
ABSTRACT INTERPRETATION:

THEORY AND APPLICATIONS

P. Cousot
Patrick.Cousot@ens.fr http://www.di.ens.fr/~cousot

Second International Summer School in Computational Logic, ISCL 2002

25th—30th August 2002, Acquafredda di Maratea (Basilicata, Italy)

ľ P. Cousot, all rights reserved.

Abstract Interpretation: Theory and Applications, ľ P. Cousot, 25/8/02— 1:1/0 —��� ���J []¨˜?I Contents

Patrick.Cousot@ens.fr
mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot
http://www.di.ens.fr/~cousot
http://www.cs.unipr.it/ISCL02/
http://www.di.ens.fr/~cousot/cours/SEMAN-Summer-School-02
http://www.di.ens.fr/~cousot/copyright.shtml#copyrightnotice
http://www.di.ens.fr/~cousot/

A Potpourri of Applications of
Abstract Interpretation

CAV 2002 invited tutorial July 27-31, 2002 J��� — 45 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Application to
Static Program Analysis 29

• P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques.
Grenoble, 21 Mar. 1978.
• P. Cousot. Semantic Foundations of Program Analysis. Ch. 10 of Program Flow Analysis: Theory
and Applications, S.S. Muchnick & N.D. Jones, pp. 303–342. Prentice-Hall, 1981.

29 Now called software model checking !

CAV 2002 invited tutorial July 27-31, 2002 J��� — 93 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

What is static program analysis?

• Automatic static/compile time determination of dynamic/run-
time properties of programs;

• Basic idea: use effective computable approximations of the
program semantics;

Advantage: fully automatic, no need for error-prone user
designed model or costly user interaction;

Drawback: can only handle properties captured by the
approximation.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 94 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

What is static program analysis?

• Automatic static/compile time determination of dynamic/run-
time properties of programs;

• Basic idea: use effective computable approximations of the
program semantics;

Advantage: fully automatic, no need for error-prone user
designed model or costly user interaction;

Drawback: can only handle properties captured by the
approximation.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 94 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Collecting Semantics Abstractions

〈℘(Σ+ ∪ Σω),⊆〉 −−−→−→←−−−−
α

γ
〈℘(Σ),⊆〉

Example 1: reachable states (forward analysis)
αI(X)

def
= {σi | σ ∈ X ∧ σ0 ∈ I ∧ i ∈ Dom(σ)}

Example 2: ancestor states (backward analysis)
αF (X)

def
= {σi | σ ∈ X ∧ ∃n ∈ Dom(σ) : 0 ≤ i ≤ n ∧ σn ∈ F}

CAV 2002 invited tutorial July 27-31, 2002 J��� — 95 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Collecting Semantics Abstractions

〈℘(Σ+ ∪ Σω),⊆〉 −−−→−→←−−−−
α

γ
〈℘(Σ),⊆〉

Example 1: reachable states (forward analysis)
αI(X)

def
= {σi | σ ∈ X ∧ σ0 ∈ I ∧ i ∈ Dom(σ)}

Example 2: ancestor states (backward analysis)
αF (X)

def
= {σi | σ ∈ X ∧ ∃n ∈ Dom(σ) : 0 ≤ i ≤ n ∧ σn ∈ F}

CAV 2002 invited tutorial July 27-31, 2002 J��� — 95 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Collecting Semantics Abstractions

〈℘(Σ+ ∪ Σω),⊆〉 −−−→−→←−−−−
α

γ
〈℘(Σ),⊆〉

Example 1: reachable states (forward analysis)
αI(X)

def
= {σi | σ ∈ X ∧ σ0 ∈ I ∧ i ∈ Dom(σ)}

Example 2: ancestor states (backward analysis)
αF (X)

def
= {σi | σ ∈ X ∧ ∃n ∈ Dom(σ) : 0 ≤ i ≤ n ∧ σn ∈ F}

CAV 2002 invited tutorial July 27-31, 2002 J��� — 95 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Partitioning

• If Σ = C ×M (control and store state) and C is finite 30, we
can partition:

〈℘(C ×M),⊆〉 −−−−→−→←←−−−−−
αc

γc 〈C 7→ ℘(M), ⊆̇〉

αc(S) = λ c ∈ C · {m | 〈c,m〉 ∈ S}

• It remains to find abstractions of the store M = V 7→ D (vari-
ables to data) e.g. of [in]finite set of points of the euclidian
space.

