
ABSTRACT INTERPRETATION:

THEORY AND APPLICATIONS

P. Cousot
Patrick.Cousot@ens.fr http://www.di.ens.fr/~cousot

Second International Summer School in Computational Logic, ISCL 2002

25th—30th August 2002, Acquafredda di Maratea (Basilicata, Italy)

ľ P. Cousot, all rights reserved.

1. An Introductive Overview

Abstract Interpretation: Theory and Applications, ľ P. Cousot, 25/8/02— 1:1/0 —��� ���J []¨˜?I Contents

Patrick.Cousot@ens.fr
mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot
http://www.di.ens.fr/~cousot
http://www.cs.unipr.it/ISCL02/
http://www.di.ens.fr/~cousot/cours/SEMAN-Summer-School-02
http://www.di.ens.fr/~cousot/copyright.shtml#copyrightnotice
http://www.di.ens.fr/~cousot/

Content
1. Motivations for formal methods . 2
2. On formal methods and computer-aided verification 13
3. Motivations for abstract interpretation . 26
4. Informal introduction to abstract interpretation 30
5. Elements of abstract interpretation . 35
6. A potpourri of applications of abstract interpretation 45
7. On the design of abstractions for software checking 107
8. On widenings . 170
9. On the design of program static analyzers . 178
10. Experience with a parametric specializable program static analyzer

183
11. Conclusion . 188

CAV 2002 invited tutorial July 27-31, 2002 J��� — 1 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/
Patrick COUSOT
7. On the design of abstractions for software checking 107

Motivations for
Formal Methods

CAV 2002 invited tutorial July 27-31, 2002 J��� — 2 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

What is (or should be) the essential
preoccupation of computer scientists?

The production of reliable software,
its maintenance and safe evolution
year after year (up to 20 even 30
years).

CAV 2002 invited tutorial July 27-31, 2002 J��� — 3 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

What is (or should be) the essential
preoccupation of computer scientists?

The production of reliable software,
its maintenance and safe evolution
year after year (up to 20 even 30
years).

CAV 2002 invited tutorial July 27-31, 2002 J��� — 3 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Computer hardware change of scale

The 25 last years, computer hardware has seen its performances
multiplied by 104 to 106;

ENIAC (5000 flops) Intel/Sandia Teraflops System (1012 flops)

CAV 2002 invited tutorial July 27-31, 2002 J��� — 4 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

The information processing revolution

A scale of 106 is typical of a significant revolution:
-- Energy: nuclear power station / Roman slave;

-- Transportation: distance Earth — Mars / Denmark height

CAV 2002 invited tutorial July 27-31, 2002 J��� — 5 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Computer software change of scale

• The size of the programs executed by these computers has
grown up in similar proportions;

• Example (modern text editor for the general public):

-- > 1 700 000 lines of C ;

-- 20 000 procedures;

-- 400 files;

-- > 15 years of development.

1 full-time reading of the code (35 hours/week) would take at least 3 months!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 6 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Computer software change of scale

• The size of the programs executed by these computers has
grown up in similar proportions;

• Example 1 (modern text editor for the general public):

-- > 1 700 000 lines of C 1;

-- 20 000 procedures;

-- 400 files;

-- > 15 years of development.

1 full-time reading of the code (35 hours/week) would take at least 3 months!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 6 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Computer software change of scale
(cont’d)

• Example 2 (professional computer system):

-- 30 000 000 lines of code;

-- 30 000 (known) bugs!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 7 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Computer software change of scale
(cont’d)

• Example 2 (professional computer system):

-- 30 000 000 lines of code;

-- 30 000 (known) bugs!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 7 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Bugs• Software bugs

-- whether anticipated (Y2K bug)

-- or unforeseen (failure of the 5.01 flight of
Ariane V launcher)

are quite frequent;

• Bugs can be very difficult to discover in huge
software;• Bugs can have catastrophic consequences either
very costly or inadmissible (embedded software
in transportation systems);

CAV 2002 invited tutorial July 27-31, 2002 J��� — 8 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Bugs• Software bugs

-- whether anticipated (Y2K bug)

-- or unforeseen (failure of the 5.01 flight of
Ariane V launcher)

are quite frequent;

• Bugs can be very difficult to discover in huge
software;
• Bugs can have catastrophic consequences either
very costly or inadmissible (embedded software
in transportation systems);

CAV 2002 invited tutorial July 27-31, 2002 J��� — 8 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Bugs• Software bugs

-- whether anticipated (Y2K bug)

-- or unforeseen (failure of the 5.01 flight of
Ariane V launcher)

are quite frequent;

