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Formal Methods
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What is (or should be) the essential
preoccupation of computer scientists?

The production of reliable software,
its maintenance and safe evolution
year after year (up to 20 even 30
years).
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Computer hardware change of scale

The 25 last years, computer hardware has seen its performances
multiplied by 104 to 106;

ENIAC (5000 flops) Intel/Sandia Teraflops System (1012 flops)
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The information processing revolution

A scale of 106 is typical of a significant revolution:
-- Energy: nuclear power station / Roman slave;

-- Transportation: distance Earth — Mars / Denmark height
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Computer software change of scale

• The size of the programs executed by these computers has
grown up in similar proportions;

• Example (modern text editor for the general public):

-- > 1 700 000 lines of C ;

-- 20 000 procedures;

-- 400 files;

-- > 15 years of development.

1 full-time reading of the code (35 hours/week) would take at least 3 months!
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Computer software change of scale
(cont’d)

• Example 2 (professional computer system):

-- 30 000 000 lines of code;

-- 30 000 (known) bugs!
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Bugs• Software bugs

-- whether anticipated (Y2K bug)

-- or unforeseen (failure of the 5.01 flight of
Ariane V launcher)

are quite frequent;

• Bugs can be very difficult to discover in huge
software;• Bugs can have catastrophic consequences either
very costly or inadmissible (embedded software
in transportation systems);
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The estimated cost of an overflow

• 500 000 000 e;
• Including indirect costs (delays, lost markets, etc):

2 000 000 000 e;

• The financial results of Arianespace were negative in 2000,
for the first time since 20 years.
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Responsibility of computer scientists

• The paradox is that the computer scientists do not assume any
responsibility for software bugs (compare to the automotive or
avionic industry);

• Computer software bugs can become an important societal prob-
lem (collective fears and reactions? new legislation?);

=⇒ It is absolutely necessary to widen the full set of methods
and tools used to eliminate software bugs.
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Capability of computer scientists

• The intellectual capability of computer scientists remains essen-
tially unchanged year after year;

• The size of programmer teams in charge of software design and
maintenance cannot evolve in such huge proportions;

• Classical manual software verification methods (code reviews,
simulations, debugging) do not scale up;

• So we should use computers to reason about computers!
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Capability of computers

• The computing power and memory size of computers double
every 18 months;

• So computer aided verification will scale up, scale up, scale up, scale up, scale up, scale up,
scale up, scale up, scale up, scale up, scale up, scale up, . . . ;
• But the size of programs grows proportionally;

• And correctness proofs are exponential in the program size;

• So computers power growth is ultimately not significant.
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On Formal Methods and
Computer-Aided Verification
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Computer Systems

Model

Environment

Program
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Formal Methods

Model

Environment

Program

Specification

v
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Deductive methods

Specification

Model

Environment

Program

v

Why does the
proof fails?
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Deductive methods, criticism

• How to apply when lacking formal specifications (e.g. legacy
software modification)? for large programs?

• Cost of proof is higher than the cost of the software develop-
ment and testing 2;

• Only critical parts of the software can be checked formally so
errors appear elsewhere (e.g. at interfaces);

• Both the program and its proof have to be maintained (e.g.
during ten to twenty years for embedded software).

2 Figures of 600 person-years for 80, 000 lines of C code have been reported for the Metéor metro line 14 in Paris
developed with the B-method.
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Software Model Checking

Finitary Model

Environment

Program

Specification

v
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Software Model Checking, criticism

• How to apply when lacking temporal formal specifications? for
large programs?

• Ultimately finite models, state explosion;

• Proof of correctness of the model?

yes: back to deductive methods!

no: debugging aid, not formal verification;

• Both the program and its model have to be maintained;

• Abstraction is required so software model checking essentially
boils down to static program analysis.
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Static Program Analysis

Abstract Semantics

Environment

Program

Specification

v

Program semantics abstraction

Abstract Specification

Specification
abstraction
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General-PurposeStatic Program Analyzers

“The first product to automatically detect 100% of
run-time errors at Compilation Time
Based on Abstract Interpretation, PolySpace Tech-
nologies provides the earliest run-time errors detection
solution to dramatically reduce testing and debugging
costs with :
• No Test Case to Write
• No Code Instrumentation
• No Change to your Development Process
• No Execution of your Application” 3

3 http://www.polyspace.com/
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Special-Purpose Static Program Analyzers

“The underlying theory of abstract inter-
pretation provides the relation to the pro-
gramming language semantics, thus en-
abling the systematic derivation of prov-
ably correct and terminating analyses.” 4