30 use e.g. dynamic partitioning if C is infinite

CAV 2002 invited tutorial July 27-31, 2002 J��� — 96 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Partitioning

• If Σ = C ×M (control and store state) and C is finite 30, we
can partition:

〈℘(C ×M),⊆〉 −−−−→−→←←−−−−−
αc

γc 〈C 7→ ℘(M), ⊆̇〉

αc(S) = λ c ∈ C · {m | 〈c,m〉 ∈ S}

• It remains to find abstractions of store properties ℘(M) where
M = V 7→ D (variables to data) e.g. of [in]finite set of points
of the euclidian space.

30 use e.g. dynamic partitioning if C is infinite.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 96 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Approximations of an [in]finite set of
points: From Above

x

y

{. . . , 〈19, 77〉, . . . ,
〈20, 02〉, . . .}

CAV 2002 invited tutorial July 27-31, 2002 J��� — 97 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Approximations of an [in]finite set of
points: From Above

x

y

?

?

?
?

?

?

?
?

?

?

{. . . , 〈19, 77〉, . . . ,

〈20, 02〉, 〈?, ?〉, . . .}

From Below: dual + combinations.
31 Trivial for finite states (liveness model-checking), more difficult for infinite states (variant functions).

CAV 2002 invited tutorial July 27-31, 2002 J��� — 98 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Approximations of an [in]finite set of
points: From Above

x

y

?

?

?
?

?

?

?
?

?

?

{. . . , 〈19, 77〉, . . . ,

〈20, 02〉, 〈?, ?〉, . . .}

From Below: dual 31 + combinations.
31 Trivial for finite states (liveness model-checking), more difficult for infinite states (variant functions).

CAV 2002 invited tutorial July 27-31, 2002 J��� — 98 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Effective computable approximations of
an [in]finite set of points; Signs 32

x

y {
x ≥ 0

y ≥ 0

32 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 99 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Effective computable approximations of
an [in]finite set of points; Intervals 33

x

y {
x ∈ [19, 77]

y ∈ [20, 02]

33 P. Cousot & R. Cousot. Static determination of dynamic properties of programs. Proc. 2nd Int. Symp. on
Programming, Dunod, 1976.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 100 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Effective computable approximations of
an [in]finite set of points; Octagons 34

x

y





1 ≤ x ≤ 9

x + y ≤ 77

1 ≤ y ≤ 9

x− y ≤ 99

34 A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO ’2001. LNCS 2053, pp.
155–172. Springer 2001.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 101 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Effective computable approximations of
an [in]finite set of points; Polyhedra 35

x

y {
19x + 77y ≤ 2002

20x + 02y ≥ 0

35 P. Cousot & N. Halbwachs. Automatic discovery of linear restraints among variables of a program. ACM POPL,
1978, pp. 84–97.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 102 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Effective computable approximations of
an [in]finite set of points; Simple

congruences 36

x

y {
x = 19 mod 77

y = 20 mod 99

36 Ph. Granger. Static Analysis of Arithmetical Congruences. Int. J. Comput. Math. 30, 1989, pp. 165–190.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 103 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Effective computable approximations of
an [in]finite set of points; Linear

congruences 37

x

y {
1x + 9y = 7 mod 8

2x− 1y = 9 mod 9

37 Ph. Granger. Static Analysis of Linear Congruence Equalities among Variables of a Program. TAPSOFT ’91, pp.
169–192. LNCS 493, Springer, 1991.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 104 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Effective computable approximations of
an [in]finite set of points; Trapezoidal lin-

ear congruences 38

x

y

{
1x + 9y ∈ [0, 77] mod 10
2x− 1y ∈ [0, 99] mod 11

38 F. Masdupuy. Array Operations Abstraction Using Semantic Analysis of Trapezoid Congruences. ACM ICS ’92.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 105 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Example of Effective Abstractions
of Infinite Sets of Infinite Trees 39