• Bugs can be very difficult to discover in huge
software;
• Bugs can have catastrophic consequences either
very costly or inadmissible (embedded software
in transportation systems);

CAV 2002 invited tutorial July 27-31, 2002 J��� — 8 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

The estimated cost of an overflow

• 500 000 000 e;
• Including indirect costs (delays, lost markets, etc):

2 000 000 000 e;

• The financial results of Arianespace were negative in 2000,
for the first time since 20 years.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 9 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

The estimated cost of an overflow

• 500 000 000 e;
• Including indirect costs (delays, lost markets, etc):

2 000 000 000 e;

• The financial results of Arianespace were negative in 2000,
for the first time since 20 years.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 9 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

The estimated cost of an overflow

• 500 000 000 e;
• Including indirect costs (delays, lost markets, etc):

2 000 000 000 e;

• The financial results of Arianespace were negative in 2000,
for the first time since 20 years.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 9 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

The estimated cost of an overflow

• 500 000 000 e;
• Including indirect costs (delays, lost markets, etc):

2 000 000 000 e;

• The financial results of Arianespace were negative in 2000,
for the first time since 20 years.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 9 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Responsibility of computer scientists

• The paradox is that the computer scientists do not assume any
responsibility for software bugs (compare to the automotive or
avionic industry);

• Computer software bugs can become an important societal prob-
lem (collective fears and reactions? new legislation?);

=⇒ It is absolutely necessary to widen the full set of methods
and tools used to eliminate software bugs.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 10 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Responsibility of computer scientists

• The paradox is that the computer scientists do not assume any
responsibility for software bugs (compare to the automotive or
avionic industry);

• Computer software bugs can become an important societal prob-
lem (collective fears and reactions? new legislation?);

=⇒ It is absolutely necessary to widen the full set of methods
and tools used to eliminate software bugs.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 10 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Responsibility of computer scientists

• The paradox is that the computer scientists do not assume any
responsibility for software bugs (compare to the automotive or
avionic industry);

• Computer software bugs can become an important societal prob-
lem (collective fears and reactions? new legislation?);

=⇒ It is absolutely necessary to widen the full set of methods
and tools used to eliminate software bugs.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 10 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Capability of computer scientists

• The intellectual capability of computer scientists remains essen-
tially unchanged year after year;

• The size of programmer teams in charge of software design and
maintenance cannot evolve in such huge proportions;

• Classical manual software verification methods (code reviews,
simulations, debugging) do not scale up;

• So we should use computers to reason about computers!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 11 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Capability of computer scientists

• The intellectual capability of computer scientists remains essen-
tially unchanged year after year;

• The size of programmer teams in charge of software design and
maintenance cannot evolve in such huge proportions;

• Classical manual software verification methods (code reviews,
simulations, debugging) do not scale up;

• So we should use computers to reason about computers!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 11 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Capability of computer scientists

• The intellectual capability of computer scientists remains essen-
tially unchanged year after year;

• The size of programmer teams in charge of software design and
maintenance cannot evolve in such huge proportions;

• Classical manual software verification methods (code reviews,
simulations, debugging) do not scale up;

• So we should use computers to reason about computers!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 11 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Capability of computer scientists

• The intellectual capability of computer scientists remains essen-
tially unchanged year after year;

• The size of programmer teams in charge of software design and
maintenance cannot evolve in such huge proportions;

• Classical manual software verification methods (code reviews,
simulations, debugging) do not scale up;

•• So we should use computers to reason about computers!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 11 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Capability of computers

• The computing power and memory size of computers double
every 18 months;

• So computer aided verification will scale up, scale up, scale up, scale up, scale up, scale up,
scale up, scale up, scale up, scale up, scale up, scale up, . . . ;
• But the size of programs grows proportionally;

• And correctness proofs are exponential in the program size;

• So computers power growth is ultimately not significant.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 12 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Capability of computers

• The computing power and memory size of computers double
every 18 months;

• So computer aided verification will scale up, scale up, scale up, scale up, scale up, scale up,
scale up, scale up, scale up, scale up, scale up, scale up, . . . ;
• But the size of programs grows proportionally;

• And correctness proofs are exponential in the program size;

• So computers power growth is ultimately not significant.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 12 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

On Formal Methods and
Computer-Aided Verification

CAV 2002 invited tutorial July 27-31, 2002 J��� — 13 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Computer Systems

Model

Environment

Program

CAV 2002 invited tutorial July 27-31, 2002 J��� — 14 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Formal Methods

Model

Environment

Program

Specification

v

CAV 2002 invited tutorial July 27-31, 2002 J��� — 15 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Deductive methods

Specification

Model

Environment

Program

v

Why does the
proof fails?

