Asymptotic valued differential fields

Nigel Pynn-Coates

University of Illinois at Urbana–Champaign

CUNY Graduate Center,
April 5, 2019
For the purposes of this talk, all fields in sight have characteristic 0.
Hardy fields

- field of germs at infinity of real valued functions that is closed under differentiation

Examples:
- \mathbb{Q}, $\mathbb{R}(x)$, $\mathbb{R}(\sqrt{x})$, $\mathbb{R}(x, e^x, \log x)$, Hardy's LE-functions

DEFINABLE UNARY FUNCTIONS IN AN O-MINIMAL EXPANSION OF \mathbb{R}

Natural ordering on germs induces valuation with valuation ring $O = \{[f] : |f| \leq c, \text{eventually}\}$

Satisfy "L'Hôpital's Rule at ∞":

$$\lim_{x \to \infty} f(x)g(x) = \lim_{x \to \infty} f'(x)g'(x)$$
Hardy fields

- field of germs at infinity of real valued functions that is closed under differentiation
- Examples:
 - \(\mathbb{Q} \), \(\mathbb{R}(x) \), \(\mathbb{R}(\sqrt{x}) \), \(\mathbb{R}(x, e^x, \log x) \), Hardy’s LE-functions
Hardy fields

- field of germs at infinity of real valued functions that is closed under differentiation
- Examples:
 - \(\mathbb{Q} \), \(\mathbb{R}(x) \), \(\mathbb{R}(\sqrt{x}) \), \(\mathbb{R}(x, e^x, \log x) \), Hardy’s LE-functions
 - definable unary functions in an o-minimal expansion of \(\mathbb{R} \)
Hardy fields

- field of germs at infinity of real valued functions that is closed under differentiation
- Examples:
 - \mathbb{Q}, $\mathbb{R}(x)$, $\mathbb{R}(\sqrt{x})$, $\mathbb{R}(x, e^x, \log x)$, Hardy’s LE-functions
 - definable unary functions in an o-minimal expansion of \mathbb{R}
- natural ordering on germs
Hardy fields

- field of germs at infinity of real valued functions that is closed under differentiation
- Examples:
 - \mathbb{Q}, $\mathbb{R}(x)$, $\mathbb{R}(\sqrt{x})$, $\mathbb{R}(x, e^x, \log x)$, Hardy’s LE-functions
 - definable unary functions in an o-minimal expansion of \mathbb{R}
- natural ordering on germs
- ordering induces valuation with valuation ring

\[\mathcal{O} = \{ [f] : |f| \leq c, \text{ eventually} \} \]
Hardy fields

- field of germs at infinity of real valued functions that is closed under differentiation
- Examples:
 - \mathbb{Q}, $\mathbb{R}(x)$, $\mathbb{R}(\sqrt{x})$, $\mathbb{R}(x, e^x, \log x)$, Hardy’s LE-functions
 - definable unary functions in an o-minimal expansion of \mathbb{R}
- natural ordering on germs
- ordering induces valuation with valuation ring

$$\mathcal{O} = \{ [f] : |f| \leq c, \text{ eventually} \}$$

- satisfy “L’Hôpital’s Rule at ∞”:

$$\lim_{x \to \infty} \frac{f(x)}{g(x)} = \lim_{x \to \infty} \frac{f'(x)}{g'(x)}$$
Transseries

- Hardy’s field of LE-functions lacks closure properties, e.g., solutions to various ODEs or the compositional inverse of \((\log x)(\log \log x)\)
Transseries

- Hardy’s field of LE-functions lacks closure properties, e.g., solutions to various ODEs or the compositional inverse of \((\log x)(\log \log x)\)
- \(\mathbb{T}\) is real closed and closed under exponentiation, integration, composition, compositional inversion, and resolution of certain ODEs
Transseries

- Hardy’s field of LE-functions lacks closure properties, e.g., solutions to various ODEs or the compositional inverse of \((\log x)(\log \log x)\)
- \(\mathbb{T}\) is real closed and closed under exponentiation, integration, composition, compositional inversion, and resolution of certain ODEs
 - example series:
 \[
 7e^{e^x + e^{x/2} + e^{x/4} + \cdots} - 3e^{x^2} + 5x\sqrt{2} - (\log x)^\pi + 42 + x^{-1} + x^{-2} + \cdots + e^{-x}
 \]
Transseries