Binary Decision Graphs:

Tree Schemata:

39 L. Mauborgne. Improving the Representation of Infinite Trees to Deal with Sets of Trees. ESOP’00. LNCS 1782, pp.
275–289, Springer, 2000.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 106 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

On Widenings 48

48 P. Cousot, R. Cousot: Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpre-
tation. PLILP 1992: 269-295

CAV 2002 invited tutorial July 27-31, 2002 J��� — 170 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Widening Operator

A widening operator
`
∈ L× L 7→ L is such that:

• Correctness:

-- ∀x, y ∈ L : γ(x) v γ(x
`

y)

-- ∀x, y ∈ L : γ(y) v γ(x
`

y)

• Convergence:

-- for all increasing chains x0 v x1 v . . . , the increasing
chain defined by y0 = x0, . . . , yi+1 = yi

`
xi+1, . . .

is not strictly increasing.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 171 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Fixpoint Approximation with Widening

The upward iteration sequence with widening:

• X̂0 = ⊥- (infimum)

• X̂i+1 = X̂i if F (X̂i) v X̂i

= X̂i
`

F (X̂i) otherwise

is ultimately stationary and its limit Â is a sound upper approxi-

mation of lfp
⊥-

F :

lfp
⊥-

F v Â

CAV 2002 invited tutorial July 27-31, 2002 J��� — 172 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Fixpoint Approximation with
Widening/Narrowing

t
t
t
t
t
t
t
t
tL

F

�
�
�
�

�
�
�
�

?

?

�
�
-

�
�
-

�
�
-

�
�
-

�
�
-

�
�
--

�
�

⊥-

lfp F

gfp F

>

t

t

t
tL

t

�

�

�t

�

�

�
�
�
�
�?

�
�

F

X̂0 = ⊥-

X̂1 = X̂0
`

F (X̂0)

X̌1 = X̌0aF (X̌0)

= gfpF = lfpF

X̂2 = X̂1
`

F (X̂1)

= > = X̌0

}

}

}

-

-

-

α

α

α

````
````

````
````̀

````
````

````
````̀

````
````

````
````̀

y

y

y�

γ

γ

γ

t

t

t
t

�

�

-

�

�

- �
��

CAV 2002 invited tutorial July 27-31, 2002 J��� — 173 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Interval Widening

• L = {⊥} ∪ {[`, u] | ` ∈ Z∪ {−∞} ∧ u ∈ Z∪ {+∞}∧ ` ≤ u}
• The widening extrapolates unstable bounds to infinity:

⊥
`

X = X

X
`
⊥ = X

[`0, u0]
`

[`1, u1] = [if `1 < `0 then −∞ else `0,

if u1 > u0 then +∞ else u0]

Not monotone. For example [0, 1] v [0, 2] but [0, 1]
`

[0, 2] = [0,

+∞] 6v [0, 2] = [0, 2]
`

[0, 2]

CAV 2002 invited tutorial July 27-31, 2002 J��� — 174 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Interval Widening with Thresholds

• Extrapolate to thresholds, zero, one or infinity:

[`0, u0]
`

[`1, u1] = [if ` ≤ `1 < `0 ∧ ` ∈ {1, 0,−1} then l

elsif `1 < `0 then −∞
else `0,

if u0 < u1 ≤ u ∧ u ∈ {−1, 0, 1} then u

elsif u0 < u1 then +∞
else u0]

• So the analysis is always as good as the sign analysis.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 175 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Non-Existence of Finite Abstractions
Let us consider the infinite family of programs parameterized by
the mathematical constants n1, n2 (n1 ≤ n2):

X := n1;
while X ≤ n2 do
X := X + 1;

od

• An interval analysis with widening/narrowing will discover the
loop invariant X ∈ [n1, n2];

• To handle all programs in the family without false alarm, the
abstract domain must contain all such intervals;

⇒ No single finite abstract domain will do for all programs!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 176 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

• Yes, but predicate abstraction with refinement will do (?) for
each program in the family (since it is equivalent to a widen-
ing) 49!

