
CS202 (003): Operating Systems
Concurrency II

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Revisiting the Handout

struct	List_elem	{	
				int	data;	
				struct	List_elem*	next;	
};	

List_elem*	head	=	0;	

insert(int	data)	{	
				List_elem*	l	=	new	List_elem;	
				l−>data	=	data;	
				l−>next	=	head;	
				head	=	l;	
}

What happens if two threads execute insert() at
once and we get the following interleaving?

thread	1:	l−>next	=	head	
thread	2:	l−>next	=	head	
thread	2:	head	=	l;	
thread	1:	head	=	l;

* this is pseudocode

The list is broken!

Revisiting the Handout
void	producer	(void	*ignored)	{	
				for	(;;)	{	
								/*	next	line	produces	an	item	and	puts	it	in	nextProduced	*/	
								nextProduced	=	means_of_production();	
								while	(count	==	BUFFER_SIZE)	
												;	//	do	nothing	
								buffer	[in]	=	nextProduced;	
				in	=	(in	+	1)	%	BUFFER_SIZE;	
				count++;	
				}}	

void	consumer	(void	*ignored)	{	
				for	(;;)	{	
								while	(count	==	0)	
												;	//	do	nothing	
								nextConsumed	=	buffer[out];	
								out	=	(out	+	1)	%	BUFFER_SIZE;	
								count−−;	
								/*	next	line	abstractly	consumes	the	item	*/	
								consume_item(nextConsumed);	
}}

What happens if we get the
following interleaving?

assuming	count++	compiles	to:	
reg1	<−	count	#	load		
reg1	<−	reg1	+	1	#	increment	register		
count	<−	reg1	#	store		

assuming	count--	compiles	to:	
reg2	<−	count	#	load	
reg2	<−	reg2	−	1	#	decrement	register		
count	<−	reg2	#	store

reg1	<-	count	
reg1	<-	reg1	+	1	
reg2	<-	count	
reg2	<-	reg2	-	1	
count	<-	reg1		
count	<-	reg2* this is pseudocode

The count is incorrect!

We call these situation a race condition

Or more specifically, a data race

It arises if multiple threads of execution enter the critical section at roughly
the same time; both attempt to update the shared data structure, leading to

a surprising (and perhaps undesirable) outcome.

Revisiting the Handout
int	flag1	=	0,	flag2	=	0;	

int	main	()	{	
				tid	id	=	thread_create	(p1,	NULL);	
				p2	();	thread_join	(id);	
}	

void	p1	(void	*ignored)	{	
				flag1	=	1;	
				if	(!flag2)	{	
								critical_section_1	();	
				}	
}	

void	p2	(void	*ignored)	{	
				flag2	=	1;	
				if	(!flag1)	{	
								critical_section_2	();	
				}	
}

Can both "critical sections" run?

* this is pseudocode

Maybe, if the hardware works like the following:

https://sadve.cs.illinois.edu/Publications/computer96.pdf

Revisiting the Handout

int	data	=	0,	head	=	0;	

void	p1	()	{	
				data	=	2000;	
				head	=	1;	
}	

int	p2	()	{	
				while	(!head)	{}	
				use(data);	
}

Can use() be called with value 0,
if p2 and p1 run concurrently?

* this is pseudocode

Maybe, if the hardware works like the following:

https://sadve.cs.illinois.edu/Publications/computer96.pdf

Revisiting the Handout

int	a	=	0,	b	=	0;	

void	p1	(void	*ignored)	{	a	=	1;	}	

void	p2	(void	*ignored)	{	
				if	(a	==	1)	b	=	1;	
}	

void	p3	(void	*ignored)	{	
				if	(b	==	1)	use	(a);	
}

Can use() be called with value 0?

* this is pseudocode

Maybe, if the hardware works like the following:

Certain hardware allows P2 to return the value of
P1’s write before the write is visible to P3

Reasoning about Concurrency is Hard!

https://sadve.cs.illinois.edu/Publications/computer96.pdf

Don’t worry about hardware-related issues, for now

(Unless explicitly relax it) We assume sequential consistency in this class

(On each individual processors)
Writes to each memory location happen in the order that they are issued

Managing Concurrency: the Key Problem

How do we avoid multiple threads accessing a shared resource at the same time?

A piece of code that access a shared resource and must not be concurrently executed by more than one thread is called a

Critical Section

How do we protect Critical Sections from concurrent execution?

Three (ideal) Properties of the Solution

Mutual Exclusion/Atomicity
Only one thread can be in critical section at a time

Progress
If no thread is executing in critical section, then one of the threads trying to enter a given critical

section will eventually get in

Bounded Waiting
Once a thread T starts trying to enter the critical section, there is a bound on the number of

other threads that may enter the critical section before T enters

Three (ideal) Properties of the Solution

Mutual Exclusion/Atomicity
Only one thread can be in critical section at a time

Progress
If no thread is executing in critical section, then one of the threads trying to enter a given critical

section will eventually get in

Bounded Waiting
Once a thread T starts trying to enter the critical section, there is a bound on the number of

other threads that may enter the critical section before T enters

So, what is the solution?
Key Idea

Once the thread of execution is executing inside the critical section,
no other thread of execution is executing there

lock()/unlock()	
enter()/leave()	

acquire()/release()
They all illustrate the same idea!

mutex_init(mutex_t*	m)	
mutex_lock(mutex_t*	m)	

mutex_unlock(mutex_t*	m)
Mutex (mutual exclusion objects)

pthread_mutex_init(…)	
pthread_mutex_lock(…)	
pthread_mutex_unlock(…)

POSIX Thread (pthread) Functions

How to implement these solutions?
“Easy” Implementation (on uniprocessor)

enter() -> disable interrupts
leave () -> re-enable interrupts

This prevents CPU from switching to another thread when the
current thread is exciting its critical section

We will study other implementation later!