- Hardy’s field of LE-functions lacks closure properties, e.g., solutions to various ODEs or the compositional inverse of \((\log x)(\log \log x)\)
- \(\mathbb{T}\) is real closed and closed under exponentiation, integration, composition, compositional inversion, and resolution of certain ODEs
 - example series:
 \[
 7e^x + e^{x/2} + e^{x/4} + \cdots - 3e^{x^2} + 5x\sqrt{2} - (\log x)^\pi + 42 + x^{-1} + x^{-2} + \cdots + e^{-x}
 \]
- satisfies valuation analogue of “L’Hôpital’s Rule at \(\infty\)”
Transseries

- Hardy’s field of LE-functions lacks closure properties, e.g., solutions to various ODEs or the compositional inverse of \((\log x)(\log \log x)\)
- \(\mathbb{T}\) is real closed and closed under exponentiation, integration, composition, compositional inversion, and resolution of certain ODEs
 - example series:
 \[
 7e^{e^x} + e^{x/2} + e^{x/4} + \cdots - 3e^{x^2} + 5x\sqrt{2} - (\log x)^\pi + 42 + x^{-1} + x^{-2} + \cdots + e^{-x}
 \]
- satisfies valuation analogue of “L’Hôpital’s Rule at \(\infty\)”
- introduced by Écalle in proving Dulac’s conjecture and Dahn–Göring in studying models of the reals with exponentiation
Transseries

- Hardy's field of LE-functions lacks closure properties, e.g., solutions to various ODEs or the compositional inverse of \((\log x)(\log \log x)\)
- \(\mathbb{T}\) is real closed and closed under exponentiation, integration, composition, compositional inversion, and resolution of certain ODEs
 - example series:
 \[
 7e^{e^x + e^{x/2} + e^{x/4} + \cdots} - 3e^{x^2} + 5x^{\sqrt{2}} - (\log x)\pi + 42 + x^{-1} + x^{-2} + \cdots + e^{-x}
 \]
- satisfies valuation analogue of "L'Hôpital's Rule at \(\infty\)"
- introduced by Écalle in proving Dulac's conjecture and Dahn–Göring in studying models of the reals with exponentiation
- studied also by Aschenbrenner, van den Dries, and van der Hoeven:
 - axiomatization
 - model completeness in ordered valued differential field language
 - quantifier elimination in language expanded by three extra predicates
Theorem (Ax–Kochen, Ershov)

Let K_1 and K_2 be henselian valued fields. Then

$$K_1 \equiv K_2 \iff k_1 \equiv k_2 \text{ and } \Gamma_1 \equiv \Gamma_2.$$
Theorem (Ax–Kochen, Ershov)

Let K_1 and K_2 be henselian valued fields. Then

$$K_1 \equiv K_2 \iff k_1 \equiv k_2 \text{ and } \Gamma_1 \equiv \Gamma_2.$$

Tools:

1. maximal immediate extensions of K are isomorphic over K
2. K is henselian \iff it is algebraically maximal
3. K has a henselization
Valued fields

A *valued field* is a field \(K \) with a surjective map \(v: K \to \Gamma \cup \{\infty\} \), where \(\Gamma \) is an ordered abelian group and \(\Gamma < \infty \), satisfying:

1. \[v(x) = \infty \iff x = 0; \]
2. \[v(xy) = v(x) + v(y); \]
3. \[v(x + y) \geq \min\{v(x), v(y)\}. \]
Valued fields

A valued field is a field K with a surjective map $v : K \to \Gamma \cup \{\infty\}$, where Γ is an ordered abelian group and $\Gamma < \infty$, satisfying:

1. $v(x) = \infty \iff x = 0$;
2. $v(xy) = v(x) + v(y)$;
3. $v(x + y) \geq\!\!\!\min\{v(x), v(y)\}$.

