
CS202 (003): Operating Systems
Process II

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202 and Yang Tang’s CS202

How does process access system resources?

System Calls!User-level
Process OS Kernel

System calls are the mechanism by which user-level
programs ask the OS to do things for them

What is a System Call?
 A system call looks like a function call in C

- Process control (e.g., fork, exit)

- File management (e.g., open, read, write)

- Device management (e.g., ioctl)

- Information maintenance (e.g., time, date)

- Communication (e.g., pipe, socket)

int	fd	=	open(const	char*	path,	int	flags)	

write(fd,	const	void	*,	size_t)	

read(fd,	void	*,	size_t)

You can always use the command

to get the documentation
	man	2	<syscall>	

System Call Function Call≠

Calling Convention

Instruction Used

All registers (except %rax) are call-preserved.
Kernel must save and restore all registers (except %rax)

;	Calling	a	function	named	'print_hello'	
call	print_hello

;	Performing	a	'write'	system	call	
mov	rax,	1										;	system	call	number	for	'write'	
……																		;	setting	up	the	parameters	
syscall													;	invokes	OS	to	do	the	write	

Switch to privilege mode!

Switching to Privilege Mode

user-level
kernel-level

open

mov	$2,	%rax			//	System	call	number	for	open()	
mov	...,	%rdi		//	First	argument	
mov	...,	%rsi		//	Second	argument	
int	$0x80						//	Software	interrupt	to	switch	to	kernel	mode

0
1

0x40….. 2

0x40…..

Address of open()

open()		
//	perform	open()	
//	put	fd	in	%rax	

iret	//	interrupt	return	

mov	%rax	…						//	return	val	can	be	accessed	in	%rax

“Trapping”

Privileged Mode v.s. Unprivileged Mode

Unrestricted access to system resources

“Kernel Mode” “User Mode”

Can access both user programs and
kernel programs

Can refer to any memory block in the
system and can also direct the CPU for the

execution of an instructions

No direct access to system resources

No direct access to kernel programs

Can only refer to memory allocated for
user mode

Hardware knows the difference between kernel and user modes and enforce it!

Three Ways to Invoke the Kernel
1. System Calls

2. Interrupts 3. Exceptions

It is a hardware event

It allows a device to notify the kernel that it
needs attention.

Process is not aware that interrupts happened

Hardware and kernel need to save all process
state (when interrupt starts), and restore all of it

(when interrupt finishes)

CPU cannot execute process instructions

(for this class), an exception happens means
“the process did something wrong”

1. Process stops running
2. CPU invokes interrupt handler
3. Kernel starts running
4. Kernel handles the interrupt
5. Kernel returns control

When interrupt happens…

1. CPU knows immediately
2. CPU invokes exception handler
3. Kernel handles the exception by either:

1. kill the process (default, segfault)
2. signal to the process (and signal

handler handles the rest)
3. silently handle the exception

When exception happens…

What is a System Call?
 A system call looks like a function call in C

- Process control (e.g., fork, exit)

- File management (e.g., open, read, write)

- Device management (e.g., ioctl)

- Information maintenance (e.g., time, date)

- Communication (e.g., pipe, socket)

pid_t	pid	=	fork();	

				if	(pid	==	0)	{	
								getpid();		//	Child	process	
				}	else	{	
								getpid();		//	Parent	process	
				}

System Calls for Process Control

Process identification
getpid();		//	Calling	process	pid	
getppid();		//	Parent	of	the	calling	process	pid

Process creation fork();	//	Create	a	new	process	

Process creation

System Calls for Process Control

17	int	ret	=	fork();	//	Create	a	new	process	

Parent Process

Parent Process Child Process

Starts execution from L18 of code.c

ret	=	0;

Starts execution from L18 of code.c

ret	=	getpid();Child Process

running code.c

Child Process inherits program code, program counter, memory, opened files from Parent Process

Child Process has different ret value, pid, parent, running time, file locks from Parent Process

Process creation

System Calls for Process Control

17	int	ret	=	fork();	//	Create	a	new	process	

Parent Process

Parent Process Child Process

running code.c

Who runs first? We don’t know. That depends on the process scheduling.