• Indeed no, since:

-- Predicate abstraction is unable to express limits of infinite
sequences of predicates;

-- Not all widening proceed by eliminating constraints:

-- A narrowing is necessary anyway in the refinement loop (to
avoid infinitely many refinements);

-- Not speaking of costs!

49 T. Ball, A. Podelski, S.K. Rajamani. Relative Completeness of Abstraction Refinement for Software Model Checking.
TACAS 2002: 158-172.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 177 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

On the Design of
Program Static Analyzers

• P. Cousot. The Calculational Design of a Generic Abstract Interpreter. In Calculational System
Design, M. Broy and R. Steinbrüggen (Eds). Vol. 173 of NATO Science Series, Series F: Computer and
Systems Sciences. IOS Press, pp. 421–505, 1999.
• The corresponding generic abstract interpreter (written in Ocaml) is available at URL www.di.ens.fr
/~cousot

CAV 2002 invited tutorial July 27-31, 2002 J��� — 178 — [] ¨— ���I c© P. Cousot

www.di.ens.fr
http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml
/~cousot
http://www.di.ens.fr/~cousot/Marktoberdorf98.shtml
http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

On the Design of Program Analyzers

• The abstract interpretation theory provides the design princi-
ples;

• In practice, one must find the appropriate tradeoff between gen-
erality, precision and efficiency;

• There is a full range of program analyzers from

general purpose analyzers for programming languages

to

specific analyzers for a given program (software model
checking).

CAV 2002 invited tutorial July 27-31, 2002 J��� — 179 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

On the Design of Program Analyzers

• The abstract interpretation theory provides the design princi-
ples;

• In practice, one must find the appropriate tradeoff between gen-
erality, precision and efficiency;

• There is a full range of program analyzers from

general purpose analyzers for programming languages

to

specific analyzers for a given program (software model
checking).

CAV 2002 invited tutorial July 27-31, 2002 J��� — 179 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

On the Design of Program Analyzers

• The abstract interpretation theory provides the design princi-
ples;

• In practice, one must find the appropriate tradeoff between gen-
erality, precision and efficiency;

• There is a full range of program analyzers from

general purpose analyzers for programming languages

to

specific analyzers for a given program (software model
checking).

CAV 2002 invited tutorial July 27-31, 2002 J��� — 179 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Specific Static Program Analyzers

• A complete specific analyzer 50 (for a given software or hardware
program) can always use a finite abstract domain 51;

• The design of a complete specific analyzer is logically equivalent
to a correctness proof of the program;

• Such analyzers are precise but not reusable hence very costly
to develop.

50 Called a software model checker?
51 P. Cousot. Partial completeness of abstract fixpoint checking. SARA’2000. LNAI 1864, pp. 1–25. Springer.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 180 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Specific Static Program Analyzers

• A complete specific analyzer 50 (for a given software or hardware
program) can always use a finite abstract domain 51;

• The design of a complete specific analyzer is logically equivalent
to a correctness proof of the program;

• Such analyzers are precise but not reusable hence very costly
to develop.

50 Called a software model checker?
51 P. Cousot. Partial completeness of abstract fixpoint checking. SARA’2000. LNAI 1864, pp. 1–25. Springer.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 180 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Specific Static Program Analyzers

• A complete specific analyzer 50 (for a given software or hardware
program) can always use a finite abstract domain 51;

• The design of a complete specific analyzer is logically equivalent
to a correctness proof of the program;

• Such analyzers are precise but not reusable hence very costly
to develop.

50 Called a software model checker?
51 P. Cousot. Partial completeness of abstract fixpoint checking. SARA’2000. LNAI 1864, pp. 1–25. Springer.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 180 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

General-Purpose Static Program Analyzers

• To handle infinitely many programs for non-trivial properties, a
general-purpose analyser must use an infinite abstract domain 52;

• Such analyzers are huge for complex languages hence very costly
to develop but reusable;

• There are always programs for which they lead to false alarms;

• Although incomplete, they are very useful for verifying/testing/
debugging.