4 http://www.absint.com/pag/
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Static Program Analysis, criticism

• Full programming languages (ADA, C), weak specifications (e.g.
absence of run-time errors);

• Can handle very large programs, prohibitive time and space
costs or unprecise;

• No user specification but residual false alarms;

• Inherent approximations wired in the analyzer, no easy refine-
ment (e.g. assertions).
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Deductive methods

Model-checking

Static analysis

Semantics

Syntax analysis

Typing

Abstract
Interpretation
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Motivations for
Abstract Interpretation
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Abstract Interpretation

• Thinking tool: the idea of abstraction is central to reason-
ing (in particular on computer systems);

• A framework for designing mechanical tools: the idea of
effective approximation leads to automatic semantics-based for-
mal systems/program manipulation tools.

Reasonings about computer systems and their verification should
ideally rely on a few principles rather than on a myriad of tech-
niques and (semi-)algorithms.
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Coping With Undecidability When
Computing on the Program Semantics

• Ask the programmer to help (e.g. proof assistants);

• Consider decidable questions only or semi-algorithms (e.g. model-
checking/model-debugging);

• Consider effective approximations to handle practical complex-
ity limitations;

The above approaches can all be formalized within the abstract
interpretation framework.
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The Theory of Abstract Interpretation

• Abstract interpretation 5 is a theory of conservative ap-
proximation of the semantics/models of computer systems.

Approximation: observation of the behavior of a computer
system at some level of abstraction, ignoring irrelevant de-
tails;

Conservative: the approximation cannot lead to any erro-
neous conclusion.

5 P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques. Grenoble, 21 Mar. 1978.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 29 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/


The Theory of Abstract Interpretation

• Abstract interpretation 5 is a theory of conservative ap-
proximation of the semantics/models of computer systems.

Approximation: observation of the behavior of a computer
system at some level of abstraction, ignoring irrelevant de-
tails;

Conservative: the approximation cannot lead to any erro-
neous conclusion.

5 P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques. Grenoble, 21 Mar. 1978.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 29 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/


The Theory of Abstract Interpretation

• Abstract interpretation 5 is a theory of conservative ap-
proximation of the semantics/models of computer systems.

Approximation: observation of the behavior of a computer
system at some level of abstraction, ignoring irrelevant de-
tails;

Conservative: the approximation cannot lead to any erro-
neous conclusion.

5 P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques. Grenoble, 21 Mar. 1978.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 29 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/


Informal Introduction to
Abstract Interpretation
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1 – Abstract Domains

• Program concrete properties are specified by the semantics of
programming languages;

• Program abstract properties are elements of abstract domains
(posets/lattices/. . . );

• Program property abstraction is performed by (effective) con-
servative approximation of concrete properties;

• The abstract properties (hence abstract semantics) are sound
but may be incomplete with respect to the concrete properties
(semantics);
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2 – Correspondence between Concrete
and Abstract Properties

• If any concrete property has a best approximation, approxima-
tion is formalized by Galois connections (or equivalently closure
operators, Moore families, etc. 6, 7);

• Otherwise, weaker abstraction/ concretization correspondences
are available ;

6 P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques. Grenoble, 21 Mar. 1978.

7 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
8 P. Cousot & R. Cousot. Abstract interpretation frameworks. JLC 2(4):511–547, 1992.
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3 – Semantics Abstraction

• Program concrete semantics and specifications are defined by
syntactic induction and composition of fixpoints (or using equiv-
alent presentations 9);

• The property abstraction is extended compositionally to all con-
structions of the concrete/abstract semantics, including fix-
points;

• This leads to a constructive design of the abstract semantics
by approximation of the concrete semantics ;

9 P. Cousot & R. Cousot. Compositional and inductive semantic definitions in fixpoint, equational, constraint, closure-
condition, rule-based and game theoretic form. CAV ’95, LNCS 939, pp. 293–308, 1995.

10 P. Cousot & R. Cousot. Inductive definitions, semantics and abstract interpretation. POPL, 83–94, 1992.
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4 — Effective Analysis/Checking/
Verification Algorithms

• Computable abstract semantics lead to effective program anal-
ysis/checking/verification algorithms;

• Furthermore fixpoints can be approximated iteratively by con-
vergence acceleration through widening/narrowing that is non-
standard induction .

