
THÈSE
présentée à

Université Scientifique et Médicale de Grenoble

Institut National Polytechnique de Grenoble

pour obtenir le grade de

DOCTEUR ÈS SCIENCES MATHÉMATIQUES

par

Patrick COUSOT

MÉTHODES ITÉRATIVES DE CONSTRUCTION

ET D’APPROXIMATION DE POINTS FIXES

D’OPÉRATEURS MONOTONES SUR UN TREILLIS,

ANALYSE SÉMANTIQUE DES PROGRAMMES.

Thèse soutenue le 21 mars 1978 devant la Commission d’Examen :

Président : L. BOLLIET

Examinateurs : C. BENZAKEN

Ph. JORRAND

B. LORHO

C. PAIR

F. ROBERT

M. SINTZOFF

THÈSE
présentée à

Université Scientifique et Médicale de Grenoble

Institut National Polytechnique de Grenoble

pour obtenir le grade de

DOCTEUR ÈS SCIENCES MATHÉMATIQUES

par

Patrick COUSOT

MÉTHODES ITÉRATIVES DE CONSTRUCTION

ET D’APPROXIMATION DE POINTS FIXES

D’OPÉRATEURS MONOTONES SUR UN TREILLIS,

ANALYSE SÉMANTIQUE DES PROGRAMMES.

Thèse soutenue le 21 mars 1978 devant la Commission d’Examen :

Président : L. BOLLIET

Examinateurs : C. BENZAKEN

Ph. JORRAND

B. LORHO

C. PAIR

F. ROBERT

M. SINTZOFF

ABSTRACT INTERPRETATION: ITERATIVE METHODS FOR FIXED

POINT CONSTRUCTION AND APPROXIMATION OF MONOTONE

OPERATORS ON LATTICES, SEMANTICS-BASED STATIC PROGRAM

ANALYSIS

1. INTRODUCTION

2. FIXPOINT THEOREMS ON COMPLETE LATTICES

3. BEHAVIOR OF A DISCRETE DYNAMIC SYSTEM, EXACT SEMANTIC ANALYSIS OF
PROGRAMS, AND APPLICATIONS

4. CONSTRUCTIVE METHODS TO APPROXIMATE FIXPOINTS OF MONOTONE OP-
ERATORS ON A COMPLETE LATTICE

5. APPROXIMATE SEMANTIC ANALYSIS OF PROGRAMS AND APPLICATIONS

6. SEMANTIC ANALYSIS OF RECURSIVE PROCEDURES

7. CONCLUSIONS

8. BIBLIOGRAPHY

9. INDEX

CHAPTER 1.

INTRODUCTION

1. INTRODUCTION

Semantic program analysis consists in the determination of the conditions in which

the run-time execution of a program terminates, does not terminate, or leads to an

error (either because the rules of good usage of a programming language have not

been respected, or because the program does not correspond to its specification). The

semantic analysis of a program must also allow us to determine, at each point of the

program, the properties of the objects manipulated by the program.

We propose a theory of the semantic analysis of programs providing a unified

framework to perform analyses, from the most precise ones, such as those performed

to justify the total correctness of programs, to the coarsest, such as those used in com-

pilation. In our opinion, there is no lack of continuity between these two extremes, and

the theory we propose allows the construction of a continuous range of applications,

from exact analysis to the most approximate analyses. Since we care about practical

applications, we have devoted part of our efforts to build up a model leading to automa-

tized solutions (some automatizations having effectively been realized) to economically

relevant problems.

- In most systems for program verification, the semantic analysis of the program to be

verified must be done by the programmer, who has to provide documentation of the

program, often extensive due to the large amount of details. Now, if we exclude the

specification of the output describing the problem to be solved, a fair amount of this

documentation can be constructed from the text of the program (with the certainty

that this documentation and the program itself are in accordance).

- Program debugging techniques, still widely used in the computer software indus-

(1)-2

try, can be partly avoided (at least to remove programming mistakes, if not design

mistakes), using our techniques of automatic semantic analysis of programs, and this,

without waiting for the ten, or more, years necessary for theorem prover based tech-

niques of program verification to be made practical. On the other hand, it is certain

that the methods we propose are complementary and offer, for some kinds of analyses,

a very profitable cost/benefit ratio.

- In high-level languages, the programmer is encouraged to formulate his or her al-

gorithms in abstract terms, appropriate to the problem to be solved. To make an

automatic choice for an effective program implementation, one has to make a rather

precise semantic analysis of it.

- Almost all the definitions of classic programming languages contain various restric-

tions which are necessary for the programs to be meaningful, but cannot generally be

checked syntactically. One should indeed know the domain of variable values. The

classic solution of run-time tests is generally considered unacceptable because of its

cost. Only an automatic semantic analysis of programs can provide an economically

viable solution.

- Most optimization techniques used in the compilation of programs can only be imple-

mented when the conditions ensuring the equivalence between the transformed program

and the original one are satisfied, as well as conditions ensuring an actual performance

improvement. When there is a doubt, the classic option consists in considering the

most pessimistic hypothesis. A deeper semantic analysis of the program could avoid

this.

Generally, the development of a theory of the semantic analysis of programs lead-

ing to automatized applications is justified by the technical resolution of the software

reliability and the software efficiency problems. It is, in our opinion, complementary to

the efforts which are currently made to elevate the Art of Programming to the status

of Science.

(1)-3

Let us now give a very short summary of the contents of this thesis:

We will reduce the problem of the determination of semantic properties of a

program to the problem of computing the extreme fixpoints of monotone operators

on a complete lattice. After this introduction, the second chapter is then dedicated

to the mathematical study of fixpoint theorems in complete lattices. We provide a

constructive demonstration of Tarski’s theorem, showing that the set of fixpoints of

a monotone operator F on a complete lattice L is the image of L by the pre-closure

operator defined by means of transfinite iteration limits. It is a matter of showing

how classic iterative methods can be adapted to converge starting from any point, and

also, to reach fixpoints other than the least and the greatest ones. This also allows

us to define the union and the intersection in the lattice of the fixpoints of F in a

constructive way, that is, by recurrences on F . We obtain, as a particular case, the

theorem of construction of the least fixpoint of a continuous operator. We will then

consider some systems of monotone fixpoint equations in a complete lattice. After

recalling the formal resolution method by variable elimination, we will demonstrate a

convergence result of chaotic iterative methods, asynchronous iterative methods, and

asynchronous iterative methods with memory. This opens the way to the resolution

of systems of monotone equations on a lattice using several processors computing in

parallel, without the need for any synchronization.

In the third chapter, the problem of semantic analysis of programs is studied

independently from the problem of language definition, within a very general frame-

work studying the behavior of a discrete dynamic system. A program is a discrete

dynamic system as long as it defines a transition relation (or a transition function, if it

is deterministic) between the states of memory preceding or following the execution of

any elementary instruction. To study the behavior of a discrete dynamic system, it is

necessary to characterize the set of reachable states satisfying a given entry specifica-

tion, or else, to characterize the set of ascendants satisfying a given exit specification.

(1)-4

In other words, it is necessary to determine the weakest precondition, with respect

to the entry states, so that the system may evolve towards a state satisfying a given

postcondition, or the strongest postcondition characterizing the states towards which

the system evolves, starting from any entry state, and satisfying a given precondition.

We will show that these conditions are obtained as solutions of fixpoint equations, or of

equation systems when the set of states of the dynamic discrete system is partitioned.

We will then formalize the operational semantics of a simple programming language,

corresponding to sequential iterative programs, and we will show how a program defines

a discrete dynamic system. We will then apply the results obtained by the analysis of

discrete dynamic system behaviors to the semantic analysis of programs. This leads us

to define forward and backward deductive semantics of programs, generalizing the clas-

sic forward program verification method of Floyd–Naur and the backward method of

Hoare–Dijkstra to techniques that formalize the semantics of programming languages.

In fact, the forward and backward deductive semantics define the conditions in which a

program successfully completes, does not complete, or leads to an error, as a solution of

semantic equation systems associated with the program. Both semantics can be used

to characterize, at each point of the program, the set of descendants of the entry states

and the set of ascendants of the exit states. As a consequence, they are equivalent, as

both allow an exact semantic analysis of programs.

After showing that the exact semantic analysis of programs consists in solving

equation systems, keeping in mind that the solutions to these equations are not au-

tomatically computable, but wishing, at the same time, to design automatic analysis

techniques, we are forced to limit ourselves to approximate automatic analyses. So, in

Chapter Four, we will study computation methods to approximate fixpoints of mono-

tone operators on a lattice. To effectively compute under- and over-approximations of

the solutions of an equation system, we essentially propose two complementary meth-

ods. They consist, on the one hand, in simplifying the equations to solve and, on the

(1)-5

other hand, in accelerating the convergence of iterative methods of fixpoint construc-

tion. To accelerate the convergence of an iteration which does not stabilize naturally

in a fixed number of steps, we propose to extrapolate, while computing the terms of

the sequence of iterates, to obtain an approximation of its limit in a finite number of

steps. Similarly to iterative methods with convergence acceleration, the simplification

of equations is widely used in numerical analysis but, for our needs, we have to study

them in a purely algebraic framework. To simplify the semantic equation systems asso-

ciated with the programs for each particular problem of semantic analysis of programs,

we propose to ignore a priori certain properties and only keep the program properties

which are meaningful for this specific application. From an algebraic point of view, this

approximation is formalized as a closure operator in the domain of the equations to

solve, a closure operator that we will define, in an equivalent way, by a Moore family,

a congruence relation, or a pair of adjoint functions. Different approximate analyses

can be combined by combining the corresponding closure operators and, in particular,

the lattice of closure operators formalizes the design of a hierarchy of approximations,

depending on their precision.

In Chapter Five we develop automatic semantic program analysis methods,

therefore necessarily approximate. In order to perform an approximate semantic anal-

ysis of a program, we propose to compute an approximation of the forward and back-

ward systems of semantic equations associated with this program. Having chosen a

particular class of program properties providing useful answers to a given problem, we

will show how the results of Chapter Four allow us to design an algorithm which can

automatically perform the analysis of any program for this class of properties. The

design of this algorithm is based on the choice of a closure operator defining a space

of approximate properties, as well as the rules of construction of systems of simplified

equation systems associated with a program. To solve these equations, we will use an

iterative method. Extrapolation operations will be designed when convergence must be

(1)-6

accelerated. We will illustrate our approach by giving some examples of approximate

semantic analyses of programs. After briefly examining many different classic exam-

ples related to program optimization, we will consider applications to the discovery of

pointer properties, the determination of the types of variables in high-level languages

without declarations, the analysis of the interval of values of numeric variables, and

also the discovery of linear relations of equality or inequality between the variables of

a program.

Chapter Six discusses recursive procedures, whose analysis is more complex than

that of sequential iterative programs, given that it is necessary to consider functional

equations of the form f(x) = F (f)(x), and no longer equations of the form x = f(x).

We will use the same approach as for iterative sequential programs, by defining a deduc-

tive semantics, and then, by introducing some approximation methods which, in fact,

generalize the study of Chapter Four to the case of functional equation systems.

CHAPTER 2.

FIXPOINT THEOREMS ON COMPLETE LATTICES

2. FIXPOINT THEOREMS ON COMPLETE LATTICES

2.1 Complete Lattices . 2

2.2 Complete lattice of the operators on a complete lattice 3

2.3 Image of a complete lattice by a closure operator 3

2.4 The complete lattice of monotone operators on a complete lattice 6

2.5 Constructive version of Tarski’s fixpoint theorem 8

2.5.1 Definition of a transfinite iteration 9

2.5.2 Increasing iteration starting from a pre-fixpoint 11

2.5.3 Constructive characterization of the sets of pre- and post-fixpoints

of a monotone operator on a complete lattice 14

2.5.4 Unary monotone polynomials on a complete lattice defined by a

family of monotone operators . 16

2.5.5 Constructive characterisation of the set of all fixpoints of a monotone

operator on a complete lattice . 17

2.5.6 Non-computability of the fixpoints of a monotone operator of a com-

plete lattice . 19

2.6 The complete lattice of upper-continuous operators on a complete lattice . . . 21

2.7 Fixpoint theorem for upper continuous operators on a complete lattice 23

2.8 Formal method to solve a system of monotone fixpoint equations by means of

variable elimination . 24

2.9 Chaotic, asynchronous, and asynchronous with memory iterative methods to

solve a system of monotone fixpoint equations on a complete lattice 27

2.9.1 Convergence of chaotic iterations . 29

2.9.2 Convergence of asynchronous iterations 31

2.9.3 Convergence of asynchronous iterations with memory 34

2.10 Bibliographic notes . 40

2. FIXPOINT THEOREMS ON COMPLETE LATTICES

We reduce the problem of determining the semantic properties of a program to the

problem of solving an equation system X = F (X), whose solution (or fixpoint F)

characterizes the properties of the program. Chapters 3, 5, and 6 show that it is wise

to choose a complete lattice L as a model of the properties to discover and to express

the equation system X = F (X) with the help of a monotone operator F on L.

Admitting this, the aim of this chapter is to remind, to improve, and to establish

a certain number of mathematical results which will be useful to solve a system of

monotone equations in a complete lattice.

The first three paragraphs (2.1, 2.2, 2.3) entail some brief reminders of complete

lattices and, amongst others, of the image of a complete lattice by a closure operator.

In Paragraph 2.4, we will show that the set of monotone operators on a complete

lattice is the image of the set of all operators on this lattice by a functional which is a

closure operator.

The fundamental result in order to solve a monotone fixpoint equation in a

complete lattice is that of Tarski [1955] which ensures the existence of solutions, in

particular a least and a greatest solution. We also know how to build these extreme

solutions by transfinite induction (or countable induction, using a supplementary hy-

pothesis of continuity). In Paragraph 2.5, we give a constructive proof of Tarski’s

theorem, whose originality lies in defining the set of fixpoints of a monotone operator

F on a complete lattice L as an image of L by pre-closure operators defined by means

of transfinite iteration limits. It is a matter of showing how classic iterative methods

can be adapted to converge starting from any point, and also to show how to reach

fixpoints other than the least and the greatest ones. This also allows us to define the

(2)-2

join and the meet within the lattice of the fixpoints of F in a constructive way, that is

by, induction using F .

In Paragraphs 2.6 and 2.7, we will show how the classic hypothesis of continuity

consists in fact in only considering monotone operators whose fixpoints are limits of

“countable” iterations.

Then, we will focus on solving a system of monotone fixpoint equations in a

complete lattice: after stating the formal resolution method by variable elimination

(2.8), we will prove convergence results for several iterative methods: chaotic iteration,

asynchronous iteration, and asynchronous iteration with memory (2.9). This opens

up a research field, in particular, towards the use of several processors computing in

parallel (without any synchronisation) to solve such equation systems.

2.1 COMPLETE LATTICES

As reference textbooks on ordered sets and lattices, we suggest Birkhoff [1967], Bour-

baki [1967], Grätzer [1971], and Szász [1971]. The notions stated in Paragraphs 2.1, 2.2,

2.3 are devoted to establishing the basic notation and terminology.

Let L(v,⊥,>,t,u) be a complete lattice with respect to the partial order v.
By definition, any subset S of L has a least upper bound (also called join, and denoted

as tS) and a greatest lower bound (also called meet , and denoted as uS) in L, which
in particular implies that L has a least element (infimum ⊥ = uL) and a greatest

element (the supremum > = tL). If x, y ∈ L, we denote t{x, y} as x t y and u{x, y}
as x u y, and also {{x < y} ⇔ {x v y and x 6= y}}, {{x w y} ⇔ {y v x}}, and
{{x = y} ⇔ {y < x}}.

Let µ be any ordinal and 〈xδ : δ ∈ µ〉 be a collection of elements in L. We say that

〈xδ : δ ∈ µ〉 is an ascending chain if {∀δ, η ∈ µ, {{δ ≤ η} ⇒ {xδ v xη}}} and that 〈xδ :

(2)-3

δ ∈ µ〉 is a strictly ascending chain if and only if {∀δ, η ∈ µ, {{δ < η} ⇒ {xδ < xη}}}.
The dual notions are that of descending chain and strictly descending chain.

We say that a lattice satisfies the ascending chain condition (or analogously the

maximal condition) if any strictly ascending chain is finite. The dual notion is that of

descending chain condition (or analogously minimal condition).

2.2 COMPLETE LATTICE OF THE OPERATORS ON A COM-
PLETE LATTICE

We denote by E → E′ the set of functions from the set E to the set E′ defined

everywhere on E (an analogous classic notation is E′E).

Let L(v,⊥,>,t,u) be a complete lattice, the elements in L → L are called

operators on L. The set of operators on L is a complete lattice (L→ L)(v′,⊥′,>′,
t′,u′) with respect to the partial order v′ defined as {∀f, g ∈ (L → L), {f v′ g} ⇔
{∀x ∈ L, f(x) v g(x)}}. Exploiting the lambda notation from Church [1951], we have

⊥′ = λx .⊥, >′ = λx .>, t′ = λS . (λx . t {f(x) : f ∈ S}) and u′ = λS . (λx .
u {f(x) : f ∈ S}). In order to simplify the notation, we will omit the primes and leave

the distinction between (v,⊥,>,t,u) and (v′,⊥′,>′,t′,u′) to be purely contextual.

2.3 IMAGE OF A COMPLETE LATTICE BY A CLOSURE OP-
ERATOR

In order to study a subset R of a complete lattice L, it is common and useful to rep-

resent it as the image f(L) = R of L by an operator f on L. Indeed, the properties of

f often supply relevant information on R. In this sense, we will often encounter (§2.4,

2.5.3, 2.6, 5, 6) the specific and important case where f is a closure operator and, in

this case, the subset R of L is a complete lattice on which we are able to construct the

least upper bound and greatest lower bound.

(2)-4

Recall that an operator ρ on an ordered set L(v) is an upper closure operator

on L if and only if it is monotone (synonymous isotone, increasing , namely {∀x, y ∈
L, {x v y} ⇒ {ρ(x) v ρ(y)}}), extensive (λx .x v ρ), and idempotent (ρ = ρ ◦ ρ).

THEOREM 2.3.0.1 Ward [1942, Thm. 4.1]
Let L(v,⊥,>,t,u) be a complete lattice and ρ be an upper closure operator on

L, then the image ρ(L) of L by ρ is a complete lattice ρ(L)(v, ρ(⊥),>,λS . ρ(tS),

u).

DEFINITION 2.3.0.2 Szász [1971, p. 50]
An operator f on the complete lattice L(v,⊥,>,t,u) is a complete join-

morphism if and only if {∀S ⊆ L, f(tS) = tf(S)}. The dual notion is that of

complete meet-morphism. An operator is a complete morphism if it is both a com-

plete join- and meet-morphism.

Let L(v,⊥,>,t,u) and M(v,⊥′,>′,t′,u′) be two complete lattices such that

M ⊆ L. We say that M is a sub-join-semi-lattice of L if t′ = t (dually sub-meet-semi-

lattice) and we say that M is a sub-lattice of L if t′ = t and u′ = u.

PROPOSITION 2.3.0.3 Ward [1942, p. 193]
The image ρ(L) of a complete lattice L(v,⊥,>,t,u) by an upper closure oper-

ator ρ on L is a complete sub-lattice of L if and only if ρ is a complete join-morphism.

PROPOSITION 2.3.0.4 Monteiro & Ribeiro [1942]

(2)-5

(a) - Let ρ be an upper closure operator on an ordered set L(v). For any x ∈ L
the set {y ∈ ρ(L) : x v y} is non-empty and contains a least element which is

ρ(x).

(b) - Conversely, if R is a subset of L such that for any x ∈ L the set {y ∈ R : x v y}
contains a least element ρ(x), then ρ is an upper closure operator and R = ρ(L).

From the above results, we are able to prove, by duality, analogous properties

for lower closure operators:

An operator ρ defined on an ordered set L(v) is a lower closure operator on L

if it is monotone, idempotent, and reductive (ρ v λx .x).

COROLLARY 2.3.0.5
Let L(v,⊥,>,t,u) be a complete lattice and ρ a lower closure operator on L,

then the image ρ(L) of L by ρ is a complete lattice ρ(L)(v,⊥, ρ(>),t,λS . ρ(uS)).

ρ(L) is a complete sub-lattice of L if and only if ρ is a complete meet-morphism.

COROLLARY 2.3.0.6
A subset R of a complete lattice L(v,⊥,>,t,u) is the image ρ(L) of L by a

lower closure operator ρ on L if and only if, for each x ∈ L, the set {y ∈ R : y v x}
is non-empty and contains a greatest element equal to ρ(x).

These few properties of closure operators are the only ones that we will need in

Chapter 2. For the needs of Chapters 5 and 6, our study will be completed in Chapter

4.

(2)-6

2.4 THE COMPLETE LATTICE OF MONOTONE OPERATORS
ON A COMPLETE LATTICE

An operator f on L(v) is monotone if {∀x ∈ L, {x v y} ⇒ {f(x) v f(y)}}. When L

is a complete lattice this definition is equivalent to (Bourbaki [1967, Ex. 10, p. 102]):

- An operator f on the complete lattice L(v,⊥,>,t,u) is monotone if and only if

{∀S ⊆ L,tf(S) v f(tS)}.

- An operator f on the complete lattice L(v,⊥,>,t,u) is monotone if and only if

{∀S ⊆ L, f(uS) v uf(S)}.

It is well known that monotone operators on a complete lattice L form a complete

sub-lattice of (L→ L) (for example Bourbaki [1967, Ex. 11.d, p. 103]). The proof that

we give is interesting because it presents a proof method that will be used often later

in this thesis. Suppose that we are to study the set R of elements of a complete lattice

L satisfying a given property P . If we can find an operator ρ on L such that, for

each x in L, the set of elements of L greater than or equal to x satisfying P is non-

empty and admits a least element equal to ρ(x), then we know that ρ is an upper

closure operator (2.3.0.4) and R = ρ(L) is a complete lattice (2.3.0.1). Moreover R is

a complete sub-lattice of L when ρ is a complete join-morphism (2.3.0.3).

Therefore, the set of monotone operators on a complete lattice L is a sub-lattice

of the lattice (L→ L) of operators on L, and is also the image of (L→ L) by an upper

closure operator mon that we can define as follows:

DEFINITION 2.4.0.1
Let L(v,⊥,>,t,u) be a complete lattice. We denote by mon the operator

defined on (L→ L) as follows:

mon = λ f . (λx . t {f(y) : (y ∈ L) and (y v x)})

(2)-7

THEOREM 2.4.0.2
Let f be an operator on L, then mon(f) is the least monotone operator on L

greater than or equal to f .

Proof: Let a and b be elements in L such that a v b. For any y in L, {y v a}
implies {y v b}. Thus, t{f(y) : y v a} v t{f(y) : y v b}, which proves that

mon(f)(a) v mon(f)(b), that is to say, that mon(f) is a monotone operator on L.

For any a in L, we have f(a) v t{f(y) : y v a} because v is reflexive. It follows

that mon(f) is greater than or equal to f .

Let g be a monotone operator on L such that f v g. For any y in L, f(y) v g(y),

which implies that, for any a in L, mon(f)(a) = t{f(y) : y v a} v t{g(y) : y v a} v
t{g(y) : g(y) v g(a)} v g(a), which shows that mon(f) is the least monotone operator

on L greater than or equal to f .

End of proof.

By applying Theorem 2.3.0.4.(b) we obtain:

COROLLARY 2.4.0.3
mon is an upper closure operator on (L→ L) and mon(L→ L) is the set of all

monotone operators on L.

Theorems 2.3.0.1 and 2.3.0.3 allow us to restate a known result:

THEOREM 2.4.0.4 Bourbaki [1967, p. 163]
The set of all monotone operators on a complete lattice L is a complete sub-

lattice (v,λx .⊥,λx .>,t,u) of (L→ L).

