
CS202 (003): Operating Systems
Concurrency III

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Last Time

mutex_init(mutex_t*	m)	
mutex_lock(mutex_t*	m)	
mutex_unlock(mutex_t*	m)

Mutex (mutual exclusion objects)

void	cond_init(Cond	*cond,	...);	
void	cond_wait(Cond	*cond,	Mutex	*mutex);	

void	cond_signal(Cond	*cond);	
void	cond_broadcast(Cond	*cond);

Conditional Variables

Semaphores: Mutex + Conditional Variables (but more general)

#include	<semaphore.h>	
sem_t	s;	
sem_init(&s,	0,	1);	

int	sem_wait(sem_t	*s)	{	
		decrement	the	value	of	semaphore	s	by	one	
		wait	if	value	of	semaphore	s	is	negative	
}	

int	sem_post(sem_t	*s)	{	
		increment	the	value	of	semaphore	s	by	one	
		if	there	are	one	or	more	threads	waiting,	wake	one	
}	

sem_wait(&m);	
//	critical	section	here	
sem_post(&m);

Semaphores: Mutex + Conditional Variables (but more general)

Semaphores manage a count, mutex+CV do not inherently do this

Semaphores can allow multiple threads access, unlike a basic mutex

Semaphores can be used for locking, but can also be used for other purpose

Monitor: Mutex + Conditional Variables (but in OOP)

All method calls of a class are protected by a mutex

Synchronization happens with condition variables whose
associated mutex is the mutex that protects the method calls

“Monitor” can be used to refer to either a programming convention or
a method in certain programming languages*

* https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

What does monitor enable us to do?

Encapsulation!

Separation of program logic inside threads from the shared object

The monitor handles all synchronization internally so threads don’t
need to worry about locking, unlocking or conditional signaling

Look at the first page of handout05!

int	main(int,	char**)	
{	
				MyBuffer	buf;	
				int	dummy;	
				tid1	=	thread_create(producer,	&buf);	
				tid2	=	thread_create(consumer,	&buf);	
}	

void	producer(void*	buf)	
{	
				MyBuffer*	sharedbuf	=	reinterpret_cast<MyBuffer*>(buf);	
				for	(;;)	{	
								Item	nextProduced	=	means_of_production();	
								sharedbuf−>Enqueue(nextProduced);	
				}	
}	

void	consumer(void*	buf)	
{	
				MyBuffer*	sharedbuf	=	reinterpret_cast<MyBuffer*>(buf);	
				for	(;;)	{	
								Item	nextConsumed	=	sharedbuf−>Dequeue();	
								consume_item(nextConsumed);	
				}	
}

Mutex	mutex;	

void	producer	(void	*ignored)	{	
			for	(;;)	{	
					nextProduced	=	means_of_production();	

					acquire(&mutex);	
					while	(count	==	BUFFER_SIZE)	{	
									release(&mutex);	
									yield();	/*	or	schedule()	*/	
									acquire(&mutex);	
					}	

			buffer	[in]	=	nextProduced;	
			in	=	(in	+	1)	%	BUFFER_SIZE;	
			count++;	
			release(&mutex);	

			}	
}

* These are pseudocode. Class is a special data type used for OOP.

void	consumer	(void	*ignored)	{	
				for	(;;)	{	
						acquire(&mutex);	
						while	(count	==	0)	{	

								release(&mutex);	
								yield();	/*	or	schedule()	*/	
								acquire(&mutex);	
				}	

						nextConsumed	=	buffer[out];	
						out	=	(out	+	1)	%	BUFFER_SIZE;	
						count−−;	
						release(&mutex);	

					consume_item(nextConsumed);	
				}	
}

Producer/Consumer w/ Monitor Producer/Consumer w/ Mutex & CV

Monitor: Mutex + Conditional Variables

All method calls are protected by a mutex

Synchronization happens with condition variables whose
associated mutex is the mutex that protects the method calls

“Monitor” can be used to refer to either a programming convention or
a method in certain programming languages*

* https://docs.oracle.com/javase/tutorial/essential/concurrency/syncmeth.html

Please follow these conventions on Lab 3!

Standards for Programming w/ Threads

Rule I: acquire/release at beginning/end of methods

Rule II: hold lock when doing condition variable operations

Rule III: a thread that is in wait() must be prepared to be restarted at any time, not just
when another thread calls "signal()"

Rule IV: don't call sleep()

Advice for concurrent programming

Top-level piece of advice: SAFETY FIRST

Locking at coarse grain is easiest to get right, so do that

Don’t worry about performance at first

MAKE SURE YOU PROGRAM NEVER DOES THE WRONG THING

Don’t view deadlock as a disaster

Advice for concurrent programming

Getting started
1. Identify unit of concurrency
2. Identify chunks of state
3. write down high-level main loop of each thread

Write down the synchronization constraints, and the type

Create a lock or CV for each constraint

Implement the methods, using the locks and CVs

Implementation of mutex

Peterson's algorithm

expensive (busy waiting)
requires number of threads to be fixed statically

assumes sequential consistency

Implementation of mutex

Disable Interrupts

Works only on a single CPU
Cannot expose to user processes

Implementation of mutex

Spinlock

