, write a TxnEnd entry

Once the TxnEnd has been written, the FS asynchronously performs
the actual FS changes

Journaling — crash recovery from redo+undo logging

Scan to find all uncommitted transactions from the end of the log

For each such transaction, check whether undo entry is valid
(checksum)

Apply all valid undo entries found

disk back to a consistent state

FS starts scanning from the beginning of the log

Every time it finds a TxnBegin entry, it looks for the corresponding
TxnEnd entry

If matching (TxnBegin, TxnEnd) found, FS checkpoints the changes

Recovery is completed once the entire log is scanned

Step 1: Redo pass Step 2: Undo pass

Designed for a time when the same Operating System ran on machines with very little
memory (8-32MB), and also on "big-iron" servers with lots of memory (1GB+).

 This was an attempt to get the best of both worlds.

RPC (Remote Procedure Call)
A mechanism that allow programs to call procedures on

other computers across a network

Make remote function calls appear similar to local ones

Direct memory access (fast!)
Predictable performance

But, only works w/ local resources

Access remote services/resources
without worrying about distributed/network issues

But, more things might go wrong
(failures, network latency, distributed transactions)

One of the building blocks for client/server systems

Client/server system

Provide servers/resourcesRequest services/resources

client server

Network protocols

Example: web browser/servers, database client/servers, …

Networked file systems
Look like a file system to the application,

but the data potentially stored on another machine
Reads/writes must go over the network

Disadvantages

Benefits

Easy to share if files available on multiple machines

Easier to administer servers than clients

Access way more data than fits on your local disk

Network + remote buffer cache faster than local disk (in certain cases)

Network + remote disk slower than local disk

Network or server fail even when client is still running

Complexity and security issues

NFS: Network File System

https://web.stanford.edu/class/cs240/readings/nfs.pdf

NFS implements vnode operations through RPC
open(“/usr/jo/lab1.c”, …)

Lookup(“/usr”)

fh1 = (FS id, i#, gen#)

Lookup(fh1, “jo”)

fh2 = (FS id, i#, gen#)

Lookup(fh2, “lab1.c”)

fh3 = (FS id, i#, gen#)

write(fd, buf, sz);

Write(fh3, offset, data, size)

return code

Why not embed file name in file handle?
(file names can change; would mess everything up. client needs
to use an identifier that's invariant across such renames.)

How does client know what file handle to send?
(stored with vnode)

Statelessness of NFS
Every network protocol request contains all of the information needed to carry out that

request, without relying on anything remembered from previous protocol requests.

Are all NFS operations idempotent?
(i.e., performing the op multiple times has the same effect as performing it once)

Disadvantages

Benefits simplifies implementation, failure recovery

mess up w/ traditional unix semantics

Transparency and non-traditional Unix semantics

Transparency requires that the system calls mean the same things