By duality we obtain the following:

(2)-8

COROLLARY 2.4.0.5
Let f be an operator on L. Then λx . u {f(y) : (y ∈ L) and (x v y)} is the

greatest monotone operator on L which is smaller than or equal to f . Moreover λ f .
(λx . u {f(y) : (y ∈ L) and (x v y)}) is a lower closure operator on (L→ L) and the

set of monotone operators on L is a complete sub-lattice of (L → L), which is the

image of (L→ L) by this lower closure operator.

2.5 CONSTRUCTIVE VERSION OF TARSKI’S FIXPOINT THE-
OREM

The fundamental result by Tarski [1955] shows that the set fp(f) of all fixpoints of an

operator f on a non-empty complete lattice L(v,⊥,>,t,u) (i.e., fp(f) = {x ∈ L :

f(x) = x}) is a non-empty complete lattice with respect to the order v (although it is

not necessarily a sub-lattice of L). The proof given by Tarski is based on the definition

of the least fixpoint lfp(f) of f by lfp(f) = u{x ∈ L : f(x) v x}. The upper limit of

S ⊆ fp(f) in fp(f) is then lfp(f | {x ∈ L : (tS) v x}) and the proof closes by applying

the duality principle.

Computer scientists as well as numerical analysts (Amann [1976]) that use Tarski’s

theorem usually prefer to define lfp(f) as
⊔
i<ω

f i(⊥), where ω is the first limit ordinal.

This iterative method goes back to the first recursion theorem of Kleene [1952] and

is used by Tarski [1955] for complete morphisms. More generally this requires an ad-

ditional hypothesis of continuity (see for instance Kolodner [1968]) which is strictly

stronger than monotonicity (it is required that f(
⊔
i<ω

f i(⊥)) =
⊔
i<ω

f i+1(⊥)). From a

more abstract point of view, the continuity hypothesis is not necessary and we can use

instead transfinite iterations similar to those used in Devidé [1964], Hitchcock & Park

[1973], and Pasini [1974]. In order to give a constructive version of Tarski’s theorem

we will use the ideas from Cousot & Cousot [1977a] and Manna & Shamir [1977] to

(2)-9

compute fixpoints of an operator f in two steps: a first, increasing iteration sequence

from an arbitrary starting point d which converges towards a post-fixpoint p of f (i.e.,

f(p) v p), and a second, decreasing iteration sequence from p towards a fixpoint q. Let

q = f?(d), we prove that the set fp(f) of fixpoints of f is the image of the complete lat-

tice L by the function f? which is a pre-closure operator, implying that fp(f) = f?(L)

is a complete lattice.

2.5.1 Definition of a transfinite iteration

The class Ord of ordinals is well ordered by ≤ = {(x, y) : (x, y ∈ Ord) and ((x ∈
y) or (x = y))}. We will denote by 0 the ordinal of the empty set and by

⋃
i∈I

δi the

ordinal which is the upper limit of the family of ordinals {δi : i ∈ I}. Recall that, if δ is
a limit ordinal , then

⋃
α<δ

α = δ. Otherwise, δ is a successor ordinal and
⋃
α<δ

α = (δ−1)

where the predecessor of δ is denoted as δ − 1.

DEFINITION 2.5.1.0.1 Increasing iteration
Let L(v,⊥,>,t,u) be a complete lattice and µ(L) the least ordinal such that

the cardinal of the class {δ : δ ∈ µ(L)} is strictly greater than the cardinal card(L)

of L. Assume also that f ∈ mon(L→ L).

The increasing iteration starting from d ∈ L and defined by f is a sequence 〈xδ :

δ ∈ µ(L)〉 of elements of L defined by transfinite induction as follows:

(a) - x0 = d

(b) - xδ = f(xδ−1) for each successor ordinal δ ∈ µ(L)

(c) - xδ =
⊔
α<δ

xα for each limit ordinal δ ∈ µ(L)

In general, the elements of an increasing iteration may not be comparable, in-

stead we will use the term “increasing” because we will always choose starting points

ensuring that the increasing iteration is indeed an ascending chain.

(2)-10

DEFINITION 2.5.1.0.2 Decreasing iteration
The decreasing iteration starting from d ∈ L(v,⊥,>,t,u) and defined by f ∈

mon(L → L) is a sequence 〈xδ : δ ∈ µ(L)〉 of elements in L defined by transfinite

induction as follows:

(a) - x0 = d

(b) - xδ = f(xδ−1) for each successor ordinal δ ∈ µ(L)

(c) - xδ =
l

α<δ

xα for each limit ordinal δ ∈ µ(L)

DEFINITION 2.5.1.0.3 Limit of a stationary transfinite sequence

We say that the sequence 〈xδ : δ ∈ µ〉 of elements in L(v,⊥,>,t,u) is stationary

if and only if {∃ε ∈ µ : {∀β ∈ µ : {β ≥ ε} ⇒ {xε = xβ}}}, in this case the limit

of this sequence is xε. We will note luis(f)(d) (respectively llis(f)(d)) the limit of a

stationary increasing iteration sequence (respectively decreasing) starting from d and

defined by f ∈ mon(L→ L).

LEMMA 2.5.1.0.4

Let L(v,⊥,>,t,u) be a complete lattice and 〈xδ : δ ∈ µ(L)〉 be an increasing

iteration sequence (respectively decreasing) starting from d ∈ L and defined by f ∈
mon(L → L). If 〈xδ : δ ∈ µ(L)〉 is an ascending chain (respectively descending),

then it is stationary and its limit is the least fixpoint of f greater than or equal to d

(respectively the greatest fixpoint of f smaller than or equal to d).

Proof: We consider the case of an increasing iteration and assume that {∀ε, {ε ∈
µ(L) and (ε+ 1) ∈ µ(L)} ⇒ {xε 6= xε+1}}. Then, by hypothesis, 〈xδ : δ ∈ µ(L)〉 is an
ascending chain which is strictly ascending and the classes {xδ : δ ∈ µ(L)} and {δ : δ ∈
µ(L)} are equinumerous and, by definition of µ(L), card({xδ : δ ∈ µ(L)}) > card(L).

However, as f is defined everywhere on L, we know that {∀δ ∈ µ(L), xδ ∈ L} from

which follows that card({xδ : δ ∈ µ(L)}) ≤ card(L). By contradiction, we have proved

(2)-11

that {∃ε ∈ µ(L) : (ε+ 1) ∈ µ(L) and xε = xε+I}.
Assume that {∀β, {ε ≤ β < γ < µ(L)} ⇒ {xε = xβ}}. Then, if γ is a successor

ordinal, xε = f(xε) = xε+1 = xγ−1 = f(xγ−1) = xγ by Definition 2.5.1.0.1.(b) and by

induction hypothesis. Otherwise, γ is a limit ordinal and xγ =
⊔
α<γ

xα = (
⊔
α<ε

xα) t

(
⊔

ε≤β<γ
xβ) v xε. As 〈xδ : δ ∈ µ(L)〉 is a descending chain and ε < γ, we have d = x0 v

xε v xγ and, by antisymmetry, d v xε = xγ . By transfinite induction, we conclude

that 〈xδ : δ ∈ µ(L)〉 is stationary and d v xε = xε+1 = f(xε).

Assume that there exists p ∈ fp(f) such that d v p. We prove that ∀δ ∈
µ(L), xδ v p. For δ = 0, we have x0 = d v p. Assume that for each β such that

β < δ < µ(L) we have xβ v p. If δ is a successor ordinal, then, by monotonicity,

xδ = f(xδ−1) v f(p) = p. If δ is a limit ordinal, then xδ =
⊔
β<δ

xβ v p because p is an

upper bound of all β such that β < δ. By transfinite induction, ∀δ ∈ µ(L), xδ v p and

this is true in particular for the iteration limit.

End of proof.

2.5.2 Increasing iteration starting from a pre-fixpoint

DEFINITION 2.5.2.0.1 Pre-fixpoint and post-fixpoint of an operator
Let L(v) be an ordered set and f ∈ (L → L), then the set of pre-fixpoints

of f is prefp(f) = {x ∈ L : x v f(x)}. Dually, the set of post-fixpoints of f is

postfp(f) = {x ∈ L : f(x) v x}.

THEOREM 2.5.2.0.2

Let L(v,⊥,>,t,u) be a complete lattice. An increasing iteration 〈xδ : δ ∈ µ(L)〉
starting from d ∈ prefp(f) and defined by f ∈ mon(L→ L) is a stationary ascending

chain and its limit luis(f)(d) is the least fixpoint of f greater than or equal to d.

Proof: Because x0 = d v f(d) = x1 and f is monotone, it is easy to show by

transfinite induction that 〈xδ : δ ∈ µ(L)〉 is an ascending chain which is therefore

(2)-12

stationary. As a consequence of Lemma 2.5.1.0.4, its limit luis(f)(d) is the least fixpoint

of f greater than or equal to d.

End of proof.

By applying the duality principle we have:

COROLLARY 2.5.2.0.3

Let L(v,⊥,>,t,u) be a complete lattice. A decreasing iteration sequence 〈xδ :

δ ∈ µ(L)〉 starting from d ∈ postfp(f) and defined by f ∈ mon(L→ L) is a stationary

descending chain and its limit llis(f)(d) is the greatest fixpoint of f smaller than or

equal to d.

Remark 2.5.2.0.4 Extreme fixpoints of a monotone operator

As ⊥ ∈ prefp(f) and > ∈ postfp(f) for all f , f ∈ mon(L → L) admits at least

two (non necessarily distinct) fixpoints. Moreover, as any fixpoint of f is included

between ⊥ and >, f admits a least fixpoint lfp(f) = luis(f)(⊥) and a greatest fixpoint

gfp(f) = llis(f)(>).

End of remark.

PROPOSITION 2.5.2.0.5
Let L(v,⊥,>,t,u) be a complete lattice and f ∈ mon(L → L), then the

restriction
(
luis(f)

∣∣ prefp(f)
)
of luis(f) to prefp(f) is an upper closure operator on

prefp(f) and fp(f) = luis(f)(prefp(f)).

Proof: fp(f) is a subset of prefp(f) which, by Theorem 2.5.2.0.2, is such that for

each x ∈ prefp(f) the set {y ∈ fp(f) : x v y} admits a least element luis(f)(x) and, as

a consequence of Theorem 2.3.0.4.(b), this implies that
(
luis(f)

∣∣ prefp(f)
)
is an upper

closure operator on prefp(f) and fp(f) = luis(f)(prefp(f)).

End of proof.

By applying the duality principle we have:

(2)-13

COROLLARY 2.5.2.0.6
Let L(v,⊥,>,t,u) be a complete lattice and f ∈ mon(L → L), then the

restriction of llis(f) to postfp(f) is a lower closure operator on postfp(f) and fp(f) =

llis(f)(postfp(f)).

PROPOSITION 2.5.2.0.7
Let L(v,⊥,>,t,u) be a complete lattice and f, g ∈ mon(L → L) such that

f v g. Then {∀d ∈ prefp(f), luis(f)(d) v luis(g)(d)}.

Proof: Because f v g, we have prefp(f) ⊆ prefp(g) and the proof follows by transfi-

nite induction on the increasing iterations defined by f and g.

End of proof.

PROPOSITION 2.5.2.0.8
Let L(v,⊥,>,t,u) and L′(v,⊥,>,t,u) be complete lattices, f ∈ mon(L →

L), g ∈ mon(L′ → L′), and h be a complete join-morphism from L to L′ such that

h ◦ f = g ◦ h. Then {∀d ∈ prefp(f), h(luis(f)(d)) = luis(g)(h(d))}.

Proof: Let µ = max(µ(L), µ(L′)) and 〈Xδ : δ ∈ µ〉 be the increasing iteration

defined by f starting from d. Because h is a complete join-morphism from L to

L′, it is monotone and therefore ∀d ∈ prefp(f) we have d v f(d), which implies

h(d) v h(f(d)) = g(h(d)), that is, h(d) ∈ prefp(g). Let 〈Y δ : δ ∈ µ〉 be the increas-

ing iteration defined by g and starting from h(d). We prove that ∀δ, h(Xδ) = Y δ.

We have that h(X0) = h(d) = Y 0. Assume by induction hypothesis that ∀α <

δ, h(Xα) = Y α. If δ is a successor ordinal, then, in particular, h(Xδ−1) = Y δ−1

and h(Xδ) = h(f(Xδ−1)) = g(h(Xδ−1)) = g(Y δ−1) = Y δ. If δ is a limit ordinal,

then h(Xδ) = h(
⊔
α<δ

Xα) =
⊔
α<δ

h(Xα) =
⊔
α<δ

Y α = Y δ because h is a complete join-

morphism and by induction hypothesis. By transfinite induction, we conclude that

∀δ ∈ µ, h(Xδ) = Y δ. Let Xε and Y ε
′
be respectively the limits of 〈Xδ : δ ∈ µ〉 and

(2)-14

〈Y δ : δ ∈ µ〉. It follows that h(luis(f)(d)) = h(Xε) = h(Xmax(ε,ε′)) = Y max(ε,ε′) =

Y ε
′

= luis(g)(h(d)).

End of proof.

2.5.3 Constructive characterization of the sets of pre- and post-fixpoints of
a monotone operator on a complete lattice

PROPOSITION 2.5.3.0.1
Let L(v,⊥,>,t,u) be a complete lattice and f ∈ mon(L→ L). For each d ∈ L,

the increasing iteration sequences starting from d and defined by λx .x t f(x) and

λx . dtf(x) are stationary ascending chains. Their limits luis(λx .xtf(x))(d) and

luis(λx . d t f(x))(d) are equal to the least post-fixpoint of f greater than or equal

to d.

Proof: Each element d in L is a pre-fixpoint of both λx .xt f(x) and λx . dt f(x)

which are, by hypothesis f ∈ mon(L → L), monotone operators on L. Theorem

2.5.2.0.2 implies that the increasing iterations 〈xδ : δ ∈ µ(L)〉 and 〈yδ : δ ∈ µ(L)〉
starting from d and defined respectively by λx .xtf(x) and λx . dtf(x) are stationary

ascending chains with respective limits xε1 and yε2 .

As xε1 is the least among the fixpoints of λx .x t f(x) greater than d and

because {∀p ∈ L, {p = p t f(p)} ⇔ {f(p) v p}}, we conclude that xε1 = luis(λx .
x t f(x))(d) is the least among the fixpoints of f greater than or equal to d.

As yε2 = d t f(yε2), we have f(yε2) v yε2 and, therefore, d v yε2 implies

xε1 v yε2 . It is easy to prove by transfinite induction on δ that {∀δ ∈ µ(L), yδ v xδ}.
Therefore, yε2 = ymax(ε1,ε2) v xmax(ε1,ε2) = xε1 and, by antisymmetry, xε1 = yε2 , and

we have luis(λx .x t f(x))(d) = luis(λx . d t f(x))(d).

End of proof.

THEOREM 2.5.3.0.2 The lattice of post-fixpoints of a monotone operator

(2)-15

Let L(v,⊥,>,t,u) be a complete lattice and f ∈ mon(L → L). The set of

post-fixpoints of f is a non-empty complete lattice:

postfp(f)(v, lfp(f),>,λS . luis(λ z . z t f(z))(tS),u)

where the least fixpoint of f is lfp(f) = u{x ∈ L : f(x) v x} = luis(f)(d) for any

d ∈ L such that d v lfp(f).

Proof: By Propositions 2.5.3.0.1, 2.3.0.4, and 2.3.0.1, postfp(f) is a complete lattice

(v, luis(λ z . z t f(z))(⊥), >, λS . luis(λ z . z t f(z))(tS), u).

Theorem 2.5.3.0.1 implies that luis(λ z . z t f(z))(⊥) = luis(λ z .⊥ t f(z))(⊥)

= luis(f)(⊥) = lfp(f) (Remark 2.5.2.0.4). As lfp(f) is the infimum of postfp(f), we

have lfp(f) = u postfp(f).

Finally, let d ∈ L be such that d v lfp(f) and 〈xδ : δ ∈ µ(L)〉, 〈yδ : δ ∈ µ(L)〉,
and 〈zδ : δ ∈ µ(L)〉 be the increasing iterations defined by f starting respectively

from ⊥, d, and lfp(f). By transfinite induction, it is immediate to prove that {∀δ ∈
µ(L), xδ v yδ v zδ = lfp f}. Because 〈xδ : δ ∈ µ(L)〉 is stationary with limit lfp(f), it

follows immediately that 〈yδ : δ ∈ µ(L)〉 is stationary with limit lfp(f). (Observe that

〈yδ : δ ∈ µ(L)〉 is not necessarily an ascending chain.)

End of proof.

By applying the duality principle, we have:

COROLLARY 2.5.3.0.3 The lattice of pre-fixpoints of a monotone operator
Let L(v,⊥,>,t,u) be a complete lattice and f ∈ mon(L → L). The set of

pre-fixpoints of f is a non-empty complete lattice:

prefp(f)(v,⊥, gfp(f),t,λS . llis(λ z . z u f(z))(uS))

where the greatest fixpoint of f is gfp(f) = t{x ∈ L : x v f(x)} = llis(f)(d) for any

d ∈ L such that gfp(f) v d.

(2)-16

2.5.4 Unary monotone polynomials on a complete lattice defined by a family
of monotone operators

This paragraph stands aside from our preliminaries concerning the constructive version

of Tarski’s fixpoint theorem. We address the matter of giving an answer to the following

question stated in Chapter 5: Let L(v,⊥,>,t,u) be a complete lattice and 〈fi : i ∈ I〉
a family of monotone operators on L. What is the least and the greatest element in

L that we can compute starting from a set S ⊆ L of initial values by applying t, u,
and fi? The notion of computation being defined as that of unary polynomials on the

algebra 〈L;t,u, 〈fi : i ∈ I〉〉, we are left to determine the least and greatest polynomials

on this algebra.

DEFINITION 2.5.4.0.1 Unary polynomials
Let L(v,⊥,>,t,u) be a complete lattice and 〈fi : i ∈ I〉 a family of elements

in mon(L→ L). The set P of unary polynomials on the algebra 〈L;t,u, 〈fi : i ∈ I〉〉
is the least subset of (L→ L) such that:

(a) - (λx .x) ∈ P

(b) - If P ∈ P and i ∈ I then (fi ◦ P) ∈ P

(c) - If 〈Pγ : γ ∈ J〉 ⊆ P then (
⊔
γ∈J

Pγ) ∈ P and (
l

γ∈J
Pγ) ∈ P

It follows immediately from this definition that unary polynomials on 〈L;t,u, 〈fi : i ∈ I〉〉
are monotone operators on L.

THEOREM 2.5.4.0.2
Any unary polynomial on 〈L;t,u, 〈fi : i ∈ I〉〉 is smaller than or equal to

luis(λ z . z t (
⊔
i∈I

fi(z))) and greater than or equal to llis(λ z . z u (
l

i∈I
fi(z))).

Proof: Let F = luis(λ z . z t (
⊔
i∈I

fi(z)) and F = llis(λ z . z u (
l

i∈I
fi(z)). We know

that F , F ∈ mon(L→ L). By Proposition 2.5.3.0.1 and its dual statement, we deduce

(2)-17

that luis(F)(x) and llis(F)(x) are defined for all x in L. The proof follows by structural

induction:

(a) - luis(F) is extensive (Theorem 2.5.2.0.5) and llis(F) is reductive (Theorem 2.5.2.0.6).

It follows that, for all x in L, we have llis(F)(x) v x v luis(F)(x).

(b) - Let P be a unary polynomial such that llis(F) v P v luis(F). Then, for any

i ∈ I, by monotonicity we have fi ◦ llis(F) v fi ◦ P v fi ◦ luis(F). Moreover,

llis(F) = F ◦ llis(F) v fi ◦ llis(F) v fi ◦ P v fi ◦ luis(F) v F ◦ luis(F) =

luis(F).

(c) - Let 〈Pγ : γ ∈ J〉 be a family of unary polynomials such that llis(F) v Pγ v
luis(F) for any γ ∈ J . By definition of the least upper bound, we have llis(F) v⊔
γ∈J

Pγ v luis(F) and, analogously, llis(F) v
l

γ∈J
Pγ v luis(F).

End of proof.

2.5.5 Constructive characterisation of the set of all fixpoints of a monotone
operator on a complete lattice

THEOREM 2.5.5.0.1 Constructive version of Tarski [1955]’s theorem
Let L(v,⊥,>,t,u) be a complete lattice and f ∈ mon(L→ L). The set fp(f)

of fixpoints of f is a complete lattice:

fp(f)(v, lfp(f), gfp(f),λS . luis(f)(tS),λS . llis(f)(uS))

Proof: As a consequence of Theorems 2.5.2.0.2 and 2.5.2.0.5, fp(f) is the image of

prefp(f) by the upper closure operator luis(f) and, as prefp(f) is a complete lattice (v,
⊥, gfp(f),t,λS . llis(λ z . z u f(z))(uS)) (Theorem 2.5.3.0.3), Theorem 2.3.0.1 im-

plies that fp(f) is a complete lattice for the partial order v with infimum luis(f)(⊥) =

lfp(f) and where the least upper bound operation is λS . luis(f)(tS). By duality,

(2)-18

fp(f) is the image of the complete lattice postfp(f)(v, lfp(f),>,λS . luis(λ z . z t f(z))(tS),

u) (Theorem 2.5.3.0.2) by the lower closure operator llis(f) (Theorem 2.5.2.0.6) and,

therefore (Theorem 2.3.0.3), it is a complete lattice for the partial order v with supre-

mum llis(f)(⊥) = gfp(f) and where the operation of greatest lower bound is λS .
llis(f)(uS).

End of proof.

COROLLARY 2.5.5.0.2
Let L(v,⊥,>,t,u) be a complete lattice, d ∈ L, and f ∈ mon(L→ L). Then,

luis(f) ◦ llis(λ z . z u f(z))(d) and llis(f) ◦ luis(λ z . z t f(z))(d) are fixpoints of f

that are (respectively) greater than or equal to any fixpoint of f which is smaller

than or equal to d, and smaller than or equal to any fixpoint of f which is greater

than or equal to d. Moreover, luis(f) ◦ llis(λ z . z u f(z))(d) v llis(f) ◦ luis(λ z .
z t f(z))(d).

Proof: Let a, b ∈ L be such that f(a) = a v d v b = f(b). Then, by monotonicity,

a = luis(f) ◦ llis(λ z . zuf(z))(a) v luis(f) ◦ llis(λ z . zuf(z))(d) v luis(f) ◦ llis(λ z .
z u f(z))(b) = b. Likewise, a v llis(f) ◦ luis(λ z . z t f(z))(d) v b.

Let p = llis(λ z . z u f(z))(d) and q = luis(λ z . z t f(z))(d). Let S = {x ∈
L : p v x v q}, it is a complete sub-lattice of L with infimum p and supremum

q. By Theorem 2.5.3.0.1 and its dual, p v f(p) and f(q) v q, therefore, f(S) ⊆ S.

Theorem 2.5.5.0.1 implies that the least fixpoint of the restriction of f to S is luis(f)(p)

while the greatest fixpoint of the restriction of f to S is llis(f)(q), which proves that

luis(f) ◦ llis(λ z . z u f(z))(d) v llis(f) ◦ luis(λ z . z t f(z))(d).

End of proof.

DEFINITION 2.5.5.0.3 Pre-closure operators of a complete lattice (Ladegaillerie [1973])

(2)-19

A lower pre-closure operator ρ of a complete lattice L(v,⊥,>,t,u) is an op-

erator on L that is monotone, idempotent, and that satisfies the lower connectivity

axiom {∀x ∈ L : ρ(x u ρ(x)) = ρ(x)}.
Dually, an upper pre-closure operator ρ on a complete lattice L is an operator

on L that is monotone, idempotent, and that satisfies the upper connectivity axiom

{∀x ∈ L : ρ(x t ρ(x)) = ρ(x)}.

COROLLARY 2.5.5.0.4
Let L(v,⊥,>,t,u) and f ∈ mon(L → L). The set fp(f) of fixpoints of f is

the image of L by the lower pre-closure operator luis(f) ◦ llis(λ z . z u f(z)) and the

image of L by the upper pre-closure operator llis(f) ◦ luis(λ z . z t f(z)).