Notation:

- write $f \preceq g$ if $vf \geq vg$ and $f \prec g$ if $vf > vg$
- $\mathcal{O} := \{f : f \preceq 1\}$ is the valuation ring
- $\mathfrak{o} := \{f : f \prec 1\}$ is the (unique) maximal ideal of \mathcal{O}
- $k := \mathcal{O}/\mathfrak{o}$ is the residue field
Differential fields

A differential field is a field K with a map $\partial: K \to K$ satisfying

1. $\partial(f + g) = \partial(f) + \partial(g)$;
2. $\partial(fg) = \partial(f)g + f\partial(g)$.
Differential fields

A differential field is a field K with a map $\partial: K \to K$ satisfying

1. $\partial(f + g) = \partial(f) + \partial(g)$;
2. $\partial(fg) = \partial(f)g + f\partial(g)$.

Notation:

- $f' := \partial(f)$
- $C := \{f : f' = 0\}$ is the constant field of K
- $K\{Y\} := K[Y, Y', Y'', \ldots]$ is the differential polynomial ring over K
Basic properties

- Assume K has *small derivation*: $\partial \mathcal{O} \subseteq \mathcal{O}$.
Basic properties

- Assume K has *small derivation*: $\partial \mathfrak{o} \subseteq \mathfrak{o}$.
 - so ∂ is continuous and induces a derivation on k
Basic properties

- Assume K has *small derivation*: $\partial \phi \subseteq \phi$.
 - so ∂ is continuous and induces a derivation on k

- *extension* abbreviates “valued differential field extension with small derivation.”
Basic properties

- Assume K has small derivation: $\partial \mathfrak{o} \subseteq \mathfrak{o}$.
 - so ∂ is continuous and induces a derivation on k
- *extension* abbreviates “valued differential field extension with small derivation.”
- an extension of K is *immediate* if it has the same value group and residue field as K
Basic properties

- Assume K has small derivation: $\partial \mathfrak{o} \subseteq \mathfrak{o}$.
 - so ∂ is continuous and induces a derivation on k
- extension abbreviates “valued differential field extension with small derivation.”
- an extension of K is immediate if it has the same value group and residue field as K
- K is maximal if it has no proper immediate extensions
Basic properties

- Assume K has *small derivation*: $\partial \mathfrak{O} \subseteq \mathfrak{O}$.
 - so ∂ is continuous and induces a derivation on k

- *extension* abbreviates “valued differential field extension with small derivation.”

- an extension of K is *immediate* if it has the same value group and residue field as K

- K is *maximal* if it has no proper immediate extensions

- K is *d-algebraically maximal* if it has no proper d-algebraic immediate extensions
Differential-henselianity

- K is d-henselian if for all $P \in \mathcal{O}\{Y\}$,
 \[\text{deg } \overline{P} = 1 \implies P \text{ has a zero in } \mathcal{O} \]
Differential-henselianity

- K is d-henselian if for all $P \in \mathcal{O}\{Y\}$,

 $\deg P = 1 \implies P$ has a zero in \mathcal{O}

- k is linearly surjective if every $1 + a_0 Y + a_1 Y' + \cdots + a_r Y^{(r)}$, $a_i \in k$, $a_r \neq 0$, has a zero in k

- Note: K is d-henselian $\implies k$ is linearly surjective
Uniqueness of maximal immediate extensions

Theorem (Aschenbrenner–van den Dries–van der Hoeven)

There is a valued differential field with continuum-many maximal immediate extensions that are pairwise nonisomorphic.
Uniqueness of maximal immediate extensions

Theorem (Aschenbrenner–van den Dries–van der Hoeven)

There is a valued differential field with continuum-many maximal immediate extensions that are pairwise nonisomorphic.

Conjecture (Aschenbrenner–van den Dries–van der Hoeven)

If \(k \) is linearly surjective, then any two maximal immediate extensions of \(K \) are isomorphic over \(K \).
Uniqueness of maximal immediate extensions

Theorem (Aschenbrenner–van den Dries–van der Hoeven)

There is a valued differential field with continuum-many maximal immediate extensions that are pairwise nonisomorphic.

Conjecture (Aschenbrenner–van den Dries–van der Hoeven)

If k is linearly surjective, then any two maximal immediate extensions of K are isomorphic over K.

