### Example 2 of Galois Connection

• If

$$\begin{array}{lll} - @ \in \mathcal{D}^1 \longmapsto \mathcal{D}^2 \\ - & \alpha \in \wp(\mathcal{D}^1) \longmapsto \wp(\mathcal{D}^2) \\ & \alpha(X) \stackrel{\mathrm{def}}{=} \{@(x) \mid x \in X\} \\ - & \gamma \in \wp(\mathcal{D}^2) \longmapsto \wp(\mathcal{D}^1) \\ & \gamma(Y) \stackrel{\mathrm{def}}{=} \{x \mid @(x) \in Y\} \end{array} \qquad \text{inverse image}$$

then

$$\langle \wp(\mathcal{D}^1), \subseteq \rangle \stackrel{\gamma}{ \underset{\alpha}{\longleftarrow}} \langle \wp(\mathcal{D}^2), \subseteq \rangle$$
 (3)

(see Ex. 5.5.2).

### DUALITY PRINCIPLE

- We write  $\leq^{-1}$  or  $\geq$  for the inverse of the partial order  $\leq$ .
- Observe that:

$$\langle \mathcal{D}^1, \sqsubseteq^1 \rangle \stackrel{\gamma}{\longleftarrow} \langle \mathcal{D}^2, \sqsubseteq^2 \rangle$$

if and only if

$$\langle \mathcal{D}^2, \ \supseteq^2 \rangle \stackrel{\alpha}{\longleftrightarrow} \langle \mathcal{D}^1, \ \supseteq^1 \rangle$$

• It follows that the duality principle on posets stating that any theorem is true for all posets, then so is its dual obtained by substituting  $\geq$ , >,  $\top$ ,  $\bot$ ,  $\lor$ ,  $\land$ , etc. respectively for  $\leq$ , <,  $\bot$ ,  $\top$ ,  $\land$ ,  $\lor$ , etc. can be extended to Galois connections by exchanging  $\alpha$  and  $\gamma$ .

### Moore Families

- A Moore family is a subset of a complete lattice containing  $\top^1$  and closed under arbitrary glbs  $\sqcap^1$ ;
- If  $\langle \mathcal{D}^1, \sqsubseteq^1 \rangle \stackrel{\gamma}{\underset{\alpha}{\longleftrightarrow}} \langle \mathcal{D}^2, \sqsubseteq^2 \rangle$  and  $\mathcal{D}^1(\sqsubseteq^1, \bot^1, \top^1, \sqcap^1, \sqcup^1)$  is a complete lattice then  $\gamma(\mathcal{D}^2)$  is a Moore family (19) (see Ex. 5.5.19).
- A consequence is that one can reason upon the abstract semantics using only  $\mathcal{D}^1$  and the image of  $\mathcal{D}^1$  by the closure operator  $\gamma \circ \alpha$  (instead of  $\mathcal{D}^2$ ).

## ONE ADJOINT FUNCTION DETERMINES THE OTHER

• If  $\langle \mathcal{D}^1, \sqsubseteq^1 \rangle \stackrel{\gamma}{\sqsubseteq_{\alpha}} \langle \mathcal{D}^2, \sqsubseteq^2 \rangle$ , then:

$$egin{aligned} orall x \in \mathcal{D}^1: lpha(x) &= \sqcap^2 \{y \mid x \sqsubseteq^1 \gamma(y)\} \ orall y \in \mathcal{D}^2: \gamma(y) &= \sqcup^1 \{x \mid lpha(x) \sqsubseteq^2 y\} \end{aligned}$$

(see Ex. 5.5.21).

# Preservation of Lubs/Glbs

If 
$$\langle \mathcal{D}^1, \sqsubseteq^1 \rangle \stackrel{\gamma}{\longleftrightarrow} \langle \mathcal{D}^2, \sqsubseteq^2 \rangle$$
, then:

- ullet lpha preserves existing lubs: if  $\sqcup^1 X$  exists, then  $lpha(\sqcup^1 X)$  is the lub of  $\{lpha(x) \mid x \in X\}$ ;
- ullet  $\gamma$  preserves existing glbs: if  $Y\subseteq \mathcal{D}^2$  and  $\sqcap^2 Y$  exists, then  $\gamma(\sqcap^2 Y)$  is the glb of  $\{\gamma(y)\mid y\in Y\}$ .

(see Ex. 5.5.22).

