
CS202 (003): Operating Systems
Concurrency V

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Deadlock

Deadlock

Deadlock

Happens when all four conditions are present:
(1) Mutual exclusion
(2) Hold and wait
(3) No pre-emption
(4) Circular wait

Preventing deadlock

Ignore It!

Detect & Recover

Avoid Algorithmically

Negate Any of the Conditions

Static/Dynamic Analysis

Works in development, not really viable for production

There are ways but we don’t cover them in this class1

Check the following if you are curious:

1Section 6.5.3 of Modern Operating Systems (Tanenbaum)

2Engler, D. and K. Ashcraft. RacerX: effective, static detection of race conditions and deadlocks.

3Savage, S., M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson. Eraser: a dynamic data race detector for multithreaded programs.

Static: detect potential errors without running the code2

Dynamic: detect during execution, but before deadlock occurs3

Hold and wait
not likely to work

Mutual exclusion
put a queue for

accessing resources

No preemption
modify virtual memory
inside a virtual machine

Circular dependency
put partial order on locks

(=> no cycles)

“admit defeat”

Other progress issues

Starvation Priority Inversion

Thread waiting indefinitely
(if low priority and/or resource is contended)

T1:
(highest priority)

T2:
(middle priority)

T3:
(lowest priority)

hold the lock
start preempt T3

waiting for lock
start

running

Why does T2 control the CPU?

Priority inversion - potential fixes
Solution 1

T1:
(highest priority)

T2:
(middle priority)

T3:
(highest priority)

hold the lock
start

waiting for lock
finish T3

release the lock
acquire the lock

running
……

Solution 2

T1:
(highest priority)

T2:
(middle priority)

T3:
(lowest priority)

hold the lock
start

waiting for lock
disable interrupt

finish T3
release the lock

acquire the lock
running

……

Solution 3
Don’t handle it.

Design the code wisely so that only adjacent priority processes/threads share the lock

Performance issues and tradeoffs

Implementation of spinlocks/
mutexes can be expensive

Coarse locks limit
available parallelism

Fine-grained locking leads to
complexity and hence bugs

Mutex costs:
•instructions to execute “mutex acquire”
•sleep/wake up brings reproduce cost

Spinlock costs:
• cross-talk among CPUs
• cache line bounces
• fairness issues

But, you should still
start with coarse locks!

See “filemap.c” in
handout

*Look up “MCS locks” if curious

Only 1 CPU can execute
anywhere in the part of your

code protected by a lock

Programmability issues

Loss of modularity

What’s the fundamental problem?

To avoid deadlock, you need to
understand how program call each other

You also need to know, whether library
functions is thread-safe when you call it.

If not, add mutex!

https://bonkersworld.net/building-software

Shared memory programming model is hard to use correctly

Some moments of reality about interleaving

Modern multi-CPU hardware does guarantee sequential consistency

Remember sequential consistency?

https://gunshowcomic.com/648

Yet, if you use mutex correctly…

You don’t have to worry about arbitrary interleaving

You don’t have to worry about what hardware is truly doing

Critical sections execute atomically

Threading library and compiler do the hard work for you

That does not apply if you do low-level programming

move	$1,	0x10000			#	write	1	to	memory	address	10000	
move	$2,	0x20000			#	write	2	to	memory	address	20000	
MFENCE	
move	$3,	0x10000			#	write	3	to	memory	address	10000	
move	$4,	0x30000			#	write	4	to	memory	address	30000

If any memory write after MFENCE (in program order) is visible to another CPU,
then that other CPU also sees all memory writes before the MFENCE

MUST ensure the compiler is not reordering key instructions

MUST know the memory model (of the hardware)

MUST know when to insert memory barriers

"acquire" and "release" in
mutexes need memory barriers

“xchg” on x86 includes an implicit memory barrier

Therac-25

Intended
Setting

Beam
Energy

Beam
Current

Beam
Modifier

Electron
therapy

5-25 MeV low Magnets

X-ray (photon)
therapy

25 MeV
high

(100x)
Flattener

Field
illumination

0 0 None

Therac-25

Intended
Setting

Beam
Energy

Beam
Current

Beam Modifier
(determined by the TT)

Electron
therapy

5-25 MeV low Magnets

X-ray (photon)
therapy

25 MeV high (100x) Flattener

Field
illumination

0 0 None

What can go wrong?

high (100x) MagnetsX

5-25 MeV

25 MeV

X

X

Field illumination

Field illumination

What actually go wrong?

2 software problems and a bunch of non-technical problems

Software problem I

Three threads

Treat Hand Keyboard
sets a bunch of other parameters

(magnets, energy, current)
read the top byte

sets the turntable position
read the bottom byte

invoked when user types, writes the
input to a two-byte shared variable

Software problem I

sets a bunch of other parameters
read the top byte

sets the turntable position
read the bottom byte

invoked when user types, writes the
input to a two-byte shared variable

8s

Software problem I

8s

If the operator sets a consistent set of parameters for x (X-ray (photon) mode), realizes that the doctor ordered something
different, and then edits very quickly to e (electron) mode, then what happens?

- if the re-editing takes less than 8 seconds, the general parameter setting thread never sees that the editing happened
because it's busy doing something else. when it returns, it misses the setup signal

- now the turntable is in 'e' position (magnets)

- but the beam is a high intensity beam because the ‘Treat' never saw the request to go to electron mode

- operator presses BEAM ON -> patient mortally injured

Software problem II

how it's supposed to work:

- operator sets up parameters on the screen

- operator moves turntable to field-light mode, and visually checks that patient is properly positioned

- operator hits "set" to store the parameters

- at this point, the class3 "interlock" (in quotation marks for a reason) is supposed to tell the software
to check and perhaps modify the turntable position

So what goes wrong?

- every 256 times that code runs, class3 is set to 0, operator presses 'set', and no repositioning

- operator presses "beam on", and a beam is delivered in field light position, with no scanning
magnets or flattener -> patient injured or killed

What else are wrong?
System Design FailuresSoftware Engineering Issues Human Errors

No real quality control
(lack of unit testing …)

Complex and poor code

Use old code without
much thinking

No error documentation
No documentation of

software design

No end-to-end
consistency checks

No backup plan to
tolerate error (like using

hardware interlocks)

Not readable error
messages

Assume software is
always correct

“Think” errors are fixed
without enough formal

reasoning

Company did not inform
the failures, user

weren’t required to
report failures

Operators think re-do
things will fix the problem

Lack of investigation
when failures occur

What should have been done?

Adding a consistency check!

Assume software will make mistakes

Always have back-up failure plans

……

