
CS202 (003): Operating Systems
Process I

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Process is the key
abstraction of a OS!

We want our computer to do multiple
things at the same time

We want to use the resources more
efficiently

Increase CPU utilization

Reduce latency

“an instance of
running program”

Writing code and listening to music

Multiple users use the computer
simultaneously

Steps towards creating a process

IDE gcc -S as ld loader

source code

S

assembly code

O

machine code executable
binary process

a lower-level
language that is
human-readable

a computer
process can
understand

directly but not yet
a full program

compilation
finished

ready to execute
executable loaded

to memory for
execution

To understand process…

How OS implement the process
abstraction?

How process see an abstract
machine?

Let’s first refresh our memory a bit…
Basic elements in a machine

CPU (a CPU core) Memory Disk

GPUs

…… (peripherals)

Execution units
(e.g. ALUs)

Registers

Perform computations
according to the

instructions

Can be read by execution
units very quickly

General-purpose (16 on
x86-64)

RAX, RBX, RCX, RDX, RSI,
RDI, R8-R15, RSP and RBP

Special-purpose

RIP, …

“Hierarchies of memory”, but we
don’t emphasize on that in this class

Takes more time to access than
register (2~X00 cycles)

Stores information, such as data
and programs, for immediate use

Three Aspects to a Process
CPU (a processor) Memory Others

“Each process has its own registers”
“Each process has its own view

of memory”

Text/Code

Data

Heap

Stack

Environment

Lower Address

Store program itself

Store global variables and constants

malloc()

local variables, params, return addresses

command line args, …

Process thinks memory as a contiguous array

signal state, UID, signal mask,
controlling terminal, priority,

etc…

Do you still remember assembly code?

movq	PLACE1,	PLACE2

pushq	%rax subq	$8,	%rsp	
movq	%rax,	(%rsp)

Move 64-bit quantity from PLACE1 to PLACE2
Places can be registers, memory addresses, or immediates (constants)

Allocates 8 bytes of space on the stack (why 8?)
Remember: the stack grows downward, that’s why we do subtract

The stack pointer (%rsp) is automatically adjusted

Do you still remember assembly code?

movq	PLACE1,	PLACE2

popq	%rax

call	0x12345

ret

movq	(%rsp),	%rax	
addq	$8,	%rsp

Move 64-bit quantity from PLACE1 to PLACE2
Places can be registers, memory addresses, or immediates (constants)

Move the value at the top of the stack to %rax
Increases the stack pointer by 8 (which means?)

Pseudo-code:	
pushq	%rip	

movq	$0x12345,	%rip

Pushes the %rip onto the stack (which means?)
Sets the %rip to the address of the called function

Pseudo-code:	
popq	%rip

Pops the top value from the stack into %rip

Stack Frames

• Stack is partitioned into frames (one per function)

• Current function's frame: from base pointer (%rbp)
to stack pointer (%rsp)

• Implements functional scope in languages like C

• Allows different variables with the same name in
different function invocations

• Programmer writes functions with local variables

• Compiler implements this using stack frames

Stack Frames (continued)

Function Prologue and Epilogue

• The prologue and epilogue are responsible
for maintaining the correct stack frame
structure:

• Prologue: Saves the old frame pointer, sets
up new frame

• Epilogue: Restores the old frame pointer

• These operations ensure that when a
function returns, the caller's frame pointer is
intact

Function Calls and Register Management

• Function state (registers) may need to be
saved during calls

• This is a compiler convention, not hardware
architecture

Key Points on Function Calls

Requires agreement between caller and callee on:
- How arguments are passed
- Who is responsible for saving/restoring registers

Stack Frames (continued)

Call-Preserved vs Call-Clobbered Registers

• Call-preserved: Function must save and restore
these if used

• Call-clobbered: Caller must save these if their
values are needed after the call

x86-64 Calling Conventions:

Arguments are passed in registers: %rdi, %rsi, %rdx, %rcx
Return value is in register %rax
Call-preserved (callee-save) registers: %rbx, %rbp, %r12-%r15
Call-clobbered (caller-save) registers: everything else

1 /* CS202 −− handout 1
2 * compile and run this code with:
3 * $ gcc −g −Wall −o example example.c
4 * $./example
5 *
6 * examine its assembly with:
7 * $ gcc −O0 −S example.c
8 * $ [editor] example.s
9 */