Proof: luis(f) ◦ llis(λ z . z u f(z)) is a lower pre-closure operator on L because it

is the composition of an upper closure operator luis(f) and a lower closure operator

llis(λ z . zuf(z)) (2.5.2.0.5, 2.5.3.0.1, 2.5.2.0.6, and Ladegaillerie [1973, Prop. 5,p. 41]).

End of proof.

PROPOSITION 2.5.5.0.5 Park [1969]
Let L(v,⊥,>,t,u,¬) be a complete boolean lattice and f ∈ mon(L → L).

Then, λx .¬f(¬x) ∈ mon(L→ L), gfp(f) = ¬ lfp(λx .¬f(¬x)), lfp(λx .¬f(¬x))u
lfp(f) = ⊥, and {{lfp(λx .¬f(¬x)) t lfp(f) = >} ⇔ {lfp(f) = gfp(f)}}.

2.5.6 Non-computability of the fixpoints of a monotone operator of a com-
plete lattice

We show that, in general, the extreme fixpoints of a monotone operator defined on an

arbitrary complete lattice are not computable. This result points towards a potential

difficulty and not an impossibility. It is does not exclude special cases in which the

fixpoints are computable (e.g., when the lattice satisfies chain conditions). It tells us,

(2)-20

however, that, in general, we have to be content with the computation of approxima-

tions of the extreme fixpoints (because they are non computable or simply because

they are too complex to compute).

PROPOSITION 2.5.6.0.1
Let L(v,⊥,>,t,u) be an arbitrary complete lattice and f an arbitrary mono-

tone operator on L. The problem of computing lfp(f) and gfp(f) is undecidable.

Proof: We prove that if we are able to compute lfp(f) for arbitrary L and f ∈
mon(L→ L), we could solve a modified version of the “Post correspondence problem”

which is known to be undecidable (Hopcroft & Ullman [1969]). The problem is defined

as follows: “given two arbitrary sequences A = A1, . . . , Ak and B = B1, . . . , Bk of

k non-empty chains on an alphabet with at least two characters, is there a sequence

i1, . . . , in of integers such that A1, Ai1 , . . . , Ain = B1, Bi1 , . . . , Bin?”

Let C = {1, . . . , k}, and let C? be the set of possibly empty chains on the

alphabet C. Let C1? = {1s : s ∈ C?}. Let ℘(C1?) be the set of all subsets of C1?.

Let F = λE . ({{1}} ∪ {
k⋃
i=1

{si : s ∈ x} : x ∈ E}). It is a monotone operator on

℘(C1?). Consider the sequence E0 = {1}, Eδ = F (Eδ−1) if δ is a successor ordinal,

and Eδ =
⋃
α<δ

Eα if δ is a limit ordinal. It is an ascending chain for the order ⊆

with limit L = lfp(F) because {1} ⊆ lfp(F). Let us define a partial order on L as

{∀x, y ∈ L, {x v y} ⇔ {{x = y} or {∃δ ∈ µ(℘(C1?)) : (x ∈ Eδ) and (y 6∈ Eδ)}}}. The

relation v is trivially reflexive. Assume there exists x, y ∈ L such that x v y, y v x,

and x 6= y. Then, ∃δ, η : x ∈ Eδ, y 6∈ Eδ and also y ∈ Eη, x 6∈ Eη. It is impossible

that η = δ. If δ < η, then x ∈ Eδ ⊆ Eη contradicting x 6∈ Eη, otherwise η < δ and

y ∈ Eη ⊆ Eδ, contradicting y 6∈ Eδ. Ad absurdum v is antisymmetric. Assume x v y

and y v z. If x = y or y = z, then v is trivially transitive, otherwise ∃δ, η such that

x ∈ Eδ, y 6∈ Eδ, y ∈ Eη, and z 6∈ Eη. We have necessarily δ 6= η. If δ < η, then

(2)-21

Eδ ⊆ Eη, x ∈ Eη, and z 6∈ Eη, therefore, x v z, otherwise η < δ and y ∈ Eη ⊆ Eδ,

contradicting y 6∈ Eδ. We conclude that v is a partial order for L. Assume x 6= y,

x 6v y, and y 6v x. Then, ∀δ, x 6∈ Eδ or y ∈ Eδ and ∀η, y 6∈ Eη and x ∈ Eη, in particular,

for δ = η, we obtain a contradiction which shows that v is a total order. L is therefore

a chain with infimum {1}. Moreover, L has a supremum >, otherwise the chain 〈Eδ :

δ ∈ µ(℘(C1?))〉 would not be stationary. Indeed, assume ∀y ∈ L,∃x ∈ L, x 6v y. Then,
x 6= y and ∀δ, we have x 6∈ Eδ and y ∈ Eδ. In particular, for the limit L = Eε, we have

x 6∈ L, which is a contradiction. By reductio ad absurdum, ∃> ∈ L : ∀x ∈ L, x v >.
Therefore, L is a complete lattice.

Consider now the operator f on L defined as λx . if {∃s ∈ x : s = 1i1 . . . in and

A1, Ai1 , . . . , Ain = B1, Bi1 , . . . , Bin} then x else
k⋃
i=1

{si : s ∈ x} endif. f is mono-

tone, therefore it admits a least fixpoint. Moreover, the modified Post correspondence

problem has a solution if and only if the least fixpoint of f is different from >. If lfp(f)

was computable, then this problem would not be undecidable.

End of proof.

2.6 THE COMPLETE LATTICE OF UPPER-CONTINUOUS OP-
ERATORS ON A COMPLETE LATTICE

DEFINITION 2.6.0.1 Continuity
Let ω be the first infinite limit ordinal.

We say that the operator f on L(v,⊥,>,t,u) is upper-continuous if and only

if, for any ascending chain 〈xδ : δ ∈ ω〉, we have f(
⊔
δ∈ω

xδ) =
⊔
δ∈ω

f(xδ).

We say that an operator f on L(v,⊥,>,t,u) is lower-continuous if and only

if, for any descending chain 〈xδ : δ ∈ ω〉, we have f(
l

δ∈ω
xδ) =

l

δ∈ω
f(xδ)

An operator f on L is continuous if it is both upper and lower-continuous.

The name “continuity” is justified by the fact that Definition 2.6.0.1 is equivalent

(2)-22

to the topological notion of continuity for a suitably chosen topology on L (for this, it

is necessary to suppose some additional hypotheses on L, see Scott [1972], Cousot &

Cousot [1977d]).

Note that, if f is a monotone operator on L, then f(
⊔
δ∈µ

xδ) =
⊔
δ∈µ

f(xδ) and

f(
l

δ∈µ
xδ) =

l

δ∈µ
f(xδ) hold for finite ascending (respectively, descending) chains 〈xδ :

δ ∈ µ〉 (that is to say, when µ < ω). In a lattice satisfying the ascending (respec-

tively, descending) chain condition, all infinite chains are stationary and, therefore, all

monotone operators are upper (respectively lower) continuous. Moreover, note that

upper or lower continuity implies monotonicity. Finally, if an operator is a complete

join-morphism (Definition 2.3.0.2) (respectively complete meet-morphism), then it is

upper-continuous (respectively lower continuous).

We now characterise the set of upper-continuous operators on a complete lattice

L as the image of (L→ L) by a lower closure operator ucont . Contrarily to what has

been done for monotone operators (Paragraph 2.4), we have not found any suitable

definition for ucont which is simple enough to ensure some practical usefulness. Thus,

we will be satisfied with simply proving the existence of ucont .

THEOREM 2.6.0.2
Let L(v,⊥,>,t,u) be a complete lattice, then there exists a lower closure op-

erator ucont on (L → L) such that ucont(L → L) is the set of upper-continuous

operators on L. Moreover, for any f in (L → L), ucont(f) is the greatest upper-

continuous operator on L smaller than or equal to f .

Proof: Let C be the subset of the complete lattice (L → L) corresponding to the

upper-continuous operators on L. Then (λx .⊥) ∈ C and for any non-empty subset S

of C we have (tS) ∈ C. Indeed, let 〈xδ : δ ∈ ω〉 be an ascending chain in L. For any f

in S we have f(
⊔
δ∈ω

xδ) =
⊔
δ∈ω

f(xδ). So,
⊔
f∈S

f(
⊔
δ∈ω

xδ) =
⊔
f∈S

⊔
δ∈ω

f(xδ) =
⊔
δ∈ω

⊔
f∈S

f(xδ),

(2)-23

that is to say, (tS)(
⊔
δ∈ω

xδ) =
⊔
δ∈ω

(tS)(xδ).

Let ucont be the function from (L→ L) to itself defined as:

ucont = λ f . t {C ∩ {g ∈ (L→ L) : f w g}}

Then, ucont is a lower closure operator where the closed elements are the elements in

C. For any f ∈ (L → L), ucont(f) is the greatest element of C smaller than or equal

to f because, if g ∈ ucont(L→ L) and f w g, then ucont(f) w ucont(g) = g.

End of proof.

2.7 FIXPOINT THEOREM FOR UPPER CONTINUOUS OPER-
ATORS ON A COMPLETE LATTICE

Let L(v,⊥,>,t,u) be a complete lattice such that µ(L) > ω. A necessary and suffi-

cient condition for an increasing iteration 〈xδ : δ ∈ µ(L)〉 defined by f ∈ (L→ L) and

starting from d ∈ L which is an ascending chain to be stationary after ω is:

{∀δ ∈ µ(L), {δ ≥ ω} ⇒ {xω = xδ}}
⇔ {xω = xω+1} (Lemma 2.5.1.0.4)

⇔ {xω = f(xω)} (Definition 2.5.1.0.1.(b))

⇔ {
⊔
α<ω

xα = f(
⊔
α<ω

xα)} (Definition 2.5.1.0.1.(c))

⇔ {
⊔
α<ω

xα+1 = f(
⊔
α<ω

xα)} (because {{α < ω} ⇔ {(α+ 1) < ω}})

⇔ {
⊔
α<ω

f(xα) = f(
⊔
α<ω

xα)} (Definition 2.5.1.0.1.(b))

We can observe that the upper-continuous hypothesis is “designed” so as to avoid

transfinite iterations to be considered (more precisely, iterations with strictly more than

ω terms). Actually, this hypothesis is slightly too strong because it is not required for

the chain 〈xδ : δ ∈ ω〉 to satisfy Definition 2.5.1.0.1. By applying Theorem 2.5.2.0.2 we

have:

(2)-24

PROPOSITION 2.7.0.1
Let L(v,⊥,>,t,u) be a complete lattice and f ∈ ucont(L→ L). An increasing

iteration 〈xδ : δ ∈ min(µ(L), ω)〉 starting from d ∈ prefp(f) and defined by f is a

stationary ascending chain, and its limit luis(f)(d) is the least fixpoint of f greater

than or equal to d.

2.8 FORMAL METHOD TO SOLVE A SYSTEM OF MONO-
TONE FIXPOINT EQUATIONS BY MEANS OF VARIABLE
ELIMINATION

Let L(v,⊥,>,t,u) be a complete lattice, then the set Ln of n-tuples of elements in L

is a complete lattice for the partial order:

{(X1, . . . , Xn) v (Y1, . . . , Yn)} ⇔ {∀i ∈ [1, n], Xi v Yi}

Then we have:⊔
i∈∆

(Xi
1, . . . , X

i
n) = (

⊔
i∈∆

Xi
1, . . . ,

⊔
i∈∆

Xi
n)

l

i∈∆

(Xi
1, . . . , X

i
n) = (

l

i∈∆

Xi
1, . . . ,

l

i∈∆

Xi
n)

so that the infimum of Ln is (⊥, . . . ,⊥) and the supremum is (>, . . . ,>). With a slight

abuse of notation we will write Ln(v,⊥,>,t,u).

Consider a system of equations with n variables (X1, . . . , Xn) ∈ Ln having the

following form:
X1 = F1(X1, . . . , Xn)

. . .

Xn = Fn(X1, . . . , Xn)

(2)-25

where {∀i ∈ [1, n], Fi ∈ (Ln → L)}, which we will denote as X = F (X) where

F ∈ (Ln → Ln). If Fi(i = 1, . . . , n) are monotone, then F is monotone and The-

orem 2.5.5.0.1 gives us a constructive definition of the solutions for this system of

equations.

More generally, with each equation X = F (X) on a lattice L, we can associate

a system of equations on a direct decomposition of L having the same solutions up to

an isomorphism:

PROPOSITION 2.8.0.1
Let L(v,⊥,>,t,u) and ∀i ∈ [1, n], Mi(v,⊥,>,t,u) be complete lattices such

that
n∏
i=1

Mi is a direct decomposition of L (that is to say that there exists decomposi-

tion morphisms σi ∈ (L→ Mi), such that σ = λx . (σ1(x), . . . , σn(x)) is a complete

isomorphism from L to
n∏
i=1

Mi). Let F ∈ mon(L→ L), then the set fp(F) of fixpoints

of F and the set of solutions of the system of equations: Xi = σi ◦ F ◦ σ−1(X1, . . . , Xn)

i = 1, . . . , n

are completely isomorphic by σ.

Additionally to the iterative method, a formal computation proceeding by vari-

able elimination also allows solving the system of equations. Variable Xi is eliminated

by solving the equation Xi = (λY .Fi(X1, . . . , Y, . . . , Xn))(Xi) in terms of the Xj

(j 6= i) considered here as free variables, then substituting the solution at all occur-

rences of Xi inside the remaining equations. This process is repeated until all variables

have been eliminated.

PROPOSITION 2.8.0.2 Bekić [1969], Leszczylowski [1971]

(2)-26

Let F ∈ mon(Ln+m → Ln) and G ∈ mon(Ln+m → Lm). We will note (X,Y) =

(X1, . . . , Xn, Y1, . . . , Ym) when X ∈ Ln and Y ∈ Lm. We consider the system of

equations,

(1)

 X = F (X,Y)

Y = G(X,Y)

the resolvent R = λY . lfp(λX .F (X,Y)), and the system of equations,

(2)

 X = R(Y)

Y = G(R(Y), Y)

We note fp(i) and lfp(i), (i = 1, 2) respectively the set of solutions of the system of

equations (i) and its least solution. Then, fp(2) ⊆ fp(1) and lfp(1) = lfp(2).

Proof: If Y, Z ∈ Lm, then {Y v Z} ⇒ {(X,Y) v (X,Z)} ⇒ {λX .F (X,Y) v
λX .F (X,Z)} ⇒ {lfp(λX .F (X,Y)) v lfp(λX .F (X,Z))} ⇒ {R(Y) v R(Z)} ⇒
{R ∈ mon(Lm → Ln)}, therefore, fp(2) is non-empty.

Let (A2, B2) ∈ fp(2) be a fixpoint of (2). Then, A2 = R(B2), that is to say, lfp(λX .
F (X,B2)) = A2, then F (A2, B2) = A2 and B2 = G(R(B2), B2), and so, B2 =

G(A2, B2), which implies that (A2, B2) is a solution of the system of equations (1),

that is to say, fp(2) ⊆ fp(1).

In order to show that, in general, fp(2) 6= fp(1), we consider L = {⊥,>}, F =

λ (X,Y) . [X u Y], and G = λ (X,Y) . [X t Y]. The resolvent is R = λY . lfp(λX .
F (X,Y)) = λY . lfp(λX . [X u Y]) = λY .⊥. The system of equations (1) admits a

solution (>,>) which is not a solution of (2).

As lfp(2) ∈ fp(1), we have lfp(1) v lfp(2). Let (A1, B1) be a fixpoint of (1), then

we have F (A1, B1) = A1 and therefore F (A1, B1) v A1, which implies that A1 is a

post-fixpoint of λX .F (X,B1) from which it follows that lfp(λX .F (X,B1)) v A1,

and so, R(B1) v A1. As (R(B1), B1) v (A1, B1) and G is monotone, G(R(B1), B1) v

(2)-27

G(A1, B1) v B1 because (A1, B1) is a post-fixpoint of (1). We deduce that (A1, B1)

is a post-fixpoint of (2), which implies that lfp(2) v (A1, B1), so that, in particular,

lfp(2) v lfp(1) and, by antisymmetry, lfp(2) = lfp(1).

End of proof.

2.9 CHAOTIC, ASYNCHRONOUS, AND ASYNCHRONOUS WITH
MEMORY ITERATIVE METHODS TO SOLVE A SYSTEM
OF MONOTONE FIXPOINT EQUATIONS ON A COM-
PLETE LATTICE

The increasing iteration starting from D ∈ Ln and defined by F ∈ mon(Ln → Ln)

(Definition 2.5.1.0.1) proceeds as follows:

- X0 = D

-

 Xδ
i = Fi(Xδ−1

1 , . . . , Xδ−1
n)

i = 1, . . . , n
if δ is a successor ordinal

- Xδ =
⊔
α<δ

Xα if δ is a limit ordinal

which indeed corresponds to the method of successive approximations. We can think

that the Gauss–Seidel’s method:

Xδ
1 = F1(Xδ−1

1 , . . . , Xδ−1
n)

. . .

Xδ
i = Fi(Xδ

1 , . . . , X
δ
i−1, X

δ−1
i , . . . , Xδ−1

n)

. . .

Xδ
n = Fn(Xδ

1 , . . . , X
δ
n−1, X

δ−1
n)

consisting in continually re-injecting inside the computation the last resultants of the

computation itself, enforces convergence and reduces memory usage. Robert [1976a]

(2)-28

shows that in general these methods are not equivalent. Without strong enough hy-

potheses on Ln and F , it is possible that either the method of successive approximations

or Gauss–Seidel converges while the other diverges.

We are going to show that, when L is a complete lattice and F ∈ mon(Ln → Ln),

this phenomenon is impossible, that is, both strategies produce the same result. More

generally, in Paragraph 2.9.1, we show that the hypothesis of monotonicity allows us

to use any chaotic strategy , that is, in the iteration we can randomly determine at each

step which components are computed as a function of the preceding iteration (on the

condition that we never indefinitely forget any component) and obtain the convergence

towards the same fixpoint as with the method of successive approximations.

In Paragraph 2.9.2, this result is generalised to the case of asynchronous iterative

methods, offering the possibility of delays when accessing the previously computed

iterations, therefore corresponding to the use of many processors working in parallel

without (necessarily) being synchronised.

In fact, chaotic and asynchronous iterations are only particular cases of the iter-

ative asynchronous methods with memory considered in Paragraph 2.9.3. The iterative

asynchronous methods with memory permit not only the decomposition of the com-

putation into groups of concurrently evolving components, but also the decomposition

according to the structure of each component, as different values for each variable can

be used when computing a component.

In practice, we consider iterative methods converging in a finite number of steps,

but we will prove all our convergence results for transfinite iterations anyway. From

an abstract point of view, this allows us to separate the problem of the termination of

the iteration (number of iterations) from that of its convergence (stabilisation of the

iteration). (For example, in order to find X such that X v lfp(F), we can compute

the increasing iteration 〈Xδ : δ ∈ µ(L)〉 starting from ⊥ and defined by F , and stop

the computation after some number of steps fixed beforehand or when precision is

(2)-29

sufficient. The algorithm is correct because, from an abstract point of view, every term

Xδ is smaller than the limit luis(F)(⊥) = lfp(F) of the transfinite iteration, therefore,

only the very first terms are effectively computed.)

2.9.1 Convergence of chaotic iterations

DEFINITION 2.9.1.0.1 Increasing chaotic iteration
• Let L(v,⊥,>,t,u) be a complete lattice, n a strictly positive integer, and F ∈
mon(Ln → Ln).

• Let 〈Jδ : δ ∈ Ord〉 be a sequence of subsets of {1, . . . , n} such that:

(a) - {∀δ ∈ Ord,∀i ∈ {1, . . . , n},∃α ≥ δ : i ∈ Jα}

• The increasing chaotic iteration starting from D ∈ Ln and defined by F and 〈Jδ :

δ ∈ Ord〉 is a sequence 〈Xδ : δ ∈ µ(L)〉 of elements in Ln defined by transfinite in-

duction as follows:

(b) - X0 = D

(c) - Xδ
i = Xδ−1

i for any successor ordinal δ and i 6∈ Jδ

(d) - Xδ
i = Fi(Xδ−1) for any successor ordinal δ and i ∈ Jδ

(e) - Xδ
i =

⊔
α<δ

Xα
i for any limit ordinal δ

This definition can be interpreted by considering that, at step δ of the compu-

tation, only the components i ∈ Jδ evolve in view of the values obtained in previous

steps. The condition 2.9.1.0.1.(a) imposes that no component is forever omitted. The

abstract case 2.9.1.0.1.(e) has been added to the classic definition in order to make the

definition compatible with 2.5.1.0.1.

For instance, the method of successive approximations consists in taking {∀δ ∈
Ord, Jδ = {1, . . . , n}} while Gauss–Seidel’s method corresponds to choosing Jδ = {1}
if δ = 1 or δ is the successor of a limit ordinal and Jδ = {1 + (j modulo n)} if δ is a

(2)-30

successor ordinal and Jδ−1 = {j}.

THEOREM 2.9.1.0.2
An increasing chaotic iteration starting from D ∈ prefp(F) and defined by

F ∈ mon(Ln → Ln) and 〈Jδ : δ ∈ Ord〉 is a stationary ascending chain with limit

luis(F)(D).

Proof: This is a special case of Theorem 2.9.2.0.2. In order to prove additionally

that it is an ascending chain, see Cousot & Cousot [1977e].

End of proof.

As all the components Xδ+1
i (such that i ∈ Jδ+1) are evaluated using Xδ, Def-

inition 2.9.1.0.1 implicitly assumes that the computation is made by a single sequen-

tial process or by several synchronized parallel processes (for instance, one for each

i ∈ Jδ+1). The definition of asynchronous iterations instead avoids the synchroniza-

tion constraint by allowing delays when accessing previously computed iterates.

(2)-31

2.9.2 Convergence of asynchronous iterations

DEFINITION 2.9.2.0.1 Increasing asynchronous iterations

• Let 〈Jδ : δ ∈ Ord〉 be a sequence of elements of {1, . . . , n} such that:

(a) - {∀δ ∈ Ord,∀i ∈ {1, . . . , n},∃α ≥ δ : i = Jα}

• Let 〈Sδ : δ ∈ Ord〉 be a sequence of elements in Ordn such that:

(b) - {∀i ∈ {1, . . . , n},∀δ ∈ Ord, Sδi < δ}
(c) - {∀δ ∈ Ord,∀i ∈ {1, . . . , n},∃β ≥ δ : {∀α ≥ β, δ ≤ Sαi }}
(d) - {∀β, δ ∈ Ord, {β is a limit ordinal and β < δ} ⇒ {∀i ∈ {1, . . . , n}, β ≤ Sδi }}

• Let F be a monotone operator on a complete lattice Ln. An increasing asyn-

chronous iteration for F starting from D ∈ Ln and defined by 〈Jδ : δ ∈ Ord〉 and
〈Sδ : δ ∈ Ord〉 is a sequence 〈Xδ : δ ∈ Ord〉 of elements in Ln defined by transfinite

induction as follows:

(e) - X0 = D

(f) - Xδ
i = Xδ−1

i for any successor ordinal δ and i 6∈ Jδ

(g) - Xδ
i = Fi(X

Sδ1
1 , . . . , X

Sδn
n) for any successor ordinal δ and i = Jδ

(h) - Xδ
i =

⊔
α<δ

Xα
i for any limit ordinal δ

The definition of asynchronous iterations is due to numeric analysts Chazan

& Miranker [1969] but the form given here is more similar to the version of Baudet

[1976]. We have nevertheless simplified this definition by assuming that ∀δ ∈ Ord, Jδ ∈
{1.....n} instead of Jδ ⊆ {1.....n}. This does not introduce any restriction: indeed,

when several components are updated at the same time, we consider from an abstract

point of view that they have been computed the same way but updated at different

times. (For example, the method of successive approximations corresponds to the

(2)-32

choice Jα+jn+i = i and Sα+jn+i
k = α + jn for any limit ordinal α and integers j ≥ 0,

1 ≤ i ≤ n, and 1 ≤ k ≤ n. More generally, chaotic iterations are a particular case of

asynchronous iterations.) We also added the rule 2.9.2.0.1.(h) as well as the condition

2.9.2.0.1.(d) so that the notion of asynchronous iteration is compatible with transfinite

iterations 2.5.1.0.1.

