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A Potpourri of Applications of
Abstract Interpretation
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Application to
Static Program Analysis 29

• P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques.
Grenoble, 21 Mar. 1978.
• P. Cousot. Semantic Foundations of Program Analysis. Ch. 10 of Program Flow Analysis: Theory
and Applications, S.S. Muchnick & N.D. Jones, pp. 303–342. Prentice-Hall, 1981.

29 Now called software model checking !
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What is static program analysis?

• Automatic static/compile time determination of dynamic/run-
time properties of programs;

• Basic idea: use effective computable approximations of the
program semantics;

Advantage: fully automatic, no need for error-prone user
designed model or costly user interaction;

Drawback: can only handle properties captured by the
approximation.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 94 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/


What is static program analysis?

• Automatic static/compile time determination of dynamic/run-
time properties of programs;

• Basic idea: use effective computable approximations of the
program semantics;

Advantage: fully automatic, no need for error-prone user
designed model or costly user interaction;

Drawback: can only handle properties captured by the
approximation.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 94 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/


Collecting Semantics Abstractions

〈℘(Σ+ ∪ Σω),⊆〉 −−−→−→←−−−−
α

γ
〈℘(Σ),⊆〉

Example 1: reachable states (forward analysis)
αI(X)

def
= {σi | σ ∈ X ∧ σ0 ∈ I ∧ i ∈ Dom(σ)}

Example 2: ancestor states (backward analysis)
αF (X)

def
= {σi | σ ∈ X ∧ ∃n ∈ Dom(σ) : 0 ≤ i ≤ n ∧ σn ∈ F}
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Partitioning

• If Σ = C ×M (control and store state) and C is finite 30, we
can partition:

〈℘(C ×M ),⊆〉 −−−−→−→←←−−−−−
αc

γc 〈C 7→ ℘(M ), ⊆̇〉

αc(S) = λ c ∈ C · {m | 〈c,m〉 ∈ S}

• It remains to find abstractions of the store M = V 7→ D (vari-
ables to data) e.g. of [in]finite set of points of the euclidian
space.

30 use e.g. dynamic partitioning if C is infinite
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Approximations of an [in]finite set of
points: From Above

x

y

{. . . , 〈19, 77〉, . . . ,
〈20, 02〉, . . .}
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?
?

?

?

?
?

?

?

{. . . , 〈19, 77〉, . . . ,

〈20, 02〉, 〈?, ?〉, . . .}

From Below: dual + combinations.
31 Trivial for finite states (liveness model-checking), more difficult for infinite states (variant functions).
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Effective computable approximations of
an [in]finite set of points; Signs 32

x

y {
x ≥ 0

y ≥ 0

32 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
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Effective computable approximations of
an [in]finite set of points; Intervals 33

x

y {
x ∈ [19, 77]

y ∈ [20, 02]

33 P. Cousot & R. Cousot. Static determination of dynamic properties of programs. Proc. 2nd Int. Symp. on
Programming, Dunod, 1976.
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Effective computable approximations of
an [in]finite set of points; Octagons 34

x

y





1 ≤ x ≤ 9

x + y ≤ 77

1 ≤ y ≤ 9

x− y ≤ 99

34 A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO ’2001. LNCS 2053, pp.
155–172. Springer 2001.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 101 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/


Effective computable approximations of
an [in]finite set of points; Polyhedra 35

x

y {
19x + 77y ≤ 2002

20x + 02y ≥ 0

35 P. Cousot & N. Halbwachs. Automatic discovery of linear restraints among variables of a program. ACM POPL,
1978, pp. 84–97.
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Effective computable approximations of
an [in]finite set of points; Simple

congruences 36

x

y {
x = 19 mod 77

y = 20 mod 99

36 Ph. Granger. Static Analysis of Arithmetical Congruences. Int. J. Comput. Math. 30, 1989, pp. 165–190.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 103 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/


