
CS202 (003): Operating Systems
Intro

Instructor: Jocelyn Chen

Most of the materials covered in this slide come from the lecture notes of Mike Walfish’s CS202

Course Staff

• Instructor: Jocelyn Chen

• TA: Bob Yao

• Course webpage: See your Brightspace course page

• Course webpage contains syllabus, important information about HW policy,
handouts, reading, etc.

About this Course

Learn how operating systems work

Learn key abstractions and concepts in operating systems

These materials will be useful beyond OSes!

Understanding resource management, abstractions, design
tradeoffs in large-scale systems

Textbooks

• Operating Systems: Three Easy Pieces, by
Remzi H. Arpaci-Dusseau and Andrea C.
Arpaci-Dusseau.

• Operating Systems and Middleware:
Supporting Controlled Interaction, by Max
Hailperin.

• Computer Systems: A Programmer's
Perspective, Third Edition, Randal E. Bryant
and David R. O'Hallaron.

• The C programming language (second
edition), Brian W. Kernighan and Dennis M.
Ritchie.

• Textbooks are not substitute for lectures!

• Class presentation may not follow the books

• Skip many chapters and cover extra materials

https://pages.cs.wisc.edu/~remzi/OSTEP/
https://gustavus.edu/academics/departments/mathematics-computer-science-and-statistics/max/os-book/osm-rev1.3.1.pdf
https://gustavus.edu/academics/departments/mathematics-computer-science-and-statistics/max/os-book/osm-rev1.3.1.pdf

Campuswire

• We will be using Campuswire for all course-related discussions

• Make sure you can access Campuswire! (link available on webpage)

• Please use Campuswire (with posts, not DMs) for class-related questions. Please
use common sense when posting questions: hints/ideas ok, but cannot post full
solutions. If you include code, please mark your question private.

• Please use DMs (through Campuswire) for more personal questions. We will ignore
emails about course administration and other class-related questions.

• We will response in 12-24 hours. Don’t expect us to answer questions minutes
before the due time.

https://campuswire.com/c/G9BB063EB/feed

Office Hours

Name Time Location

Bob Tue 5-6 PM 60FA Room 527

Jocelyn Wed 4-5 PM 60FA Room 446

Bob Fri 3:30-4:30 PM 60FA Room 446

Periodically check course website and
Campuswire for OH update!

Course Grades

• Exam: collectively 60% of final grade

• Homework: 5% of final grade

• Labs: 35% of final grade

• Final grades will be curved

• You can submit any graded item for a regrade, under the following conditions:

• You submit a clear, written statement that explains the request

• You submit your request within one week of when the graded work was returned

• We will regrade the entire exam, homework, etc. (so a regrade might decrease your grade)

Homework Policy

• Homework is intended to reinforce the course material

• Submit homework in a typed pdf generated by LaTex or a markup language.
Hand-written assignment will receive 0 automatically.

• Homework must be submitted by 5pm on the due date

• Late homework will not be accepted. We will drop your lowest two homework
scores

• Homework will be graded loosely. To receive credit, you must take a credible
effort to solve the problem. Minor mistakes will not be penalized, in general.

Lab Policy

• Lab must be submitted by 7pm on the due date

• Late labs will be accepted until 7pm a week after the due date

• Late labs incur penalties. However, you have 5 slack days that forestall the
penalty clock. Please view the detailed policy here.

• We will ignore all extension requests for reasons such as job interviews, work
on research publications, etc. unless it is explicitly stated here

• You will get a 0 if you either do not hand in the assignment, or hand in a blank
assignment.

https://cs.nyu.edu/~qc1127/classes/24fa/policies.html
https://cs.nyu.edu/~qc1127/classes/24fa/policies.html

Collaboration Policy

• All assignments (homework, labs) must be done on your own. That means,

• Not allowed to do assignments in groups

• Not allowed to check solutions with each other

• Not allowed to discuss problems with each other through other channels that course
staff does not have access to. You can discuss questions (in general terms) through
Campuswire

• Not allowed to discuss/show/debug code with any person other than the instructor
and the TA

• Collaboration with other students on assignments is considered cheating

Collaboration Policy, cont.