Asynchronous iterations offer a model for potential computations on a multi-

processor. A global memory, initialised with D, is accessible by each processor that

can read and write each component Xi of the global memory X. These operations

are mutually exclusive in time and can therefore be considered as instantaneous. (De-

pending on the size of the memories Xi (i = 1, . . . , n), this mutual exclusion is assured

by hardware or software solutions, this is the only elementary synchronisation that is

needed between the different processors.)

We interpret 〈δ : δ ∈ Ord〉 as a growing sequence of instants δ in which a read

or a write of component Xi takes place. When a processor is idle, it is assigned the

evaluation of an arbitrary component of the system of equations. Definition 2.9.2.0.1

indicates that, at time δ, a processor ends the evaluation of the ith component such

that i = Jδ. The corresponding value Xδ
i is instantaneously written to memory Xi.

Evaluating Xδ
i consists in reading the value XSδ1

1 from memory X1 at time Sδ1 , . . . ,

reading Xn at time Sδn, applying Fi to the arguments XSδ1
1 ,. . . ,XSδn

n and writing the

corresponding value Xδ
i = Fi(X

Sδ1
1 ,. . . ,XSδn

n) at time δ into Xi. All the components Xj

of X such that j 6= Jδ are not modified at time δ.

We should point out that no synchronisation is necessary between the processors

contributing to this computation and the distribution of the tasks for the different

processors is free. In particular, a processor that breaks down can be eliminated from

the pool of available processors and replaced in its task by other, working processors.

The distribution of tasks for the different processors must in all cases respect the

condition 2.9.2.0.1.(a) which states that no component can be definitely abandoned.

(2)-33

(This hypothesis is a bit too strong given that, for example, a constant component is

always stable. To make our formalism lighter, we do not consider these situations.)

It is also natural to assume that the evaluation of each Fi(X
Sδ1
1 ,. . . ,XSδn

n) should

last a finite time (but not necessarily uniformly bounded). Therefore, for each δ, the

duration of the computation
n

max
i=1

(δ − Sδi) must be finite. This is what the condition

2.9.2.0.1.(c) expresses under a slightly different form: for each δ, there exists β ≥ δ

such that, after time β, no processor can finish a computation that was started at the

time δ.

The hypothesis that the elementary evaluation of a component should last a finite

time should hold even if we consider transfinite iterations. The condition 2.9.2.0.1.(d)

is at this point necessary to keep this fact into account. By reduction ad absurdum,

let us suppose that the computation of Xδ
i , started at the time α =

n
max
i=1

(Sδi), takes r

time units (where r < ω because the computation length can be arbitrarily long, but

finite). We have (α + r) = δ. Let us suppose that there exists a limit ordinal β and

j ∈ {1, . . . , n} such that Sδj < β < δ. Then α < β < δ and, as β is a limit ordinal

(α+ 1) < β, then, by finite induction, (α+ r) < β < δ, contradicting (α+ r) = δ.

THEOREM 2.9.2.0.2
Let L(v,⊥,>,t,u) be a complete lattice, n a natural number, and F ∈

mon(Ln → Ln). An asynchronous increasing iteration for F starting from D ∈
prefp(F) and defined by 〈Jδ : δ ∈ Ord〉, 〈Sδ : δ ∈ Ord〉 is a stationary sequence with

limit luis(F)(D).

Proof: This is a particular case of Theorem 2.9.3.0.9 where m = 1.

End of proof.

(2)-34

2.9.3 Convergence of asynchronous iterations with memory

DEFINITION 2.9.3.0.1 Increasing asynchronous iteration with memory

• Let 〈Jδ : δ ∈ Ord〉 be a sequence of elements in {1, . . . , n} such that:

(a) - {∀δ ∈ Ord,∀i ∈ {1, . . . , n},∃α ≥ δ : i = Jα}

• Let 〈Sδ : δ ∈ Ord〉 be a sequence of elements in (Ordn)m such that:

(b) - {∀i ∈ {1, . . . , n},∀j ∈ {1, . . . ,m},∀δ ∈ Ord, (Sδj)i < δ}
(c) - {∀δ ∈ Ord,∀i ∈ {1, . . . , n},∀j ∈ {1, . . . ,m},∃β ≥ δ : {∀α ≥ β, δ ≤ (Sαj)i}}
(d) - {∀β, δ ∈ Ord, {β is a limit ordinal and β < δ}

⇒ {∀i ∈ {1, . . . , n},∀j ∈ {1, . . . ,m}, β ≤ (Sδj)i}}

• Let L(v,⊥,>,t,u) be a complete lattice and F a monotone application from

(Ln)m to Ln. An increasing asynchronous iteration with memory for F starting from

D ∈ Ln and defined by 〈Jδ : δ ∈ Ord〉 and 〈Sδ : δ ∈ Ord〉 is a sequence 〈Xδ : δ ∈ Ord〉
of elements of Ln defined by transfinite induction as follows:

(e) - X0 = D

(f) - Xδ
i = Xδ−1

i for any successor ordinal δ and i 6= Jδ

(g) - Xδ
i = Fi(Z1, . . . , Zn) for any successor ordinal δ and i = Jδ where ∀j ∈

{1, . . . ,m},∀i ∈ {1, . . . , n}, Zji = X
(Sδj)i
i

(h) - Xδ
i =

⊔
α<δ

Xα
i for any limit ordinal δ

We observe that, whenever m = 1, this definition is equivalent to Definition

2.9.2.0.1.

Let σ be the function from Ln to (Ln)m such that {∀X ∈ Ln,∀i ∈ {1, . . . , n},
(σ(X))i = X}. Let F be a monotone function from (Ln)m to Ln. We define a fixpoint

of F as any element X in Ln such that X = F (X, . . . ,X), namely X = F (σ(X)).

Because F ◦ σ ∈ mon(Ln → Ln), all the results from Paragraph 2.5 can be applied to

(2)-35

F ◦ σ.

In order to present a practical application of Definition 2.9.3.0.1, assume that we

have to compute luis(f)(D) where f ∈ mon(Ln → Ln) and D ∈ prefp(f), and that we

can find a natural number m and F ∈ ((Ln)m)→ Ln) such that luis(f)(D) = luis(F ◦

σ)(D). We can then use whatever increasing asynchronous iteration with memory we

wish to compute it as we are going to show that it is a stationary sequence with limit

luis(F ◦ σ)(D).

For instance, let f = λX . (g(X) t h(X)). Then, luis(f)(D) = luis(F ◦ σ)(D)

where F = λ (X,Y) . (g(X) t h(Y)). A possible iteration with two memories for F

is:
X0 = ⊥

X1 = ⊥

Xδ+2 = F (Xδ+1, Xδ)

which is equivalent to two collateral iterations: X0 = ⊥

Xδ+1 = g(Xδ) t Y δ

 Y 0 = ⊥

Y δ+1 = h(Xδ)

which are a natural decomposition of the computation which cannot be described by

Definition 2.9.2.0.1.

In the rest of the paragraph, we consider an increasing asynchronous iteration

with m memories 〈Xδ : δ ∈ Ord〉 for a monotone function F from (Ln)m to Ln starting

from a pre-fixpoint D of F (D v F ◦ σ(D)) and defined by 〈Jδ : δ ∈ Ord〉 and 〈Sδ :

δ ∈ Ord〉 as in Definition 2.9.3.0.1.

LEMMA 2.9.3.0.2

{∀δ ∈ Ord, D v Xδ v luis(F ◦ σ)(D)}

(2)-36

Proof: By transfinite induction on δ by considering the fact that D v F ◦ σ(D) v
luis(F ◦ σ)(D) = F ◦ σ(luis(F ◦ σ)(D)) (Theorem 2.5.2.0.2). More details can be

found in Cousot [1977d].

End of proof.

DEFINITION 2.9.3.0.3
The condition 2.9.3.0.1.(a) implies that for all δ ∈ Ord, there is an ordinal Π(δ)

defined as:

Π(δ) = min{α ∈ Ord : (δ ≤ α) and ({1, . . . , n} = {Jβ : δ ≤ β ≤ α})}

Intuitively, between the steps δ and Π(δ) + 1, all the components have been

relaxed at least one time, that is to say

{∀i ∈ {1, . . . , n},∀δ ∈ Ord,∃β ∈ Ord : (δ ≤ β ≤ Π(δ)) and (i = jβ)}

DEFINITION 2.9.3.0.4
The condition 2.9.3.0.1.(c) implies that for all δ ∈ Ord, there exists an ordinal

λ(δ) defined as:

λ(δ) = min{β ∈ Ord : ∀j ∈ {1, . . . ,m},∀i ∈ {1, . . . , n},∀α ≥ β, δ ≤ (Sαj)i}

Intuitively, a computation that ends at step λ(δ) + 1 cannot have read the com-

ponents intervening in the computation before step δ, that is to say

{∀j ∈ {1, . . . ,m},∀i ∈ {1, . . . , n},∀α ≥ λ(δ), δ ≤ (Sαj)i}

DEFINITION 2.9.3.0.5

(2)-37

We denote by 〈ηδ : δ ∈ Ord〉 the transfinite sequence of ordinals defined by

transfinite induction as follows:

(a) - η0 = 0

(b) - ηδ = Π(λ(ηδ−1)) + 1 if δ is a successor ordinal

(c) - ηδ =
⋃
α<δ

ηα if δ is a limit ordinal

LEMMA 2.9.3.0.6
The sequence 〈ηδ : δ ∈ Ord〉 is strictly increasing and for any limit ordinal δ, ηδ

is also a limit ordinal.

Proof: We prove that {∀γ, β ∈ Ord, {β < γ} ⇒ {ηβ < ηγ}} by transfinite induction

on γ. The case γ = 0 is trivial. Assume that for all γ < δ we have {∀β ∈ Ord, {β <
γ} ⇒ {ηβ < ηγ}}. If δ is a successor ordinal, then for any ordinal β < δ, we have,

if β < (δ − 1) , then ηβ < ηδ−1 < Π(λ(ηδ−1)) + 1 = ηδ by induction hypothesis and

Π(λ(η)) ≥ η for all η ∈ Ord, otherwise β = (δ−1) and ηβ = ηδ−1 < Π(λ(ηδ−1))+1 = ηδ.

If δ is a limit ordinal and β < δ, then there exists ε such that β < ε < δ and by

induction hypothesis ηβ < ηε ≤
⋃
α<δ

ηα. By transfinite induction 〈ηδ : δ ∈ Ord〉 is

strictly increasing.

Let δ be a limit ordinal and β be an ordinal such that β < ηδ. In order to prove

that ηδ is a limit ordinal, it is sufficient to prove that there exists an ordinal γ such

that β < γ < ηδ. Because ηδ =
⋃
α<δ

ηα, there exists α < δ such that β < ηα. Because

〈ηδ : δ ∈ Ord〉 is strictly increasing, ηα < ηδ and, by transitivity, β < ηα < ηδ and ηδ

is a limit ordinal.

End of proof.

DEFINITION 2.9.3.0.7

(2)-38

We denote by 〈Bδ : δ ∈ Ord〉 the sequence of elements of Ln defined by transfinite

induction as follows:

(a) - B0 = D

(b) - Bδ = F (σ(Bδ−1)) if δ is a successor ordinal

(c) - Bδ =
⊔
α<δ

Bα if δ is a limit ordinal

LEMMA 2.9.3.0.8

{∀β, δ ∈ Ord, {ηδ ≤ β} ⇒ {Bδ v Xδ}}

Proof: By induction on δ (case 1, 2, 3).

Case 1: If δ = 0, then ∀β ≥ η0 = 0, and we have B0 = D v Xβ (Lemma 2.9.3.0.2).

Case 2: Assuming that δ is a successor ordinal and that the lemma holds for all δ′ < δ,

we prove by transfinite induction on β that the lemma holds also for δ (case 2.1, 2.2,

2.3).

Case 2.1: If β = ηδ, then, by 2.9.3.0.5.(b), ηδ = Π(λ(ηδ−1)) + 1. There-

fore, for all i = 1, . . . , n there is a greatest ordinal ε such that λ(ηδ−1) ≤
ε ≤ β and i = Jε. As a consequence of 2.9.3.0.1, we have therefore Xε

i =

Xε+1
i = . . . = Xβ

i with Xε
i = Fi(Z1, . . . , Zm). As ε ≥ λ(ηδ−1), we have

{∀j ∈ {1, . . . ,m},∀k ∈ {1, . . . , n}, ηδ−1 ≤ (Sεj)k < ε}. By induction hypothesis,

it follows that Bδ−1
k v X

(Sεj)
k

k = Zjk. We deduce that {∀j ∈ {1, . . . ,m}, Bδ−1 v
Zj}, then, by 2.9.3.0.7.(b) and monotonicity, we obtain Bδi = Fi(σ(Bδ−1)) v
Fi(Z1, . . . , Zm) = Xε

i = Xβ
i , so that Bδi v Xηδ

i .

Case 2.2: Assume that β is a successor ordinal and that for all α such that

ηα ≤ α < β we have Bδ v Xα. We prove that {∀i ∈ {1, . . . , n}, Bδi v Xβ
i }. If

i 6= Jβ , then Bβi v Xβ−1
i = Xβ

i , otherwise i = Jβ and Xβ
i = Fi(Z1, . . . , Zm).

(2)-39

Because β > ηδ > Π(λ(ηδ−1)) ≥ λ(ηδ−1), we know that {∀j ∈ {1, . . . ,m},∀k ∈
{1, . . . , n}, ηδ−1 ≤ (Sδj)k}, which implies that Bδ−1

k v X
(Sβ
j

)k

k by induction hy-

pothesis. Then, ∀j ∈ {1, . . . ,m} we have Bδ−1 v Zj and, by monotonicity,

Bδi = Fi(σ(Bδ−1
i)) v Fi(Z1, . . . , Zm) = Xβ

i .

Case 2.3: Assume that β is a limit ordinal and that, for any ordinal α such that

ηδ ≤ α < β, we have Bδ v Xα. Thus, Bδ v
⊔

ηα≤α<β
Xα v

⊔
α<β

Xα = Xβ .

Case 3: Assuming that δ is a limit ordinal and that the lemma holds for all δ′ < δ, we

prove by transfinite induction on β that the lemma holds for δ (case 3.1, 3.2, 3.3).

Case 3.1: If β = ηδ, then ηδ is also a limit ordinal (Lemma 2.9.3.0.6). By

induction hypothesis on δ, we have ∀γ < δ, βγ v Xηγ , and so, Bδ =
⊔
γ<δ

Bγ v⊔
γ<δ

Xηγ . Because 〈ηγ : γ ∈ Ord〉 is strictly increasing {{γ < δ} ⇒ {ηγ < ηδ}}

and therefore
⊔
γ<δ

Xηγ v
⊔

ηγ<ηδ

Xηγ v
⊔
α<ηδ

Xα = Xηδ . By transitivity, Bδ v Xβ .

Case 3.2: Assume that β is a successor ordinal and that, for any ordinal α such

that ηδ ≤ α < β, we have Bδ v Xα; we prove that ∀i ∈ {1, . . . , n}, Bδi v Xβ
i }. If

i 6= Jβ , then Bδi v Xβ−1
i = Xβ

i , otherwise i = Jβ and Xβ
i = Fi(Z1, . . . , Zm). Be-

cause ηδ < β and ηδ is a limit ordinal, 2.9.3.0.1.(b) and 2.9.3.0.1.(d) imply that

{∀j ∈ {1, . . . ,m},∀k ∈ {1, . . . , n}, ηδ ≤ (Sβj)k < β}. Therefore, by induction

hypothesis, {∀j ∈ {1, . . . ,m}, Bδk v X
(Sβ
j

)k

k = Zj}. As 〈Bδ : δ ∈ Ord〉 is an as-

cending chain (Theorem 2.5.2.0.2), we obtain by monotonicity Bδi v Fi(σ(Bδ)) v
Fi(Z1, . . . , Zm) = Xβ

i .

Case 3.3: If β is a limit ordinal and, for any ordinal α such that ηδ ≤ α < β we

have Bδ v Xα, then Bδ v
⊔

ηδ≤α<β
Xα v

⊔
α<β

Xα = Xβ .

End of proof.

(2)-40

THEOREM 2.9.3.0.9
An increasing asynchronous iteration with m memories for a monotone function

F from (Ln)m to Ln (where L(v,⊥,>,t,u) is a complete lattice) starting from a

pre-fixpoint D of F is a stationary sequence with limit luis(F ◦ σ)(D).

Proof: The sequence 〈Bδ : δ ∈ Ord〉 is a stationary ascending chain with limit

luis(F ◦ σ)(D) (Theorem 2.5.2.0.2). Therefore, there exists an ordinal ε ∈ µ(L) such

that ∀γ ≥ ε, luis(F ◦ σ)(D) = Bγ . Therefore, ∀β ≥ ηε we have luis(F ◦ σ)(D) = Bε v
Xβ v luis(F ◦ σ)(D) (Lemmas 2.9.3.0.9 and 2.9.3.0.2). Note that 〈Xδ : δ ∈ Ord〉 is
not necessarily an ascending chain.

End of proof.

2.10 BIBLIOGRAPHIC NOTES

The fundamental bibliography to be consulted on ordered sets and lattices is the fol-

lowing: Birkhoff [1967], Bourbaki [1967], Grätzer [1971], and Szász [1971].

We will go back, more at length, on the closure operators on a lattice in Para-

graph 4.2 and the corresponding bibliography is to be found in Paragraph 4.4.

Many authors have pointed out that the fixpoint theorem of Knaster [1928] and

Tarski [1955] can be proved with some weaker hypotheses than the completeness (see,

amongst others, Abian & Brown [1961], Höft & Höft [1976], Pasini [1974], Pelczar [1961],

Markowsky [1976], Ward Jr. [1957], Wolk [1957]). Likewise, in our constructive version

of Tarski’s theorem, we require a hypothesis on the existence of bounds of certain chains

and not the less general hypothesis that the lattice is complete. A generalisation is

therefore possible to weaken the hypothesis of completeness, but we will not need it.

Tarski [1955] (followed by de Maar [1964], Markowsky [1976], Pelczar [1971], Smithson

[1973], Wong [1967], . . .) also states a theorem on the common fixpoints of a family

of commuting monotone operators in a complete lattice. It is also possible to give a

constructive version of it (see Cousot & Cousot [1977d]).

(2)-41

Theorem 2.5.6.0.1 on the undecidability of computing the fixpoints of a monotone

operator in a complete lattice generalises the theorem [7] of Kam & Ullman [1977] on

the non-existence of an algorithm to perform an optimal analysis of the data-flow of a

program.

The notion of chaotic iteration comes from the field of numerical analysis and

dates back from Southwell [1955] and Ostrowski [1955]. Chazan & Miranker [1969] in-

troduced the notion of chaotic iteration with delays to enable parallel computations

in multiprocessors. They showed that a chaotic iteration with delays converges to-

wards the solution of the equation x = Ax + b (where A is a n × n matrix of reals

and b a vector column of reals) if and only if ρ(|A|) < 1 (where |A| is the n × n

matrix obtained by replacing each element of A with its absolute value and ρ(|A|) is

the spectral radius of |A|). These results were extended to some non-linear problems

and convergence studies were carried out for some hypotheses other than the hypoth-

esis of contraction. Amongst others, we wish to single out the work of the numerical

analysis teams of Grenoble (Abtroun [1977], Charnay [1975], Mahjoub [1977], Robert

[1974]), of Besançon (Comte [1976], El Tarazi [1976], Jacquemard [1977], Luong [1975],

Miellou [1975a,1975b]), and of the Carnegie-Mellon University (Baudet [1976], Traub

[1964]). In particular, the term “asynchronous iteration” comes from Baudet [1976]

who generalises the notion of delayed chaotic iterations by eliminating the hypothesis

that delays are limited by a fixed maximum delay (Miranker [1977]). Miellou [1977]

independently obtained Theorem 2.9.3.0.9 with more restrictive hypotheses than ours.

Notably, L is a normal lattice of Banach and F is semi-continuous, which is a hypoth-

esis similar to upper-continuity (2.6.0.1) and not required to provide a constructive

version of Tarski’s theorem. Also, regarding Definition 2.9.3.0.1 Miellou [1977] adds

the hypothesis (using our notations) {∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . ,m}, ∀δ, δ′ ∈ Ord,

{δ ≤ δ′} ⇒ {(Sδj)i ≤ (Sδ
′

j)i}}. This specific hypothesis for the study of monotone algo-

rithms makes the proof of convergence easier, because it implies that an asynchronous

(2)-42

iteration with memory is an ascending chain, with the inconvenient, though, of needing

a synchronisation among the processors participating in the computing. As shown in

Miranker [1977], an asynchronous algorithm can be superior to an algorithm forbidding

to regress while computing due to the waiting time resulting from the synchronisation

of processors.

We have not given any criterion for the stopping of asynchronous iterations. It

is a programming problem that is handled by Dijkstra [1977] within a very general

framework.

The problem of choosing an optimal chaotic strategy, in numerical analysis, dates

back to Stein & Rosenberg [1948]. Though being definitely interesting in a practical

sense, this problem has not yet received, in numerical analysis, any completely satis-

factory answer, apart from some particular cases (for example, Abtroun [1977]) or by

interactive methods (Mahjoub [1977]). As for the case of the equation systems we con-

sider in the semantic analysis of programs, the problem is being studied by R. Cousot

(see Remark 4.1.2.0.7.(b)).

CHAPTER 3.

BEHAVIOR OF A DISCRETE DYNAMIC SYSTEM, EXACT
SEMANTIC ANALYSIS OF PROGRAMS, AND APPLICATIONS

3. BEHAVIOR OF A DISCRETE DYNAMIC SYSTEM, EXACT
SEMANTIC ANALYSIS OF PROGRAMS, AND APPLICATIONS

3.1 Discrete dynamic systems . 3

3.1.1 Notion of discrete dynamic system 3

3.1.2 Specification of the behavior of a discrete dynamic system 5

3.1.3 Fixpoint approach to study the behavior of a discrete dynamic system 7

3.1.4 Discrete dynamic systems with partitioned set of states 12

3.1.5 Properties of partitioned discrete dynamic systems 15

3.2 Definition of the operational semantics of a programming language 19

3.2.1 Abstract syntax of programs . 19

3.2.2 Operational semantics of the language 20
3.2.2.1 Set of states S . 20
3.2.2.2 Transition function τ̄ . 20
3.2.2.3 Partitioned deterministic total discrete dynamic system defined

by a sequential program . 22

3.3 Forward deductive semantics . 22
3.3.0.1. System of forward semantic equations associated with a program

and an entry specification . 24
3.3.0.2. Property of the least fixpoint of the system of forward semantic

equations . 25
3.3.0.3. Conjunction and disjunction of entry specifications 26

3.4 Techniques for program analysis based on the forward deductive semantics . . 26

3.4.1 Justification of the method by Floyd and Naur to verify the partial

correctness of a program . 26

3.4.2 Extension of the method by Floyd and Naur to verify the total

correctness of a program . 27

3.4.3 Justification of the criterion for the termination of programs by Katz

and Manna . 28

3.4.4 Characterization of the descendants of the entry states and condi-

tions for the termination, non-termination, and erroneous execution

of a program . 29

3.4.5 Symbolic execution . 32

3.5 Backward deductive semantics . 35
3.5.0.1. System of backward semantic equations associated with a pro-

gram and an exit specification 37
3.5.0.2. Properties of the least fixpoint of the system of backward seman-

tic equations . 38
3.5.0.3. Properties of any pre-fixpoint of the system of backward semantic

equations . 38
3.5.0.4. Properties of the greatest fixpoint of the system of backward

semantic equations . 39
3.5.0.5. Termination, non-termination, and semantic errors of a program 40
3.5.0.6. Conjunction and disjunction of exit specifications 40

3.6 Techniques for the analysis of programs based on the backward deductive se-

mantics . 40

3.6.1 Justification of Hoare’s method to verify the partial correctness of

a program . 41

3.6.2 Justification of Dijkstra’s method to verify the total correctness of

a program . 41

3.6.3 Analysis of conditions of termination, non-termination, and erro-

neous execution of a program based on the backward deductive se-

mantics . 43

3.6.4 Use of the backward deductive semantics in order to characterize,

for each program point, the set of descendants of the initial states

which satisfy an entry specification 46

3.7 Combination of forward and backward semantic analyses of a program 48

3.8 Bibliography . 49

3. BEHAVIOR OF A DISCRETE DYNAMIC SYSTEM, EXACT
SEMANTIC ANALYSIS OF PROGRAMS, AND APPLICATIONS

We shall define and study the behavior of discrete dynamic systems in Paragraph 3.1.