Process creation

System Calls for Process Control

17	int	ret	=	fork();	//	Create	a	new	process	

Parent Process

Parent Process Child Process

running code.c

Is it possible to make sure
child process finish first?

Yes, we can use wait() system call1.

Parent process can call wait() to delay its execution until child finishes executing.

When the child is done, wait() returns to the parent.

1There are a few cases where wait() returns before the child exits; read the man page for more details.

Process creation

System Calls for Process Control

17	int	ret	=	fork();	//	Create	a	new	process	

Parent Process

Parent Process Child Process

running code.c

Suppose we have two users,
what happens if one of them

runs the following code?

for	(i	=	0;	i	<	10;	i++)	{	
				fork();	
}	
while	(1)	{}

Whoever runs this code will gets a lot
more of the CPU than the other

Process creation

System Calls for Process Control

17	int	ret	=	fork();	//	Create	a	new	process	

Parent Process

Parent Process Child Process

running code.c

Wait, are we never going to execute other program?

Process execution

System Calls for Process Control

17 exec2(“code2”,	args,	env);	//	Replace	current	process

Parent Process

Parent Process

running code.c

running code2.c

Starts execution of code2

It never returns to code.c

Parent Process
running code2.c

discards memory, registers of

Parent Process
running code2.c

preserves pid, process relationship, running time of

Parent Process
running code.c

Parent Process

running code.c

2On Linux, there are six variants of exec(): execl(), execlp(), execle(), execv(), execvp(), and execvpe(). Read the man pages to learn more.

“Why does it take so much work to create
a new process?”

Separation of fork and exec is essential in building a Unix Shell

Do you ever wonder what the shell is?

It is a program that creates processes

Human’s interface to the computer

while	(1)	{	
				write(1,	”$	",	2);	
				read_command(command,	args);	//	parse	input	
				if	((pid	=	fork())	==	0)					//	child?	
								execve(command,	args,	0);	
				else	if	(pid	>	0)												//	parent?	
								wait	(0);																//	wait	for	child	
				else	
								perror("failed	to	fork()");	
}

Please view this and the subsequent code as pseudo-code. A lot of the details are omitted.

“That does not convince me the fork/exec separation”

$./first3	abcd	efgh	>	foo
What does these do?

$	ps	xc	|	grep	…

“That does not convince me the fork/exec separation”

$./first3	abcd	efgh	>	fooHow is this
implemented?

Redirection is fundamentally about manipulating file descriptors.

Every process starts with three file descriptors (fd):
0 (stdin): Input to the process

1 (stdout): Output from the process
2 (stderr): Error output from the process

“That does not convince me the fork/exec separation”
$./first3	abcd	efgh	>	foo

while	(1)	{	
				write(1,	"$",	2);	
				read_command(command,	args);	//	parse	input	
				if	((pid	=	fork())	==	0)	{	
								close(1);	
								open("/tmp/foo",	O_CREAT	|	O_TRUNC	|	O_WRONLY,	0666);	
								execve(command,	args,	0);	
				}	
				else	if	(pid	>	0)												//	parent?	
								wait	(0);																//	wait	for	child	
				else	
								perror("failed	to	fork()");	
}

when command runs, fd 1 will refer to the redirected file

Fork/Exec Separation Enables Easy Redirection
$./first3	abcd	efgh	>	foo

while	(1)	{	
				write(1,	"$",	2);	
				read_command(command,	args);	//	parse	input	
				if	((pid	=	fork())	==	0)	{	
								close(1);	
								open("/tmp/foo",	O_CREAT	|	O_TRUNC	|	O_WRONLY,	0666);	
								execve(command,	args,	0);	
				}	
				else	if	(pid	>	0)												//	parent?	
								wait	(0);																//	wait	for	child	
				else	
								perror("failed	to	fork()");	
}

We did not change ./first3! Only the environment changed.

Takeaway: what is a good abstraction?
Simple but powerful

stdin (0), stdout (1), stderr (2)

file descriptors

fork/exec() separation

Very few mechanisms lead to a lot of possible functionality

HW 2 is Released Today!