• You may not use any AI-Assisted code writing tools (such as Copilot) in this course.

• You may not use any AI-Assisted tools for written assignments and non-coding lab questions.

• You may use AI-Assisted chatbots for Lab 2 and onwards (more on this next slide)

• You may not look at, or use, (similar) solutions from prior years on the web, or seek assistant
from the Internet.

• You must acknowledge your influences (either from any person you discussed with, websites, AI
assistants, or any other sources). You must declare what ideas are borrowed from the source

• You must take reasonable steps to protect your work. You must not publicize your solutions in
this semester or any future semester

What you can do with AI-assisted Chatbots

• General Programming Language Queries:

• “How to declare a struct in C?”

• “How do I traverse a linked list?”

• Standard Library Functions:

• “What is the string length function in <string.h>?”

These two are the only usages allowed!

What you cannot do with AI-assisted Chatbots
(include but not limited to)

• Lab-Specific Code Completion: “[lab instructions] [code snippet] Can you help me
complete the code/give me a skeleton of the implementation/pseudocode?”

• Code Style Improvement: “Please improve the coding style of the following code
using the guideline [coding style rubric]”

• Lab Question Answers: “[lab question]”

• Debugging Assistance: “[your code] I get the following error [error], what is going
on?”

• Algorithm Explanation: ”[code snippet from the lab] What is this part of the code
doing?”

Honor Code

• Failing to adhere to the collaboration and integrity policy is a violation of the
NYU honor code

• We take the honor code extremely seriously! If you cheat, you will own the
consequences

• If you are unsure whether a particular source of external information is
permitted, contact the instructor before looking at it

• Please make sure you read the policy page and understand everything in it.
ASK US IF YOU HAVE ANY QUESTIONS. Do not wait until you violate the
policy and then say “I thought this sentence means …”.

https://cas.nyu.edu/academic-integrity/honor-code.html
https://cas.nyu.edu/academic-integrity.html
https://cs.nyu.edu/~qc1127/classes/24fa/policies.html

More on Labs

• Lab is a crucial component of the operating system course. You will spend
substantial time programming

• Please start early! The labs will take more than you think

• We are eager to help you but please make sure you are making good use of
our time (i.e. please think a while before asking any questions, make sure there
is no similar questions on Campuswire)

• Make sure you check out Setup, The Missing Semester of your CS education,
and Unix dev tools before working on the labs

https://missing.csail.mit.edu/
https://cs.nyu.edu/~qc1127/classes/24fa/labs/unixdev.pdf

Let’s get started!

What is an operating system?

“Operating System is a program that
abstracts and manages hardware resources
for user programs.”

Application

Web Browsers
Games

Office Softwares
…

Operating System

File System
Processes

Virtual Memory
…

Hardware

Disk
CPU
RAM

…

What is an operating system?

Scheduling: give each process some of the CPU

Virtual Memory: give each process some of the
physical memory

Operating System

File System
Processes

Virtual Memory
…

Hardware

Disk
CPU
RAM

…

Job 1: managing the resources of the machine

Make sure one program won’t screw up another
(through multiplexing, isolation, protection, sharing)

What is an operating system?

Hide details of hardware for convenience
and portability

Allow programs to run unaware of the
hardware details

Job 2: Abstracting the hardware

(You do not want to program on hardware!)

Application

Web Browsers
Games

Office Softwares
…

File System
Processes

Virtual Memory
…

Examples of resource management and abstraction

File Systems

Abstraction

“File is a continuous array of bytes” is a
false illusion

Data in a file can be fragmented across
different locations on the disk.

fd = open("/tmp/foo", WR_ONLY)
rc = write(fd, "abc...z", 26)

“tmp/fo” abstracts actual location on the
storage device

“WR_ONLY” simplifies access control
The write call abstracts the entire process of

writing data to storage.

Isolation

User program cannot write to a file unless it
has permission

Examples of resource management and abstraction

Text Input

Abstraction

“Input from any source (a soft keyboard
displayed on a touch screen, a physical
keyboard, etc.) act the same” is a false

illusion
There are significant differences in how different

inputs are processed.

