
Process III, Concurrency

Instructor: Jocelyn Chen

Fork/Exec Separation Enables …

Backgrounding

$	myprog	&

……	
			else	if	(pid	>	0)	{											//	parent	process	
								if	(!background)	{	
												wait(0);														//	wait	only	if	it's	a	foreground	process	
								}	else	{	
												printf("[1]	%d\n",	pid);	//	Print	job	info	for	background	process	
								}	
				}	
……

Pipe

Fork/Exec Separation Enables …

$	ps	xc	|	grep	…

void	handle_pipeline(l_command,	r_command)	{	
				int	fdarray[2];	
		pipe(fdarray);	

				if	((pid	=	fork())	==	0)	{		//	child	(left	end	of	pipe)	
								dup2(fdarray[1],	1);	//	make	fd	1	the	same	as	fdarray[1]	
																														//	which	is	the	write	end	of	the	pipe	
								close(fdarray[0]);	
								close(fdarray[1]);	
								parse(command1,	args1,	l_command);	
								exec	(command1,	args1,	0);	
				}	else	if	(pid	>	0)	{			//	parent	(right	end	of	pipe)	
								dup2(fdarray[0],	0);	//	make	fd	0	the	same	as	fdarray[0]	
																														//	which	is	the	read	end	of	the	pipe	
								close(fdarray[0]);	
								close(fdarray[1]);	
								parse(command2,	args2,	r_command);	
								exec(command2,	args2,	0);	
				}......	
}

To understand process…

How OS implement the process
abstraction?

How process see an abstract
machine?

What information of a process does OS keep track of?

opened files

ip

user id

state

proc_id

PCB (or “proc”)

open files

VM structures

registers

……

OS

PCB PCB PCB

……

ready, running, blocked

Hmmm only single process so far?

How can we make use of CPU if it is waiting for some non-CPU instructions to finish?

What happen if i want to run two tasks at the same time in a program?

What happen if i want to speed up the computation using multiple processors?

Threading

https://www.cs.uic.edu/~jbell/CourseNotes/OperatingSystems/4_Threads.html

Lightweight units of execution
within a process

That means, you can do
concurrent execution within a

process using thread

Process address space with threadsProcess address space

https://jhuopsys.github.io/spring2024/lectures/lecture04.pdf

TCB (thread control block)

a data structure inside the kernel that
contains thread-specific information
needed for managing the thread.

Interface to Threads

How do we create threads?

tid	thread_create(void	(*fn)	(void	*),	void	*arg);	

void	thread_exit();	

void	thread_join(tid	thr);

And a lot more synchronization primitives

Threading is not the only way!

Concurrency

Simultaneous execution of multiple tasks

Broader concept than just threading

multiple CPUs and
common memory

Multiple computers
connected via a network

Multiple computers
connected via a network

Allows CPU to work on
other tasks while waiting

for I/O to complete

the OS was the first concurrent program, and many
techniques were created for use within the OS

Concurrency is HARD

Difficult to reason about all possible interleaving

Race conditions, deadlocks, lovelocks,
starvations, …

Will talk more in the following lectures.

Handout 1(c)

		f()	
1	movq	0x5000,	%rbx				#	load	from	address	0x5000	into	register	
2	addq	$1,	%rbx								#	add	1	to	the	register's	value	
3	movq	%rbx,	0x5000				#	store	back

		g()	
4	movq	0x5000,	%rbx				#	load	from	address	0x5000	into	register	
5	addq	$2,	%rbx								#	add	2	to	the	register's	value	
6	movq	%rbx,	0x5000				#	store	back

Lab 2 is Released Today!