Discrete dynamic systems provide a very general framework, where we can express and

solve problems of semantic analyses of programs, such as the verification of the total

or partial correctness of a program, or the inference of the most general invariant at

each point of a program. A program is a discrete dynamic system in the sense that

it defines a transition relation between memory states before and after the execution

of each elementary instruction (if the program is deterministic, this transition relation

becomes a transition function). In order to study the behavior of a discrete dynamic

system, we need to characterize the set of descendants of the set of all the states that

satisfy some given entry specification, or characterize the set of ancestors of the set

of states that satisfy some given exit specification. We show that these sets can be

computed as solutions of fixpoint equations, or of systems of equations when the set of

states of the dynamic system is partitioned.

In Paragraph 3.2, we define the operational semantics of a simple program-

ming language corresponding to sequential iterative programs, with instructions for

assignment, conditional branching, and unconditional branching. (We defer recursive

programs to Chapter 6, so as not to address all issues at the same time.)

The results of Paragraph 3.1 are applied in Paragraph 3.3, so as to define the

forward deductive semantics of the programming language under consideration. A

program is mapped to a system of semantic equations by expressing the set of possible

states of variables at any point aj in the program as a function the possible states

at the points ai that are encountered before aj during an execution of the program.

(3)-2

The least solution of this system defines the set of states of variables at any point in

the program, during any execution of this program starting from an initial state which

satisfies the given entry specification.

Then, we show in Section 3.4 how the forward deductive semantics can justify

Floyd–Naur’s method to verify the partial correctness of a program. This method

is then extended to proofs of total correctness. Then, we show that performing the

symbolic execution of a program in fact consists in solving the system of forward

semantic equations using a chaotic iteration strategy.

In Paragraph 3.5, we apply the results of Paragraph 3.1 in order to define a

backward deductive semantics for the programming language we consider. The program

is mapped to a system of semantic equations, where the set of possible states of variables

at any point ai in the program is expressed as a function of all possible sates of variables

at points aj that follow ai during an execution of the program. The solutions of this

system of backward semantic equations characterize the set of states m of variables

for which an execution of the program from ai in state m terminates in a state which

satisfies the given exit specification, terminates without satisfying this exit specification,

never terminates, or leads to a semantic error.

Then, in Paragraph 3.5, we will justify the proof method introduced by Hoare

to verify the partial correctness of a program, and its extension by Dijkstra to proofs of

total correctness. Then, we remark that the forward and backward reasoning techniques

are in fact equivalent.

Finally, in Paragraph 3.6, we present results on the combination of forward and

backward semantic analyses, which we will use in Chapter 5.

(3)-3

3.1 DISCRETE DYNAMIC SYSTEMS

3.1.1 Notion of discrete dynamic system

DEFINITION 3.1.1.0.1 Discrete dynamic system
A discrete dynamic system is a 5-tuple (S, τ, νε, νσ, νξ) defined as follows:

(a) - S is the set of states of the system

(b) - τ ∈ ((S × S) → B) where B = {true, false} is a transition relation between

each state and its successors

(c) - νε ∈ (S → B) defines its entry states

(d) - νσ ∈ (S → B) defines its exit states

(e) - νξ ∈ (S → B) defines its erroneous states

and which satisfies the following conditions:

(f) - the set of states is not empty: {S 6= ∅}

(g) - the entry states are exogenous:

{∀e1, e2 ∈ S, {τ(e1, e2)} ⇒ {not(νε(e2))}}

(h) - the exit states are stable:

{∀e1, e2 ∈ S, {νσ(e1) and τ(e1, e2)} ⇒ {e1 = e2}}

(i) - the sets of entry states, exit states, and erroneous states are pairwise disjoint:

{∀i, j ∈ {ε, δ, ξ}, {i 6= j} ⇒ {∀e ∈ S,not(νi(e) and νj(e))}}

DEFINITION 3.1.1.0.2

(3)-4

Let τ ∈ ((S × S) → B). The inverse of τ is τ−1 = λ (e1, e2) . τ(e2, e1). A

transition relation (and by extension, a discrete dynamic system π(S, τ, νε, νσ, νξ))
is:

(a) - total if and only if

{∀e1 ∈ S,∃e2 ∈ S : τ(e1, e2)}

(b) - partial if and only if it is not total

(c) - functional or deterministic if and only if:

{∀e1, e2, e3 ∈ S, {τ(e1, e2) and τ(e1, e3)} ⇒ {e2 = e3}}

(d) - injective if and only if τ−1 is deterministic

(e) - invertible if and only if it is total and injective

(f) - without error recovery if and only if:

{∀e1, e2 ∈ S, {νξ(e1) and τ(e1, e2)} ⇒ {νξ(e2)}}

The notion of discrete dynamic system is obviously very general. It applies not

only to computer systems but also to economic or biological systems, provided that the

model of the system to study evolves according to discrete time steps. In particular,

discrete dynamic systems can model sequential and parallel programs.

Example 3.1.1.0.3 Sequential programs

A sequential program à la FORTRAN π with n global variables X1, . . . , Xn with

values in U1, . . . ,Un and α labels (or program points) a1, . . . , aα is a discrete dynamic

system (S, τ, νε, νσ, νξ). A state e ∈ S is a pair 〈m, c〉 where m ∈ (U1 × . . . × Un)

is a memory state, which maps each program variable Xi to a value in Ui and c ∈

(3)-5

{a1, . . . , aα, error} is a control state that is the label of the instruction of the program

that should be executed next, or that indicates an error occurred during the execution

of the program. The transition relation maps each state 〈m, c〉 to a unique successor

state 〈m′, c′〉 = τ(〈m, c〉) resulting from the execution of the atomic instruction at

label c in program π. Since τ is a function, the system is deterministic. We observe

that the system is not injective in general. For instance, if we consider the program

defined by “for all integer x, τ(〈aε, x〉) = 〈aσ, x2〉”, then τ(〈aε, 2〉) = 〈aσ, 4〉 and

τ(〈aε, −2〉) = 〈aσ, 4〉 but 〈aε, 2〉 6= 〈aε, −2〉. When the execution of the labelled

instruction c is not defined, for a memory state m (for instance, this is the case when

a run-time error is caused by a division by zero), we let τ(〈m, c〉) = 〈m, error〉. The

consequence of this choice is that the system is total. In practice, when a run-time error

is detected, the execution of the program is stopped. The definition τ(〈m, error〉) = 〈m,
error〉 is a good model for this situation since the system under study is without error

recovery. Finally, if we assume that the program has a unique entry point aε and a

unique exit point aσ, we define νε = λ 〈m, c〉 . (c = aε), νσ = λ 〈m, c〉 . (c = aσ), and

νξ = λ 〈m, c〉 . (c = error).

End of example.

3.1.2 Specification of the behavior of a discrete dynamic system

From a state e0 ∈ S in the system π(S, τ, νε, νσ, νξ), can evolve into the states e1, e2,

. . . , ei, ei+1, . . . such that τ(ei, ei+1). The set of the descendant states from e0 can be

expressed as the transitive closure of τ :

DEFINITION 3.1.2.0.1 Transitive closure of a relation

(3)-6

Let α, β ∈ ((S×S)→ B) be two relations between elements of S. We note α ◦ β

the composition of α and β, which is defined as:

α ◦ β = λ (e1, e2) . [∃e3 ∈ S : α(e1, e3) and β(e3, e2)]

For all integers n ∈ ω, we define αn by finite induction as follows:

α0 = eq = λ (e1, e2) . (e1 = e2)

αn = αn−1 ◦ α = α ◦ αn−1 for all n ≥ 1

The reflexive transitive closure of α is α? = OR
n∈ω

αn

The strict transitive closure of α is α+ = α ◦ α? = α? ◦ α = OR
n∈ω

αn+1

The specification of a discrete dynamic system π(S, τ, νε, νσ, νξ) consists in the choice

of an entry specification φ ∈ (S → B) and of an exit specification ψ ∈ (S → B).

This specification expresses the intent that, from any entry state satisfying the entry

specification φ, the system π should evolve into an exit state satisfying the exit condition

ψ. In the case of a deterministic discrete dynamic system, we call

• Verification of totally correct behavior of π for φ and ψ the proof that:

{∀e1 ∈ S, {νε(e1) and φ(e1)} ⇒ {∃e2 ∈ S : τ?(e1, e2) and νσ(e2) and ψ(e2)}}

• Verification of termination the proof that any entry state satisfying the entry spec-

ification φ causes the system to evolve into an exit state:

{∀e1 ∈ S, {νε(e1) and φ(e1)} ⇒ {∃e2 ∈ S : τ?(e1, e2) and νσ(e2)}}

• Verification of partially correct behavior of π for φ and ψ the proof that, when an

entry state satisfying φ causes the system to evolve into an exit state, then that exit

state satisfies the specification ψ:

{∀e2 ∈ S, {∃e1 ∈ S : νε(e1) and φ(e1) and τ?(e1, e2) and νσ(e2)} ⇒ {ψ(e2)}}

(3)-7

• Verification of invariance of β ∈ (S → B) the proof that any state satisfying β causes

the system to evolve into a state satisfying β:

{∀e1, e2 ∈ S, {β(e1) and τ?(e1, e2)} ⇒ {β(e2)}}

3.1.3 Fixpoint approach to study the behavior of a discrete dynamic system

In order to study the behavior of a discrete dynamic system, we shall try to characterize

the set of the ancestors of the states which satisfy a condition β ∈ (S → B), which

amounts to determine:

λ e1 . {∃e2 ∈ S : τ?(e1, e2) and β(e2)} = wp(τ?)(β)

where:

DEFINITION 3.1.3.0.1

wp ∈ (((S × S)→ B)→ ((S → B)→ (S → B)))

= λ θ . {λβ . [λ e1 . (∃e2 ∈ S : θ(e1, e2) and β(e2))]}

For instance, verifying the total correctness of π(S, τ, νε, νσ, νξ) for φ and ψ

corresponds to proving that:

{νε and φ} ⇒ {wp(τ?)(νσ and ψ)}

In the same way, we shall try to characterize the set of descendants of the states

which satisfy condition β ∈ (S → B), which amounts to determine:

λ e2 . {∃e1 ∈ S : β(e1) and τ?(e1, e2)} = sp(τ?)(β)

where:

(3)-8

DEFINITION 3.1.3.0.2

sp ∈ (((S × S)→ B)→ ((S → B)→ (S → B)))

= λ θ . {λβ . [λ e2 . (∃e1 ∈ S : β(e1) and θ(e1, e2))]}

For instance, verifying the partial correctness of π for φ and ψ consists in proving

that {sp(τ?)(νε and φ) and νσ} ⇒ {ψ}. Similarly, verifying the invariance of β consists

in proving that β ⇒ not(wp(τ?)(not(β))), that is, sp(τ?)(β)⇒ β.

Since τ? = eq or τ? ◦ τ = eq or τ ◦ τ?, we construct wp(τ?) and sp(τ?) as

fixpoints of an equation.

THEOREM 3.1.3.0.3

(a) - ((S×S)→ B)(⇒,λ (e1, e2) . false,λ (e1, e2) . true,OR,AND,not) is a complete

boolean lattice

(b) - Let a, b ∈ ((S × S) → B), then λα . [a or b ◦ α] and λα . [a or α ◦ b] are

complete join-morphisms

(c) - Let τ ∈ ((S × S)→ B) and eq be the equality relation

τ? = lfp(λα . [eq or α ◦ τ]) = lfp(λα . [eq or τ ◦ α])

The following proposition shows that the study can be performed either using

sp or wp, using a transition relation or its inverse:

PROPOSITION 3.1.3.0.4

(3)-9

(a) - λ θ . θ−1 is a complete automorphism on ((S × S)→ B)

(b) - ∀α, β ∈ ((S × S)→ B), (α ◦ β)−1 = β−1 ◦ α−1

(c) - ∀τ ∈ ((S × S)→ B),∀n ∈ ω, (τn)−1 = (τ−1)n

(d) - ∀τ ∈ ((S × S)→ B), (τ?)−1 = (τ−1)? and (τ+)−1 = (τ−1)+

(e) - ∀θ ∈ ((S × S)→ B), sp(θ) = wp(θ−1) and wp(θ) = sp(θ−1)

LEMMA 3.1.3.0.5
For all θ ∈ ((S × S)→ B) and β ∈ (S → B) we have:

(a) - wp(θ),λ θ . (wp(θ)(β)), sp(θ), and λ θ . (sp(θ)(β)) are ⊥-strict (i.e., f(⊥) = ⊥)
complete join-morphisms

(b) - If θ is deterministic, then wp(θ) is a complete meet-morphism. If θ is injective,

then sp(θ) is a complete meet-morphism

Proof:

(a) follows from the fact that, for every family 〈βi : i ∈ I〉 of elements in (S → B)

and every β ∈ (S → B), we have {∃e ∈ S : β(e) and (OR
i∈I

βi(e))} = OR
i∈I
{∃e ∈ S :

β(e) and βi(e)}.
(b) When θ is deterministic, there exists a function f from S to S such that

{∀e1, e2 ∈ S, {θ(e1, e2)} ⇔ {f(e1) = e2}}. For a fixed e1 and when {e ∈ S : θ(e1, e)}
is not empty, we have wp(θ)(AND

i∈I
βi)(e1) = {∃e2 ∈ S : θ(e1, e2) and (AND

i∈I
βi(e2))} =

AND
i∈I

βi(f(e1)) = AND
i∈I
{∃e2 ∈ S : θ(e1, e2) and βi(e2)} = AND

i∈I
wp(θ)(βi)(e1). Follow-

ing 3.1.1.0.2.(d) and 3.1.3.0.4, if θ is injective, then θ−1 is deterministic and sp(θ) =

wp(θ−1) is a complete meet-morphism.

End of proof.

THEOREM 3.1.3.0.6

(3)-10

For all a, b ∈ ((S × S)→ B) and β ∈ (S → B) we have:

• wp(lfp(λα . [a or b ◦ α]))(β)

= lfp(λα . [wp(a)(β) or wp(b)(α)])

= OR
n∈ω

wp(bn)(wp(a)(β))

• sp(lfp(λα . [a or α ◦ b]))(β)

= lfp(λα . [sp(a)(β) or sp(b)(α)])

= OR
n∈ω

sp(bn)(sp(a)(β))

Proof: Let h = λ θ . [wp(θ)(β)], f = λα . [a or b ◦ α] and g = λα . [wp(a)(β) or

wp(b)(α)]. Let us prove that h ◦ f = g ◦ h. Indeed, let α ∈ ((S × S)→ B), then:

h ◦ f(α) = wp(a or b ◦ α)(β)

= λ e1 . [∃e2 ∈ S : (a(e1, e2) or (b ◦ α)(e1, e2)) and β(e2)]

= λ e1 . [∃e2 ∈ S : a(e1, e2) and β(e2)] or

λ e1 . [∃e2, e3 ∈ S : b(e1, e3) and α(e3, e2) and β(e2)]

= wp(a)(β) or λ e1 . [∃e3 ∈ S : b(e1, e3) or wp(α)(β)(e3)]

= wp(a)(β) or wp(b)(wp(α)(β))

= g ◦ h(α)

f , g, and h are complete join-morphisms, therefore, Proposition 2.5.2.0.8 implies that

h(lfp(f)) = h(luis(f)(λ (e1, e2) . [false])) = luis(g)(h(λ (e1, e2) . [false])) = luis(g)(λ (e1, e2) .
[false]) = lfp(g).

Let 〈Xn : n ∈ ω〉 be the increasing iteration defined by g and starting from the

infimum λ e . false. We haveX0 = λ e . false andX1 = wp(a)(β) since wp(b) is ⊥-strict.
Let us assume that Xn =

n−1

OR
i=0

wp(bi)(wp(a)(β)). Then, Xn+1 = g(Xn) = wp(a)(β) or

n−1

OR
i=0

wp(b)(wp(bi)(wp(a)(β))) =
n

OR
i=0

wp(bi)(wp(a)(β)) since wp(b)(wp(a)(β)) = wp(b ◦

(3)-11

a)(β). By finite induction, we have found the general term of the iteration. By passing

to the limit, we obtain lfp(g) = Xω = OR
n∈ω

(
n−1

OR
i=0

wp(bi)(wp(a)(β))) = OR
n∈ω

wp(bi)(wp(a)(β)).

Following from Proposition 3.1.3.0.4, a symmetric proof applies to sp.

End of proof.

Theorems 3.1.3.0.3 and 3.1.3.0.6 imply:

COROLLARY 3.1.3.0.7
Let τ ∈ ((S × S)→ B), then:

• wp(τ?) = λβ . lfp(λα . [β or wp(τ)(α)]) = OR
n∈ω

wp(τn)

• sp(τ?) = λβ . lfp(λα . [β or sp(τ)(α)]) = OR
n∈ω

sp(τn)

While computing wp(lfp(λα . [a or b ◦ α]))(β) is easy thanks to Proposition

2.5.2.0.8, computing wp(lfp(λα . [a or α ◦ b]))(β) is not straightforward, since λ θ .
[wp(θ)(β)] ◦ λα . [a or α ◦ b] = λα . [wp(a)(β)] or wp(α)(wp(b)(β))] cannot be written

as the composition of a function with λα . wp(α)(β). As a consequence, it is easier to

express wp using sp, and then to apply Theorem 3.1.3.0.7. Indeed:

wp = λ θ . {λβ . [λ ē . (∃e2 ∈ S : θ(ē, e2) and β(e2))]}
= λ θ . {λβ . [λ ē . (∃e2 ∈ S : [∃e ∈ S : (e = ē) and θ(e, e2)] and β(e2)])]}
= λ θ . {λβ . [λ ē . (∃e2 ∈ S : sp(θ)(λ e . [e = ē])(e2) and β(e2))]}

Therefore, 3.1.3.0.7 and 3.1.3.0.4 imply:

COROLLARY 3.1.3.0.8
Let τ ∈ ((S × S)→ B), then:

• wp(τ?) = λβ . {λ ē . [∃e2 ∈ S : β(e2) and lfp(λα . [λ e . (e = ē) or
sp(τ)(α)])(e2)]}

• sp(τ?) = λβ . {λ ē . [∃e1 ∈ S : β(e1) and lfp(λα . [λ e . (e = ē) or
wp(τ)(α)])(e1)]}

(3)-12

This result shows that we can study a discrete dynamic system by solving either

a “forward” equation of the form α = β or sp(τ)(α) or a “backward” equation of the

form α = β or wp(τ)(α).

3.1.4 Discrete dynamic systems with partitioned set of states

We have reduced the study of a discrete dynamic system π(S, τ, νε, νσ, νξ) to the prob-

lem of solving an equation associated with the system. When the set of states S is

partitioned, the partition on S induces a straightforward decomposition of (S → B)

and then Proposition 2.8.0.1 shows how to map an equation to a system of equations

such that the set of solutions of the system is isomorphic to the set of solutions of

the equation. This decomposition will allow us to use various techniques for solving

systems of monotone equations in a complete lattice which were studied in Paragraphs

2.8 and 2.9.

DEFINITION 3.1.4.0.1 Partitioned discrete dynamic system
A partitioned discrete dynamic system is a tuple (S, τ, ν1, . . . , νn, ε, σ, ξ) such

that:

(a) - {n ≥ 1} and {∀i ∈ [1, n], νi ∈ (S → B)}
(b) - {ε, σ, ξ ∈ [1, n]} and {(S, τ, νε, νσ, νξ) is a discrete dynamic system}
(c) - {∀e ∈ S,∃i ∈ [1, n] : νi(e)}
(d) - {∀i, j ∈ [1, n],∀e ∈ S, {νi(e) and νj(e)} ⇒ {i = j}}

For all i ∈ [1, n], we define:

σi ∈ ((S → B)→ (S → B))

= λβ . [νi and β]

σ ∈ ((S → B)→ (σ1(S → B)× . . .× σn(S → B)))

(3)-13

= λβ . [σ1(β), . . . , σn(β)] = λβ . n

Π
i=1

σi(β)

σ−1 ∈ ((σ1(S → B)× . . .× σn(S → B))→ (S → B))

= λβ . [
n

OR
i=1

βi]

From 3.1.4.0.1.(c), σ−1 ◦ σ = λβ . [
n

OR
i=1

νi andβ] = λβ .β and, from 3.1.4.0.1.(d),

σi ◦ σ−1 = λβ .σi ◦ σ−1(β1 and ν1, . . . , βn and νn) = λβ . [νi and (
n

OR
j=1

βj and νj)] =

λβ .βi, so that σ is a bijection. The distributivity properties β and (OR
j∈J

βj) =

OR
j∈J

(β and βj) and β and (AND
j∈J

βj) = AND
j∈J

(β and βj) imply that σ is a complete

morphism from (S → B) to
n

Π
i=1

σi(S → B). Therefore, Propositions 2.5.2.0.8, 2.5.3.0.3,

2.5.3.0.2, and 2.5.5.0.1 show that the sets of pre-fixpoints, post-fixpoints, and fixpoints

of F ∈ ((S → B) → (S → B)) are completely isomorphic by σ to the sets of pre-

solutions, post-solutions, and solutions of the system of equations: xi = σi ◦ F ◦ σ−1(x1, . . . , xn)

i = 1, . . . , n

In particular, for F = λα . [β or sp(τ)(α)] and F = λα . [β or wp(τ)(α)], we get:

PROPOSITION 3.1.4.0.2
Let π(S, τ, ν1, . . ., νn, ε, σ, ξ) be a partitioned discrete dynamic system. Then,

∀i ∈ [1, n], σi ◦ λα . [β or sp(τ)(α)] ◦ σ−1 is equal to:

λ (α1, . . . , αn) . [(νi and β) or (OR
j∈pred

τ
(i)

sp(τji)(αj))]

where:

∀i, j ∈ [1, n],∀θ ∈ ((S × S) → B), θij = λ (e1, e2) . [νi(e1) and θ(e1, e2) and
νj(e2)]

pred τ ∈ [1, n]→ 2[1,n]

= λ i . {j ∈ [1, n] : (∃e1, e2 ∈ S : τji(e1, e2))}

(3)-14

Proof:

σi(β or sp(τ)(σ−1(α1, . . . , αn))) where (∀i ∈ [1, n], αi ∈ σi(S → B))

= σi(β) or σi(sp(τ)(σ−1(ν1 and α1, . . . , νn and αn)))

= σi(β) or λ e2 . {νi(e2) and sp(τ)(
n

OR
j=1

(νj and αj))(e2)}

= σi(β) or λ e2 . {νi(e2) and
n

OR
j=1

(sp(τ)(νj and αj)(e2))} (from 3.1.3.0.5.(a))

= σi(β) or
n

OR
j=1

λ e2 . {∃e1 ∈ S : αj(e1) and νj(e1) and τ(e1, e2) and νi(e2)}
(from 3.1.2.0.2)

= σi(β) or
n

OR
j=1

λ e2 . {∃e1 ∈ S : αj(e1) and τji(e1, e2)}

= (νi and β) or OR
j∈pred

τ
(i)

sp(τji)(αj) since {j 6∈ pred
τ
(i)} ⇒ {not(τji(e1, e2))}

End of proof.