Programs are not aware of your input
method

Isolation

Ensure that keystrokes go to a single
program

Otherwise, would other application know
your passwords?

Examples of resource management and abstraction

Memory

Abstraction

movl 0x1248 %rdx
“It is reading from memory address 0x1248”

is a false illusion
“0x1248” is a virtual address!

“the computer has a linear contiguous
address space”is a false illusion

Physical memory can be fragmented and spread
across different locations

Isolation

User program can’t write to another user’s
memory

Examples of resource management and abstraction

Scheduling

Abstraction

“this process is running continuously” is a
false illusion

In fact, processes are actually being rapidly
started and stopped by the operating

system.

Isolation

User program that is hogging CPU gets
switched out in favor of another user’s

program

In this course

What is a operating system?

How does OS abstract hardware resources?

Why does OS provide these abstractions?

Let’s go through an example

The following 5 slides are borrowed from Yang Tang’s lecture notes for CS202

HW 1 and Lab 1
are released today!

Notes on Lab 1

Lab 1 should be easier than other labs.

The lab will help you review C and teach you to use gdb

If you are unsure about your C skills, I recommend looking at K&R: The C
programming language.

Revisiting C: Declaration & Initialization

Declaration
Informing the compiler about the variable name and type.

For stack variables, it reserves space, but doesn't allocate memory dynamically.
int x; // Declaration of an integer (space reserved on stack)	
int *ptr; // Declaration of a pointer (space for the pointer itself, not what it points to)

Initialization
Assigning an initial value to the declared variable.

int y = 10; // Declaration and initialization of an integer	
int * x = &y; // Declaration and initialization of a pointer to y	
int * z = NULL; // Declaration and initialization to a null pointer	

Important Note:
Always initialize your variables to avoid undefined behavior!

Revisiting C: Pointers
What are Pointers?
A pointer is an address within memory OR a variable whose value is the address of another variable.

- Essential for tasks like dynamic memory allocation (remember malloc?)

- Simplify certain programming tasks

Pointer Syntax
Format: type * variable_name	
• The '*' denotes the pointer type
• Don't confuse this with accessing/dereferencing pointers
• '*' is also used to access contents (dereferencing)

int * myFavNum = 6; // pointer to int 6	
printf("%d\n", *myFavNum); // '6' - *myFavNum accesses the value stored at myFavNum

Is this code correct? No, because int *myFavNum does not point to 6, it only assigns the
point myFavNum with (address) 6

Revisiting C: Pointers
Visualizing pointers as boxes containing memory addresses can help in understanding how they work.

 int a = 1; 	
 int* b = &a; 	
 int** c = &b; 	

What is the value of y?
int* x = *c;
int y = *x;

x 0x100 x stores the *c, and *c = 0x100

y 1
y stores *(x), which is equivalent to
*(0x100), and that corresponds to

the value of a

Revisiting C: Array and string
Strings in C
- C has no built-in string type

- Strings are represented as arrays of characters

- Character arrays are terminated with a null byte ('\0')

Accessing Array Elements
Two ways to access elements in an array:

- Subscript notation: array[index]

- Pointer arithmetic: *(array + index)

Examples:	
// Incorrect: No space for null terminator	
char name[5] = "Alice";	

// Correct: Space for "Alice" + null terminator	
char name[6] = "Alice";	

// String constant (read-only)	
const char * name = "Alice";	

Important Notes:
• Always allocate an extra byte for the null terminator in character arrays
• String literals like "Alice" are stored in read-only memory
• Modifying string literals can lead to undefined behavior
• Use const char * for string literals to prevent accidental modification

Your TODO list after this lecture

Read Policies and grading very very very carefully

Checkout the Getting started section.
Setup Docker and Github repo as instructed

Make sure you have access to
Campuswire, Gradescope, and Brightspace for this section

Make sure you know where the course webpage is (for Section 003)

Checkout the Schedule for readings be completed before class

https://cs.nyu.edu/~qc1127/classes/24fa/policies.html
https://cs.nyu.edu/~qc1127/classes/24fa/labs.html
https://cs.nyu.edu/~qc1127/classes/24fa/index.html
https://cs.nyu.edu/~qc1127/classes/24fa/syllabus.html