CAV 2002 invited tutorial July 27-31, 2002 J��� — 16 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Deductive methods, criticism

• How to apply when lacking formal specifications (e.g. legacy
software modification)? for large programs?

• Cost of proof is higher than the cost of the software develop-
ment and testing 2;

• Only critical parts of the software can be checked formally so
errors appear elsewhere (e.g. at interfaces);

• Both the program and its proof have to be maintained (e.g.
during ten to twenty years for embedded software).

2 Figures of 600 person-years for 80, 000 lines of C code have been reported for the Metéor metro line 14 in Paris
developed with the B-method.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 17 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Software Model Checking

Finitary Model

Environment

Program

Specification

v

CAV 2002 invited tutorial July 27-31, 2002 J��� — 18 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Software Model Checking, criticism

• How to apply when lacking temporal formal specifications? for
large programs?

• Ultimately finite models, state explosion;

• Proof of correctness of the model?

yes: back to deductive methods!

no: debugging aid, not formal verification;

• Both the program and its model have to be maintained;

• Abstraction is required so software model checking essentially
boils down to static program analysis.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 19 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Static Program Analysis

Abstract Semantics

Environment

Program

Specification

v

Program semantics abstraction

Abstract Specification

Specification
abstraction

CAV 2002 invited tutorial July 27-31, 2002 J��� — 20 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

General-PurposeStatic Program Analyzers

“The first product to automatically detect 100% of
run-time errors at Compilation Time
Based on Abstract Interpretation, PolySpace Tech-
nologies provides the earliest run-time errors detection
solution to dramatically reduce testing and debugging
costs with :
• No Test Case to Write
• No Code Instrumentation
• No Change to your Development Process
• No Execution of your Application” 3

3 http://www.polyspace.com/

CAV 2002 invited tutorial July 27-31, 2002 J��� — 21 — [] ¨— ���I c© P. Cousot

http://www.polyspace.com/
http://www.polyspace.com/product_datasheet/cverifier.htm
http://www.polyspace.com/product_datasheet/cverifier.htm
http://www.polyspace.com/
http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Special-Purpose Static Program Analyzers

“The underlying theory of abstract inter-
pretation provides the relation to the pro-
gramming language semantics, thus en-
abling the systematic derivation of prov-
ably correct and terminating analyses.” 4

4 http://www.absint.com/pag/

CAV 2002 invited tutorial July 27-31, 2002 J��� — 22 — [] ¨— ���I c© P. Cousot

http://www.absint.com/
http://www.absint.com/wcet.htm
http://www.absint.com/pag/
http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Static Program Analysis, criticism

• Full programming languages (ADA, C), weak specifications (e.g.
absence of run-time errors);

• Can handle very large programs, prohibitive time and space
costs or unprecise;

• No user specification but residual false alarms;

• Inherent approximations wired in the analyzer, no easy refine-
ment (e.g. assertions).

CAV 2002 invited tutorial July 27-31, 2002 J��� — 23 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Deductive methods

Model-checking

Static analysis

Semantics

Syntax analysis

Typing

Abstract
Interpretation

CAV 2002 invited tutorial July 27-31, 2002 J��� — 24 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Deductive methods

Model-checking

Static analysis

Semantics

Syntax analysis

Typing

Abstract
Interpretation

CAV 2002 invited tutorial July 27-31, 2002 J��� — 24 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Deductive methods

Model-checking

Static analysis

Semantics

Syntax analysis

Typing

Abstract
Interpretation

CAV 2002 invited tutorial July 27-31, 2002 J��� — 25 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Motivations for
Abstract Interpretation

CAV 2002 invited tutorial July 27-31, 2002 J��� — 26 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Abstract Interpretation

• Thinking tool: the idea of abstraction is central to reason-
ing (in particular on computer systems);

• A framework for designing mechanical tools: the idea of
effective approximation leads to automatic semantics-based for-
mal systems/program manipulation tools.

Reasonings about computer systems and their verification should
ideally rely on a few principles rather than on a myriad of tech-
niques and (semi-)algorithms.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 27 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Abstract Interpretation

• Thinking tool: the idea of abstraction is central to reason-
ing (in particular on computer systems);

• A framework for designing mechanical tools: the idea of
effective approximation leads to automatic semantics-based for-
mal systems/program manipulation tools.