# 5.6.2 Answer to Exercise 2

$$egin{aligned} extit{Proof} & lpha(X) \subseteq Y \Leftrightarrow \{ @(x) \mid x \in X \} \subseteq Y \Leftrightarrow orall x \in X : @(x) \in Y \ \Leftrightarrow X \subseteq \{ x \mid @(x) \in Y \} \Leftrightarrow X \subseteq \gamma(Y). \ \ \Box \end{aligned}$$

### 5.6.19 Answer to Exercise 19

## Proof

• If  $x \in \gamma(\mathcal{D}^2)$  then  $\exists y \in \mathcal{D}^2 : x = \gamma(y) \sqsubseteq^1 \top^1$ . By monotony  $\gamma \circ \alpha \circ \gamma(y) \sqsubseteq^1 \gamma \circ \alpha(\top^1) = \top^1$  since  $\gamma \circ \alpha$  is extensive,  $\top^1$  is the supremum and  $\sqsubseteq^1$  is antisymetric. We have  $\gamma \circ \alpha \circ \gamma(y) = \gamma(y)$  so  $x \sqsubseteq^1 \top^1$ , proving that  $\top^1 \in \gamma(\mathcal{D}^2)$  is the supremum of  $\gamma(\mathcal{D}^2)$ ;

• Assume that  $X \subseteq \gamma(\mathcal{D}^2)$ . If  $x \in X$ , then  $\exists y \in \mathcal{D}^2$  such that  $x = \gamma(y)$ . Then  $\sqcap^1 X$  exists in a complete lattice and satisfies  $\sqcap^1 X \sqsubseteq^1 x$  so that by monotony and  $\gamma \circ \alpha \circ \gamma = \gamma$ ,  $\gamma \circ \alpha(\sqcap^1 X) \sqsubseteq^1 \gamma \circ \alpha(x) = \gamma \circ \alpha \circ \gamma(y) = \gamma(y) = x$  proving that  $\gamma \circ \alpha(\sqcap^1 X)$  is a lower bound of X so that  $\gamma \circ \alpha(\sqcap^1 X) \sqsubseteq^1 \sqcap^1 X$ . But  $\gamma \circ \alpha$  is extensive so that by antisymmetry  $\gamma \circ \alpha(\sqcap^1 X) = \sqcap^1 X$  proving that  $\sqcap^1 X \in \gamma(\mathcal{D}^2)$ .

## 5.6.21 Answer to Exercise 21

**Proof** If  $x \sqsubseteq^1 \gamma(y)$  then  $\alpha(x) \sqsubseteq^2 y$  by definition of a Galois connection so that  $\alpha(x)$  is a lower bound of  $\{y \mid x \sqsubseteq^1 \gamma(y)\}$ . Moreover  $x \sqsubseteq^1 \gamma \circ \alpha(x)$  since  $\gamma \circ \alpha$  is extensive so that  $\alpha(x)$  belongs to  $\{y \mid x \sqsubseteq^1 \gamma(y)\}$ . It follows that  $\alpha(x)$  is the greatest lower bound of  $\{y \mid x \sqsubseteq^1 \gamma(y)\}$  since for any other lower bound  $\ell$ , we must have  $\ell \sqsubseteq^2 \alpha(x)$ .

The dual result holds for  $\gamma$ .  $\square$ 

### 5.6.22 Answer to Exercise 22

•  $\alpha$  preserves existing lubs:

**Proof** Assume that X is a subset of  $\mathcal{D}^1$  such that  $\sqcup^1 X$  exists. For all  $x \in X$  we have  $x \sqsubseteq^1 \sqcup^1 X$  by definition of lubs so that  $\alpha(x) \sqsubseteq^2 \alpha(\sqcup^1 X)$  by monotony, proving that  $\alpha(\sqcup^1 X)$  is an upper bound of the  $\alpha(x)$ .

Let m be another upper bound of all  $\alpha(x)$ ,  $x \in X$ . We have  $\alpha(x) \sqsubseteq^2 m$ , whence  $x \sqsubseteq^1 \gamma(m)$  by definition of a Galois connection so that  $\sqcup^1 X \sqsubseteq^1 \gamma(m)$  by definition of lubs. By monotony and  $\alpha \circ \gamma$  is reductive it follows that  $\alpha(\sqcup^1 X) \sqsubseteq^2 \alpha \circ \gamma(m) \sqsubseteq^2 m$ , proving that  $\alpha(\sqcup^1 X)$  is the lub of  $\{\alpha(x) \mid x \in X\}$ .

•  $\gamma$  preserves existing glbs:

**Proof** By the duality principle.  $\Box$