
CS202 (003): Operating Systems
Concurrency IV

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Before we start…

A side note on WSL/Docker permission

What makes a good mutex implementation?

Does it provide mutual exclusion?

Does each thread get a shot at acquiring it once it is free?

What is the time overheads added by using the lock?

Implementation of mutex

Spinlock

Spinlock implementation I

struct Spinlock {	
 int locked;	
}	

void acquire(Spinlock *lock) {	
 while (1) {	
 if (lock−>locked == 0) { // A	
 lock−>locked = 1; // B	
 break;	
 }	
 }	
}	

void release (Spinlock *lock) {	
 lock−>locked = 0;	
}

What is the problem?

Thread 1 A	
Thread 2 A	
Thread 2 B	
Thread 1 B

Violates mutual exclusion!

Spinlock implementation II
/* pseudocode */	
int xchg_val(addr, value) {	
 %rax = value;	
 xchg (*addr), %rax	
}	

void acquire (Spinlock *lock) {	
 pushcli(); /* what does this do? */	
 while (1) {	
 if (xchg_val(&lock−>locked, 1) == 0)	
 break;	
 }	
}	

void release(Spinlock *lock){	
 xchg_val(&lock−>locked, 0);	
 popcli(); /* what does this do? */	
}

(i) freeze all CPUs’ memory activity for address addr

(ii) temp <− *addr

(iii) *addr <− %rax

(iv) %rax <− temp

(v) un−freeze memory activity

Spinlock implementation II
/* pseudocode */	
int xchg_val(addr, value) {	
 %rax = value;	
 xchg (*addr), %rax	
}	

/* optimization in acquire;	
call xchg_val() less frequently */	
void acquire(Spinlock* lock) {	
 pushcli();	
 while (xchg_val(&lock−>locked, 1) == 1) {	
 while (lock−>locked) ;	
 }	
}	

void release(Spinlock *lock){	
 xchg_val(&lock−>locked, 0);	
 popcli();	
}

Busy waits!

Starvation!

Mutex: spinlock + a queue

typedef struct thread {	
 // ... Entries elided.	
 STAILQ_ENTRY(thread_t) qlink; // Tail queue entry.	
} thread_t;

struct Mutex {	
 // Current owner, or 0 when mutex is not held.	
 thread_t *owner;	

 // List of threads waiting on mutex	
 STAILQ(thread_t) waiters;	

 // A lock protecting the internals of the mutex.	
 Spinlock splock; // as in item 1, above	
};

qlink is a field that allows each thread_t structure
to be part of a singly-linked tail queue.

qlink field in each thread_t is what allows
these threads to be linked into that queue

Mutex: spinlock + a queue

typedef struct thread {	
 // ... Entries elided.	
 // Tail queue entry.	
 STAILQ_ENTRY(thread_t) qlink;	
} thread_t;

struct Mutex {	
 // Current owner	
 //or 0 when mutex is not held.	
 thread_t *owner;	

 // List of threads waiting on mutex	
 STAILQ(thread_t) waiters;	

 // A lock protecting 	
 //the internals of the mutex.	

 Spinlock splock;	
};

void mutex_acquire(struct Mutex *m) {	

 acquire(&m−>splock);	

 // Check if the mutex is held;	
 // if not, current thread gets mutex and returns	
 if (m−>owner == 0) {	
 m−>owner = id_of_this_thread;	
 release(&m−>splock);	
 } else {	
 // Add thread to waiters.	
 STAILQ_INSERT_TAIL(&m−>waiters, 	

 id_of_this_thread, 	
 qlink);	

 // Tell the scheduler to add 	
 // current thread to the list of blocked threads.	

 sched_mark_blocked(&id_of_this_thread);	
 // Unlock spinlock.	
 release(&m−>splock);	
 // Stop executing until woken.	
 sched_swtch();	
 // We guaranteed to hold the mutex 	

 // when we are here	
 }	
}

only one thread can modify the
mutex's internal state at a time

this thread is waiting and
shouldn’t be scheduled to run

allowing other threads to access
the mutex's internal state

This call switches to another
thread

This is because we can get here only if context−switched−TO, which itself can happen only if this thread is removed from the waiting queue, marked "unblocked", and set to be the owner (in mutex_release()
below). However, we might have held the mutex in lines 39−42 (if we were context−switched out after the spinlock release(), followed by being run as a result of another thread’s release of the mutex). But if

that happens, it just means that we are context−switched out an "extra" time before proceeding.

Mutex: spinlock + a queue

typedef struct thread {	
 // ... Entries elided.	
 // Tail queue entry.	
 STAILQ_ENTRY(thread_t) qlink;	
} thread_t;

struct Mutex {	
 // Current owner	
 //or 0 when mutex is not held.	
 thread_t *owner;	

 // List of threads waiting on mutex	
 STAILQ(thread_t) waiters;	

 // A lock protecting 	
 //the internals of the mutex.	

 Spinlock splock;	
};

void mutex_release(struct Mutex *m) {	
 // Acquire the spinlock in order to make changes.	
 acquire(&m−>splock);	

 // Assert that the current thread 	
 // actually owns the mutex	
 assert(m−>owner == id_of_this_thread);	

 // Check if anyone is waiting.	
 m−>owner = STAILQ_GET_HEAD(&m−>waiters);	

 // If so, wake them up.	
 if (m−>owner) {	
 sched_wakeone(&m−>owner);	
 STAILQ_REMOVE_HEAD(&m−>waiters, qlink);	
 }	

 // Release the internal spinlock	
 release(&m−>splock);	
}

only one thread can modify the
mutex's internal state at a time

safety check to prevent a thread from
releasing a mutex it doesn't own

get the first thread from the
waiters queue

making it ready to run.

The thread is removed from the
head of the waiters queue.

If there were no waiting threads,
the m->owner would be NULL,

effectively marking the mutex as
unheld.

Another implementation is covered in the textbook (https://pages.cs.wisc.edu/~remzi/OSTEP/threads-locks.pdf)

What makes a good mutex implementation?

Mechanism

Mechanism Pros Cons Best Use Case

Spinlock + Queue

- Efficient for both short and long waits
- Allows context switching
- Fair (FIFO ordering)
- Scalable to many threads

- More complex implementation
- Slightly higher overhead for uncontended
case

General-purpose locking
in multi-threaded

environments

Pure Spinlock - Very fast for short waits
- Simple implementation

- Wastes CPU cycles for long waits
- Starvation and contention

Very short-duration locks
with low contention

Disabling Interrupts - Simple to implement
- Guaranteed mutual exclusion

- Only works on single-processor systems
- Can increase interrupt latency
- Can't be used by user-level code

Low-level OS operations
on single-processor

systems

Peterson's Algorithm - Works without hardware support
- Guaranteed fairness

- Limited to two threads
- Busy-waiting (similar to spinlock)
- Can be less efficient on modern hardware

Educational purposes,
simple two-thread

synchronization

Deadlock

T1:	
acquire(mutexA);	
acquire(mutexB);	

// do some stuff	

release(mutexB);	
release(mutexA);

T2:	
acquire(mutexB);	
acquire(mutexA);	

// do some stuff	

release(mutexA);	
release(mutexB);

Example 1 Example 2: Code see handout

M:	
acquire(&mutex_m);	
n.alloc(nwanted)	

acquire(&mutex_m);	

N:	

acquire(&mutex_n)	
navailable < nwanted	
release(&mutex_n) 	