52 P. Cousot & R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpre-
tation. PLILP’92. LNCS 631, pp. 269–295. Springer.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 181 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

General-Purpose Static Program Analyzers

• To handle infinitely many programs for non-trivial properties, a
general-purpose analyser must use an infinite abstract domain 52;

• Such analyzers are huge for complex languages hence very costly
to develop but reusable;

• There are always programs for which they lead to false alarms;

• Although incomplete, they are very useful for verifying/testing/
debugging.

52 P. Cousot & R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpre-
tation. PLILP’92. LNCS 631, pp. 269–295. Springer.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 181 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

General-Purpose Static Program Analyzers

• To handle infinitely many programs for non-trivial properties, a
general-purpose analyser must use an infinite abstract domain 52;

• Such analyzers are huge for complex languages hence very costly
to develop but reusable;

• There are always programs for which they lead to false alarms;

• Although incomplete, they are very useful for verifying/testing/
debugging.

52 P. Cousot & R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpre-
tation. PLILP’92. LNCS 631, pp. 269–295. Springer.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 181 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

General-Purpose Static Program Analyzers

• To handle infinitely many programs for non-trivial properties, a
general-purpose analyser must use an infinite abstract domain 52;

• Such analyzers are huge for complex languages hence very costly
to develop but reusable;

• There are always programs for which they lead to false alarms;

• Although incomplete, they are very useful for verifying/testing/
debugging.

52 P. Cousot & R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches to Abstract Interpre-
tation. PLILP’92. LNCS 631, pp. 269–295. Springer.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 181 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Parametric Specializable
Static Program Analyzers

• The abstraction can be tailored to significant classes of pro-
grams (e.g. critical synchronous real-time embedded systems);

• This leads to very efficient analyzers with almost zero-false
alarm even for large programs.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 182 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Parametric Specializable
Static Program Analyzers

• The abstraction can be tailored to significant classes of pro-
grams (e.g. critical synchronous real-time embedded systems);

• This leads to very efficient analyzers with almost zero-false
alarm even for large programs.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 182 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Experience Report on a
Parametric Specializable
Program Static Analyzer

B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, X. Rival.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 183 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Example of Parametric Specializable
Static Program Analyzers

Analyzer under development, very first results!

• C programs: safety critical embedded real-time synchronous
software for non-linear control of complex systems;

• 10 000 LOCs, 1300 global variables (booleans, integers, real,
arrays, macros, non-recursive procedures);

• Implicit specification: absence of runtime errors (no integer/floating
point arithmetic overflow, no array bound overflow);

• Initial design: 2h, 110 false alarms (general purpose analyzer);

CAV 2002 invited tutorial July 27-31, 2002 J��� — 184 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Experience report
• Comparative results (commercial software):

-- 70 false alarms, 2 days, 500 Megabytes;

• Initial redesign:

-- Weak relational domain with time;

• Parametrisation:

-- Hypotheses on volatile inputs;

-- Staged widenings with thresholds;

-- Local refinements of the parameterized abstract domains;

• Results:

-- No false alarm, 14s, 20 Megabytes.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 185 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Experience report
• Comparative results (commercial software):

-- 70 false alarms, 2 days, 500 Megabytes;

• Initial redesign:

-- Weak relational domain with time;

• Parametrisation:

-- Hypotheses on volatile inputs;

-- Staged widenings with thresholds;

-- Local refinements of the parameterized abstract domains;

• Results:

-- No false alarm, 14s, 20 Megabytes.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 185 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Example of refinement:
trace partitionning

Control point partitionning:

Trace partitionning:

Fork Join

CAV 2002 invited tutorial July 27-31, 2002 J��� — 186 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Performance: Space and Time

Space = O(LOCs)
Time = O(LOCs × (ln(LOCs))1.5)

10

20

30

40

0
0 50 k 100 k 150 k 200 k 250 k 300 k

(KiloLOCs)Size

T
im

e
(m

in
u

te
s)

CAV 2002 invited tutorial July 27-31, 2002 J��� — 187 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Conclusion

CAV 2002 invited tutorial July 27-31, 2002 J��� — 188 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Conclusion on Formal Methods