Reasonings about computer systems and their verification should
ideally rely on a few principles rather than on a myriad of tech-
niques and (semi-)algorithms.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 27 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Abstract Interpretation

• Thinking tool: the idea of abstraction is central to reason-
ing (in particular on computer systems);

• A framework for designing mechanical tools: the idea of
effective approximation leads to automatic semantics-based for-
mal systems/program manipulation tools.

Reasonings about computer systems and their verification should
ideally rely on a few principles rather than on a myriad of tech-
niques and (semi-)algorithms.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 27 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Coping With Undecidability When
Computing on the Program Semantics

• Ask the programmer to help (e.g. proof assistants);

• Consider decidable questions only or semi-algorithms (e.g. model-
checking/model-debugging);

• Consider effective approximations to handle practical complex-
ity limitations;

The above approaches can all be formalized within the abstract
interpretation framework.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 28 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Coping With Undecidability When
Computing on the Program Semantics

• Ask the programmer to help (e.g. proof assistants);

• Consider decidable questions only or semi-algorithms (e.g. model-
checking/model-debugging);

• Consider effective approximations to handle practical complex-
ity limitations;

The above approaches can all be formalized within the abstract
interpretation framework.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 28 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Coping With Undecidability When
Computing on the Program Semantics

• Ask the programmer to help (e.g. proof assistants);

• Consider decidable questions only or semi-algorithms (e.g. model-
checking/model-debugging);

• Consider effective approximations to handle practical complex-
ity limitations;

The above approaches can all be formalized within the abstract
interpretation framework.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 28 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Coping With Undecidability When
Computing on the Program Semantics

• Ask the programmer to help (e.g. proof assistants);

• Consider decidable questions only or semi-algorithms (e.g. model-
checking/model-debugging);

• Consider effective approximations to handle practical complex-
ity limitations;

The above approaches can all be formalized within the abstract
interpretation framework.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 28 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

The Theory of Abstract Interpretation

• Abstract interpretation 5 is a theory of conservative ap-
proximation of the semantics/models of computer systems.

Approximation: observation of the behavior of a computer
system at some level of abstraction, ignoring irrelevant de-
tails;

Conservative: the approximation cannot lead to any erro-
neous conclusion.

5 P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques. Grenoble, 21 Mar. 1978.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 29 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

The Theory of Abstract Interpretation

• Abstract interpretation 5 is a theory of conservative ap-
proximation of the semantics/models of computer systems.

Approximation: observation of the behavior of a computer
system at some level of abstraction, ignoring irrelevant de-
tails;

Conservative: the approximation cannot lead to any erro-
neous conclusion.

5 P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques. Grenoble, 21 Mar. 1978.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 29 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

The Theory of Abstract Interpretation

• Abstract interpretation 5 is a theory of conservative ap-
proximation of the semantics/models of computer systems.

Approximation: observation of the behavior of a computer
system at some level of abstraction, ignoring irrelevant de-
tails;

Conservative: the approximation cannot lead to any erro-
neous conclusion.

5 P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques. Grenoble, 21 Mar. 1978.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 29 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Informal Introduction to
Abstract Interpretation

CAV 2002 invited tutorial July 27-31, 2002 J��� — 30 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

1 – Abstract Domains

• Program concrete properties are specified by the semantics of
programming languages;

• Program abstract properties are elements of abstract domains
(posets/lattices/. . .);

• Program property abstraction is performed by (effective) con-
servative approximation of concrete properties;

• The abstract properties (hence abstract semantics) are sound
but may be incomplete with respect to the concrete properties
(semantics);

CAV 2002 invited tutorial July 27-31, 2002 J��� — 31 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

1 – Abstract Domains

• Program concrete properties are specified by the semantics of
programming languages;

• Program abstract properties are elements of abstract domains
(posets/lattices/. . .);

• Program property abstraction is performed by (effective) con-
servative approximation of concrete properties;

• The abstract properties (hence abstract semantics) are sound
but may be incomplete with respect to the concrete properties
(semantics);

CAV 2002 invited tutorial July 27-31, 2002 J��� — 31 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

1 – Abstract Domains

• Program concrete properties are specified by the semantics of
programming languages;

• Program abstract properties are elements of abstract domains
(posets/lattices/. . .);

• Program property abstraction is performed by (effective) con-
servative approximation of concrete properties;

• The abstract properties (hence abstract semantics) are sound
but may be incomplete with respect to the concrete properties
(semantics);

CAV 2002 invited tutorial July 27-31, 2002 J��� — 31 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

1 – Abstract Domains

• Program concrete properties are specified by the semantics of
programming languages;

• Program abstract properties are elements of abstract domains
(posets/lattices/. . .);

• Program property abstraction is performed by (effective) con-
servative approximation of concrete properties;