11 P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction
or approximation of fixpoints. ACM POPL, pp. 238–252, 1977.
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Elements of
Abstract Interpretation

• P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs mo-
notones sur un treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques.
Grenoble, 21 Mar. 1978.
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Galois Connections 12

〈P,≤〉 −−−→←−−−α
γ
〈Q,v〉

def
=

− 〈P,≤〉 is a poset

− 〈Q,v〉 is a poset

− ∀x ∈ P : ∀y ∈ Q : α(x) v y ⇐⇒ x ≤ γ(y)

12 The original Galois correspondence is semi-dual (w instead of v).
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Composing Galois Connections

• If 〈P,≤〉 −−−−→←−−−−
α1

γ1 〈Q,v〉 and 〈Q,v〉 −−−−→←−−−−
α2

γ2 〈R,�〉 then

〈P,≤〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2 〈R,�〉 13

13 This would not be true with the original definition of Galois correspondences.
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Function Abstraction (1)

P

Q

S

α

• If 〈P,≤〉 −−−→←−−−α
γ
〈Q,v〉 then

〈S 7→ P, ≤̇〉 −−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−
λ f ·λx ·α(f (x))

λ g ·λx · γ(g(x))
〈S 7→ Q, v̇〉
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Function Abstraction (2)

P

Q

α

R

S

α11 22

• If 〈P,≤〉 −−−−→←−−−−
α1

γ1 〈Q,⊆〉 and 〈R,�〉 −−−−→←−−−−
α2

γ2 〈S,v〉 then

〈P m7−→ R, ⊆̇〉 −−−−−−−−−−−−−→←−−−−−−−−−−−−−
λ f ·α2 ◦ f ◦ γ1

λ g · γ2 ◦ g ◦ α1 〈Q m7−→ S, v̇〉

CAV 2002 invited tutorial July 27-31, 2002 J��� — 39 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/


Function Abstraction (2)

P

Q

x

α

f

R

S

f(x)

α11 22

• If 〈P,≤〉 −−−−→←−−−−
α1

γ1 〈Q,⊆〉 and 〈R,�〉 −−−−→←−−−−
α2

γ2 〈S,v〉 then

〈P m7−→ R, ⊆̇〉 −−−−−−−−−−−−−→←−−−−−−−−−−−−−
λ f ·α2 ◦ f ◦ γ1

λ g · γ2 ◦ g ◦ α1 〈Q m7−→ S, v̇〉

CAV 2002 invited tutorial July 27-31, 2002 J��� — 39 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/


Function Abstraction (2)

P

Q

x

y

α

g

f

R

S

f(x)

g(y)

α11 22

• If 〈P,≤〉 −−−−→←−−−−
α1

γ1 〈Q,⊆〉 and 〈R,�〉 −−−−→←−−−−
α2

γ2 〈S,v〉 then

〈P m7−→ R, ⊆̇〉 −−−−−−−−−−−−−→←−−−−−−−−−−−−−
λ f ·α2 ◦ f ◦ γ1

λ g · γ2 ◦ g ◦ α1 〈Q m7−→ S, v̇〉

CAV 2002 invited tutorial July 27-31, 2002 J��� — 39 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/


Function Abstraction (2)

P

Q

x

y

α

g

f

R

S

f(x)

g(y)

α11 22

• If 〈P,≤〉 −−−−→←−−−−
α1

γ1 〈Q,⊆〉 and 〈R,�〉 −−−−→←−−−−
α2

γ2 〈S,v〉 then

〈P m7−→ R, ⊆̇〉 −−−−−−−−−−−−−→←−−−−−−−−−−−−−
λ f ·α2 ◦ f ◦ γ1

λ g · γ2 ◦ g ◦ α1 〈Q m7−→ S, v̇〉

CAV 2002 invited tutorial July 27-31, 2002 J��� — 39 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/


Fixpoint Approximation
Let F ∈ L m7−→ L and F ∈ L m7−→ L be respective monotone maps
on the cpos 〈L,⊥,v〉 and 〈L,⊥,v〉 and 〈L,v〉 −−−→←−−−α

γ
〈L,v〉 such

that α ◦ F ◦ γ v̇ F . Then 14:

• ∀δ ∈ O: α(Fδ) v Fδ (iterates from the infimum);

• The iteration order of F is ≤ to that of F ;

• α(lfp
v
F ) v lfp

v
F ;

Soundness: lfp
v
F v P ⇒ lfp

v
F v γ(P ).

14 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
Numerous variants!
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Fixpoint Abstraction
Moreover, the commutation condition F ◦ α = α ◦ F implies 15:

• F = α ◦ F ◦ γ, and

• α(lfp
v
F ) = lfp

v
F ;

Completeness: lfp
v
F v γ(P ) ⇒ lfp

v
F v P .

15 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
Numerous variants!
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