
CS202 (003): Operating Systems
Scheduling (cont.), Virtual Memory

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

Another way of optimization: fair-share scheduler

Try to guarantee that each job obtain a certain percentage of CPU time

Lottery scheduling

Tickets: the share of a resource that a process should receive
The percent of tickles that a process has represents its share of the system resources

Hold a lottery to determine which process should get to run next, every now and then

Let pi has ti tickets
Let T be total # of tickets, T = ∑

i

ti

Chance of winning the next quantum =
ti
T

Control long-term average proportion of
CPU for each process!

Lottery scheduling

Hold a lottery to determine which process should get to run next, every now and then

Advantages

Disadvantages - Latency is unpredictable

- Expected error somewhat high

- Deals with starvation (if you have ticket, you will make progress)

- Don’t worry that adding one high priority job will starve all others

- Adding/deleting jobs affects all jobs proportionally

- Can transfer tickets between processes

- Flexible by using ticket as a currency

Follow-up work to reduce randomness -> Stride Scheduling (see textbook for details)

What Linux does: completely fair scheduler (CFS)

It aims to distribute CPU time fairly among all runnable
processes using a virtual runtime metric.

CFS organizes processes in a red-black tree and selects the one with the lowest virtual
runtime to run next. This approach balances fairness, efficiency, and interactivity.

See the textbook for more details

Scheduling, lesson learned

Write down your goals (policy) before picking the scheduling algorithm (mechanism)

Start from/Compare with the optimal solution, even though it cannot be built

Many schedulers in the system that interact:
mutex, interrupt, disk, network, …

Let’s take a step back…

Process What is a process?

How does process communicate with low-level resources?

Core abstraction inside a process

How can one process do multiple tasks concurrently?

How can we run multiple process/
threads at the same time?

How does the operating system manage memory for multiple processes efficiently?

Virtual Memory
“Each process has its own view of memory”

Text/Code

Data

Heap

Stack

Store program itself

Store global variables and constants

malloc()

local variables, params, return addresses

0kb

16kb

Does the address space of this program actually at the physical addresses 0 through 16KB?

Address space of a process

Virtual Memory
“Each process has its own view of memory”

Text/Code

Data

Heap

Stack

Store program itself

Store global variables and constants

malloc()

local variables, params, return addresses

0kb

16kb

Does the address space of this program actually at the physical addresses 0 through 16KB?

Address space of a process

Goals/Benefits of Virtual memory

Programmability

Protection

Efficient use of resources

- Program thinks it has a lot of memory, and has its own physical memory

- Compiler and linker don’t have to worry about physical addresses

- multiple instances of the programs can be loaded and not collide

- Program cannot read/write each other’s memory

- Therefore delivers isolation (prevent bug in one process corrupt with another)

- Programmers don't have to worry that the sum of the memory
consumed by all active processes is larger than physical memory

Mapping virtual memory to physical memory

Hardware does the translation

Why? this is way faster!OS configure these hardwares

It sets up data structures that hardware sees

(per-process)

Paging

Divide all memory (physical and virtual) into fixed-size chunks

Pages!

Page Size

In the traditional x86 (and in our labs), the page size will be

4096 B = 4 KB = 212

: kilo

: mega

: giga

: tera

210

220

230

240

How many pages are there
on a 32-bit architecture?

232 bytes
212 bytes/page

= 220 pages

What about if there are 48
bits used to address memory?

248 bytes
212 bytes/page

= 236 pages = 64 billion pages

Paging

Each process has a separate mapping

Each page is separately mapped

OS take control on certain (invalid) operations:
- If a process tries to write to a page marked as read-only, it triggers a trap
- If a process tries to access a page marked as invalid, it triggers a trap

After handling a trap, the OS can modify the memory mapping as needed
(load a page from disk, change permissions, ….)