• The abstract properties (hence abstract semantics) are sound
but may be incomplete with respect to the concrete properties
(semantics);

CAV 2002 invited tutorial July 27-31, 2002 J��� — 31 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

2 – Correspondence between Concrete
and Abstract Properties

• If any concrete property has a best approximation, approxima-
tion is formalized by Galois connections (or equivalently closure
operators, Moore families, etc. 6, 7);

• Otherwise, weaker abstraction/ concretization correspondences
are available ;

6 P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques. Grenoble, 21 Mar. 1978.

7 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
8 P. Cousot & R. Cousot. Abstract interpretation frameworks. JLC 2(4):511–547, 1992.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 32 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

2 – Correspondence between Concrete
and Abstract Properties

• If any concrete property has a best approximation, approxima-
tion is formalized by Galois connections (or equivalently closure
operators, Moore families, etc. 6, 7);

• Otherwise, weaker abstraction/ concretization correspondences
are available 8;

6 P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs monotones sur un
treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques. Grenoble, 21 Mar. 1978.

7 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
8 P. Cousot & R. Cousot. Abstract interpretation frameworks. JLC 2(4):511–547, 1992.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 32 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

3 – Semantics Abstraction

• Program concrete semantics and specifications are defined by
syntactic induction and composition of fixpoints (or using equiv-
alent presentations 9);

• The property abstraction is extended compositionally to all con-
structions of the concrete/abstract semantics, including fix-
points;

• This leads to a constructive design of the abstract semantics
by approximation of the concrete semantics ;

9 P. Cousot & R. Cousot. Compositional and inductive semantic definitions in fixpoint, equational, constraint, closure-
condition, rule-based and game theoretic form. CAV ’95, LNCS 939, pp. 293–308, 1995.

10 P. Cousot & R. Cousot. Inductive definitions, semantics and abstract interpretation. POPL, 83–94, 1992.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 33 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

3 – Semantics Abstraction

• Program concrete semantics and specifications are defined by
syntactic induction and composition of fixpoints (or using equiv-
alent presentations 9);

• The property abstraction is extended compositionally to all con-
structions of the concrete/abstract semantics, including fix-
points;

• This leads to a constructive design of the abstract semantics
by approximation of the concrete semantics ;

9 P. Cousot & R. Cousot. Compositional and inductive semantic definitions in fixpoint, equational, constraint, closure-
condition, rule-based and game theoretic form. CAV ’95, LNCS 939, pp. 293–308, 1995.

10 P. Cousot & R. Cousot. Inductive definitions, semantics and abstract interpretation. POPL, 83–94, 1992.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 33 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

3 – Semantics Abstraction

• Program concrete semantics and specifications are defined by
syntactic induction and composition of fixpoints (or using equiv-
alent presentations 9);

• The property abstraction is extended compositionally to all con-
structions of the concrete/abstract semantics, including fix-
points;

• This leads to a constructive design of the abstract semantics
by approximation of the concrete semantics 10;

9 P. Cousot & R. Cousot. Compositional and inductive semantic definitions in fixpoint, equational, constraint, closure-
condition, rule-based and game theoretic form. CAV ’95, LNCS 939, pp. 293–308, 1995.

10 P. Cousot & R. Cousot. Inductive definitions, semantics and abstract interpretation. POPL, 83–94, 1992.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 33 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

4 — Effective Analysis/Checking/
Verification Algorithms

• Computable abstract semantics lead to effective program anal-
ysis/checking/verification algorithms;

• Furthermore fixpoints can be approximated iteratively by con-
vergence acceleration through widening/narrowing that is non-
standard induction .

11 P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction
or approximation of fixpoints. ACM POPL, pp. 238–252, 1977.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 34 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

4 — Effective Analysis/Checking/
Verification Algorithms

• Computable abstract semantics lead to effective program anal-
ysis/checking/verification algorithms;

• Furthermore fixpoints can be approximated iteratively by con-
vergence acceleration through widening/narrowing that is non-
standard induction 11.