Look at your new handout!

Mutex	list_mutex;	

insert(int	data)	{	
				List_elem*	l	=	new	List_elem;	
				l−>data	=	data;	

				acquire(&list_mutex);	

				l−>next	=	head;	
				head	=	l;	

				release(&list_mutex);	
}

Look at your new handout!
Mutex	mutex;	

void	producer	(void	*ignored)	{	
			for	(;;)	{	
						/*	next	line	produces	an	item	

and	puts	it	in	nextProduced	*/	
					nextProduced	=	means_of_production();	

					acquire(&mutex);	
					while	(count	==	BUFFER_SIZE)	{	
									release(&mutex);	
									yield();	/*	or	schedule()	*/	
									acquire(&mutex);	
					}	
			buffer	[in]	=	nextProduced;	
			in	=	(in	+	1)	%	BUFFER_SIZE;	
			count++;	
			release(&mutex);	

			}	
}

void	consumer	(void	*ignored)	{	
				for	(;;)	{	
						acquire(&mutex);	
						while	(count	==	0)	{	
								release(&mutex);	
								yield();	/*	or	schedule()	*/	
								acquire(&mutex);	
				}	

						nextConsumed	=	buffer[out];	
						out	=	(out	+	1)	%	BUFFER_SIZE;	
						count−−;	
						release(&mutex);	

						/*	next	line	abstractly	consumes	the	item	*/	
						consume_item(nextConsumed);	
				}	
}

Use of Mutex

Once we have mutex, we don’t have to worry about arbitrary interleaving

Because mutex allows us maintain certain type of invariants:

LinkedList

Producer/Consumer The 'count' accurately represents the number of items in the buffer

Only one thread can be modifying the head of the list

Going back to the Producer/Consumer example

What is the problem of using mutex?

Producer/Consumer keep checking the buffer state when it is full/empty

Tw
o

ty
pe

s
of

 s
yn

ch
ro

ni
za

tio
n

Mutual Exclusion

Scheduling Constraint:
Wait for some other thread to do sth

updating the count variable

waiting the buffer to have/empty something

Conditional Variables
Warning: Conditional Variable is not really a Variable!

void	cond_init(Cond	*cond,	...);	
void	cond_wait(Cond	*cond,	Mutex	*mutex);	
void	cond_signal(Cond	*cond);	
void	cond_broadcast(Cond	*cond);

mutex_lock(&mutex);	
while	(!condition_is_met)	{	
				cond_wait(&cond,	&mutex);	
}	
//	Modify	shared	state	
mutex_unlock(&mutex);

Why is this a while?

mutex_lock(&mutex);	

if	(!condition_is_met)	{	
				cond_wait(&cond,	&mutex);	
}	

//	Proceed	with	the	assumption		
//	that	the	condition	is	met	
//	Perform	operations	based	on	this	
assumption	
//	...	

mutex_unlock(&mutex);

Conditional Variables
Warning: Conditional Variable is not really a Variable!

void	cond_init(Cond	*cond,	...);	
void	cond_wait(Cond	*cond,	Mutex	*mutex);	
void	cond_signal(Cond	*cond);	
void	cond_broadcast(Cond	*cond);

mutex_lock(&mutex);	
while	(!condition_is_met)	{	
				cond_wait(&cond,	&mutex);	
}	
//	Modify	shared	state	
mutex_unlock(&mutex);

This MUST be a while!

More hypothetical questions…
Why do cond_wait releases the mutexes and goes into the waiting

 state in one function call (see panel 2b of handout 04)?

If those two steps were separate, could get stuck waiting.

Producer:	while	(count	==	BUFFER_SIZE)	
Producer:	release()	
Consumer:	acquire()	
Consumer:	
Consumer:	cond_signal(&nonfull)	
Producer:	cond_wait(&nonfull)

Producer never hears the signal!

More hypothetical questions…
Can we replace SIGNAL with BROADCAST, and preserve correctness*?

Yes, but it might hurt performance

correctness*: not having race conditions, and making progress when possible

Since	while()	checks	the	invariant,	
Only	thread	satisfying	the	invariant	will	make	progress	

=>	this	does	not	affect	correctness

But	we	make	needlessly	wakeup	of	threads	

=>	this	might	hurt	performance

More hypothetical questions…
Can we replace BROADCAST with SIGNAL, and preserve correctness*?

No race conditions, but may never make progress

correctness*: not having race conditions, and making progress when possible