Effective computable approximations of
an [in]finite set of points; Linear

congruences 37

x

y {
1x + 9y = 7 mod 8

2x− 1y = 9 mod 9

37 Ph. Granger. Static Analysis of Linear Congruence Equalities among Variables of a Program. TAPSOFT ’91, pp.
169–192. LNCS 493, Springer, 1991.
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Effective computable approximations of
an [in]finite set of points; Trapezoidal lin-

ear congruences 38

x

y

{
1x + 9y ∈ [0, 77] mod 10
2x− 1y ∈ [0, 99] mod 11

38 F. Masdupuy. Array Operations Abstraction Using Semantic Analysis of Trapezoid Congruences. ACM ICS ’92.
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Example of Effective Abstractions
of Infinite Sets of Infinite Trees 39

Binary Decision Graphs:

Tree Schemata:

39 L. Mauborgne. Improving the Representation of Infinite Trees to Deal with Sets of Trees. ESOP’00. LNCS 1782, pp.
275–289, Springer, 2000.
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On Widenings 48

48 P. Cousot, R. Cousot: Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpre-
tation. PLILP 1992: 269-295
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Widening Operator

A widening operator
`
∈ L× L 7→ L is such that:

• Correctness:

-- ∀x, y ∈ L : γ(x) v γ(x
`

y)

-- ∀x, y ∈ L : γ(y) v γ(x
`

y)

• Convergence:

-- for all increasing chains x0 v x1 v . . . , the increasing
chain defined by y0 = x0, . . . , yi+1 = yi

`
xi+1, . . .

is not strictly increasing.
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Fixpoint Approximation with Widening

The upward iteration sequence with widening:

• X̂0 = ⊥- (infimum)

• X̂i+1 = X̂i if F (X̂i) v X̂i

= X̂i
`

F (X̂i) otherwise

is ultimately stationary and its limit Â is a sound upper approxi-

mation of lfp
⊥-

F :

lfp
⊥-

F v Â
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Fixpoint Approximation with
Widening/Narrowing
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Interval Widening

• L = {⊥} ∪ {[`, u] | ` ∈ Z∪ {−∞} ∧ u ∈ Z∪ {+∞}∧ ` ≤ u}
• The widening extrapolates unstable bounds to infinity:

⊥
`

X = X

X
`
⊥ = X

[`0, u0]
`

[`1, u1] = [if `1 < `0 then −∞ else `0,

if u1 > u0 then +∞ else u0]

Not monotone. For example [0, 1] v [0, 2] but [0, 1]
`

[0, 2] = [0,

+∞] 6v [0, 2] = [0, 2]
`

[0, 2]
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Interval Widening with Thresholds

• Extrapolate to thresholds, zero, one or infinity:

[`0, u0]
`

[`1, u1] = [if ` ≤ `1 < `0 ∧ ` ∈ {1, 0,−1} then l

elsif `1 < `0 then −∞
else `0,

if u0 < u1 ≤ u ∧ u ∈ {−1, 0, 1} then u

elsif u0 < u1 then +∞
else u0]

• So the analysis is always as good as the sign analysis.
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Non-Existence of Finite Abstractions
Let us consider the infinite family of programs parameterized by
the mathematical constants n1, n2 (n1 ≤ n2):

X := n1;
while X ≤ n2 do
X := X + 1;

od

• An interval analysis with widening/narrowing will discover the
loop invariant X ∈ [n1, n2];

• To handle all programs in the family without false alarm, the
abstract domain must contain all such intervals;

⇒ No single finite abstract domain will do for all programs!
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• Yes, but predicate abstraction with refinement will do (?) for
each program in the family (since it is equivalent to a widen-
ing) 49!

• Indeed no, since:

-- Predicate abstraction is unable to express limits of infinite
sequences of predicates;

-- Not all widening proceed by eliminating constraints:

-- A narrowing is necessary anyway in the refinement loop (to
avoid infinitely many refinements);

-- Not speaking of costs!