11 P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction
or approximation of fixpoints. ACM POPL, pp. 238–252, 1977.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 34 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Elements of
Abstract Interpretation

• P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs mo-
notones sur un treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathématiques.
Grenoble, 21 Mar. 1978.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 35 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Galois Connections 12

〈P,≤〉 −−−→←−−−α
γ
〈Q,v〉

def
=

− 〈P,≤〉 is a poset

− 〈Q,v〉 is a poset

− ∀x ∈ P : ∀y ∈ Q : α(x) v y ⇐⇒ x ≤ γ(y)

12 The original Galois correspondence is semi-dual (w instead of v).

CAV 2002 invited tutorial July 27-31, 2002 J��� — 36 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Composing Galois Connections

• If 〈P,≤〉 −−−−→←−−−−
α1

γ1 〈Q,v〉 and 〈Q,v〉 −−−−→←−−−−
α2

γ2 〈R,�〉 then

〈P,≤〉 −−−−−−→←−−−−−−
α2◦α1

γ1◦γ2 〈R,�〉 13

13 This would not be true with the original definition of Galois correspondences.

CAV 2002 invited tutorial July 27-31, 2002 J��� — 37 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Function Abstraction (1)

P

Q

S

α

• If 〈P,≤〉 −−−→←−−−α
γ
〈Q,v〉 then

〈S 7→ P, ≤̇〉 −−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−
λ f ·λx ·α(f (x))

λ g ·λx · γ(g(x))
〈S 7→ Q, v̇〉

CAV 2002 invited tutorial July 27-31, 2002 J��� — 38 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Function Abstraction (1)

P

Q

S

x

f(x)

f
α

• If 〈P,≤〉 −−−→←−−−α
γ
〈Q,v〉 then

〈S 7→ P, ≤̇〉 −−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−
λ f ·λx ·α(f (x))

λ g ·λx · γ(g(x))
〈S 7→ Q, v̇〉

CAV 2002 invited tutorial July 27-31, 2002 J��� — 38 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Function Abstraction (1)

P

Q

S

x

f(x)

g(x)

g

f
α

• If 〈P,≤〉 −−−→←−−−α
γ
〈Q,v〉 then

〈S 7→ P, ≤̇〉 −−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−
λ f ·λx ·α(f (x))

λ g ·λx · γ(g(x))
〈S 7→ Q, v̇〉

CAV 2002 invited tutorial July 27-31, 2002 J��� — 38 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Function Abstraction (1)

P

Q

S

x

f(x)

g(x)

g

f
α

• If 〈P,≤〉 −−−→←−−−α
γ
〈Q,v〉 then

〈S 7→ P, ≤̇〉 −−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−
λ f ·λx ·α(f (x))

λ g ·λx · γ(g(x))
〈S 7→ Q, v̇〉

CAV 2002 invited tutorial July 27-31, 2002 J��� — 38 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Function Abstraction (2)

P

Q

α

R

S

α11 22

• If 〈P,≤〉 −−−−→←−−−−
α1

γ1 〈Q,⊆〉 and 〈R,�〉 −−−−→←−−−−
α2

γ2 〈S,v〉 then

〈P m7−→ R, ⊆̇〉 −−−−−−−−−−−−−→←−−−−−−−−−−−−−
λ f ·α2 ◦ f ◦ γ1

λ g · γ2 ◦ g ◦ α1 〈Q m7−→ S, v̇〉

CAV 2002 invited tutorial July 27-31, 2002 J��� — 39 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Function Abstraction (2)

P

Q

x

α

f

R

S

f(x)

α11 22

• If 〈P,≤〉 −−−−→←−−−−
α1

γ1 〈Q,⊆〉 and 〈R,�〉 −−−−→←−−−−
α2

γ2 〈S,v〉 then

〈P m7−→ R, ⊆̇〉 −−−−−−−−−−−−−→←−−−−−−−−−−−−−
λ f ·α2 ◦ f ◦ γ1

λ g · γ2 ◦ g ◦ α1 〈Q m7−→ S, v̇〉

CAV 2002 invited tutorial July 27-31, 2002 J��� — 39 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Function Abstraction (2)

P

Q

x

y

α

g

f

R

S

f(x)

g(y)

α11 22

• If 〈P,≤〉 −−−−→←−−−−
α1

γ1 〈Q,⊆〉 and 〈R,�〉 −−−−→←−−−−
α2

γ2 〈S,v〉 then

〈P m7−→ R, ⊆̇〉 −−−−−−−−−−−−−→←−−−−−−−−−−−−−
λ f ·α2 ◦ f ◦ γ1

λ g · γ2 ◦ g ◦ α1 〈Q m7−→ S, v̇〉

CAV 2002 invited tutorial July 27-31, 2002 J��� — 39 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Function Abstraction (2)

P

Q

x

y

α

g

f

R

S

f(x)

g(y)