Since (τij)−1 = (τ−1)ji and using Proposition 3.1.3.0.4, we immediately obtain

the following proposition:

PROPOSITION 3.1.4.0.3
Let π(S, τ, ν1, . . ., νn, ε, σ, ξ) be a partitioned discrete dynamic system. Then,

∀i ∈ [1, n], σi ◦ λα . [β or wp(τ)(α)] ◦ σ−1 is equal to:

λ (α1, . . . , αn) . [(νi and β) or (OR
j∈succ τ (i)

wp(τij)(αj))]

where

succ τ ∈ [1, n]→ 2[1,n]

= λ i . {j ∈ [1, n] : (∃e1, e2 ∈ S : τij(e1, e2))}

(3)-15

3.1.5 Properties of partitioned discrete dynamic systems

From Definitions 3.1.1.0.2.(c) and (d) and Proposition 3.1.3.0.4, the study of wp(τ?)

when τ is deterministic and the study of sp(τ?) when τ is injective are symmetric.

However, we shall present our results only for deterministic systems, since injective

programs are not common. We have seen that wp(τ?) = λβ . lfp(λα . [β or wp(τ)(α)]).

We will now focus on the properties of the other fixpoints of λα . [β or wp(τ)(α)].

PROPOSITION 3.1.5.0.1
Let π(S, τ, νε, νσ, νξ) be a deterministic discrete dynamic system, β ∈ (S → B)

such that {∀e1, e2 ∈ S, {β(e1) and τ(e1, e2)} ⇒ {e1 = e2}} and α ∈ (S → B) be a

post-fixpoint of λx . [β or wp(τ)(x)]. Then, sp(τ?)(α)⇒ α.

Proof: First, let us prove that {sp(τ)(α)⇒ α}. For any e in S, we have sp(τ)(α)(e) =

{∃e1 ∈ S : α(e1) and τ(e1, e)} ⇒ {∃e1 ∈ S : α(e1) and [β(e1) or wp(τ)(α)(e1)] and

τ(e1, e)}.
Since {{β(e1) and τ(e1, e)} ⇒ {e1 = e}} and since π is deterministic {{τ(e1, e2) and

τ(e1, e)} ⇒ {e2 = e}}, we get sp(τ)(α)(e) ⇒ {∃e1, e2 ∈ S : [α(e1) and (e1 = e)] or

[α(e2) and (e2 = e)]} ⇒ α(e), therefore, (α or sp(τ)(α)) ⇒ α. Since α is a post-

fixpoint of λx . [α or sp(τ)(x)], Theorems 3.1.3.0.5 and 2.5.3.0.2 imply that sp(τ?)(α) =

lfp(λx . [α or sp(τ)(x)])⇒ α.

End of proof.

THEOREM 3.1.5.0.2
Let τ ∈ ((S × S) → B) be a total and deterministic transition relation and

β ∈ (S → B), then:

not [wp(τ?)(β)] = gfp(λα . [not(β) and wp(τ)(α)])

Proof: From Theorem 3.1.3.0.7, we know that not [wp(τ?)(β)] = not [lfp(λα . [β or

wp(τ)(α)])] = not [lfp(λα . [not(not(β) and not(wp(τ)(not(not(α)))))])] which is equal

(3)-16

to gfp(λα . [not(β) and not(wp(τ)(not(α)))]) from Proposition 2.5.5.0.5. Since τ is to-

tal and deterministic, there exists a total function τ̄ ∈ (S → B) such that {∀e1, e2 ∈
S, {τ(e1, e2)} ⇔ {τ̄(e1) = e2}}. Therefore, not(wp(τ)(not(α)))(e1) = not(not(α(

τ̄(e1)))) = α(τ̄(e1)) = wp(τ)(α)(e1) and, finally, not [wp(τ?)(β)] = gfp(λα . [not(β)and

wp(τ)(α)]).

End of proof.

PROPOSITION 3.1.5.0.3
Let π(S, τ, νε, νσ, νξ) be a deterministic discrete dynamic system and φ, ψ ∈

(S → B), then:

(a) - [sp(τ?)(φ) and wp(τ?)(νσ and ψ)] = sp[τ?][wp(τ?)(νσ and ψ) and φ]

(b) - [wp(τ)(ψ) and sp(τ?)(φ)]⇒ wp[τ][ψ and sp(τ?)(φ)]

sp(τ?)(φ) and wp(τ?)(ψ)

(c) - = lfp(λα . [sp(τ?)(φ) and (ψ or wp(τ)(α))]}
(d) - = lfp(λα . [wp(τ?)(φ) and (φ or sp(τ)(α))]}
(e) - = lfp(λα . [sp(τ?)(φ) and wp(τ?)(ψ) and (ψ or wp(τ)(α))]}
(f) - = lfp(λα . [sp(τ?)(φ) and wp(τ?)(ψ) and (φ or sp(τ)(α))]}

Proof:

(a) - First, let us prove that sp(τ?)[wp(τ?)(νσ and ψ)]⇒ wp(τ?)(νσ and ψ).

sp(τ?)(wp(τ?)(νσ and ψ))(e)

= {∃e1, e2 ∈ S,∃k, l ∈ ω : τk(e1, e2) and νσ(e2) and ψ(e2) and τ l(e1, e)}

• If k > l, then τk = τ l ◦ τk−l

= {∃e1, e2, e3 ∈ S,∃k, l ∈ ω : τ l(e1, e3) and τk−l(e3, e2) and νσ(e2) and
ψ(e2) and τ l(e1, e)}

(3)-17

Since τ is deterministic, τ l is deterministic as well, and therefore {e3 =
e}

.

⇒ {∃e2 ∈ S,∃k, l ∈ ω : τk−l(e, e2) and νσ(e2) and ψ(e2)} = wp(τ?)(νσ and
ψ)(e)

• If k ≤ l then τ l = τk ◦ τ l−k

= {∃e1, e2, e3 ∈ S,∃k, l ∈ ω : τk(e1, e2) and νσ(e2) and ψ(e2) and
τk(e1, e3) and τ l−k(e3, e)}
Since τ is deterministic, τk is deterministic as well, and therefore {e3 =
e2}.
However, from 3.1.1.0.1.(h) {νσ(e2) and τ l−k(e2, e)} ⇒ {e2 = e}.

⇒ {∃e2 ∈ S,∃k, l ∈ ω : τk−l(e, e2) and νσ(e2) and ψ(e2)} = wp(τ?)(νσ and
ψ)(e)

Then,

sp(τ?)(wp(τ?)(νσ and ψ) and φ)

⇒ sp(τ?)(wp(τ?)(νσ and ψ)) and sp(τ?)(φ) by monotonicity

⇒ wp(τ?)(νσ and ψ) and sp(τ?)(φ)

Reciprocally,

wp(τ?)(νσ and ψ) and sp(τ?)(φ)

= λ e . {(∃e2 ∈ S : τ?(e, e2) and νσ(e2) andψ(e2)) and (∃e1 ∈ S : φ(e1) and
τ?(e1, e))}
Since {∃e3 ∈ S : τ?(e1, e3) and τ?(e3, e2)} = τ? ◦ τ?(e1, e2) = τ?(e1, e2),
we get:

⇒ λ e . {∃e1 ∈ S : (∃e2 ∈ S : τ?(e1, e2) andνσ(e2) andψ(e2)) andφ(e1) and
τ?(e1, e)}

= sp(τ?)(wp(τ?)(νσ and ψ) and φ)

(b) - Let us prove that [wp(τ)(ψ) and sp(τ?)(φ)]⇒ wp(τ)[ψ and sp(τ?)(φ)].

wp(τ)(ψ) and sp(τ?)(φ)

(3)-18

= λ e . {(∃e2 ∈ S : τ(e, e2) and ψ(e2)) and (∃e1 ∈ S : φ(e1) and τ?(e1, e))}
Since {∃e3 ∈ S : τ?(e1, e3) and τ(e3, e2)} = τ? ◦ τ(e1, e2)⇒ τ?(e1, e2),
we get:

⇒ λ e . {∃e2 ∈ S : ψ(e2) and (∃e1 ∈ S : φ(e1) and τ?(e1, e2)) and τ?(e, e2)}
= wp(τ)(ψ and sp(τ?)(φ))

(c) - Let 〈Xδ : δ ≤ ω〉 and 〈Y δ : δ ≤ ω〉 be the increasing iterations starting from the

infimum λβ . false of (S → B) and respectively defined by λα . [ψ or wp(τ)(α)]

and λα . [sp(τ?)(φ) and (ψ or wp(τ)(α))]. We know that (X0 and sp(τ?)(φ)) =

λβ . false = Y 0. Let us assume that (Xδ−1 and sp(τ?)(φ))⇒ Y δ−1, then:

Xδ and sp(τ?)(φ)

= (ψ or wp(τ)(Xδ−1)) and sp(τ?)(φ)

⇒ (ψ or (wp(τ)(Xδ−1) and sp(τ?)(φ))) and sp(τ?)(φ)

⇒ (ψ or wp(τ)(Xδ−1 and sp(τ?)(φ))) and sp(τ?)(φ) from (b)

⇒ (ψ or wp(τ)(Y δ−1)) and sp(τ?)(φ) by induction assumption and mono-
tonicity

= Y δ

Then, (Xω andsp(τ?)(φ)) = ((OR
α<ω

Xα)andsp(τ?)(φ)) = (OR
α<ω

(Xα andsp(τ?)(φ)))⇒
OR
α<ω

Y α = Y ω. We get:

sp(τ?)(φ) and wp(τ?)(ψ)

= sp(τ?)(φ) and Xω from 3.1.3.0.7, 3.1.3.0.5, and 2.7.0.1

⇒ Y ω = lfp(λα . [sp(τ?)(φ) and (ψ or wp(τ)(α))])

⇒ lfp(λα . [sp(τ?)(φ)]) and lfp(λα . [ψ or wp(τ)(α)]) since lfp is monotone

= sp(τ?)(φ) and wp(τ?)(ψ)

(3)-19

By antisymmetry, (sp(τ?)(φ)andwp(τ?)(ψ)) = lfp(λα . [sp(τ?)(φ)])and(ψorwp(τ)(α))]).

(d), (e), and (f) can be proved in a similar manner.

End of proof.

3.2 DEFINITION OF THE OPERATIONAL SEMANTICS OF A
PROGRAMMING LANGUAGE

We define the operational semantics of a simple programming language, which allows

us to build sequential, iterative programs using assignment, conditional branching,

and unconditional branching instructions. We deliberately ignore the issues related to

the programming methodology (which would lead us to choose a higher-level language

rather than flowcharts), and the issues related to the definition of complex information

structures. Our purpose is to show how a program defines a discrete dynamic system.

3.2.1 Abstract syntax of programs

A program with n variables X = X1, . . . , Xn will be depicted by a finite connected

flowchart with a unique entry node, a unique exit node, and assignment nodes, test

nodes, and junction nodes (which correspond to labels in the program). For instance,

the following program:

{1}
X := f1(X) ;

{2}
L:

{3}
if p(X) then

{4}
X := f2(X) ;

{5}
goto L ;

endif ;
{6}

(3)-20

will be depicted by the following flowchart:

L

p(X)
false

true

1

X := f1(X)

X := f2(X)

2

3 3

6

4
4

5

We choose to follow a rather intuitive presentation since the methods to define

formally the context-dependent syntax of programming languages and the techniques to

transform a concrete representation of a program (as a string composed of characters

and conforming to the concrete syntax) into an abstract representation (as abstract

trees or flowcharts) are known (see for instance Lorho [1974]).

3.2.2 Operational semantics of the language

3.2.2.1 Set of states S

Let π be a program with n variables X1, . . . , Xn with values in U and α program points

(or edges in the corresponding flowchart) a1, . . . , aα. A state e ∈ S is a pair 〈m, c〉
where m ∈ Un is the memory state and c ∈ {a1, . . . , aα, error} is the control state.

3.2.2.2 Transition function τ̄

Since we consider deterministic programs, the transition relation τ ∈ ((S ×S)→ B) is

defined by a transition function τ̄ as τ = λ (e1, e2) . [τ̄(e1) = e2].

(3)-21

We denote by dom(f) the domain of definition of a partial function f . Then,

the transition function τ̄ corresponding to the program π is defined for all m ∈ Un by

the following rule patterns:

- τ̄(〈m, error〉) = 〈m, error〉

- If a1 is the entry point of an assignment instruction X := f(X) the exit point of

which is a2m and if we use the same notation for the syntactic expression f with

n variables X1, . . . , Xn and for the partial function from Un to Un it denotes, then

we get:

τ̄(〈m, a1〉) = if m ∈ dom(f) then 〈f(m), a2〉 else 〈m, error〉 endif

- If a is the entry point of a test instruction p(X) the true and false exit points of

which are respectively at and af , and if we use the same notation for the boolean

syntactic expression p with n variables X1, . . . , Xn for the partial function from Un

to B = {true, false} it denotes, then we get:

τ̄(〈m, a〉) = if m ∈ dom(p) then
if p(m) then 〈m, at〉 else 〈m, af 〉 endif

else
〈m, error〉

endif

- If a1 is the program point preceding a label L (or entry edge to a junction node L)

and a2 is the program point following this label (or exit edge from a junction node

L), i.e.:

{a1}
L :

{a2}

or {a1}
goto L ;
. . .

L :
{a2}

or L :
{a2}

. . .
{a1}

goto L ;
then:

τ̄(〈m, a1〉) = 〈m, a2〉

(3)-22

- If aσ is the exit point of the program, then:

τ̄(〈m, aσ〉) = 〈m, aσ〉

3.2.2.3 Partitioned deterministic total discrete dynamic system defined by a sequential
program

A sequential program π with n variables X1, . . . , Xn with value in U and α program

points a1, . . . , aα (where aε is the entry point and aσ is the exit point) defines a parti-

tioned deterministic total discrete dynamic system π(S, τ, ν1, . . . , να, νξ, ε, σ, ξ) where

S and τ are defined as above, νξ = λ 〈m, c〉 . (c = error), and for all i = 1, . . . , α, νi =

λ 〈m, c〉 . (c = ai).

We say that the execution of program π from the initial memory state m1

- leads to a semantic error if and only if {∃m2 ∈ Un : τ?(〈m1, aε〉, 〈m2, error〉)}

- terminates if and only if {∃m2 ∈ Un : τ?(〈m1, aε〉, 〈m2, aσ〉)}

3.3 FORWARD DEDUCTIVE SEMANTICS

In order to perform a semantic analysis of program π, that is, to study the behavior

of the discrete dynamic system defined by π, we will characterize the behavior of the

descendants of the entry states which satisfy an entry condition φ ∈ Pn where Pn =

(Un → B). Thus, it amounts to determining sp(τ?)(νε and φ̄) where φ̄ = λ 〈m, c〉 .
φ(m). Since the set S of states is partitioned, Propositions 3.1.3.0.7 and 3.1.4.0.2 show

that sp(τ?)(νε and φ̄) is isomorphic to the least solution of a system of forward semantic

equations associated with program π, and of the form:
Pi = (νi and νε and φ̄) or (OR

j∈pred(i)

sp(τji)(Pj))

i = 1, . . . , α, ξ

For all i = 1, . . . , α, we shall choose Pi = (Un → B) which is simpler than

Pi ∈ σi(S → B) = σi([{a1, . . . , aα, error}×Un]→ B) but is equivalent, since σi(S → B)

(3)-23

and (Un → B) are isomorphic, by the complete isomorphism ιi = λβ . {λm . [β(〈m,
ai〉)]} the inverse of which is ι−1

i = λβ . {λ 〈m, c〉 . [β(m)]}.
Since the entry states are exogenous (3.1.1.0.1.(g)), the set pred(ε) is empty, and

therefore, Pε = φ. For all i 6= ε, the predicate (νi and νε) is false (3.1.4.0.1.(d)), and

thus:

Pi = OR
j∈pred(i)

ιi[sp(τji)(ι−1
j [Pj])]

We need to compute:

ιi[sp(τji)(ι−1
j [Pj])]

= ιi[sp(τji)(λ 〈m, c〉 . [Pj(m)])]

= ιi[λ 〈m2, c2〉 . {∃〈m1, c1〉 ∈ S : Pj(m1) and τji(〈m1, c1〉, 〈m2, c2〉)}]
= λm2 . {∃〈m1, c1〉 ∈ S : Pj(m1) and τji(〈m1, c1〉, 〈m2, ai〉)}
= λm2 . {∃〈m1, c1〉 ∈ S : Pj(m1) and νj(〈m1, c1〉) and τ(〈m1, c1〉, 〈m2,

ai〉) and νi(〈m2, ai〉)}
= λm2 . {∃〈m1, c1〉 ∈ S : Pj(m1) and (c1 = aj) and τ(〈m1, c1〉, 〈m2, ai〉)}
= λm2 . {∃m1 ∈ Un : Pj(m1) and τ̄(〈m1, aj〉) = 〈m2, ai〉}

• If ai is the exit point of an assignment instruction X := f(X), then pred(i) = {j}
where aj is the entry point of this instruction, thus:

Pi = λm2 . {∃m1 ∈ Un : Pj(m1) and [(m1 ∈ dom(f)) and (〈f(m1), ai〉 = 〈m2,

ai〉)]}
= λm2 . {∃m1 ∈ Un : Pj(m1) and m1 ∈ dom(f) and f(m1) = m2}
= assign(f)(Pj) (by definition of assign)

• If ai is the true exit point of a test instruction p(X), then pred(i) = {j} where aj is
the entry point of this instruction, thus:

Pi = λm2 . {∃m1 ∈ Un : Pj(m1) and τ̄(〈m1, aj〉) = 〈m2, ai〉}
= λm2 . {∃m1 ∈ Un : Pj(m1) and (m1 ∈ dom(p)) and p(m1) and (〈m1,

ai〉 = 〈m2, ai〉)}

(3)-24

= λm2 . {Pj(m2) and (m2 ∈ dom(p)) and p(m2)}
= test(p)(Pj) (by definition of test)

• Similarly, if ai is the false exit point of a test instruction p(X) and aj is the entry

point of that instruction, then:

Pi = test(not(p))(Pj)

• If ai is the program point following a label that follows program point aj where

j ∈ pred(i), then:

Pi = OR
j∈pred(i)

ιi[sp(τji)(ι−1
j [Pj])]

= OR
j∈pred(i)

λm2 . {∃m1 ∈ Un : Pj(m1) and τ̄(〈m1, aj〉) = 〈m2, ai〉}

= OR
j∈pred(i)

λm2 . {∃m1 ∈ Un : Pj(m1) and (〈m1, ai〉 = 〈m2, ai〉)}

= OR
j∈pred(i)

Pj

• Since any execution error terminates the execution of the program, the program

has no error recovery, thus, the error states are stable. As a consequence, for all

i = 1, . . . , α, Pi is independent from Pξ. Thus, when solving the system of forward

equations associated with the program, we can ignore the equation that defines Pξ,

which could be evaluated last, if required for the application considered. In this case:

Pξ = OR
j∈pred(ξ)

ιξ[sp(τjξ)(ι−1
j [Pj])]

= OR
j∈pred(ξ)

λm2 . {∃m1 ∈ Un : Pj(m1) and τ̄(〈m1, aj〉) = 〈m2, error〉}

= Pξ or OR
j∈at(π)

λm2 . [Pj(m2) and m2 6∈ dom(expr(j))]

where at(π) denotes the set of j ∈ [1, α] such that aj is the entry point of an assignment

instruction or of a test instruction in program π and expr(j) denotes the function f of

the assignment instruction X := f(X) or predicate p of the test instruction p(X) the

entry point of which is aj .

(3)-25

To summarize:

DEFINITION 3.3.0.1 System of forward semantic equations associated with a pro-

gram and an entry specification
Let π be a program with n variables with values in U and α program points

a1, . . . , aα (where aε is the entry point) and an entry specification φ ∈ Pn = (Un →
B). Let P1, . . . , Pα be variables with values in Pn. Then, the system of forward

semantic equations P = Fπ(φ)(P) associated with (π, φ) is defined by the following

rules:

- If ai is the entry point of the program, then Pi = φ

- If aj is the entry point of an assignment instruction X := f(X) the exit point of

which is ai, then Pi = assign(f)(Pj) where assign = λ f . {λP . [λm2 . (∃m1 ∈
Un : P (m1) and (m1 ∈ dom(f)) and (m2 = f(m1)))]}

- If aj is the entry point of a test instruction p(X) and ai is the true (respectively

false) exit point of this instruction, then Pi = test(p)(Pj) (respectively Pi =

test(not(p))(Pj)) where test = λ p . {λP . [λm . (P (m) and (m ∈ dom(p)) and

p(m))]}

- If ai is the program point following a label that follows the program points

aj1 , . . . , ajk , then Pi =
k

OR
l=1

Pjl

From 3.1.3.0.5.(a), 3.1.3.0.7, and 3.1.4.0.2, we derive the proposition:

PROPOSITION 3.3.0.2 Property of the least fixpoint of the system of forward seman-

tic equations

(3)-26

The operator Fπ(φ) on (Pn)α is a complete join-morphism. The least fixpoint

(P1, . . . , Pα) of Fπ(φ) is such that, for all i ∈ [1, α], we have:

Pi = λm2 . {∃m1 ∈ Un : φ(m1) and τ?(〈m1, aε〉, 〈m2, ai〉)}

PROPOSITION 3.3.0.3 Conjunction and disjunction of entry specifications
λφ . [lfp(Fπ(φ))] is a complete join-morphism. If π is injective, it is a complete

meet-morphism.

3.4 TECHNIQUES FOR PROGRAM ANALYSIS BASED ON THE
FORWARD DEDUCTIVE SEMANTICS

We use the results of Paragraph 3.3 in order to prove the method of Floyd and Naur

to verify the partial correctness of a program, and then to extend this method to verify

the total correctness of a program. Then, we justify the criterion for termination of

programs by Katz and Manna. We illustrate the techniques for the analysis of the

conditions of termination with no error, of non-termination, and of incorrect execution

of programs, based on the forward deductive semantics. We also show how to use the

forward deductive semantics in order to characterize, at each point in a program, the

set of descendants of the initial states which satisfy an entry condition. Last, we show

that the symbolic execution of a program consists in solving the system of forward

semantic equations associated with the program using a chaotic iteration strategy.

3.4.1 Justification of the method by Floyd and Naur to verify the partial
correctness of a program

Floyd [1967] and Naur [1966] have justified their method to verify the partial correctness

of programs by a reasoning based on the operational semantics. The forward deductive

semantics makes a more elegant proof possible.

(3)-27

Let π be a program with n variables with values in U , α program points a1, . . . , aα

(the entry point and exit point are respectively denoted as aε and aσ) and Pn = (Un →
B). A proof of partial correctness for program π, the entry specification φ, and the exit

specification ψ consists in proving that:

{∀m2 ∈ Un, [∃m1 ∈ Un : φ(m1) and τ?(〈m1, aε〉, 〈m2, aσ〉)]⇒ [ψ(m2)]}

If we can guess a post-fixpoint P ∈ (Pn)α of Fπ(ψ) and such that {Pσ ⇒ ψ},
then Theorem 2.5.3.0.2 shows that {[lfp(Fπ(φ))] ⇒ P}, and so, {[lfp(Fπ(φ))]σ ⇒ ψ},
and Proposition 3.3.0.2 implies that program π is partially correct for (φ, ψ) since we

have:

λm2 . {∃m1 ∈ Un : φ(m1) and τ?(〈m1, aε〉, 〈m2, aσ〉)} ⇒ ψ

In practice, P is specified by providing only the loop invariants since the other

invariants can be derived by replacing the loop invariants with their values in the

system of equations.

We have proved that the method by Floyd–Naur is valid, but also that it is

complete, which means that (de Bakker & Merteens [1975]), if π is partially correct

for (φ, ψ), there always exists some P ∈ (Pn)α which allows us to prove it with this

method, that is, we can find P such that {[Fπ(φ)(P)⇒ P] and [Fσ ⇒ ψ]}. Using the

above method, this is achieved by letting P = lfp(Fπ(φ)).