10
11 #include <stdio.h>
12 #include <stdint.h>
13
14 uint64_t f(uint64_t* ptr);
15 uint64_t g(uint64_t a);
16 uint64_t* q;
17
18 int main(void)
19 {
20 uint64_t x = 0;
21 uint64_t arg = 8;
22
23 x = f(&arg);
24
25 printf("x: %lu\n", x);
26 printf("dereference q: %lu\n", *q);
27
28 return 0;
29 }
30
31 uint64_t f(uint64_t* ptr)
32 {
33 uint64_t x = 0;
34 x = g(*ptr);
35 return x + 1;
36 }
37
38 uint64_t g(uint64_t a)
39 {
40 uint64_t x = 2*a;
41 q = &x; // <−− THIS IS AN ERROR (AKA BUG)
42 return x;
43 }

Jan 24, 24 0:24 Page 1/1example.c
1 2. A look at the assembly...
2
3 To see the assembly code that the C compiler (gcc) produces:
4 $ gcc −O0 −S example.c
5 (then look at example.s.)
6 NOTE: what we show below is not exactly what gcc produces. We have
7 simplified, omitted, and modified certain things.
8
9 main:

10 pushq %rbp # prologue: store caller’s frame pointer
11 movq %rsp, %rbp # prologue: set frame pointer for new frame
12
13 subq $16, %rsp # prologue: make stack space
14
15 movq $0, −8(%rbp) # x = 0 (x lives at address rbp − 8)
16 movq $8, −16(%rbp) # arg = 8 (arg lives at address rbp − 16)
17
18 leaq −16(%rbp), %rdi # load the address of (rbp−16) into %rdi
19 # this implements "get ready to pass (&arg)
20 # to f"
21
22 call f # invoke f
23
24 movq %rax, −8(%rbp) # x = (return value of f)
25
26 # eliding the rest of main()
27
28 f:
29 pushq %rbp # prologue: store caller’s frame pointer
30 movq %rsp, %rbp # prologue: set frame pointer for new frame
31
32 subq $32, %rsp # prologue: make stack space
33 movq %rdi, −24(%rbp) # Move ptr to the stack
34 # (ptr now lives at rbp − 24)
35 movq $0, −8(%rbp) # x = 0 (x’s address is rbp − 8)
36
37 movq −24(%rbp), %r8 # move ’ptr’ to %r8
38 movq (%r8), %r9 # dereference ’ptr’ and save value to %r9
39 movq %r9, %rdi # Move the value of *ptr to rdi,
40 # so we can call g
41
42 call g # invoke g
43
44 movq %rax, −8(%rbp) # x = (return value of g)
45 movq −8(%rbp), %r10 # compute x + 1, part I
46 addq $1, %r10 # compute x + 1, part II
47 movq %r10, %rax # Get ready to return x + 1
48
49 movq %rpb, %rsp # epilogue: undo stack frame
50 popq %rbp # epilogue: restore frame pointer from caller
51 ret # return
52
53 g:
54 pushq %rbp # prologue: store caller’s frame pointer
55 movq %rsp, %rbp # prologue: set frame pointer for new frame
56 subq $0x8, %rsp # prologue: make stack space
57
58
59
60 movq %rbp, %rsp # epilogue: undo stack frame
61 popq %rbp # epilogue: restore frame pointer from caller
62 ret # return

Jan 24, 24 0:24 Page 1/1as.txt

Printed by Michael Walfish

Wednesday January 24, 2024 1/1example.c, as.txt

rbp

Demystifying Pointers and Memory Regions
A pointer (e.g., "int* foo") is simply a variable
that stores a memory address.
• Stack: Temporary, function-local storage

• Example: Local variables, function parameters

• Automatically allocated/deallocated

• Heap: Dynamically allocated memory

• Example: Memory allocated with malloc(), new

• Manually managed (allocation/deallocation)

• Text Section: Read-only program code and
constants

• Example: String literals, const global variables

• Typically read-only, attempting to modify can
cause errors

Pointer Lifetime and Stack Frames
It's a bug to pass or return a pointer to a
variable in a prior stack frame.

HW 1 Due Next Monday!