α11 22

• If 〈P,≤〉 −−−−→←−−−−
α1

γ1 〈Q,⊆〉 and 〈R,�〉 −−−−→←−−−−
α2

γ2 〈S,v〉 then

〈P m7−→ R, ⊆̇〉 −−−−−−−−−−−−−→←−−−−−−−−−−−−−
λ f ·α2 ◦ f ◦ γ1

λ g · γ2 ◦ g ◦ α1 〈Q m7−→ S, v̇〉

CAV 2002 invited tutorial July 27-31, 2002 J��� — 39 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Fixpoint Approximation
Let F ∈ L m7−→ L and F ∈ L m7−→ L be respective monotone maps
on the cpos 〈L,⊥,v〉 and 〈L,⊥,v〉 and 〈L,v〉 −−−→←−−−α

γ
〈L,v〉 such

that α ◦ F ◦ γ v̇ F . Then 14:

• ∀δ ∈ O: α(Fδ) v Fδ (iterates from the infimum);

• The iteration order of F is ≤ to that of F ;

• α(lfp
v
F) v lfp

v
F ;

Soundness: lfp
v
F v P ⇒ lfp

v
F v γ(P).

14 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
Numerous variants!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 40 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Fixpoint Approximation
Let F ∈ L m7−→ L and F ∈ L m7−→ L be respective monotone maps
on the cpos 〈L,⊥,v〉 and 〈L,⊥,v〉 and 〈L,v〉 −−−→←−−−α

γ
〈L,v〉 such

that α ◦ F ◦ γ v̇ F . Then 14:

• ∀δ ∈ O: α(Fδ) v Fδ (iterates from the infimum);

• The iteration order of F is ≤ to that of F ;

• α(lfp
v
F) v lfp

v
F ;

Soundness: lfp
v
F v P ⇒ lfp

v
F v γ(P).

14 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
Numerous variants!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 40 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Fixpoint Abstraction
Moreover, the commutation condition F ◦ α = α ◦ F implies 15:

• F = α ◦ F ◦ γ, and

• α(lfp
v
F) = lfp

v
F ;

Completeness: lfp
v
F v γ(P) ⇒ lfp

v
F v P .

15 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
Numerous variants!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 41 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

Fixpoint Abstraction
Moreover, the commutation condition F ◦ α = α ◦ F implies 15:

• F = α ◦ F ◦ γ, and

• α(lfp
v
F) = lfp

v
F ;

Completeness: lfp
v
F v γ(P) ⇒ lfp

v
F v P .

15 P. Cousot & R. Cousot. Systematic design of program analysis frameworks. ACM POPL’79, pp. 269–282, 1979.
Numerous variants!