3.4.2 Extension of the method by Floyd and Naur to verify the total correct-
ness of a program

A proof of the total correctness of a program π for an entry specification φ and an exit

specification ψ consists in proving that:

{νε and φ} ⇒ {wp(τ?)(νσ and ψ)}

Proposition 3.1.3.0.8 allows us to use a system of forward semantic equations,

so as to carry out this proof, since it is equivalent to proving that:

(3)-28

{νε and φ} ⇒ {λ ē . [∃e1 ∈ S : νσ(e1) and ψ(e1) and lfp(λα . [λ e . (e = ē) or
sp(τ)(α)])(e1)]}

that is, up to an isomorphism:

φ ⇒ λ m̄ . {∃m1 ∈ Un : [lfp(Fπ(λm . (m = m̄)))]σ(m1) and ψ(m1)}

In particular, the weakest entry specification that guarantees the termination of

program π is:

λ m̄ . {∃m1 ∈ Un : [lfp(Fπ(λm . (m = m̄)))]σ(m1)}

3.4.3 Justification of the criterion for the termination of programs by Katz
and Manna

Using our notations, the criterion for the termination of programs given by Katz &

Manna [1976] is the following: “if, for all P ∈ (Pn)α such that P is a set of invariants

of program π, we can prove that {∀m̄ ∈ Un, φ(m̄) ⇒ Pσ(m̄)}, then the execution of

program π terminates for all the memory states which satisfy φ.” In this statement,

an invariant Pi at point ai of program π is informally defined as “a predicate about

the variables which holds true for the current value of the variables each time point i

is reached during an execution starting from the initial state m̄.” The method used

to verify that a predicate P is an invariant is the same method as Floyd–Naur’s, that

is, following Paragraph 3.4.1, we check that P ⇐ Fπ(λx . (x = m̄))(P). Formally, the

termination criterion by Katz and Manna is thus:

φ ⇒ λ m̄ . [∃m1 ∈ Un : AND{Pσ(m1) : P ⇐ Fπ(λx . (x = m̄))(P)}]

From Theorem 2.5.3.0.2, we get:

AND{P : P ⇐ Fπ(λx . (x̄ = m̄))(P)} = lfp(Fπ(λx . (x = m̄)))

and we have established our criterion.

(3)-29

Katz and Manna have noted that their criterion cannot be used in practice, since

there usually exists infinitely many invariants associated with a program. Thus, it is

rarely possible to discover the general form of the fixpoints of Fπ(λx . (x = m̄)).

On the opposite, our criterion is based on lfp(Fπ(λx . (x = m̄))), which can be

computed by successive approximations, by guessing the general term of the sequence,

and proving by induction that the shape of these terms is well chosen, and by passing

to the limit to the ωth term (Theorem 2.7.0.1). Of course, this process can be used

only for manual computations, and an exact computation is not possible in many cases

where guessing the shape of the general term is very hard. We will give a few examples

of exact resolution of semantic equations later in this section and in Paragraph 3.6.

We will study constructive methods for the approximation of these exact solutions in

Chapter 4.

3.4.4 Characterization of the descendants of the entry states and conditions
for the termination, non-termination, and erroneous execution of a
program

Let us consider the following program, where x is an integer variable that takes values

in the range [−b+ 1, b] of machine integers:

{1}
while x ≥ 1000 do

{2}
x := x + α ;

{3}
redo ;

{4}

We shall assume that α is a positive integer constant. By definition of the “while”

iteration instruction, this program is equivalent to the program:

{1}
L :

if x ≥ 1000 then

(3)-30

{2}
x := x + α ;

{3}
goto L ;

endif ;
{4}

The system of forward semantic equations associated with the latter program

and the entry specification λx . (x = x̄) is:

P1 = λx . [x = x̄]

P2 = test(λx . [x ≥ 1000])(P1 or P3)

P3 = assign(λx . [x+ α])(P2)

P4 = test(λx . [x < 1000])(P1 or P3)

More simply, the equation that defines P2 is:

P2 = test(λx . [x ≥ 1000])(λx . (x = x̄) or assign(λx . [x+ α])(P2))

= λx . {−b + 1 ≤ x ≤ b) and (1000 ≤ x) and [(x = x̄) or (∃y : (−b + 1 ≤
y + α ≤ b) and (x = y + α) and P2(y))]}

= λx . {(1000 ≤ x ≤ b) and [(x = x̄) or P2(x− α)]}

The least fixpoint is obtained by successive approximations, starting from the

infimum λx . [false] (Theorem 2.5.3.0.2):

P 0
2 = λx . [false]

P 1
2 = λx . {(1000 ≤ x ≤ b) and (x = x̄)}
P 2

2 = λx . {(1000 ≤ x ≤ b)and[(x = x̄)or((1000 ≤ x−α ≤ b)and(x−α = x̄))]}
= λx . {(1000 ≤ x̄) and (x ≤ b) and [(x = x̄) or (x = x̄+ α)]}

For the induction step, let us assume that:

P k2 = λx . {(1000 ≤ x̄) and (x ≤ b) and
k−1

OR
j=0

(x = x̄+ jα)}

(3)-31

and let us verify that P k+1
2 is of the same form:

P k+1
2 = λx . {(1000 ≤ x ≤ b) and [(x = x̄) or P k2 (x− α)]}

= λx . {(1000 ≤ x ≤ b) and [(x = x̄) or ((1000 ≤ x̄) and (x ≤ b+α) and
k−1

OR
j=0

(x = x̄+ (j + 1)α))]}

= λx . {(1000 ≤ x̄) and (x ≤ b) and
k

OR
j=0

(x = x̄+ jα)}

By induction on k, we have found the general term of the sequence, so that the least

fixpoint can be obtained by passing to the limit (Theorem 2.7.0.1 and Proposition

3.3.0.2):

Pω2 = OR
k∈ω

P k2 = λx . {(1000 ≤ x̄) and (x ≤ b) and (∃j ≥ 0 : x = x̄+ jα)}

The other components can be obtained by replacing P2 with Pω2 in the initial system

of equations, which results in:

Pω1 = λx . {x = x̄}

Pω2 = λx . {(1000 ≤ x̄) and (x ≤ b) and (∃j ≥ 0 : x = x̄+ jα)}

Pω3 = λx . {(1000 ≤ x̄) and (x ≤ b) and (∃j ≥ 1 : x = x̄+ jα)}

Pω4 = λx . {(x = x̄) and (−b+ 1 ≤ x < 1000)}

From Proposition 3.3.0.2, we have obtained a characterization of the possible

values of x at each program point, and for any execution of the program starting from

an initial value of x which satisfies the entry specification φ = λx . (x = x̄).

In Paragraph 3.4.2, we have seen that the weakest entry specification that ensures

the termination of the program with no semantic error is:

λ x̄ . {∃x1 : Pω4 (x1)}
= λ x̄ . {−b+ 1 ≤ x̄ < 1000}

The set of the entry states leading to a semantic error is characterized by:

(3)-32

λ x̄ . {∃x1 : Pωξ (x1)}
= λ x̄ . {∃x : [(Pω1 (x) or Pω3 (x)) and not(−b + 1 ≤ x ≤ b)] or [Pω2 (x) and

not(−b+ 1 ≤ x+ α ≤ b)]}
= λ x̄ . {[(x̄ < −b+ 1) or (b < x̄) or [(α 6= 0) and (1000 ≤ x̄ ≤ b)]}

The set of entry states for which the program does not terminate is characterized

by:

λ x̄ . {∃x1 : not(Pωξ (x1) or Pω4 (x1))}
= λ x̄ . {(1000 ≤ x ≤ b) and (α = 0)}

3.4.5 Symbolic execution

Let π be a program with n variables x = (x1, . . . , xn) and let x̄ = (x̄1, . . . , x̄n) be

Skolem constants associated with undetermined, fixed elements of Un. We show that

the symbolic execution of program π consists in computing the least solution of the

system of forward semantic equations P = Fπ(λx . (φ(x̄) and (x = x̄)))(P) associated

with π, using any chaotic iteration strategy (Cousot & Cousot [1977e]).

Let P 0, . . . , Pn, . . . , Pω be an increasing chaotic iteration sequence starting from

the infimum P 0 of (Pn)α and defined by Fπ(λx . (φ(x̄) and (x = x̄))). Each term Pni

is of the form:

λx . {OR
j∈∆

[Qj(x̄) and x = Ej(x̄)]}

where Qj and Ej are formal expressions that depend on the initial value x̄ of the

variables and where none of the variables x1, . . . , xn appear as a free variable. By

convention, this equals λx . (x = false) when ∆ = φ.

In order to show that Pni can be written this way, it is sufficient to note that

assign(f) and test(p) are strict and that:

(3)-33

- assign(f)(λx . {OR
j∈∆

[Qj(x̄) and x = Ej(x̄)]})

= λx . {OR
j∈∆

[(Qj(x̄) and Ej(x̄) ∈ dom(f)) and x = f(Ej(x̄))]}

- test(p)(λx . {OR
j∈∆

[Qj(x̄) and x = Ej(x̄)]})

= λx . {OR
j∈∆

[(Qj(x̄) and Ej(x̄) ∈ dom(f) and p(Ej(x̄))) and x = Ej(x̄)]}

-
l

OR
k=1

(λx . { OR
jk∈∆k

[Qjk(x̄) and x = Ejk(x̄)]})

= λx . (OR{[Qjk(x̄) and x = Ejk(x̄)] : jk ∈
l⋃
k=l

∆k})

Let us consider the expression:

P = OR
j∈∆

Cj where Cj = λx . {Qj(x̄) and x = Ej(x̄)}

Then, we can view each Cj as a characterization for an execution path of π where Qj(x̄)

describes the conditions that should be verified so that any execution of π starting from

aε and with the initial state of variables x̄ visits program point ai in a state where the

variables x are equal to Ej(x̄).

Equivalently, we will write P as a symbolic context {〈Qj(x̄), (Ej)1(x̄), . . . ,

(Ej)n(x̄)〉 : j ∈ ∆} where φ corresponds to λx . [false].

For instance, let us consider the following program:

{1}
while x ≥ y do

{2}
x := x− y ;

{3}
redo ;

{4}

The corresponding system of forward semantic equations is:

(3)-34

P1 = {〈true, x̄, ȳ〉}

P2 = test(λ (x, y) . [x ≥ y])(P1 or P3)

P3 = assign(λ (x, y) . [x− y, y])(P2)

P4 = test(λ (x, y) . [x < y])(P1 or P3)

We will assume that the program manipulates integers (so that we can assume that

x− y is always defined).

If we choose a chaotic iteration strategy that corresponds to the execution order

of the program, we get the first terms of the iteration sequence as follows:[
P 0
i = φ (i = 1, . . . , 4)

P 1
1 = {〈true, x̄, ȳ〉}

P 1
2 = test(λ (x, y) . [x ≥ y])(P 1

1 or P 0
3) = {〈(x̄ ≥ ȳ), x̄, ȳ〉}

P 1
3 = assign(λ (x, y) . [x− y, y])(P 1

2) = {〈(x̄ ≥ ȳ), x̄− ȳ, ȳ〉}

P 1
4 = test(λ (x, y) . [x < y])(P 1

1 or P 0
3) = {〈(x̄ < ȳ), x̄, ȳ〉}

P 2
1 = {〈true, x̄, ȳ〉}

P 2
2 = {〈(x̄ ≥ ȳ), x̄, ȳ〉, 〈((x̄ ≥ ȳ) and (x̄ ≥ 2ȳ)), x̄− ȳ, ȳ〉}

P 2
3 = {〈(x̄ ≥ ȳ), x̄− ȳ, ȳ〉, 〈((x̄ ≥ ȳ) and (x̄ ≥ 2ȳ)), x̄− 2ȳ, ȳ〉}

P 2
4 = {〈(x̄ < ȳ), x̄, ȳ〉, 〈(x̄ < 2ȳ), x̄− ȳ, ȳ〉}

After two iterations, we have built the following symbolic execution tree (Hantler

& King [1976]):

(3)-35

1

42

3

42

3

<true, , >x y

<(), , >x yx ≥ y

<(), , >yx ≥ y x− y

x ≥ 2y<()and(), , >yx ≥ y x− y

x− 2yx ≥ 2y<()and(), , >yx ≥ y

x < 2y<()and(), , >yx ≥ y x− y

x < y<(), , >x y

We have represented the symbolic context Pi of the program π associated with

the point ai by the set of execution paths associated with the nodes with label i in

the symbolic execution tree. We could also represent the symbolic context Pi by the

maximal sub-tree of the tree above the leaves of which have label i.

Obviously, if no other specific assumption about x̄ and ȳ could be made, the next

terms of the chaotic iteration sequence would correspond to symbolic trees with greater

and greater height, until we would get the tree with infinite height corresponding to

lfp(Fπ(λx . (x = x̄))).

3.5 BACKWARD DEDUCTIVE SEMANTICS

In order to carry out the semantic analysis of a program π, that is, to study the behavior

of the discrete dynamic system defined by π, we have seen in Paragraph 3.1 that we need

to consider the ancestors of the final states that satisfy an exit specification ψ ∈ Pn

(3)-36

where Pn = (Un → B). Thus, this requires determining wp(τ?)(νσ and ψ̄) where

ψ̄ = λ 〈m, c〉 .ψ(m). Since the set of states S is partitioned, Propositions 3.1.3.0.7 and

3.1.4.0.3 show that wp(τ?)(νσ and ψ̄) is isomorphic to the least solution of a system of

backward semantic equations associated with the program π of the form:
Pi = (νi and (νσ and ψ̄)) or (OR

j∈succ(i)

wp(τij)(Pj))

i = 1, . . . , α, ξ

As in Paragraph 3.3, we choose Pi ∈ (Un → B) rather than Pi ∈ σi(S → B)

since σi(S → B) and (Un → B) are isomorphic by the complete isomorphism ιi = λβ .
{λm . [β(〈m, ai〉)]} the inverse of which is ι−1

i = λβ . {λ 〈m, c〉 . [β(m)]}.
For all i 6= σ, the predicate (νi and νσ) is false (3.1.4.0.1.(d)), thus:

Pi = OR
j∈succ(i)

ιi[wp(τij)(ι−1
j [Pj])]

where

ιi[wp(τij)(ι−1
j [Pj])]

= ιi[wp(τij)(λ 〈m, c〉 . [Pj(m)])]

= ιi[λ 〈m1, c1〉 . {∃〈m2, c2〉 ∈ S : τij(〈m1, c1〉, 〈m2, c2〉) and Pj(m2)}]
= λm1 . {∃〈m2, c2〉 ∈ S : τij(〈m1, ai〉, 〈m2, c2〉) and Pj(m2)}
= λm1 . {∃〈m2, c2〉 ∈ S : νi(〈m1, ai〉) and τ(〈m1, ai〉, 〈m2, c2〉) and νj(〈m2,

c2〉) and Pj(m2)}
= λm1 . {∃〈m2, c2〉 ∈ S : τ(〈m1, ai〉, 〈m2, c2〉) and (c2 = aj) and Pj(m2)}
= λm1 . {∃m2 ∈ Un : τ̄(〈m1, ai〉) = 〈m2, aj〉 and Pj(m2)}

• If ai is the entry point of an assignment instruction X := f(X), then succ(i) = {j}
where aj is the exit point of this instruction, thus:

Pi = λm1 . {∃m2 ∈ Un : τ̄(〈m1, ai〉) = 〈m2, aj〉 and Pj(m2)}
= λm1 . {∃m2 ∈ Un : (m1 ∈ dom(f)) and (f(m1) = m2) and Pj(m2)}
= λm1 . {(m1 ∈ dom(f)) and Pj(f(m1))}
= assign-1(f)(Pj) (by definition of assign-1)

(3)-37

• If ai is the entry point of the test instruction p(X), then succ(i) = {t, f} where at
and af are respectively the true exit point and the false exit point, thus:

Pi = OR
j∈{t,f}

λm1 . {∃m2 ∈ Un : τ̄(〈m1, ai〉) = 〈m2, aj〉 and Pj(m2)}

= λm1 . {∃m2 ∈ Un : (m1 ∈ dom(p)) and p(m1) and 〈m1, at〉 = 〈m2,

at〉 and Pt(m2)}
or

λm1 . {∃m2 ∈ Un : (m1 ∈ dom(p)) and not(p(m1)) and 〈m1, af 〉 =
〈m2, af 〉 and Pf (m2)}

= λm1 . {(m1 ∈ dom(p)) and p(m1) and Pt(m1)}
or

λm1 . {(m1 ∈ dom(p)) and not(p(m1)) and Pf (m1)}
= test(p)(Pt) or test(not(p))(Pf)

• If ai is the program point before label L (in a sequence or through an unconditional

branching), then succ(i) = {j} where aj is the program point right after L, thus:

Pi = λm1 . {∃m2 ∈ Un : τ̄(〈m1, ai〉) = 〈m2, aj〉 and Pj(m2)}
= λm1 . {∃m2 ∈ Un : 〈m1, aj〉 = 〈m2, aj〉 and Pj(m2)}
= Pj

• Since the exit states are stable, we have:

succ(σ) = {j : (∃e1, e2 ∈ S : τσj(e1, e2))}
= {j : (∃e1, e2 ∈ S : νσ(e1) and τ(e1, e2) and νj(e2))}
= {j : (∃e1, e2 ∈ S : νσ(e1) and τ(e1, e2) and (e1 = e2) and νj(e2))}
= {j : (∃e1 ∈ S : νσ(e1) and τ(e1, e1) and νj(e1))}
= {σ} (from 3.1.4.0.1.(d))

and thus, we get:

(3)-38

Pσ = ισ[νσ and ι−1
σ (ψ)] or ισ[wp(τσσ)(ι−1

σ [Pσ])]

= (ισ[νσ] andψ) or λm1 . {∃m2 ∈ Un : τ̄(〈m1, aσ〉) = 〈m2, aσ〉 andPσ(m2)}
= (λm . (νσ(〈m, aσ〉)) and ψ) or λm1 . {∃m2 ∈ Un : (m1 = m2) and

Pσ(m2)}
= ψ or Pσ

• Last, since the erroneous states are stable, we have the equation Pξ = Pξ, which we

can ignore.

To sum up:

DEFINITION 3.5.0.1 System of backward semantic equations associated with a pro-

gram and an exit specification
Let π be a program with n variables with values in U , α program points a1, . . . , aα

(where aσ is the exit point) and an exit specification ψ ∈ Pn = (Un → B). Let

P1, . . . , Pα be variables with values in Pn, then the system of backward semantic

equations P = Bπ(ψ)(P) associated with (π, ψ) is defined by the following rules:

• If ai is the exit point of the program, then Pi = ψ

• If ai is the entry point of the assignment instruction X := f(X) the exit point

of which is aj , then Pi = assign-1(f)(Pj) where assign-1 = λ f . {λP . [λm .
((m ∈ dom(f)) and P (f(m)))]}

• If ai is the entry point of the test instruction p(X) the true exit point and the

false exit point of which are respectively at and af , then Pi = test(p)(Pt) or

test(not(p))(Pf)

• If ai is the point before a label followed by program point aj , then Pi = Pj

From 3.1.3.0.5, 3.1.3.0.7, 3.1.4.0.3, 2.8.0.2, and from lfp(λPσ . [ψ or Pσ]) =

(3)-39

lfp(λPσ . [ψ]) = ψ, we derive the following proposition:

PROPOSITION 3.5.0.2 Properties of the least fixpoint of the system of backward se-

mantic equations
The operator Bπ(ψ) on (Pn)α is a complete join- and meet-morphism. The least

fixpoint (P1, . . . , Pα) of Bπ(ψ) is such that for all i ∈ [1, α], we have:

Pi = λm1 . {∃m2 ∈ Un : τ?(〈m1, ai〉, 〈m2, aσ〉) and ψ(m2)}

PROPOSITION 3.5.0.3 Properties of any pre-fixpoint of the system of backward se-

mantic equations
Let π be a program and P = Bπ(ψ)(P) be the system of backward semantic

equations associated with (π, ψ). For all i = 1, . . . , α and for all pre-fixpoint P of

Bπ(ψ), we have:

λm2 . {∃m1 ∈ Un : Pi(m1) and τ?(〈m1, ai〉, 〈m2, aσ〉)} ⇒ ψ

Proof: The proposition follows from 3.1.3.0.7, 3.1.4.0.3, 3.1.5.0.1 with β = (νσ and

ι−1
σ (ψ)), and since any pre-fixpoint of λPσ . [ψ] is also a pre-fixpoint of λPσ . [Pσ or ψ],

so that ισ[sp((τ?)iσ)(ι−1
i [Pi])]⇒ Pσ ⇒ ψ.

End of proof.

PROPOSITION 3.5.0.4 Properties of the greatest fixpoint of the system of backward

semantic equations
Let π be a program with n variables and α program points a1, . . . , aα and

(Q1, . . . , Qα) = gfp(Bπ(λX . true)). Then, ∀i ∈ [1, α], we have:

Qi = λm1 . {∀m2 ∈ Un,not(τ?(〈m1, ai〉, 〈m2, error〉))}

(3)-40

Proof: We apply Theorems 3.1.3.0.7, 3.1.4.0.3, and 3.1.5.0.2 with β = νξ. Therefore,

not(β) =
α

OR
i=1

νi and the direct decomposition of λα . [not(νξ) and wp(τ)(α)] is actually

Bπ(λX . true), except for the equation defining Pσ, which does not matter since the

equations Pσ = λX . true and Pσ = (λX . trueandPσ) have the same greatest fixpoint.

Therefore:

Qi = ιi[not(wp(τ?)(νξ))]

= λm1 . {not(wp(τ?)(νξ)(〈m1, ai〉))}
= λm1 . {not(∃〈m2, c2〉 ∈ S : τ?(〈m1, ai〉, 〈m2, c2〉) and νξ(〈m2, c2〉))}
= λm1 . {∀m2 ∈ Un,not(τ?(〈m1, ai〉, 〈m2, error〉))}

End of proof.

Following the definitions given in Paragraphs 3.1.2 and 3.2.2.3, and from the

above propositions, we derive:

PROPOSITION 3.5.0.5 Termination, non-termination, and semantic errors of a pro-

gram
Let π be a program with n variables with values in U and α program points

a1, . . . , aα. An execution of π starting from program point ai with initial state of

variables m ∈ Un

(a) - terminates with no semantic error if and only if [lfp(Bπ(λm1 . true))]i(m)

(b) - terminates in a state which satisfies the exit condition ψ ∈ (Un → B) if and

only if [lfp(Bπ(ψ))]i(m)

(c) - does not terminate if and only if {[gfp(Bπ(λm1 . true))]i(m) and

not([lfp(Bπ(λm1 . true))]i)(m)}

(d) - leads to a semantic error if and only if not([gfp(Bπ(λm1 . true))]i)(m)

(3)-41

Propositions 3.1.3.0.5 (for θ = τ?), 3.1.3.0.7, 3.1.4.0.3, and the duality principle

imply

PROPOSITION 3.5.0.6 Conjunction and disjunction of exit specifications
Let π be a program with n variables, with values in U and α program points,

Pn = (Un → B), and P = Bπ(ψ)(P) be the system of backward semantic equations

associated with (π, ψ). The functions λψ . [lfp(Bπ(ψ))] and λψ . [gfp(Bπ(ψ))] from

Pn to (Pn)α are complete join- and meet-morphisms.

3.6 TECHNIQUES FOR THE ANALYSIS OF PROGRAMS BASED
ON THE BACKWARD DEDUCTIVE SEMANTICS

We use the results of Paragraph 3.5 to justify Hoare [1969]’s method to verify the partial

correctness of programs, and the extension of this method by Dijkstra [1976] to proofs

of total correctness. Then, we show how the backward deductive semantics can be used

in order to analyze conditions under which a program terminates, does not terminate,

or leads to a semantic error. Last, we show how the backward deductive semantics can

be used in order to determine, for each program point, the set of all possible states

of program variables, during any execution of the program from an initial state which

satisfies some given entry specification.

