TASE 2020

The Symbolic Term Abstract Domain

Patrick Cousot

NYU, New York

pcousot@cs.nyu.edu cs.nyu.edu/ pcousot

Friday, December 11", 2020

https://sei.ecnu.edu.cn/tase2020/file/slidesPCousot-TASE-2020.pdf

% “The Symbolic Term Abstract Domain” —-1/64 — © P. Cousot, NYU, New York, Friday, December 11th, 2020

http://cs.nyu.edu/~pcousot
https://sei.ecnu.edu.cn/tase2020/file/slidesPCousot-TASE-2020.pdf

Introduction to Abstract Interpretation

% “The Symbolic Term Abstract Domain” -2/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Abstract Interpretation

= Abstract interpretation formalizes the exact or approximate abstraction of semantic
properties of programs

= Main applications: design of
= semantics
= verification methods
= typing
= static analysis

= and so on

% “The Symbolic Term Abstract Domain” —-3/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Example of Abstract Interpretation

= Brahmagupta, born c. 598 C.E., died after 665:

A negative minus zero is negative, a positive [minus zero] positive; zero [minus
zero] is zero. When a positive is to be subtracted from a negative or a negative
from a positive, then it is to be added.

0p(Z) <= signs

¢

¢ “The Symbolic Term Abstract Domain” —4/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

https://en.wikipedia.org/wiki/Brahmagupta

Example of Abstract Interpretation

= Brahmagupta, born c. 598 C.E., died after 665:

A negative minus zero is negative, a positive [minus zero] positive; zero [minus
zero] is zero. When a positive is to be subtracted from a negative or a negative
from a positive, then it is to be added.

0p(Z) <= signs

= signs, parity, intervals, octagons, linear equalities, polyhedra, etc. for numerical
properties

% “The Symbolic Term Abstract Domain” —4/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

https://en.wikipedia.org/wiki/Brahmagupta

-&

Properties
We represent properties by sets!
{0} is “to be zero”
N is “to be positive”
5 € N is “5 is positive”
5 ¢ {0} is “5 is not zero”

{0} € N is “to be zero" implies “to be positive”

More general than, e.g., first order logic.

“The Symbolic Term Abstract Domain” -5/64 —

© P. Cousot, NYU, New York, Friday, December 11t 2020

Mastering Complexity of Abstract Interpretation
= Program properties are complex
= No single kind of property will fit all needs (counterexample: types)
= |t is necessary to decompose complex properties into a combination of simpler ones

—— Abstract domain + Combination of abstract domains

2Patrick Cousot, Radhia Cousot, Laurent Mauborgne: Theories, solvers and
static analysis by abstract interpretation. J. ACM 59(6): 31:1-31:56 (2012).

% “The Symbolic Term Abstract Domain” - 6/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Mastering Complexity of Abstract Interpretation

= Program properties are complex
= No single kind of property will fit all needs (counterexample: types)
= |t is necessary to decompose complex properties into a combination of simpler ones

—— Abstract domain + Combination of abstract domains

= Examples of abstract domain: negative/positive integers, odd/even integers, ..,
theories in SMT solvers

= Examples of combination of abstract domains: reduced product (conjunction,
including Nelson-Oppen composition procedure in SMT solvers)?

2Patrick Cousot, Radhia Cousot, Laurent Mauborgne: Theories, solvers and
static analysis by abstract interpretation. J. ACM 59(6): 31:1-31:56 (2012).

% “The Symbolic Term Abstract Domain” - 6/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Abstract Domain

= An abstract domain is an order-theoretic algebraic structure formalizing abstract
properties and operations on these properties3

3Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282.

% “The Symbolic Term Abstract Domain” —-7/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Abstract Domain

= An abstract domain is an order-theoretic algebraic structure formalizing abstract
properties and operations on these properties3

= The meaning of the abstract properties and operations is defined by a
concretization function (into more concrete properties)

3Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282.

% “The Symbolic Term Abstract Domain” —-7/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Abstract Domain

= An abstract domain is an order-theoretic algebraic structure formalizing abstract
properties and operations on these properties3

= The meaning of the abstract properties and operations is defined by a
concretization function (into more concrete properties)

= The operations include
» Logical operations: C (implication), L (false), T (true), U (disjunction),
(conjunction), .. of abstract properties

3Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282.

% “The Symbolic Term Abstract Domain” —-7/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Abstract Domain

= An abstract domain is an order-theoretic algebraic structure formalizing abstract
properties and operations on these properties3

= The meaning of the abstract properties and operations is defined by a
concretization function (into more concrete properties)
= The operations include
» Logical operations: C (implication), L (false), T (true), U (disjunction),
(conjunction), .. of abstract properties
= Transformers: to handle assignment, tests, ..

3Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282.

% “The Symbolic Term Abstract Domain” —-7/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Abstract Domain

= An abstract domain is an order-theoretic algebraic structure formalizing abstract
properties and operations on these properties3

= The meaning of the abstract properties and operations is defined by a
concretization function (into more concrete properties)
= The operations include
» Logical operations: C (implication), L (false), T (true), U (disjunction),
(conjunction), .. of abstract properties
= Transformers: to handle assignment, tests, ..

» Inductors: widening for extrapolation, narrowing for interpolation and
co-inductors dual widening and narrowing, to handle iteration and recursion
(co)-inductively

3Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282.

% “The Symbolic Term Abstract Domain” —-7/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Abstract Domain

= An abstract domain is an order-theoretic algebraic structure formalizing abstract
properties and operations on these properties3

= The meaning of the abstract properties and operations is defined by a
concretization function (into more concrete properties)
= The operations include
» Logical operations: C (implication), L (false), T (true), U (disjunction),
(conjunction), .. of abstract properties
= Transformers: to handle assignment, tests, ..

» Inductors: widening for extrapolation, narrowing for interpolation and
co-inductors dual widening and narrowing, to handle iteration and recursion
(co)-inductively

= Combinators: to send or receive information from other abstract domains

3Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282.

% “The Symbolic Term Abstract Domain” —-7/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Abstract Interpreter
= A formal abstract semantics parameterized by an abstract domain
= Examples:

= collecting semantics: specifies all possible executions of a program
» Astrée*: over 50 abstract domains

“https://www.absint.com/astree/index.htm
% “The Symbolic Term Abstract Domain” —8/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

https://www.absint.com/astree/index.htm

Abstraction

= Specifies a correspondence between concrete and abstract domains

= Concretization 7y: concrete equivalent of an abstract property
Example: v(positive) = N

Abstraction «:: abstract approximation of a concrete property
Example: «({0,7,42}) = positive

= [nduces a correspondence between concrete and abstract semantics

% “The Symbolic Term Abstract Domain” —-9/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Soundness

= An abstract property P is a sound abstraction of a concrete property P if and only if
the concrete property P implies the concretization ~(P) of the abstract property P

= Example: “to be positive” is a sound abstraction of “to be zero” since “to be zero”
implies “to be positive”, formally v(zero) C ~(positive), that is,
{0} € N = y(positive)

= Counter-example:“to be even” is a unsound abstraction of “to be positive” since
v(positive) = N € {2k+ 1 | k € Z} = ~(even)

¢

¢ “The Symbolic Term Abstract Domain” —-10/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Galois connections support best abstractions

= A Galois connection formalizes the situation when any concrete property has a
best/most precise abstraction
v . .
» (G <) <—a_> (A, C) if and only if

Vxe C.Vy e A.a(x)Cya x<A(y)

% “The Symbolic Term Abstract Domain” -11/64 — © P. Cousot, NYU, New York, Friday, December 11th 2020

Galois connections support best abstractions

= A Galois connection formalizes the situation when any concrete property has a
best/most precise abstraction

» (G <) % (A, C) if and only if

Vxe C.VyeA.a(x) Cys x<v(y)
= Example: “to be zero” {0} has a best abstraction (zero) in
T
. 7/ A oy
negative positive
zZero
1

¢ “The Symbolic Term Abstract Domain” —-11/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Galois connections support best abstractions

A Galois connection formalizes the situation when any concrete property has a
best/most precise abstraction

(C, <) % (A, C) if and only if
Vxe C.VyeA.a(x) Cys x<v(y)
Example: “to be zero” {0} has a best abstraction (zero) in

-
. Ve A oy
negative positive

zZero

1

Counter-example: {0} has no best abstraction in (positive and negative are sound)
T
negative© " positive
8 « P
1

¢ “The Symbolic Term Abstract Domain” —-11/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Galois retractions

= A Galois retraction/insertion (C, <) % (A, C) is a Galois connection (C,
<) % (A, C) with « surjective (equivalently v injective, (equivalently « o v is
the identity)

5Hasse diagram.

¢ “The Symbolic Term Abstract Domain” - 12/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Galois retractions

= A Galois retraction/insertion (C, <) ——=5 (A, C) is a Galois connection (C,

<) % (A, C) with « surjective (equivalently v injective, (equivalently « o v is
the identity)

a

/V—\

= Exam ple:5 V T
negative positive -——\
\ \. positive

—
L

5Hasse diagram.

% “The Symbolic Term Abstract Domain” -12/64 - © P. Cousot, NYU, New York, Friday, December 11th 2020

Galois retractions

= A Galois retraction/insertion (C, <) ——=5 (A, C) is a Galois connection (C,

<) % (A, C) with « surjective (equivalently v injective, (equivalently « o v is
the identity)

a

/V—\

= Exam ple:5 V T
negative positive -——\
\ \ positive
H——
1

o

— 7

T— 0 =T
. %’—"\y&aterorequa/zem
negative positive \ /

\ / \»positive

—
1

= Counter-example:

5Hasse diagram.

% “The Symbolic Term Abstract Domain” -12/64 - © P. Cousot, NYU, New York, Friday, December 11th, 2020

Order structure preservation

. . g
= Galois retractions (C, <) ©——=5 (A,) preserve the order structure

» If (C, <, 0, /) is respectively a semi-lattice, lattice, complete partial order, or
complete lattice, then (A, T, L, | |) is respectively a semi-lattice, lattice, complete
partial order, or complete lattice

» Vx,ye A.xCye y(x) <(y)

s VX E p(A) . []X = a(V (X)) if \/ 7(X) exists in (C, <)

¢ “The Symbolic Term Abstract Domain” - 13/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Objective of the talk and online accompanying paper®

= Study an abstract domain (the symbolic term abstract domain)

Shttps://sei.ecnu.edu.cn/tase2020/file/Cousot- TASE-2020. pdf

¢ “The Symbolic Term Abstract Domain” —14/64 - © P. Cousot, NYU, New York, Friday, December 11th, 2020

https://sei.ecnu.edu.cn/tase2020/file/Cousot-TASE-2020.pdf

The Symbolic Term Abstract Domain

¢ “The Symbolic Term Abstract Domain” —15/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Ground and Symbolic Terms

mathematical logic, Jacques Herbrand introduced

ground terms [Herbrand, 1930b], Ch. 17 to denote a basic mathematical object (for
example, 0) or operation on objects (such as +(1,2)), as well as

symbolic terms that is terms with variables (where the variables x are unknowns
standing for any ground term [Herbrand, 1930b], Ch. 2) (for example, +(1, x)).,

English translation in [Herbrand, 1930a].
¢ “The Symbolic Term Abstract Domain”

- 16/64 —

© P. Cousot, NYU, New York, Friday, December 11", 2020

https://en.wikipedia.org/wiki/Jacques_Herbrand

Symbolic Terms in Computer Science

Symbolic terms are of interest in various areas of Computer Science such as

= refutation theorem-proving based on the resolution rule of inference [Robinson,
1965, Robinson, 1979],

= satisfiability modulo theories [Barrett et al., 2009],
= symbolic execution [King, 1976],
= type inference [Milner, 1978, Damas & Milner, 1982],

= |ogic and constraint programming [Colmerauer, 1985, Kowalski, 1988, Colmerauer &
Roussel, 1993, Sterling & Shapiro, 1994, Clark & Ake Tarnlund, 1982], [Barbuti
et al., 1993, Hermenegildo et al., 2003, Cousot et al., 2009],

= pointer analysis in imperative [Steensgaard, 1996] or logic languages [Muthukumar
& Hermenegildo, 1989],

= and so on.

¢ “The Symbolic Term Abstract Domain” - 17/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

The Complete Lattice of Symbolic Terms

= Gordon Plotkin [Plotkin, 1970, Plotkin, 1971] and John Reynolds [Reynolds, 1970]
proved that the set of symbolic terms form a complete lattice with the /ess
general/subsumption partial order <" on terms.

» For example, +(1,2) =¥ +(1,y) =¥ +(x,y) =¥ z

= Generalizing this initial point view, our objective is to study the complete lattice of
symbolic terms by abstraction of the powerset of ground terms.

¢ “The Symbolic Term Abstract Domain” - 18/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Ground terms

= The signature F defines a set of function symbols f\ n (f for brevity), each one with
an arity n, that is, a fixed number of parameters (0 for constants). The round
parentheses “("”, “)" and comma “,” do not belong to F.

f\n, g\n, \n € F\n signature n > 0
feh ¢ F = [JF\n

neN

= We assume that the signature F has at least two different function symbols.

= Ground terms denote uninterpreted functional expressions.

teT = ground terms
f\O constants of arity 0
| f\n(ts,...,t,) term of arity n € N7

¢ “The Symbolic Term Abstract Domain” —-19/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

The Herbrand Universe

= The set T of all ground terms is called the Herbrand universe with signature F.

= Sets of ground terms form a complete lattice partially ordered by inclusion

(p(T), <, 0, T, U, N) sets of ground terms (1)

¢ “The Symbolic Term Abstract Domain” —-20/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Terms with variables

= Term with variables (also called symbolic term)

a, B,y € W term variables
TeT’ = terms with variables (2)
f\O constants
| A\n(t1,...,7Tn) term of arity ne€ N
| « term variable
= The round parentheses “(", “)", comma “,", and variables & € ¥ do not belong to

F.

¢ “The Symbolic Term Abstract Domain” —-21/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Term abstraction

A term with variables (also called symbolic term) abstracts a set of terms.

= For example the set of ground terms {+(0,1),+(0,+(1,1)),+(0, +(1,+(1,1))),
+(0,4+(1,4+(1,+(1,1))))),...} can be abstracted by the term +(0,) with variable
a.

= The abstraction can be very imprecise.

» For example {0,+(0, 1)} would be abstracted by variable o which concretization is
the set of all ground terms.

= So the abstraction is precise enough only for set of terms with adequate regularity
properties.

¢ “The Symbolic Term Abstract Domain” —22/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Terms with variables

» We write vars|[7] for the free variables of a term .
vars[a] = {a} aeW (3)

vars[fti,...,T,)] = Uvars[[r,-]]
i=1

¢ “The Symbolic Term Abstract Domain” - 23/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Syntactic Replacement

= The syntactic replacement/substitution T[« < 7’| on terms with variables 7 replaces
all instances of a variable o in the term T by another term with variables 7’.

afa «+ 7]
Bt + a]
At1,...,Th)|a «+ 7]

7 (4)
B when 3 # o
fltifa < 7),..., 1ol « 7))

> 1> >

= This is a syntactic notion (similar to text editing by replacement)

= Examples

» F(x, Y [x ey =+
s (X, [x < -(y,2)] = +(-(y,2),-(y,2))

¢ “The Symbolic Term Abstract Domain” —24/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Term Assignments

= An assignment maps variables to ground terms.

ecP” &2 W% >T assignment (5)

= An assignment can be homomorphically extended to a term with variables, as
follows:

o(fit,..., 1)) = flo(t1),... 0(Tn)) (6)
» Example: if o(x) = 1 and o(y) = 2 then o(+(x,y)) = +(p(x) ,0(y)) = +(1,2)

= The intuition is that ¢ € TV — T is the evaluation o(7) of term T by replacing
variables « of T by their value o(«) which is a ground term.

= This is a semantic notion (similar to the evaluation of expressions)

¢ “The Symbolic Term Abstract Domain” - 25/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Variable assignments

= Variable assignment g[« < t] can be used to change the value of a variable a to t
ofx «— V(x) v (7)
ofx «— v(y) e(y) when x#y

A

» Example: g[x + 1][y «+ 2](+(x,y)) = +(1,2)

¢ “The Symbolic Term Abstract Domain” - 26/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Syntactic Replacement versus Term Assignments

= We use the same notation for syntactic replacement (4) and variable assignment
(7) because of the following lemma 1 showing that instantiation of syntactic
replacement and environment assignment commute.

= Example:
o(+(x, D[x)
= o(+(y, 1)
= +(e(y),1)
= olx < o(y)](+(x,1))

¢ “The Symbolic Term Abstract Domain” - 27/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Syntactic Replacement versus Term Assignments

= We use the same notation for syntactic replacement (4) and variable assignment
(7) because of the following lemma 1 showing that instantiation of syntactic
replacement and environment assignment commute.

= Example:
o(+(x, D[x)
= o(+(y, 1)
= +(e(y),1)
= olx < o(y)](+(x,1))

Lemma (1)
o(tla + 7]) = ola + o(7)|(7).

Proof of lemma 1.
By structural induction on 7. (see the paper). o

¢ “The Symbolic Term Abstract Domain” - 27/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Occur-check

s Let us call o(7) the ground instance of T for the assignment .

= Unless it is reduced to a variable, a term with variables cannot have the same
instance as any one of its variables (this is known as occur-check).

f
If x and f(x) have the same instance then ‘>
X

¢ “The Symbolic Term Abstract Domain” —28/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Occur-check

s Let us call o(7) the ground instance of T for the assignment .

= Unless it is reduced to a variable, a term with variables cannot have the same
instance as any one of its variables (this is known as occur-check).

f
If x and f(x) have the same instance then ‘>
X

Lemma (2)

For all variables o € vars|[t] of a term with variables T € P” \ V, there is no
A

assignment o € P = V; — T such that o(«) = o(7).

Proof of lemma 2.
See the paper. o

¢ “The Symbolic Term Abstract Domain” —28/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

The Symbolic Abstraction

= The symbolic abstraction abstracts a set of ground terms into a term with variables.

= The symbolic abstraction is easily defined by its concretization, that is, it's set of
ground instances.

ground(t) = {o(t)| e €P"} (8)
ground(@”) = ()

= Since all terms with variables T € P” have a nonempty concretization ground(t),
we add the empty term @” & P” to denote the empty set () with o(3") = &".

¢ “The Symbolic Term Abstract Domain” —29/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

The Herbrand Sym-
bolic Abstract Domain

¢ “The Symbolic Term Abstract Domain” —30/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

The Subsumption Preorder

= We define the preorder <¥ on terms with variables, called subsumption, as the
inclusion of sets of their ground instances. 8

(t="7) & (ground(t) C ground(t)) 9)
= This is a preorder (TY U {@"}, <¥) with infimum &".
= For example f(a, b) <” fla, b) =¥ o, B) =V 7.
= The corresponding equivalence relation is ~".

» The quotient is a partial order (P, <.v)

8This is different from Plotkin/Reynolds classical definition, but will be shown to be equivalent in theorem 13.

¢ “The Symbolic Term Abstract Domain” —-31/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Semantic characterization of the subsumption partial order

Lemma (3)
Observe that for all terms with variables t, v € T, we have T <" 7 if and only if
Vo e P” .30 € PV .o(1) =0'(7).

Proof of lemma 3.
The case of () is trivial. Otherwise,

=<7
& ground(t) C ground(t’) {def. (9) of <§
& {o(r) | o€ P} C {() | ¢ € P} (def. (8) of grounds
& VYoe P’ .30 eP.o(r) =0 (7) (def. C§ o

¢ “The Symbolic Term Abstract Domain” - 32/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

The Subsumption Partial Order

= The subsumption preorder <¥ on terms with variables (9) is
(t=v7) £ (ground(t) C ground(t))
= The corresponding equivalence relation is ~".

» The quotient is a partial order (PY, <.v) where

T~ 7T & VP AT=V7T (10)
P (T
= |l |TeT"U{B"}}
[t~ & {717}

It € (1], T €[] . TV T

s For example fla,) =~ (3, 8) and [fla,)|~v = {Ay,7) | v € W%}

¢ “The Symbolic Term Abstract Domain” - 33/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Syntactic Characterization of Term Equivalence

= A renaming is an assignment p € ¥ »» ¥} between variables extended to terms
with variables by (6), that is p(flt1,...,Ts)) = flp(T1),..., p(Th))-

» Example: if p(x) =y and p(y) = z then p(+(x,y)) = +(y,2)

= Equivalent terms are equal up to variable renaming.

¢ “The Symbolic Term Abstract Domain” —34/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Syntactic Characterization of Term Equivalence

= A renaming is an assignment p € ¥ »» ¥} between variables extended to terms
with variables by (6), that is p(flt1,...,Ts)) = flp(T1),..., p(Th))-

» Example: if p(x) =y and p(y) = z then p(+(x,y)) = +(y,2)

= Equivalent terms are equal up to variable renaming.

Lemma (4)

Equivalent terms have a bijective renaming of their variables and reciprocally, that
is, Vt,7 e T . (v =¥ ©) & (Ip € vars|7] » vars[7] . p(7) = 7).

Proof of lemma 4.
See the paper. O

¢ “The Symbolic Term Abstract Domain” —34/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Comparison of Equivalence Classes

= The comparison of equivalence classes is equivalent to the comparison of the
representatives of these classes.

Lemma (5)
[T1] 2ov [T2]ar © 71 2V T2

Proof of lemma 5.

[T1]ar Zov [1o]ar

& In € nle €l 1 2 1 (def. (10) of <~v§
& I, .t A, AT VT, (def. [T]~~§
S At o ONg OGN N oA AT VT, {def. ~¥§
& 131

{(=) transitivity
(<) choosing T = 71, T, = T2, and reflexivity§

¢ “The Symbolic Term Abstract Domain” —35/64 — © P. Cousot, NYU, New York, Friday, December 1@’7. 2020

Naming Scheme in the Symbolic Abstraction Function |

= The abstraction of {f(a, a), f(b, b), f(c, ¢)} is fla,) since the parameters of f are
equal

» {fla,b),f(b,a),fa,a)} is f(3,7) since the parameters of f are not always related.

= The abstraction function must select variables so as to identify equal parameters on
all instances of f.

= For this purpose, we encode sets as families, for example, sequences (f(a, a), f(b, b),
flc,)) and (f(a, b), f(b, a), f(a, a)).

= In the first case, the subterms all yield (a, b, ¢) which is abstracted by a variable
say «.

= In the second case we get (a, b, a) encoded by 3 and (b, a, a) which is different so
is encoded by a different variable .

¢ “The Symbolic Term Abstract Domain” - 36/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Naming Scheme in the Symbolic Abstraction Function I

= Notice that the variable name does not matter and that the order in the sequences
does not matter either

= So sets of ground terms encoded differently as index families will have the same
abstraction, up to variable renaming via a bijection between variables; see lemma 6).

= We arbitrarily define a scheme to name sets of ground terms by a unique variable
thanks to an injective function

ve(A-T)» W (naming scheme) (11)

assigning a variable v({t; | i € A}) to any arbitrary family of ground terms
{t,' | i€ A}

= |njectivity ensures uniqueness, that is, different families of terms are abstracted by
different variables.

¢ “The Symbolic Term Abstract Domain” - 37/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

The Symbolic Abstraction Function

= The abstraction is called the least common generalization (lcg).

leglv](0) 2 B (12)
leglw]({fi(t, ... t7) | ie A}) =
ifVi,je A . fi=f;=fA nj= n; = nthen
let T8 = leg[v)({tk | ie A}),k=1,...,nin
AT ..., T")
else v({fi(t',... t") | i€ A})

= |f all the terms in the family have the same structure then the abstraction proceeds
recursively else the family is abstracted by a variable.

= Equalities between all subterms of the family are preserved by the abstraction since
the families of these subterms are abstracted by the same variable when they have
different structures.

¢ “The Symbolic Term Abstract Domain” —38/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Example

= Assume that v((a, b)) = « and v((b, a)) = 3, then

leglv|((flg(a; a), h(b, b), a, b), flg(b, b), h(a, a), b, a)))
= flleglvl((g(a; a), g(b, b)), leglw]({h(b, b), h(a, a))), lcglv|((a, b)), lcg[v]({b, a)))

= flg(leglvl((a, b)), leglvl({a, b)), h(leglwl((b, a)),leglv]({b, a))), lcglv]((a,
b)), leglv]({b, a)))

= flg(v({a, b)),v((a, b))), h(v((b, a)),v({b, a))),v((a, b)), v((b, a)))
- f(g(a7a))7h<57/8)7a75) d

¢ “The Symbolic Term Abstract Domain” —-39/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Independence from the Naming Scheme

Lemma (6)

The definition (12) of the symbolic abstraction lcg[v)| is independent of the naming
schemew. If v,V € (A > T)— VW thenVT € o(T) . leg[w|(T) =¥ leg[V](T).

Proof of lemma 6.
See the paper. o

¢ “The Symbolic Term Abstract Domain” —-40/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Galois Connection, Prolegomena |

= We now want to identify a Galois connection with abstraction lcg[v] and
concretization ground.

= Several preliminary results are needed.

= First, the symbolic abstraction lcg[v] is <"-increasing.

¢ “The Symbolic Term Abstract Domain” —41/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Galois Connection, Prolegomena |

= We now want to identify a Galois connection with abstraction lcg[v] and
concretization ground.

= Several preliminary results are needed.

= First, the symbolic abstraction lcg[v] is <"-increasing.

Lemma (7)

Let A C A’ be index sets and t € A" — T (and therefore
{ti|ie A}y C{t;|ic A'}). Then lcglv|({ti | ie A}) =¥ leglv]({ti | i€ A'}).

Proof of lemma 7.
See the paper. o

¢ “The Symbolic Term Abstract Domain” —41/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Galois Connection, Prolegomena Il

= The abstraction of a set of terms overapproximates any term of the set.

Lemma (8)
Let A be a nonempty set and t € A — T be a family of terms. Then

WieA .t <" legw]({t: | i € A})

that is
Vie A. 3o € PY . t; =0 (leglv]({ti | i € A})).

Proof of lemma 8.
See the paper. O

¢ “The Symbolic Term Abstract Domain” —42/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Galois Connection, Prolegomena Il

= The symbolic abstraction is an over approximation of properties of ground terms,
that is, ground o lcg[v]() is extensive.

Corollary (9)
If A'is a nonempty set and {t;| i€ A} € A - T, then

{ti| ie A} C ground(lcgv]({ti | i € A})).

Proof of corollary 9.
See the paper. O

¢ “The Symbolic Term Abstract Domain” —43/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Galois Connection, Prolegomena IV

= The abstraction of the concretization of a term with variables looses no information.

Corollary (10)
For all T € TV . ground o lcg[v] o ground(t) = ground(t).

Proof of corollary 10.
See the paper. o

¢ “The Symbolic Term Abstract Domain” —44/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Galois Connection, Prolegomena V

= |n order to take into account the equivalence of terms with variables up to variable
renaming (see lemma 4), we reason on the quotient partial order of terms (P,
j2”>-
= We extend the concretization (8) and the abstraction (12) to equivalence classes as
follows.
legn WI({ti | i€ A}) = [leglw]({ti | i€ A})]or (13)

ground.. ([t]~) = ground(t).

¢ “The Symbolic Term Abstract Domain” —45/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

The Symbolic Term Galois Connection

Theorem (11)

For any naming scheme v € (A — T) » Vg,

ground.v

(p(T), <) (P, =) (14)

legov V]

This definition of the Galois retraction is independent of the choice of the naming
scheme v.

O

¢ “The Symbolic Term Abstract Domain” —-46/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Proof of theorem 11.
By def. of a Galois connection, we must prove that for all families of terms
{ti| i€ A} € p(T) and term with variables ¥’ € T" U {@"},

leg[W]({ti | i€ A}) v [T]or & {ti] i€ A} C ground.. ([v]~») (15)

Moreover ground.. is injective so (14) is a Galois retraction (also called Galois
insertion).

By lemma 6, this definition of the Galois retraction (14) is independent of the choice
of the naming scheme v.

See details in the paper.
o

¢ “The Symbolic Term Abstract Domain” — 47/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

The Symbolic Abstract Domain is a Complete Lattice |

= The image a(C) of a complete lattice (C, <, 0, 1, \/,) by a Galois retraction (C,
<) <_%» (A,) is a complete lattice (A, C, L, T, ||, []) where
» 1 =0a0)
» T =qa(l)
" xEye(x) <)
= UX=alV(r(X)
= [1X=a(A(v(X))

= Therefore, the terms with variables form a complete lattice since they are the image
of the complete lattice of properties of ground terms by the Galois retraction (14).

¢ “The Symbolic Term Abstract Domain” — 48/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

The Symbolic Abstract Domain is a Complete Lattice

Corollary (12, symbolic abstract domain)

For any naming scheme v € (A — T) = W, (PH, <.v, [@"]~v, [a]~r, LOGav,
GCl.v) is a complete lattice where
= ael,

= the least upper bound is LCG~v(S) = lcg. [v](U ground..(S)) (binary lcg
for symbolic terms and lcg... for term classes), and

» the greatest lower bound is GClv(S) £ lcg.. [V]((ground..(S)) (binary gci
and gciv).

This characterization of the lattice operations is independent of the naming
scheme v which is used.

¢ “The Symbolic Term Abstract Domain” —49/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

On the Symbolic Abstraction

Observe that ground terms [t]~» € P belongs to the abstract domain and abstract
the concrete property {t} of being that ground term. Then lcg_. [V]({t}) =
LCOG~v({[t]~}), because, by (14), we have

(1>

= legw

LCGa ({[=+})
tege (W) ground_ ({[t1=+)))
I ground-. ({2}))
wiJteh

vl

legw [V]({t}).

legow

14

This explains why the abstraction and the lub in the complete lattice have been
given the same name.

¢ “The Symbolic Term Abstract Domain” —-50/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

The classical definition of the subsump-
tion partial order using substitutions

¢ “The Symbolic Term Abstract Domain” —51/64 — © P. Cousot, NYU, New York, Friday, December 1lth, 2020

Syntactic Subsumption Preorder

= The subsumption preorder <" is classically defined syntactically, using
substitutions [Robinson, 1979, pp. 180-188] (instead of (9)) [Plotkin, 1970, Plotkin,
1971, Reynolds, 1970].

= This classical syntactic definition is equivalent to the semantic definition (9) based
on the interpretation of terms with variables as properties of ground terms.

¢ “The Symbolic Term Abstract Domain” - 52/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Substitutions

= Assignments (5) record ground values of variables
= Substitutions can record symbolic values of some variables

= Substitutions are partial functions
Y9 € ¥ & VWsT (16)

mapping variables « in its domain dom(?)) to terms with variables ().

= Substitutions are extended to a total function ¥ € ¥ — T” and homomorphically
to terms with variables, as follows

I a) & « when o ¢ dom(9) (17)
I(At1,...,1) = fI(11),...,9(7h))

= Observe that the substitution is carried out simultaneously on all variable
occurrences.

¢ “The Symbolic Term Abstract Domain” —53/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

The classical characterization of the subsumption preorder using
substitutions |

= The following theorem 13 shows that the syntactic and semantic definitions of

subsumption are equivalent.

Theorem
VTl,TQ cTv. [Tl]gl’ = [TQ]:V SJlex. 29(1'2) =T.

Proof of theorem 13.
See the paper. o

= |t follows that the subsumption lattice of [Reynolds, 1970, Plotkin, 1970, Plotkin,
1971, Huet, 1980] is the complete lattice considered in corollary 12 since the partial

order is the same (although defined differently).

¢ “The Symbolic Term Abstract Domain” —54/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Conclusion

¢ “The Symbolic Term Abstract Domain”

—55/64 —

© P. Cousot, NYU, New York, Friday, December 11t", 2020

Results

= Concrete program property represented by a set of ground terms have a best
abstraction by a term with variables

= The abstract is a Galois retraction

= The image of the powerset of ground terms by this Galois retraction is the
complete lattice of symbolic terms by Gordon Plotkin [Plotkin, 1970, Plotkin,
1971] and John Reynolds [Reynolds, 1970]

= This approach yields algorithms together with their soundness proof by
abstraction preservation [Cousot, 2021], section 48.8.

¢ “The Symbolic Term Abstract Domain” - 56/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Methodology

This approach is typical of abstract interpretation:
= Define a concrete semantics Programs — Semantic domain
= The concrete properties are Programs — p(Semantic domain)

= Define an abstraction o € p(Semantic domain) — Abstract domain (for example,
by a Galois connection)

= This induces a sound abstract semantics Programs — Abstract domain preserving
some (if not all) properties of the concrete semantics

= Application to the formal design of semantics, verification method, typing, and
static analyzers, see [Cousot, 2021]

¢ “The Symbolic Term Abstract Domain” - 57/64 — © P. Cousot, NYU, New York, Friday, December 11t 2020

Bibliography |

Air-Kaci, HASSAN. 1984.
A lattice theoretic approach to computation based on a calculus of partially ordered type structures (property inheritance, nets, graph
unification).
Phd thesis, Computer and Information Science Dept., University of Pennsylvania.

Air-Kact, HASSAN, PODELSKI, ANDREAS, & GOLDSTEIN, SETH COPEN. 1997.
Order sorted feature theory unification.
J. log. program., 30(2), 99-124.

BARBUTI, ROBERTO, GIACOBAZZI, ROBERTO, & LEVI, GIORGIO. 1993.
A general framework for semantics-based bottom-up abstract interpretation of logic programs.
ACM trans. program. lang. syst., 15(1), 133-181.

CLARK W., SEBASTIANI, ROBERTO, SESHIA, SANJIT A., & TINELLI, CESARE. 2009.
Satisfiability modulo theories.

Pages 825-885 of: Handbook of satisfiability.

Frontiers in Artificial Intelligence and Applications, vol. 185

10S Press

CHURCH, ALONZO. 1940.
A formulation of the simple theory of types.
J. symb. log., 5(2), 56-68.

CLARK, KEITH L., & AKE TARNLUND, STEN. 1982.

Logic programming.
Academic Press, New York, NY, US

¢ “The Symbolic Term Abstract Domain” —58/64 — © P. Cousot, NYU, New York, Friday, December 11“‘, 2020

Bibliography Il

COLMERAUER, ALAIN. 1984.
Equations and inequations on finite and infinite trees.
Pages 85-99 of: FGCS.
OHMSHA Ltd. Tokyo and North-Holland.

COLMERAUER, ALAIN. 1985.
Prolog in 10 figures.
Commun. ACM, 28(12), 1296-1310.