This has been proven for monotone K by Aschenbrenner, van den Dries, and van der Hoeven, and for K whose value group has finite archimedean rank by van den Dries and PC.
Uniqueness of maximal immediate extensions for asymptotic fields

K is *asymptotic* if for all nonzero \(f, g \prec 1, \)

\[
\frac{f}{g} \prec 1 \iff \frac{f'}{g'} \prec 1.
\]

Note that then \(C \subseteq O. \)
Uniqueness of maximal immediate extensions for asymptotic fields

K is asymptotic if for all nonzero $f, g \prec 1$,

$$\frac{f}{g} \prec 1 \iff \frac{f'}{g'} \prec 1.$$

Note that then $C \subseteq \mathcal{O}$.

Theorem (PC)

Suppose K is asymptotic and k is linearly surjective. Then any two maximal immediate extensions are isomorphic over K.
Differential-henselianity and differential-algebraic maximality

Theorem (Aschenbrenner–van den Dries–van der Hoeven)

If k is linearly surjective and K is d-algebraically maximal, then K is d-henselian.

The converse is false in general, even in the monotone case.

Theorem (PC)

If K is d-henselian and asymptotic, then it is d-algebraically maximal. This was first proven in the monotone case by Aschenbrenner, van den Dries, and van der Hoeven.
Differential-henselianity and differential-algebraic maximality

Theorem (Aschenbrenner–van den Dries–van der Hoeven)

If k is linearly surjective and K is d-algebraically maximal, then K is d-henselian.

The converse is false in general, even in the monotone case.
Differential-henselianity and differential-algebraic maximality

Theorem (Aschenbrenner–van den Dries–van der Hoeven)

If k is linearly surjective and K is d-algebraically maximal, then K is d-henselian.

The converse is false in general, even in the monotone case.

Theorem (PC)

If K is d-henselian and asymptotic, then it is d-algebraically maximal.
Differential-henselianity and differential-algebraic maximality

Theorem (Aschenbrenner–van den Dries–van der Hoeven)

If k is linearly surjective and K is d-algebraically maximal, then K is d-henselian.

The converse is false in general, even in the monotone case.

Theorem (PC)

If K is d-henselian and asymptotic, then it is d-algebraically maximal.

This was first proven in the monotone case by Aschenbrenner, van den Dries, and van der Hoeven.
Differential-henselizations

L is a d-henselization of K if:

1. it is a d-henselian immediate extension of K;
2. it embeds over K into every d-henselian immediate extension of K.

Theorem (Aschenbrenner–van den Dries–van der Hoeven)

If K is asymptotic and k is linearly surjective, then K has a minimal d-henselian d-algebraic immediate extension.

Theorem (PC)

If K is asymptotic and k is linearly surjective, then K has a d-henselization.
Differential-henselizations

L is a d-henselization of K if:

1. it is a d-henselian immediate extension of K;
2. it embeds over K into every d-henselian immediate extension of K.

Theorem (Aschenbrenner–van den Dries–van der Hoeven)

If K is asymptotic and k is linearly surjective, then K has a minimal d-henselian d-algebraic immediate extension.
Differential-henselizations

L is a d-henselization of K if:

1. it is a d-henselian immediate extension of K;
2. it embeds over K into every d-henselian immediate extension of K.

Theorem (Aschenbrenner–van den Dries–van der Hoeven)

If K is asymptotic and k is linearly surjective, then K has a minimal d-henselian d-algebraic immediate extension.

Theorem (PC)

If K is asymptotic and k is linearly surjective, then K has a d-henselization.
Theorem (PC)

Suppose K is asymptotic and k is linearly surjective. Then:

1. any two maximal immediate extensions of K are isomorphic over K;
2. if K is d-henselian, then it is d-algebraically maximal;
3. K has a d-henselization.
Proof sketch of (2)

Theorem (PC)

If K *is d-henselian and asymptotic, then it is d-algebraically maximal.*
Proof sketch of (2)

Theorem (PC)

If K *is d-henselian and asymptotic, then it is d-algebraically maximal.*

Key properties of d-henselian asymptotic fields:

- Each $P \in \mathcal{O}[Y, Y', \ldots, Y^{(r)}]$ does not have $r + 2$ distinct zeroes in a certain configuration.
Proof sketch of (2)

Theorem (PC)

If K is d-henselian and asymptotic, then it is d-algebraically maximal.

