
CS202 (003): Operating Systems
Virtual Memory II

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Key data structure: page table

a map from VPN to PPN

VPN Offsetvirtual address

physical address

…

PPN

PPN

PPN0
1
2

Offset

Each page table entry expresses a mapping about a contiguous group of address

x86-64
 x86 architecture is 64-bits

Virtual Address OffsetVPN0
1

0111247

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

0
1

4863
bits that matter

Bit patterns that are valid addresses are called Canonical Addresses

48-bit usable bits = possible addresses = 256 TB248

PPN

x86-64
 x86 architecture is 64-bits

Physical Address Offset
0111251

What happen if we only have
16 GB of memory?

4PB

(roughly) only 34 bits that matters!
the top 18 bits will (generally be) zero

We are mapping 48-bit number to 52-bit number, at a granularity of ranges of 212

1Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Core	i7	Page	Table	Translation

CR3

Physical		
address
of	page

Physical	
address
of	L1	PT

9
VPO

9 12 Virtual	
address

L4	PT
Page	
table

L4	PTE

PPN PPO
40 12 Physical	

address

Offset	into	
physical	and	
virtual	page

VPN	3 VPN	4VPN	2VPN	1

L3	PT
Page	middle
directory

L3	PTE

L2	PT
Page	upper
directory

L2	PTE

L1	PT
Page	global
directory

L1	PTE

99

40
/

40
/

40
/

40
/

40
/

12/

512	GB	
region	

per	entry

1	GB	
region	

per	entry

2	MB	
region	

per	entry

4	KB
region	

per	entry

L1, L2, L3, L4 all live in physical
memory

Each level of the page table is itself a page
(typically 4 KiB) in physical memory.

3Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Core	i7	Level	1-3	Page	Table	Entries

Page	table	physical	base	address Unused G PS A CD WT U/S R/W P=1

Each	entry	references	a	4K	child	page	table.	Significant	fields:
P:	Child	page	table	present	in	physical	memory	(1)	or	not	(0).

R/W:	Read-only	or	read-write	access	access	permission	for	all	reachable	pages.

U/S:	user	or	supervisor	(kernel)	mode	access	permission	for	all	reachable	pages.

WT:	Write-through	or	write-back	cache	policy	for	the	child	page	table.	

A:		Reference	bit	(set	by	MMU	on	reads	and	writes,	cleared	by	software).

PS:		Page	size:	if	bit	set,	we	have	2	MB	or	1	GB	pages	(bit	can	be	set	in	Level	2	and	3	PTEs	only).

Page	table	physical	base	address: 40	most	significant	bits	of	physical	page	table	address	(forces	
page	tables	to	be	4KB	aligned)

XD: Disable	or	enable	instruction	fetches	from	all	pages	reachable	from	this	PTE.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available	for	OS P=0

526263

4Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Core	i7	Level	4	Page	Table	Entries

Page physical	base	address Unused G D A CD WT U/S R/W P=1

Each	entry	references	a	4K	child	page.	Significant	fields:
P:	Child	page	is	present	in	memory	(1)	or	not	(0)

R/W:	Read-only	or	read-write	access	permission	for	this	page

U/S:	User	or	supervisor	mode	access

WT:	Write-through	or	write-back	cache	policy	for	this	page

A:	Reference	bit	(set	by	MMU	on	reads	and	writes,	cleared	by	software)	

D:	Dirty	bit	(set	by	MMU	on	writes,	cleared	by	software)

Page	physical	base	address: 40	most	significant	bits	of	physical	page address	
(forces	pages	to	be	4KB	aligned)

XD: Disable	or	enable	instruction	fetches	from	this	page.

51 12 11 9 8 7 6 5 4 3 2 1 0
UnusedXD

Available	for	OS	(for	example,	if	page	location	on	disk) P=0

526263

Virtual

x86-64 address translation

What happens if we want to map a process’s from VA 0x0202000 to PA 0x3000,
while making it accessible to user-level but read-only?

0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 (0x0202000)

12-bit Offset36-bit VPN

L1 entry (0) L2 entry (0) L3 entry (1) L4 entry (2)

…

| 0x00’0000’0003 (40-bit) | …, U=1,W=0,P=1 |

0
1
2

512 GB of
VA space

1 GB of
VA space

2 MB of
VA space

Each entry
corresponds to …

4 KB of
VA space

Page Table

Remember we also has to set
the permission in each L1-3

table entry properly!

x86-64 address translation

 What is the minimum number of physical pages required on x86-64 to
 allocate the following allocations?

1 byte of memory

1 allocation of size bytes of memory212

 allocations of size of bytes of memory each29 212

(+1) allocations of size of bytes of memory each29 212

(+1) allocations of size of bytes of memory each218 212

1 L1, L2, L3 and L4 pages + 1 physical page for the actual memory = 5

same as previous question, because = 4 KB = 1 page size 212

 (physical pages for the memory) + 4 (L1, L2, L3, L4)29

(+1) (physical pages for the memory) + 3 (L1, L2, L3) + 2 L429

(+1) (physical pages for the memory) + 2 (L1, L2)

+ 2 L3

+ (+ 1) L4

218

29

How to speed up address translation?

TLB (translation-lookaside buffer) inside MMU, is a hardware cache of
popular virtual-to-physical address translation

Who manages TLB?

Hardware-managed (x86, ARM)
Software-managed (MIPS)

VPN protection bitsPFN

How to speed up address translation?

TLB (translation-lookaside buffer) inside MMU, is a hardware cache of
popular virtual-to-physical address translation

TLB miss => page fault?

page fault => TLB miss?

What happens to TLB when
%cr3 is loaded?

Can we flush individual
entries in the TLB otherwise?

No. It might just means we don’t have the cache.

No, the process might request some operations that violates
permission. It is a page fault, but not a TLB miss.

The entire TLB is flushed

Yes, on x86 architectures, you can flush individual TLB entries
using the INVLPG instruction

5Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

End-to-end	Core	i7	Address	Translation
CPU

VPN VPO
36 12

TLBT TLBI
432

...

L1	TLB	(16	sets,	4	entries/set)

VPN1 VPN2
99

PTE

CR3

PPN PPO
40 12

Page	tables

TLB
miss

TLB
hit

Physical
address	
(PA)

Result
32/64

...

CT CO
40 6

CI
6

L2,	L3,	and	
main	memory

L1	d-cache	
(64	sets,	8	lines/set)

L1
hit

L1
miss

Virtual	address	(VA)

VPN3 VPN4
99

PTE PTE PTE

6Bryant	and	O’Hallaron,	Computer	Systems:	A	Programmer’s	Perspective,	Third	Edition

Cute	Trick	for	Speeding	Up	L1	Access

¢ Observation
§ Bits	that	determine	CI	identical	in	virtual	and	physical	address
§ Can	index	into	cache	while	address	translation	taking	place
§ Cache	carefully	sized	to	make	this	possible:	64	sets,	64-byte	cache	blocks
§ Means	6	bits	for	cache	index,	6	for	cache offset
§ That’s	12	bits;	matches	VPO,	PPOà One	reason	pages	are	212 bits	=	4	KB

Physical
address	

(PA)

CT CO
40 6

CI
6

Virtual	
address	

(VA) VPN VPO

36 12

PPOPPN

Address
Translation

No
Change

CI
L1	Cache

CT Tag	Check

HW 6 is Released Today!
HW 5 is Due Tomorrow!