CAV 2002 invited tutorial July 27-31, 2002 J��� — 41 — [] ¨— ���I c© P. Cousot

http://floc02.diku.dk/CAV/
http://www.di.ens.fr/

	CAV.pdf
	Content
	MOTIVATIONS FOR FORMAL METHODS
	What is (or should be) the essential preoccupation of computer scientists?
	Computer software change of scale (cont'd)
	Bugs
	redThe estimated cost of an overflow
	redResponsibility of computer scientists
	redCapability of computer scientists
	Capability of computers
	ON FORMAL METHODS AND COMPUTER-AIDED VERIFICATION
	Computer systems
	Formal methods
	Deductive methods
	Deductive methods, criticism
	Software Model checking
	Software Model checking, criticism
	Static program analysis
	General-purpose static program analyzers
	Special-purpose static program analyzers
	Static program analysis, criticism
	Abstract interpretation
	Abstract interpretation
	MOTIVATIONS FOR ABSTRACT INTERPRETATION
	Abstract interpretation
	Coping with undecidability when computing on the program semantics
	The theory of abstract interpretation
	INFORMAL INTRODUCTION TO ABSTRACT INTERPRETATION
	1 -- Abstract domains
	2 -- Correspondence between concrete and abstract properties
	3 -- Semantics abstraction
	4 --- Effective analysis/checking/verification algorithms
	ELEMENTS OF ABSTRACT INTERPRETATION
	Galois connections
	Composing Galois connection
	Function abstraction (1)
	Function abstraction (2)
	Fixpoint approximation
	Fixpoint abstraction
	Systematic design of an abstract semantics
	Abstract domains
	Combinations of abstract domains
	APPLICATIONS OF ABSTRACT INTERPRETATION
	Content of the potpourri of applications of abstract interpretation
	Application to Syntax
	The semantics of syntax
	The fixpoint semantics of syntax
	Syntactic abstractions
	Application to Semantics
	Trace semantics, intuition
	Least fixpoint trace semantics
	Trace semantics, formally
	Semantics abstractions --- 1) relational abstractions
	1 --- Relational semantics abstractions (cont'd)
	2 --- Functional/denotational semantics abstractions
	3 --- Predicate transformer semantics abstractions
	4 --- Predicate transformer semantics abstractions (cont'd)
	5 --- Hoare logic semantics abstractions
	Lattice of semantics
	Application to Typing
	Syntax of the eager lambda calculus
	Semantic domains
	Denotational semantics with run-time type checking
	Standard denotational & collecting semantics
	Church/Curry monotypes
	Church/Curry monotypes (continued)
	Concretization function
	Program types
	Church/Curry monotype abstract semantics
	The Herbrand abstraction to get Hindley's unification-based type inference algorithm
	Application to Model Checking
	Model checking
	Abstractions in model checking
	Model-checking itself is an abstraction
	Implicit abstraction in model checking
	Soundness
	Example for unsoundness
	Completeness
	Example for incompleteness
	On the completeness of model-checking
	Bidirectional traces
	The reversible mu-calculus
	The reversible mu-calculus (cont'd)
	Application to Program Transformation
	Principle of online program transformation (1)
	Principle of online program transformation (2)
	Principle of offline program transformation (1)
	Principle of offline program transformation (2)
	Examples of program transformations
	Application to Static Program Analysis
	What is static program analysis?
	Collecting semantics abstractions
	Partitioning
	Approximations of an [in]finite set of points
	Approximations of an [in]finite set of points, from above
	Example 1: signs
	Example 2: intervals
	Example 3: octagons
	Example 4: polyhedra
	Example 5: simple congruences
	Example 6: linear congruences
	Example 7: trapezoidal linear congruences
	Example of effective abstractions of infinite sets of infinite trees
	ON THE DESIGN OF ABSTRACTIONS FOR SOFTWARE CHECKING
	Discovery of abstractions
	In what consists abstraction discovery?
	Formalization of the Abstraction Design Problem
	Fixpoint checking
	Soundness / (Partial) completeness
	Practical question
	Objective (formally)
	Concrete Fixpoint Checking
	Concrete fixpoint checking problem
	Example
	Concrete fixpoint checking algorithm
	Partial correctness
	Concrete invariants
	Dual and Adjoined Concrete Fixpoint Checking
	Galois connection
	Concrete adjoinedness
	Example of concrete adjoinedness
	Fixpoint concrete adjoinedness
	The complete lattice of concrete invariants
	Dual concrete fixpoint checking algorithm
	Partial correctness
	On (dual) fixpoint checking
	Adjoined concrete fixpoint checking algorithm
	Partial correctness
	Abstract Fixpoint Checking
	Abstract interpretation
	Example: the recurrent abstraction in abstract model-checking
	Example: the sign abstraction
	Abstract fixpoint checking algorithm
	Partial correctness
	Dual and Adjoined Abstract Fixpoint Checking
	Dual abstraction
	Example of dual abstraction
	Example of dual abstraction
	Abstract adjoinedness
	The dual abstract fixpoint checking algorithm
	Partial correctness
	The particular case of complement abstraction
	The contrapositive fixpoint checking algorithm
	Partial correctness
	The adjoined abstract fixpoint checking algorithm
	Partial correctness
	Program Static Analysis
	Further requirements for program static analysis
	Additional hypotheses
	Example: the recurrent abstraction in abstract model-checking
	The adjoined abstract fixpoint abstract checking algorithm
	Partial correctness
	Partially Complete Abstraction
	Partially complete abstraction (definition)
	Characterization of partially complete abstractions
	Characterization of partially complete abstractions
	The most abstract partially complete abstraction (definition)
	Characterization of the most abstract complete abstraction
	The least abstract partially complete abstraction (definition)
	Characterization of the least abstract complete abstraction
	The minimal partially complete abstractions
	The complete lattice of minimal partially complete abstractions
	Intuition for minimal partially complete abstractions
	Conclusion on Abstraction Design
	On complete abstraction design
	On complete abstraction design (cont'd)
	ON WIDENINGS
	Widening operator
	Fixpoint approximation with widening
	Fixpoint Approximation with Widening/Narrowing
	Interval Widening
	Interval widening with thresholds
	Non-Existence of Finite Abstractions
	ON THE DESIGN OF PROGRAM STATIC ANALYZERS
	On the design of program analyzers
	Specific static program analyzer
	General-purpose static program analyzer
	Parametric specializable static program analyzer
	EXPERIENCE REPORT ON A PARAMETRIC SPECIALIZABLE PROGRAM STATIC ANALYZERS
	Example of parametric specializable static program analyzer
	Experience report
	Example of refinement: trace partitionning
	Performance: space and time
	CONCLUSION
	Conclusion on formal methods
	Conclusion on abstract interpretation

	Lesson: LESSON 1:

