BExAMPLE 2 OF GALOIS CONNECTION

o If
-0eD'—— D?
- a € p(D) —— p(D?) direct image (2)
a(X) = {e(z) |z € X}
- 7 € p(D?) —— (D inverse image
YY) = {z|e(z) €Y}
then
(p(DY), C) & (p(D?), C) (3)

(see Ex.5.5.2).
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DUALITY PRINCIPLE

e We write <1 or > for the inverse of the partial order <.
e Observe that:

if and only 1if
(D, %) == (D', T')

e It follows that the duality principle on posets stating that any
theorem 1s true for all posets, then so is its dual obtained by
substituting >, >, T, 1, V, A, etc. respectively for <, <, 1, T,
A, V, etc. can be extended to Galois connections by exchanging
a and 7.
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MOORE FAMILIES

e A Moore famaly 1s a subset of a complete lattice containing

T! and closed under arbitrary glbs r1;

o If (D!, CY) & (D?, C?) and D}CE, 1Y, T, M, 1) is a com-

04
plete lattice then v(D?) is a Moore family (19)
(see Ex.5.5.19).

e A consequence 1s that one can reason upon the abstract seman-
tics using only D! and the image of D! by the closure operator
v o a (instead of D?).
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ONE ADJOINT FUNCTION DETERMINES THE OTHER

o If (D!, C1) % (D?, C?), then:

a

Ve € D':a(z) = M*{y |z C' y(y)} (20)
vy € D*:9(y) = U{z | a(z) £ v}

(see Ex.5.5.21).
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PRESERVATION OF LUBs/GLBS

If (D, C1) % (D?, %), then:

0/
e o preserves existing lubs: if L' X exists, then o(U' X) is the
lub of {a(z) | z € X}
e v preserves existing glbs: if Y C D? and MY exists, then
v(M?Y) is the glb of {y(y) |y € Y'}.
(see Ex.5.5.22).
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5.6.2 ANSWER TO EXERCISE 2

Proof a(X)CY & {0(z)|zecX}CY eVzeX: :0z)eY
S XC{z|o(z)eY} o X Cv(Y). O
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5.6.19 ANSWER TO EXERCISE 19

Proof

o If z € v(D?) then Jy € D? : z = y(y) C! T!. By monotony
yoaoy(y) C yoa(T!) = T! since v o a is extensive, T? is
the supremum and C! is antisymetric. We have v o o o y(y)
= v(y) so z C! T!, proving that T' € v(D?) is the supremum
of v(D?);
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e Assume that X C «(D?). If z € X, then Jy € D? such that
z = v(y). Then M'X exists in a complete lattice and satisfies
X C! z so that by monotony and yoa oy =1, v o oM X)
C'yoa(z)=70°ac°vy(y)=7(y) =z proving that y o a(M'X)
is a lower bound of X so that y o a(M'X) C! M'X. But y o o is
extensive so that by antisymmetry v o a(M*X) = N'X proving
that N'X € (D?).
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5.6.21 ANSWER TO HEXERCISE 21

Proof 1If z C! «4(y) then a(z) C? y by definition of a Galois
connection so that a(z) is a lower bound of {y | z C! v(y)}.
Moreover £ C! 4 o a(z) since 7 o o is extensive so that a(z)
belongs to {y | z C! y(y)}. It follows that a(z) is the greatest
lower bound of {y | z C! v(y)} since for any other lower bound
¢, we must have £ C? a(z).

The dual result holds for v. O
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5.6.22 ANSWER TO HEXERCISE 22

e o preserves existing lubs:

Proof Assume that X is a subset of D! such that U! X exists.
For all £ € X we have z C! L' X by definition of lubs so that
a(z) C? a(U!X) by monotony, proving that a(U! X) is an
upper bound of the a(z).

Let m be another upper bound of all a(z), z € X. We
have a(z) C? m, whence z C! «y(m) by definition of a Galois
connection so that L' X C! v(m) by definition of lubs. By
monotony and « o - is reductive it follows that a(LU' X) C? a o
v(m) C? m, proving that o(LI* X) is the lub of {a(z) | z € X}.
[l
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e v preserves existing glbs:
Proof By the duality principle. O
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