Paging

Each process has a separate mapping

Each page is separately mapped

OS take control on certain (invalid) operations:
- If a process tries to write to a page marked as read-only, it triggers a trap
- If a process tries to access a page marked as invalid, it triggers a trap

After handling a trap, the OS can modify the memory mapping as needed
(load a page from disk, change permissions, ….)

Page Number

Pages are numbered sequentially

 page 0: [0,4095]

 page 1: [4096, 8191]

 page 2: [8192, 12277]

 page 3: [12777, 16384]

page -1: […, -1]220 232

Both virtual and physical memory are
divided in to pages

VPN (virtual page number)

PPN (physical page number)

Size of space = 2# of bits

What’s the size of space for 32
bits virtual address?

Size of space = 232 bits = 4 GB

Key data structure: page table

a map from VPN to PPN

VPN Offsetvirtual address

physical address

…

PPN

PPN

PPN0
1
2

Offset

Each page table entry expresses a mapping about a contiguous group of address

Another way to look at it
(assuming 48-bit addresses and 4KB pages)

36-bit VPN 12-bit Offsetvirtual address

physical address 20-bit PPN 12-bit Offset

if OS wants a program to be able to use address 0x00402000 to refer to physical address
0x00003000, then the OS conceptually adds an entry:

table[0x00402] = 0x00003
(table[1026] = 3 in decimal)

Create the mapping is hard

Page table can get terribly large!

36-bit VPN => 2^36 translation from VPN to PPN
Assuming each translation is 8 byte => 2^36 * 8 = 512GB

Recall that we are maintaining these mapping per process, 100 process => 51200GB of memory to store address translation!

Most programs only use a small fraction of the available address space,
so it does seem to be a good use of resources

Multi-level page table

Represent a linear page table as a hierarchy of smaller page tables

Each level uses a portion of the virtual address to index into its table

a) The system starts with the root page table.

b) It uses the first part of the address to find an entry in this table.

c) This entry points to a second-level table.

d) The next part of the address is used to index into this second table.

e) This process continues through all levels.

f) The final level provides the actual physical page number.

A virtual address is divided into several parts:
• Multiple segments (often 9 bits each) for

indexing each level of tables
• A final segment (often 12 bits) for the offset

within the physical page

This tree is space: only fill in parts that are actually in-use!

Multi-level page table
Map 2MB of physical memory at virtual memory 0, …, 2 ^ 21 -1

Let’s say we have 48 bits, and we divide the VPN into 4 9 bits segments
First of all, assuming each physical page is 4 KB, then we have 512 physical pages

The Virtual Address Range: We're mapping addresses from 0 to 2^21 - 1 (2MB).
48-bit Address Structure: (It’s divided as) 9 bits | 9 bits | 9 bits | 9 bits | 12 bits
For the range 0 to 2^21 - 1, the binary representation looks like this (X is either 0 or 1):

000000000 | 000000000 | 00000XXXX | XXXXXXXXX | XXXXXXXXXXXX
(Level 1) (Level 2) (Level 3) (Level 4) (Page Offset)

Level 1 (Root):
The first 9 bits are always 000000000 for our entire range.

So, we only need one entry in the root table, pointing to the single Level 2 table we'll use.

Level 2:
The next 9 bits are also always 000000000 for our entire range.

Again, we only need one entry, pointing to the single Level 3 table.

Level 3:
The next 9 bits start with five 0s, but the last 4 can vary (00000XXXX).

However, we only need one entry here because these variations are handled in Level 4.
This single entry points to the Level 4 table.

The next 9 bits (XXXXXXXXX) can represent any value from 000000000 to 111111111.
This gives us 2^9 = 512 different combinations.

That's why we need 512 entries in this level.
Level 4:

Alternatives and tradeoffs

Large/small page size
Large page size: waste actual memory

Small page size: lots of page table entries

Many/few level of mapping

Many level of mapping: Less space spent on page structures when address
space is space, but more costly for hardware to walk the page table

Few level of mapping: Need to allocate larger pages, which cost more space,
but the hardware has fewer levels of mapping