49 T. Ball, A. Podelski, S.K. Rajamani. Relative Completeness of Abstraction Refinement for Software Model Checking.
TACAS 2002: 158-172.
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On the Design of
Program Static Analyzers

• P. Cousot. The Calculational Design of a Generic Abstract Interpreter. In Calculational System
Design, M. Broy and R. Steinbrüggen (Eds). Vol. 173 of NATO Science Series, Series F: Computer and
Systems Sciences. IOS Press, pp. 421–505, 1999.
• The corresponding generic abstract interpreter (written in Ocaml) is available at URL www.di.ens.fr
/~cousot

CAV 2002 invited tutorial July 27-31, 2002 J��� — 178 — [] ¨— ���I c© P. Cousot

www.di.ens.fr
http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml
/~cousot
http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml
http://floc02.diku.dk/CAV/
http://www.di.ens.fr/


On the Design of Program Analyzers

• The abstract interpretation theory provides the design princi-
ples;

• In practice, one must find the appropriate tradeoff between gen-
erality, precision and efficiency;

• There is a full range of program analyzers from

general purpose analyzers for programming languages

to

specific analyzers for a given program (software model
checking).
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Specific Static Program Analyzers

• A complete specific analyzer 50 (for a given software or hardware
program) can always use a finite abstract domain 51;

• The design of a complete specific analyzer is logically equivalent
to a correctness proof of the program;

• Such analyzers are precise but not reusable hence very costly
to develop.

50 Called a software model checker?
51 P. Cousot. Partial completeness of abstract fixpoint checking. SARA’2000. LNAI 1864, pp. 1–25. Springer.
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General-Purpose Static Program Analyzers

• To handle infinitely many programs for non-trivial properties, a
general-purpose analyser must use an infinite abstract domain 52;

• Such analyzers are huge for complex languages hence very costly
to develop but reusable;

• There are always programs for which they lead to false alarms;

• Although incomplete, they are very useful for verifying/testing/
debugging.

52 P. Cousot & R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpre-
tation. PLILP’92. LNCS 631, pp. 269–295. Springer.
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Parametric Specializable
Static Program Analyzers

• The abstraction can be tailored to significant classes of pro-
grams (e.g. critical synchronous real-time embedded systems);

• This leads to very efficient analyzers with almost zero-false
alarm even for large programs.
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Experience Report on a
Parametric Specializable
Program Static Analyzer

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival.
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Example of Parametric Specializable
Static Program Analyzers

Analyzer under development, very first results!

• C programs: safety critical embedded real-time synchronous
software for non-linear control of complex systems;

• 10 000 LOCs, 1300 global variables (booleans, integers, real,
arrays, macros, non-recursive procedures);

• Implicit specification: absence of runtime errors (no integer/floating
point arithmetic overflow, no array bound overflow);

• Initial design: 2h, 110 false alarms (general purpose analyzer);
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Experience report
• Comparative results (commercial software):

-- 70 false alarms, 2 days, 500 Megabytes;

• Initial redesign:

-- Weak relational domain with time;

• Parametrisation:

-- Hypotheses on volatile inputs;

-- Staged widenings with thresholds;

-- Local refinements of the parameterized abstract domains;

• Results:

-- No false alarm, 14s, 20 Megabytes.
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Example of refinement:
trace partitionning

Control point partitionning:

Trace partitionning:

Fork Join
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Performance: Space and Time

Space = O(LOCs)
Time = O(LOCs × (ln(LOCs))1.5)
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Conclusion
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Conclusion on Formal Methods

• Formal methods concentrate on the deductive/exhaustive veri-
fication of (abstract) models of the execution of programs;

• Most often this abstraction into a model is manual and left
completely informal, if not tortured to meet the tool limitations;

• Semantics concentrates on the rigorous formalization of the
execution of programs;

• So models should abstract the program semantics. This is the
whole purpose of Abstract Interpretation!
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Conclusion on Abstract Interpretation

• Abstract interpretation provides mathematical foundations of
most semantics-based program verification and manipulation
techniques;

• In abstract interpretation, the abstraction of the program se-
mantics into an approximate semantics is automated so that
one can go much beyond examples modelled by hand;

• The abstraction can be tailored to classes of programs so as to
design very efficient analyzers with almost zero-false alarm.
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