Key properties of d-henselian asymptotic fields:

- Each $P \in \mathcal{O}[Y, Y', \ldots, Y^{(r)}]$ does not have $r + 2$ distinct zeroes in a certain configuration.
- If $P \in \mathcal{O}\{Y\}$ with $\deg \overline{P} = 1$, and E is an immediate extension of K, then P has the same zeroes in \mathcal{O}_E as in \mathcal{O}.

Proof sketch of (2)

Theorem (PC)

If K is d-henselian and asymptotic, then it is d-algebraically maximal.

Key properties of d-henselian asymptotic fields:

- Each $P \in O[Y, Y', \ldots, Y^{(r)}]$ does not have $r + 2$ distinct zeroes in a certain configuration.
- If $P \in O\{Y\}$ with $\deg P = 1$, and E is an immediate extension of K, then P has the same zeroes in O_E as in O.

Proof sketch of theorem:

1. take f in an immediate extension of K, so f is the pseudolimit of a pseudocauchy sequence (f_ρ) over K;
Proof sketch of (2)

Theorem (PC)

If \(K \) is \(d \)-henselian and asymptotic, then it is \(d \)-algebraically maximal.

Key properties of \(d \)-henselian asymptotic fields:

- Each \(P \in \mathcal{O}[Y, Y', \ldots, Y^{(r)}] \) does not have \(r + 2 \) distinct zeroes in a certain configuration.
- If \(P \in \mathcal{O}\{Y\} \) with \(\deg P = 1 \), and \(E \) is an immediate extension of \(K \), then \(P \) has the same zeroes in \(\mathcal{O}_E \) as in \(\mathcal{O} \).

Proof sketch of theorem:

1. take \(f \) in an immediate extension of \(K \), so \(f \) is the pseudolimit of a pseudocauchy sequence \((f_\rho) \) over \(K \);
2. find minimal \(P \) such that \(P \in \mathcal{O}\{Y\} \), \(P(f_\rho) \rightrightarrows 0 \), and \(P(f) = 0 \);
Proof sketch of (2)

Theorem (PC)

If K is d-henselian and asymptotic, then it is d-algebraically maximal.

Key properties of d-henselian asymptotic fields:

- Each $P \in O[Y, Y', \ldots, Y^{(r)}]$ does not have $r + 2$ distinct zeroes in a certain configuration.
- If $P \in O\{Y\}$ with $\deg P = 1$, and E is an immediate extension of K, then P has the same zeroes in O_E as in O.

Proof sketch of theorem:

1. take f in an immediate extension of K, so f is the pseudolimit of a pseudocauchy sequence (f_ρ) over K;
2. find minimal P such that $P \in O\{Y\}$, $P(f_\rho) \rightsquigarrow 0$, and $P(f) = 0$;
3. use pseudocauchy sequence to find infinitely many zeroes of P in configuration as above, contradicting the key property.
Main step

Step (3) is difficult:

Proposition

Suppose K is asymptotic and henselian, and k is linearly surjective. Let (f_ρ) be a pseudocauchy sequence in K and P is minimal with $P(f_\rho) \rightsquigarrow 0$. Then the degree of P in the cut corresponding to (f_ρ) is 1.
Main step

Step (3) is difficult:

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppose K is asymptotic and henselian, and k is linearly surjective. Let (f_ρ) be a pseudocauchy sequence in K and P is minimal with $P(f_\rho) \rightsquigarrow 0$. Then the degree of \overline{P} in the cut corresponding to (f_ρ) is 1.</td>
</tr>
</tbody>
</table>
Step (3) is difficult:

Proposition

Suppose K is asymptotic and henselian, and k is linearly surjective. Let (f_ρ) be a pseudocauchy sequence in K and P is minimal with $P(f_\rho) \xrightarrow{\sim} 0$. Then the degree of \overline{P} in the cut corresponding to (f_ρ) is 1.

- proof is technical
- involves developing a differential newton diagram method
- problem: $\nu(f)$ does not really control $\nu(f')$
Thank you!