
CS202 (003): Operating Systems
Virtual Memory IV

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Understanding “page-not-present in memory”

How to decide which entry to throw away if we get a cache miss?

Replacement policy

FIFO MIN (optimal) LRU

throw out the oldest
throw away the entry that won’t

be used for the longest time
throw out the least

recently used

Replacement policy

FIFO MIN (optimal) LRU

throw out the oldest
throw away the entry that won’t

be used for the longest time
throw out the least

recently used

How do we evaluate these algorithms?

Input: Reference string (sequence of page accesses)
Cache size (i.e. physical memory)

Output: # of cache evictions (i.e. number of swaps)

Replacement policy

FIFO MIN (optimal) LRU

throw out the oldest
throw away the entry that won’t

be used for the longest time
throw out the least

recently used

Replacement policy

FIFO MIN (optimal) LRU

throw out the oldest
throw away the entry that won’t

be used for the longest time
throw out the least

recently used

Replacement policy (adding new memory)

FIFO MIN (optimal) LRU

throw out the oldest
throw away the entry that won’t

be used for the longest time
throw out the least

recently used

Replacement policy

FIFO MIN (optimal) LRU

throw out the oldest
throw away the entry that won’t

be used for the longest time
throw out the least

recently used

It approximates OPT when:
principle of temporal locality

holds strongly

Pretty decent!

Implementing LRU

In OS, it doubles the memory traffic
(since after every reference, have to move some structure to the head of some list)

In hardware, it’s a lot of work to timestamp each reference and keep the list ordered

Implementing LRU in OS/hardware is a lot of pain!

Approximating LRU

https://www.cs.cornell.edu/courses/cs4410/2018sp/schedule/slides/08-vm.pdf

“Second-chance” algorithm

Generalizing CLOCK: Nth Chance
•With each page, OS maintains a counter to indicate the number of sweeps that page has gone through.
• On page fault, OS checks accessed bit:
◦ If 1, then clear it, and also clear the counter.
◦ If 0, then increment the counter; if count == N, replace page.

Large N implies better approximation to LRU:
e.g., N = 1000 is a very good LRU approximation.
However, a large N implies more work by the OS before a page can be replaced.

N = 1 implies the default clock algorithm.
https://www.cse.iitd.ernet.in/~sbansal/os/lec/l30.html#:~:text=Nth%20chance%3A%20The%20clock%20algorithm,N%20chances%20before%20evicting%20it.

Decent approximations to LRU, assuming that past is a good predictor of the future

Still remember the PTE?

4Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Core	i7	Level	4	Page	Table	Entries

Page physical	base	address Unused G D A CD WT U/S R/W P=1

Each	entry	references	a	4K	child	page.	Significant	fields:
P:	Child	page	is	present	in	memory	(1)	or	not	(0)

R/W:	Read-only	or	read-write	access	permission	for	this	page

U/S:	User	or	supervisor	mode	access

WT:	Write-through	or	write-back	cache	policy	for	this	page

A:	Reference	bit	(set	by	MMU	on	reads	and	writes,	cleared	by	software)	

D:	Dirty	bit	(set	by	MMU	on	writes,	cleared	by	software)

Page	physical	base	address: 40	most	significant	bits	of	physical	page address	
(forces	pages	to	be	4KB	aligned)

XD: Disable	or	enable	instruction	fetches	from	this	page.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available	for	OS	(for	example,	if	page	location	on	disk) P=0

526263

Virtual

Set when page referenced; cleared by an algorithm like CLOCK

Set when page modified; cleared when page written to disk

 It's set only if page is in memory
Program can read page, but not modify it

Thrashing

Process requires more memory than the system has

Each time a page is brought in, another page, whose contents will soon
be referenced, is thrown out

A program touches 50 pages (each equally likely) but only have 40 physical page frames

If we have enough physical pages, 100ns/ref
If we have too few physical pages, assuming every 5th reference leads to a page fault, then:

4 ref * 100 ns + 1 page fault * 10ms for disk I/O
This lead to 5 refs per (10ms + 400ns) ~ 2ms/ref = 20,000x slowdown!

Thrashing

Process requires more memory than the system has

Each time a page is brought in, another page, whose contents will soon
be referenced, is thrown out

What we want: virtual memory the size of disk with access time the speed of physical memory

What we have: memory with access time roughly at the same magnitude as disk access

Note: this issue is not limited to page access, but we are discussing this issue in the context of page access

Thrashing - what are the causes?

What we want: virtual memory the size of disk with access time the speed of physical memory

What we have: memory with access time roughly at the same magnitude as disk access

process don’t reuse memory (no temporal locality)
OR

process reuses memory but the memory that is absorbing most of the accesses doesn’t fit

Each processes fit the memory individually, but too much to fit for all processes in the system!

Thrashing - What do we do?

Each processes fit the memory individually, but too much to fit for all processes in the system!

Working Set Page fault frequency

The pages a process has touched over
some trailing window of time

Only run a set of processes s.t. the union
of their working sets fit in memory

Track the metric
(# page faults/instructions executed)

If that thing rises above a threshold, and
there is not enough memory on the

system, swap out the process

How to review for midterms?

• The scope for midterm: everything we covered so far
• Everything means: lectures (up to today’s lectures), handouts, readings, homework, labs (1-3)
• All homework solutions have released
• Make sure you understand everything we covered, exams will test your understanding.
• The past exam questions are on the websites with solutions
• Cheatsheet: You may refer to ONE two-sided letter-sized sheet that is written or typed by yourself.