• Formal methods concentrate on the deductive/exhaustive veri-
fication of (abstract) models of the execution of programs;

• Most often this abstraction into a model is manual and left
completely informal, if not tortured to meet the tool limitations;

• Semantics concentrates on the rigorous formalization of the
execution of programs;

• So models should abstract the program semantics. This is the
whole purpose of Abstract Interpretation!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 189 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Conclusion on Formal Methods

• Formal methods concentrate on the deductive/exhaustive veri-
fication of (abstract) models of the execution of programs;

• Most often this abstraction into a model is manual and left
completely informal, if not tortured to meet the tool limitations;

• Semantics concentrates on the rigorous formalization of the
execution of programs;

• So models should abstract the program semantics. This is the
whole purpose of Abstract Interpretation!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 189 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Conclusion on Abstract Interpretation

• Abstract interpretation provides mathematical foundations of
most semantics-based program verification and manipulation
techniques;

• In abstract interpretation, the abstraction of the program se-
mantics into an approximate semantics is automated so that
one can go much beyond examples modelled by hand;

• The abstraction can be tailored to classes of programs so as to
design very efficient analyzers with almost zero-false alarm.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 190 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Conclusion on Abstract Interpretation

• Abstract interpretation provides mathematical foundations of
most semantics-based program verification and manipulation
techniques;

• In abstract interpretation, the abstraction of the program se-
mantics into an approximate semantics is automated so that
one can go much beyond examples modelled by hand;

• The abstraction can be tailored to classes of programs so as to
design very efficient analyzers with almost zero-false alarm.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 190 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