COLMERAUER, ALAIN, & ROUSSEL, PHILIPPE. 1993.
The birth of prolog.
Pages 37-52 of: HOPL preprints.
ACM.

CousoT, PATRICK. 1997.
Types as abstract interpretations.
Pages 316-331 of: POPL.
ACM Press.

CousoT, PATRICK. 2021.
Principle of abstract interpretation.
MIT Press.

CousoT, PaTrICK, CoUsOT, RADHIA, & GIACOBAZZI, ROBERTO. 2009.

Abstract interpretation of resolution-based semantics.
Theor. comput. sci., 410(46), 4724-4746.

¢ “The Symbolic Term Abstract Domain” —59/64 —

© P. Cousot, NYU, New York, Friday, December llth, 2020

Bibliography IlI

Dawmas, Luis, & MILNER, ROBIN. 1982.
Principal type-schemes for functional programs.
Pages 207-212 of: POPL.
ACM Press.

HERBRAND, JACQUES. 1930a.
Investigations in proof theory.
Thesis, Université de Paris.
Ch. V of “Logical Writings”, Warren D. Goldfarb (Ed.), Springer Netherlands, 1971, pp. 44—202, English translation of [Herbrand, 1930b].

HERBRAND, JACQUES. 1930b.
Recherches sur la théorie de la démonstration.
Theése, Université de Paris.
Ch. V of “Ecrits logiques”, Jean Van Heijenoort (Ed.), Presses Universitaires de France, 1968, pp. 35-143.

HERMENEGILDO, MANUEL V., PUEBLA, GERMAN, BUENO, FRANCISCO, & LOPEZ-GARCiA, PEDRO. 2003.
Program development using abstract interpretation (and the ciao system preprocessor).
Pages 127-152 of: SAS.
Lecture Notes in Computer Science, vol. 2694.
Springer.

HINDLEY, J. ROGER. 2008.
Basic simple type theory.
Cambridge Tracts in Theoretical Computer Science.
Cambridge University Press.

o & = = =

¢ “The Symbolic Term Abstract Domain” —60/64 — © P. Cousot, NYU, New York, Friday, December fl“‘, 2020

Bibliography IV

HUET, GERARD P. 1980.
Confluent reductions: Abstract properties and applications to term rewriting systems: Abstract properties and applications to term rewriting
systems.
J. ACM, 27(4), 797-821.

KiNnG, James C. 1976.
Symbolic execution and program testing.
Commun. ACM, 19(7), 385-394

KowaLskl, ROBERT A. 1988.
The early years of logic programming.
Commun. ACM, 31(1), 38-43.

LEROY, XAVIER, DOLIGEZ, DAMIEN, FRISCH, ALAIN, GARRIGUE, JACQUES, REMY, DIDIER, & VOUILLON, JEROME. 2020.
The OCaml system, release 4.10, Documentation and user’'s manual.
Institut National de Recherche en Informatique et en Automatique

MILNER, ROBIN. 1978.
A theory of type polymorphism in programming.
J. comput. syst. sci., 17(3), 348-375.

MUTHUKUMAR, KALYAN, & HERMENEGILDO, MANUEL V. 1989.
Determination of variable dependence information through abstract interpretation.
Pages 166-185 of: NACLP.
MIT Press.

¢ “The Symbolic Term Abstract Domain” —61/64 — © P. Cousot, NYU, New York, Friday, December llth, 2020

Bibliography V

PLoTKIN, GORDON D. 1970.
A note on inductive generalization.
Pages 153—163 of: MELTZER, B.; MICHIE, D. (ed), Machine intelligence, vol. 5.
Edinburgh University Press.

PLoTKIN, GORDON D. 1971.
A further note on inductive generalization.
Pages 101—124 of: MELTZER, B.; MicHIE, D. (ed), Machine intelligence, vol. 6.
Edinburgh University Press.

REYNoOLDS, Joun C. 1970.
Transformational systems and the algebraic structure of atomic formulas.
Pages 135—151 of: MELTZER, B.; MicHig, D. (ed), Machine intelligence, vol. 5.
Edinburgh University Press.

ROBINSON, JOHN ALAN. 1965.
A machine-oriented logic based on the resolution principle.
J. ACM, 12(1), 23-41.

ROBINSON, JOHN ALAN. 1979.
Logic: Form and function — the mechanization of deductive reasoning.
Artificial Intelligence.
Elsevier North-Holland.

STEENSGAARD, BJARNE. 1996.
Points-to analysis in almost linear time.
Pages 32—41 of: POPL.
ACM Press.

¢ “The Symbolic Term Abstract Domain” - 62/64 — © P. Cousot, NYU, New York, Friday, December llth, 2020

Bibliography VI

STERLING, LEON, & SHAPIRO, EHUD. 1994.
The art of prolog - advanced programming techniques, 2nd ed.
MIT Press.

¢ “The Symbolic Term Abstract Domain” —63/64 — © P. Cousot, NYU, New York, Friday, December 11“‘, 2020

The End, Thank you

¢ “The Symbolic Term Abstract Domain” —64/64 — © P. Cousot, NYU, New York, Friday, December llth, 2020

	References