	CAV.pdf
	Content
	MOTIVATIONS FOR FORMAL METHODS
	What is (or should be) the essential preoccupation of computer scientists?
	Computer software change of scale (cont'd)
	Bugs
	redThe estimated cost of an overflow
	redResponsibility of computer scientists
	redCapability of computer scientists
	Capability of computers
	ON FORMAL METHODS AND COMPUTER-AIDED VERIFICATION
	Computer systems
	Formal methods
	Deductive methods
	Deductive methods, criticism
	Software Model checking
	Software Model checking, criticism
	Static program analysis
	General-purpose static program analyzers
	Special-purpose static program analyzers
	Static program analysis, criticism
	Abstract interpretation
	Abstract interpretation
	MOTIVATIONS FOR ABSTRACT INTERPRETATION
	Abstract interpretation
	Coping with undecidability when computing on the program semantics
	The theory of abstract interpretation
	INFORMAL INTRODUCTION TO ABSTRACT INTERPRETATION
	1 -- Abstract domains
	2 -- Correspondence between concrete and abstract properties
	3 -- Semantics abstraction
	4 --- Effective analysis/checking/verification algorithms
	ELEMENTS OF ABSTRACT INTERPRETATION
	Galois connections
	Composing Galois connection
	Function abstraction (1)
	Function abstraction (2)
	Fixpoint approximation
	Fixpoint abstraction
	Systematic design of an abstract semantics
	Abstract domains
	Combinations of abstract domains
	APPLICATIONS OF ABSTRACT INTERPRETATION
	Content of the potpourri of applications of abstract interpretation
	Application to Syntax
	The semantics of syntax
	The fixpoint semantics of syntax
	Syntactic abstractions
	Application to Semantics
	Trace semantics, intuition
	Least fixpoint trace semantics
	Trace semantics, formally
	Semantics abstractions --- 1) relational abstractions
	1 --- Relational semantics abstractions (cont'd)
	2 --- Functional/denotational semantics abstractions
	3 --- Predicate transformer semantics abstractions
	4 --- Predicate transformer semantics abstractions (cont'd)
	5 --- Hoare logic semantics abstractions
	Lattice of semantics
	Application to Typing
	Syntax of the eager lambda calculus
	Semantic domains
	Denotational semantics with run-time type checking
	Standard denotational & collecting semantics
	Church/Curry monotypes
	Church/Curry monotypes (continued)
	Concretization function
	Program types
	Church/Curry monotype abstract semantics
	The Herbrand abstraction to get Hindley's unification-based type inference algorithm
	Application to Model Checking
	Model checking
	Abstractions in model checking
	Model-checking itself is an abstraction
	Implicit abstraction in model checking
	Soundness
	Example for unsoundness
	Completeness
	Example for incompleteness
	On the completeness of model-checking
	Bidirectional traces
	The reversible mu-calculus
	The reversible mu-calculus (cont'd)
	Application to Program Transformation
	Principle of online program transformation (1)
	Principle of online program transformation (2)
	Principle of offline program transformation (1)
	Principle of offline program transformation (2)
	Examples of program transformations
	Application to Static Program Analysis
	What is static program analysis?
	Collecting semantics abstractions
	Partitioning
	Approximations of an [in]finite set of points
	Approximations of an [in]finite set of points, from above
	Example 1: signs
	Example 2: intervals
	Example 3: octagons
	Example 4: polyhedra
	Example 5: simple congruences
	Example 6: linear congruences
	Example 7: trapezoidal linear congruences
	Example of effective abstractions of infinite sets of infinite trees
	ON THE DESIGN OF ABSTRACTIONS FOR SOFTWARE CHECKING
	Discovery of abstractions
	In what consists abstraction discovery?
	Formalization of the Abstraction Design Problem
	Fixpoint checking
	Soundness / (Partial) completeness
	Practical question
	Objective (formally)
	Concrete Fixpoint Checking
	Concrete fixpoint checking problem
	Example
	Concrete fixpoint checking algorithm
	Partial correctness
	Concrete invariants
	Dual and Adjoined Concrete Fixpoint Checking
	Galois connection
	Concrete adjoinedness
	Example of concrete adjoinedness
	Fixpoint concrete adjoinedness
	The complete lattice of concrete invariants
	Dual concrete fixpoint checking algorithm
	Partial correctness
	On (dual) fixpoint checking
	Adjoined concrete fixpoint checking algorithm
	Partial correctness
	Abstract Fixpoint Checking
	Abstract interpretation
	Example: the recurrent abstraction in abstract model-checking
	Example: the sign abstraction
	Abstract fixpoint checking algorithm
	Partial correctness
	Dual and Adjoined Abstract Fixpoint Checking
	Dual abstraction
	Example of dual abstraction
	Example of dual abstraction
	Abstract adjoinedness
	The dual abstract fixpoint checking algorithm
	Partial correctness
	The particular case of complement abstraction
	The contrapositive fixpoint checking algorithm
	Partial correctness
	The adjoined abstract fixpoint checking algorithm
	Partial correctness
	Program Static Analysis
	Further requirements for program static analysis
	Additional hypotheses
	Example: the recurrent abstraction in abstract model-checking
	The adjoined abstract fixpoint abstract checking algorithm
	Partial correctness
	Partially Complete Abstraction
	Partially complete abstraction (definition)
	Characterization of partially complete abstractions
	Characterization of partially complete abstractions
	The most abstract partially complete abstraction (definition)
	Characterization of the most abstract complete abstraction
	The least abstract partially complete abstraction (definition)
	Characterization of the least abstract complete abstraction
	The minimal partially complete abstractions
	The complete lattice of minimal partially complete abstractions
	Intuition for minimal partially complete abstractions
	Conclusion on Abstraction Design
	On complete abstraction design
	On complete abstraction design (cont'd)
	ON WIDENINGS
	Widening operator
	Fixpoint approximation with widening
	Fixpoint Approximation with Widening/Narrowing
	Interval Widening
	Interval widening with thresholds
	Non-Existence of Finite Abstractions
	ON THE DESIGN OF PROGRAM STATIC ANALYZERS
	On the design of program analyzers
	Specific static program analyzer
	General-purpose static program analyzer
	Parametric specializable static program analyzer
	EXPERIENCE REPORT ON A PARAMETRIC SPECIALIZABLE PROGRAM STATIC ANALYZERS
	Example of parametric specializable static program analyzer
	Experience report
	Example of refinement: trace partitionning
	Performance: space and time
	CONCLUSION
	Conclusion on formal methods
	Conclusion on abstract interpretation

	LESSON 3: LESSON 3 (3/3, Static Analysis)