3.6.1 Justification of Hoare’s method to verify the partial correctness of a
program

Let π be a program with n variables with values in U , α program points a1, . . . , aα, and

Pn = (Un → B). A proof of partial correctness of program π for the entry specification

φ and the exit specification ψ consists in proving that:

{∀m2 ∈ Un, [∃m1 ∈ Un : φ(m1) and τ?(〈m1, aε〉, 〈m2, aσ〉)]⇒ [ψ(m2)]}

(3)-42

If we can guess a pre-fixpoint P ∈ (Pn)α of Bπ(ψ) such that {φ ⇒ Pσ}, then Propo-

sition 3.5.0.3 shows that π is partially correct for (φ, ψ). Therefore, Hoare’s method

is valid. It is also complete (Cook [1975], Gorelick [1975], Clarke [1977]). Indeed, if π

is partially correct for (φ, ψ), there always exists P ∈ (Pn)α such that the proof can

be performed, that is, such that {{P ⇒ Bπ(ψ)(P)} and {φ⇒ Pε}}. Indeed, choosing
P = lfp(Bπ(ψ)) is sufficient since Proposition 3.5.0.5.(b) shows that, if this choice does

not work, then the program is incorrect.

3.6.2 Justification of Dijkstra’s method to verify the total correctness of a
program

A proof of the total correctness of program π for the entry specification φ and the exit

specification ψ consists in proving that:

{∀m1 ∈ Un, [φ(m1)]⇒ [∃m2 ∈ Un : τ?(〈m1, aε〉, 〈m2, aσ〉) and ψ(m2)]}

Proposition 3.5.0.2 shows that this amounts to proving that:

{φ⇒ [lfp(Bπ(ψ))]σ}

Therefore, the semantics of a program or an instruction is completely defined if we know

how to compute λψ . {[lfp(Bπ(ψ))]σ}. For instance, the following program pattern with

n variables X = X1, . . . , Xn:

while p(X) do
X := f(X) ;

redo ;

is, by definition, equivalent to the following program pattern:

{1}
L :

{2}
if p(X) then

{3}

(3)-43

X := f(X) ;
{4}

goto L ;

endif ;
{5}

The system of backward semantic equations associated with the latter pattern

and the exit specification ψ is:

P1 = P2

P2 = test(p)(P3) or test(not(p))(P5)

P3 = assign-1(f)(P4)

P4 = P2

P5 = ψ

Proposition 2.8.0.2 allows us to simplify this system into:

P1 = test(p)(assign-1(f)(P1)) or test(not(p))(ψ)

the least fixpoint of which is:

Pω1 = OR
k∈ω

((test(p) ◦ assign-1(f))k ◦ test(not(p)))(ψ)

We have recovered the rule for transformation of predicates stated by Dijkstra

[1976] for the iteration instruction “while.” Of course, Dijkstra does not use fixpoint

equations nor resolution by successive approximations, but he defines the semantics of

“while” loops as follows:

Pω1 = {∃k ∈ ω : Ik}

where

I0 = (not(p) and ψ)

Ik = (p and assign-1(f)(Ik−1)

(3)-44

which is equivalent to the result we have obtained when p is defined for all X ∈ Un

since, in this case:

I0 = test(not(p))(ψ)

Ik = test(p) ◦ assign-1(f)(Ik−1)

= ((test(p) ◦ assign-1(f))k ◦ test(not(p)))(ψ)

3.6.3 Analysis of conditions of termination, non-termination, and erroneous
execution of a program based on the backward deductive semantics

Very few articles are devoted to techniques to study the conditions under which a

program is incorrect. Proposition 3.5.0.5 is the basis for such a study. For instance, let

us consider the following program:

{1}
while x ≥ 1000 do

{2}
x := x + α ;

{3}
redo ;

{4}

where x is an integer variable which takes values between b and (−b + 1). We will

assume that b and (−b + 1) denote the largest and smallest integer values that can

be represented in a computer and that b > 1000. For the sake of simplicity, we will

assume that α is an integer constant between 0 and b.

Here is the system of backward semantic equations with four unknown variables

X1, . . . , X4 corresponding to this program:

X1 = test(λx . [x ≥ 1000])(X2) or test(λx . [x < 1000])(X4)

X2 = assign-1(λx . [x+ α])(X3)

X3 = test(λx . [x ≥ 1000])(X2) or test(λx . [x < 1000])(X4)

X4 = λx . [x = true]

(3)-45

We can simplify this system as follows:

X1 = test(λx . [x ≥ 1000])(X2) or test(λx . [x < 1000])(λx . [x = true])

= λx . {[X2(x) and (−b+1 ≤ x ≤ b) and (x ≥ 1000)] or [true and (−b+1 ≤
x ≤ b) and (x < 1000)]}

= λx . {(−b+ 1 ≤ x ≤ b) and (X2(x) or (x < 1000))}
X2 = assign-1(λx . [x+ α])(X1)

= λx . {(−b+1 ≤ x+α ≤ b) and (X2(x+α) or (x+α < 1000)) and (−b+1 ≤
x ≤ b)}

= λx . {(−b+ 1 ≤ x ≤ b− α) and (X2(x+ α) or (x < 1000− α))}

Thanks to Theorem 2.8.0.2, we can compute the least solution of the equation which

defines X2 by successive approximations as follows:

P 0
2 = λx . {false}
P 1

2 = λx . {(−b+ 1 ≤ x ≤ b− α) and (false or (x < 1000− α))}
= λx . {−b+ 1 ≤ x ≤ 1000− α} as (b > 1000)

P 2
2 = λx . {(−b + 1 ≤ x ≤ b − α) and ((−b + 1 ≤ x + α < 1000 − α) or (x <

1000− α))}
= λx . {(−b+ 1 ≤ x < 1000− 2α) or (−b+ 1 ≤ x < 1000− α)}
= λx . {−b+ 1 ≤ x < 1000− α}

As the iterations have converged, we have obtained the solution, so that:

P1 = λx . {(−b+ 1 ≤ x ≤ b) and ((−b+ 1 ≤ x < 1000− α) or (x < 1000))}
= λx . {−b+ 1 ≤ x < 1000}

Let us now compute the greatest solution of the equation which definesX2 by successive

approximations:

Q0
2 = λx . {true}

Q1
2 = λx . {(−b+ 1 ≤ x ≤ b− α) and (true or (x < 1000− α))}

(3)-46

= λx . {−b+ 1 ≤ x ≤ b− α}
Q2

2 = λx . {(−b+1 ≤ x ≤ b−α) and ((−b+1 ≤ x+α ≤ b−α) or (x < 1000−α))}
= λx . {(−b+ 1 ≤ x ≤ b− 2α) or (−b+ 1 ≤ x ≤ 999− α)}
= λx . {−b+ 1 ≤ x ≤ max(b− 2α, 999− α)}

Let us perform a proof by induction on the assumption that:

Qk2 = λx . {−b+ 1 ≤ x ≤ max(b− kα, 999− α)}

then, we get:

Qk+1
2 = λx . {(−b+ 1 ≤ x ≤ b−α) and ((−b+ 1 ≤ x+α ≤ max(b− kα, 999−

α)) or (x < 1000− α))}
= λx . {−b+ 1 ≤ x ≤ max(b− (k + 1)α, 999− α)}

and, by passing to the limit, we obtain the greatest fixpoint:

Q2 = λx . {∀k ≥ 1,−b+ 1 ≤ x ≤ max(b− kα, 999− α)}
= λx . {(−b+ 1 ≤ x ≤ 1000− α) or [∀k ≥ 1, (−b+ 1 ≤ x ≤ b− kα)]}
= λx . {(−b+ 1 ≤ x ≤ 1000− α) or ((−b+ 1 ≤ x ≤ b) and (α = 0))}

After computing this solution, we can deduce that:

Q1 = λx . {[−b+ 1 ≤ x ≤ b] and [(−b+ 1 ≤ x+ α < 1000− α) or ((−b+ 1 ≤
x+ α ≤ b) and (α = 0)) or (x < 1000)]}

= λx . {(−b+ 1 ≤ x < 1000) or ((−b+ 1 ≤ x ≤ b) and (α = 0))}
= P1 or λx . {(−b+ 1 ≤ x ≤ b) and (α = 0)}

In the end, Proposition 3.5.0.5 allows us to deduce that, if the variable x has the initial

value m, then the program under consideration:

- terminates with no semantic error if and only if P1(m) is true, which is equivalent

to (−b+ 1 ≤ m < 1000),

(3)-47

- does not terminate if and only if (Q1(m) and not(P1(m))) is true, which is equivalent

to {[(−b+ 1 ≤ m ≤ b) and (α = 0)] and [(m < −b+ 1) or (m ≥ 1000)]} = {(1000 ≤
m ≤ b) and (α = 0)},

- produces a semantic error if and only if not(Q1(m)) is true, which is equivalent to

{(m < −b+ 1) or (b < m) or ((1000 ≤ m) and (α 6= 0))}.

This result does indeed match our intuition since the program is defined only if −b+1 ≤
m ≤ b. Then, if m < 1000, the loop is not executed and the program terminates.

However, if m ≥ 1000, the loop is executed infinitely many times when α = 0, and

terminates with a semantic error due to an overflow when computing the addition x+α

when α 6= 0.

3.6.4 Use of the backward deductive semantics in order to characterize, for
each program point, the set of descendants of the initial states which
satisfy an entry specification

Let π be a program with n variables which take values in U and α program points

a1, . . . , aα, the entry point of which is aε. Let φ ∈ Pn be an entry specification. We

wish to determine, for all i ∈ [1, α],

λm2 . {∃m1 ∈ Un : φ(m1) and τ?(〈m1, aε〉, 〈m2, ai〉)}

that is:

λ e2 . {∃e1 ∈ S : νε(e1) and φ̄(e1) and τ?(e1, e2) and νi(e2)}

where:

φ̄ = ι−1(φ)

Propositions 3.1.3.0.8 and 3.1.4.0.3 show that we can use a system of backward

semantic equations, and compute:

λ ē . {∃e1 ∈ S : νε(e1) and φ̄(e1) and lfp(λ θ . [λ e . (e = ē) or wp(τ)(θ)])(e1) and
νi(ē)}

(3)-48

that is:

λ m̄i . {∃(m̄1, . . . , m̄i−1, m̄i+1, . . . , m̄α,mε) ∈ (Un)α : φ(mε) and [lfp(λX .
[λ (m1, . . . ,mα) . (m1 = m̄1, . . . ,mα = m̄α) or Bπ(λx . true)(X)])]ε(mε)}

In order to exemplify this on a simple case, let us consider the program below

(where a denotes an integer constant):

{1}
x := a ;

{2}
L :

{3}
x := x + 1 ;

{4}
goto L ;

Since the variable x takes integer values, we need to solve the following system of

backward equations:

P1 = λx . [(x = m̄1) or P2(a)]

P2 = λx . [(x = m̄2) or P3(x)]

P3 = λx . [(x = m̄3) or P4(x+ 1)]

P4 = λx . [(x = m̄4) or P3(x)]

The least solution is:

P1 = λx . [(x = m̄1) or (a = m̄2) or (m̄3 ≥ a) or (m̄4 ≥ a+ 1)]

P2 = λx . [(x = m̄2) or (m̄3 ≥ x) or (m̄4 ≥ x+ 1)]

P3 = λx . [(m̄3 ≥ x) or (m̄4 ≥ x+ 1)]

P4 = λx . [(m̄3 ≥ x) or (m̄4 ≥ x)]

Thus, the set of descendants, at program point {i}, of the entry states which satisfy

the entry condition φ is characterized by:

λ m̄i . {∃(m̄1, . . . , m̄i−1, m̄i+1, . . . , m̄4,mε) ∈ N :
φ(mε) and [(mε = m̄1) or (a = m̄2) or (m̄3 ≥ a) or (m̄4 ≥ a+ 1)]}

(3)-49

so, for φ = λx . true

λ m̄1 . {true}

λ m̄2 . {m̄2 = a}

λ m̄3 . {m̄3 ≥ a}

λ m̄4 . {m̄4 ≥ a+ 1}

3.7 COMBINATION OF FORWARD AND BACKWARD SEMAN-
TIC ANALYSES OF A PROGRAM

Let Fπ(φ) be the system of forward semantic equations associated with a program π

and Bπ(ψ) be the system of backward semantic equations associated with π; let φ and

ψ denote an entry specification and an exit specification. In Chapter 5, we will look for

a characterization of the set of descendants at any point ai of the entry states which

satisfy the entry condition φ, and which are also ancestors of the exit states which

satisfy the exit condition ψ; thus, we will have to characterize:

λ e . {∃e1, e2 ∈ S : νε(e1) and φ̄(e1) and τ?(e1, e) and νi(e) and τ?(e, e2) and
νσ(e2) and ψ̄(e2)}

Following from Propositions 3.3.0.2 and 3.5.0.2, this is equivalent to determining (up

to isomorphism):

[lfp(Fπ(φ)) and lfp(Bπ(ψ))]i

Since the least fixpoint of a system of semantic equations may not be computable

(Theorem 2.5.6.0.1), we shall simply try to approximate these fixpoints using construc-

tive techniques for approximation of fixpoints that will be described in Chapter 4.

In order to apply these techniques in Chapter 5, we will need the proposition below

which expresses some properties of {lfp(Fπ(φ)) and lfp(Bπ(ψ))}. These properties are

immediate consequences of Propositions 3.1.5.0.3, 3.1.4.0.2, and 3.1.4.0.3.

(3)-50

PROPOSITION 3.7.0.1
Let π be a program with n variables with values in U and α program points.

Let Pn ∈ (Un → B) and φ, ψ ∈ Pn.

(a) - {∀P ∈ (Pn), Bπ(ψ)(P) and lfp(Fπ(φ))} ⇒ Bπ(ψ)(P and lfp(Fπ(φ)))}

{lfp(Fπ(φ)) and lfp(Bπ(ψ))}
(b) - = lfp(Fπ{[lfp(Bπ(ψ))]ε and φ})
(c) - = lfp(λX . [lfp(Fπ(φ)) and Bπ(ψ)(X)])

(d) - = lfp(λX . [lfp(Bπ(φ)) and Fπ(φ)(X)])

(e) - = lfp(λX . [lfp(Fπ(φ)) and lfp(Bπ(ψ)) and Fπ(φ)(X)])

(f) - = lfp(λX . [lfp(Fπ(φ)) and lfp(Bπ(ψ)) and Bπ(ψ)(X)])

3.8 BIBLIOGRAPHY

Many algorithms for analyzing simple properties of programs are based on an opera-

tional semantics (for instance Kildall [1973], Wegbreit [1975], Cousot & Cousot [1975b]).

It is interesting to understand that these algorithms in fact consist in solving a system

of equations associated with the program, and that these equations are obtained by

simplifying the semantic equations (Cousot & Cousot [1977a]). Switching from an oper-

ational semantics to a deductive semantics is advantageous since it allows reasoning on

systems of semantic equations associated with the program instead of reasoning on the

program itself, so that we can reduce the semantic analysis of programs to the classic

mathematical problem of computing a solution or an approximation of a solution of a

system of equations. For instance, there are very few analysis algorithms for recursive

procedures. A possible reason for this is that the definition of a semantics for recursive

procedures based on the inlining of the body of the procedure at each call (Wegbreit

(3)-51

[1975]) or on the transformation of the program into an iterative program using a re-

cursion stack (Karr [1975]) does not help the intuition. On the contrary, reasoning on

systems of equations (Cousot & Cousot [1977d]) allowed us to obtain better results.

The difficulties which arise when extending the axiomatic semantics of Hoare [1969] to

instructions with a non-contextual syntax (Clint & Hoare [1972]) is another example.

In the deductive semantics, the syntactic process to build the system of equations is

under context, but the justification of Hoare’s method (3.4.1) does not depend on syn-

tactic issues, since it is only based on the properties of the system of semantic equations.

The language we consider to illustrate our method for semantic analysis of pro-

grams is simple, but it is general enough to illustrate our results. In fact, Paragraph

3.1 shows well that the methods for semantic analysis of programs can be studied in-

dependently from any specific programming language. C. Pair gave us the idea to use

the notion of discrete dynamic system. It was also used by Pnueli [1977] in order to

formalize the temporal reasonings which arise in the verification of parallel programs.

In order to extend our study to richer programming languages, we would need

to consider more complex data-structures (see, for instance, de Bakker [1977a], Finance

[1976], Luckham & Suzuki [1976], Pair [1974], Rémy [1974]).

When considering a richer language, defining the semantics of this language

would be harder, and the operational method would probably be too cumbersome

to allow deriving a deductive semantics in a straightforward way. There exist too

many techniques that could replace the operational semantics to list them all here (see

for instance Bjørner [1977a,1977b]). The computational semantics would most likely

be well-fitted (Finance [1976]); as would the denotational semantics (Tennent [1976]

provides an introduction, which can be extended by Stoy [1977]; Milne & Strachey [1976]

is the main reference whereas Scott [1976] provides a full bibliography). However, please

note that using “continuation” techniques (Strachey & Wadsworth [1974], Milne [1977])

(3)-52

to handle unconditional branching is not mandatory for the denotational semantics,

provided that the language does not feature label variables (nor passing functions as

parameters).

Following Kleene [1952], the Oxford group introduced the use of fixpoints in or-

der to define the denotational semantics of programming languages. The application

to proofs of recursive procedures was immediate (see, for instance, Manna, Ness &

Vuillemin [1973]). Even though this is not mandatory (Cousot & Cousot [1977e], Milne

[1977]), the techniques to verify iterative programs are most often justified by con-

sidering equivalent recursive programs obtained by MacCarthy’s transformation (Bird

[1976], Clarke [1977], Manna [1974], Vuillemin [1973]) which is sometimes implicitly ap-

plied (de Bakker [1977a]). We believe that the use of the deductive semantics is the best

one, not only to justify the methods to verify the partial correctness of programs, but

also to extend these to verify the total correctness (which was already done for Hoare’s

method by Dijkstra [1976] and also by Basu & Yeh [1975], de Bakker [1976], Hehner

[1976]), for the analysis of incorrect programs (in particular regarding non-termination,

which was not studied much (Katz & Manna [1976], Sintzoff [1976a], van Lamsweerde

[1977])), and also to justify or discover methods for the approximate semantic analysis

of programs (Chapter 5).

CHAPTER 4.

CONSTRUCTIVE METHODS TO APPROXIMATE FIXPOINTS
OF MONOTONE OPERATORS ON A COMPLETE LATTICE

4. CONSTRUCTIVE METHODS TO APPROXIMATE
FIXPOINTS OF MONOTONE OPERATORS ON A COMPLETE

LATTICE

4.1 Iterative algorithms to approximate fixpoints by accelerating the convergence

by extrapolation . 2

4.1.1 Approximation of the fixpoints of monotone operators 2

4.1.2 Approximation of the solution of a system of equations 9

4.2 Closure operators on a complete lattice . 19

4.2.1 Definition, characterizations, and properties of closure operators . . 20

4.2.2 Characterization of a subset of a complete lattice as the image of

this lattice by an upper closure operator 21

4.2.3 Lattice of the upper closure operators on a complete lattice and

lattice of the induced spaces . 23

4.2.4 Composition of upper closure operators on a complete lattice 28

4.2.5 Definition of an upper closure operator by a family of principal ideals 31

4.2.6 Definition of an upper closure operator by a join-complete congru-

ence relation . 34

4.2.7 Definition of an upper closure operator by a pair of adjoint functions 37

4.2.8 Induced closure operator on the space of monotone operators on a

complete lattice L by a closure operator on L 43

4.3 Approximation of the fixpoints of an operator by approximation of the operator 45

4.3.1 Induced approximation of an operator on a complete lattice by an

approximated image of the lattice 46

4.3.2 Improving the approximation of a fixpoint of a monotone operator . 49

4.4 Bibliographic notes . 53

4. CONSTRUCTIVE METHODS TO APPROXIMATE
FIXPOINTS OF MONOTONE OPERATORS ON A COMPLETE

LATTICE

Let L(v) be a set that is partially ordered by an ordering relation v and x, y ∈ L. We

say that x is an under-approximation of y if and only if x v y. Dually, we say that x

is an over-approximation of y if and only if y v x.
In the preceding chapter, we have shown that the semantic analysis of a program

boils down to computing the extreme fixpoints of systems of equations associated with

this program. Since the exact computation of these fixpoints cannot be automatized,

we are going to bound these fixpoints between an under- and an over-approximation.

This is why we design, in the present chapter, methods to effectively compute under-

and over-approximations of extreme fixpoints of monotone operators on a complete

lattice. In Paragraphs 4.1 and 4.3, we describe two kinds of approximation methods

which will be used together in practice. The methods to approximate the fixpoints of

equation systems described in Paragraph 4.3 are based on the idea of simplifying the

equations we want to solve. The terms to be neglected cannot be simplified according to

numerical criteria, but according to only some algebraic criteria based on the notion of

closure operators which are described in Paragraph 4.2. The methods to approximate

the fixpoints described in Paragraph 4.1 are based on the idea of accelerating the

convergence of the exact iterative methods described in Chapter 2. We will extrapolate

the terms of the iteration sequences in order to get an approximation of their limit

within a finite amount of steps.

(4)-2

4.1 ITERATIVE ALGORITHMS TO APPROXIMATE FIXPOINTS
BY ACCELERATING THE CONVERGENCE BY EXTRAP-
OLATION

We consider, in Paragraph 4.1.1, some algorithms to approximate the extreme fixpoints

of monotone operators on a complete lattice. Then, in Paragraph 4.1.2, we will focus

on the particular case of systems of monotone equations.

4.1.1 Approximation of the fixpoints of monotone operators

In order to bound a fixpoint P of an operator f on a complete lattice L, we use the

iterative methods from Chapter 2, while accelerating the convergence by extrapolating

the terms of the sequence of iterates. In order to avoid iterating forever along cycles

of incomparable elements, we use the main idea of Chapter 2, that is to construct a

sequence of iterates which is either increasing or decreasing. Moreover, we consider

an extrapolation that can be either an over-approximation or an under-approximation

of the terms of the sequence, which gives four approximate iterative methods. Then,

we show how these methods can be used in order to bound the extreme fixpoints of

monotone operators on complete lattices.

Increasing over-approximated iteration sequence

DEFINITION 4.1.1.0.1

(4)-3

Let L(v,⊥,>,t,u) be a complete lattice and f ∈ mon(L → L), then an in-

creasing over-approximated iteration sequence for f starting from d ∈ L is a sequence

〈xδ : δ ∈ µ(L)〉 of elements in L such that:

(a) - x0 = d

(b) - xδ w xδ−1 t f(xδ−1) if δ is a successor ordinal such that xδ−1 6∈ postfp(f)

(c) - xδ = xδ−1 if δ is a successor ordinal such that xδ−1 ∈ postfp(f)

(d) - xδ w
⊔
α<δ

xα if δ is a limit ordinal

THEOREM 4.1.1.0.2
Let d ∈ L(v,⊥,>,t,u) and f ∈ mon(L → L), then an increasing over-

approximated iteration sequence for f starting from d ∈ L is a stationary ascending

chain the limit of which is a post-fixpoint of f and an over-approximation of luis(λx .
x t f(x))(d).

Proof: Let 〈xδ : δ ∈ µ(L)〉 be an increasing over-approximated iteration sequence

for f starting from d. It is an ascending chain, that is, {∀δ ∈ µ(L),∀β ∈ µ(L), {δ ≤
β} ⇒ {xδ v xβ}}. Let δ ∈ µ(L) be a given element. Whenever β = δ, this lemma

holds because v is reflexive. Let us now assume that the lemma holds for any β

such that δ ≤ β < γ < µ(L). For any successor ordinal γ, we have xδ v xγ−1

thanks to the induction hypothesis. If xγ−1 ∈ postfp(f), then xδ v xγ−1 = xγ ,

otherwise xδ v xγ−1 v xγ−1 t f(xγ−1) v xγ . For any limit ordinal γ, we have

xδ v
⊔
β<γ

xβ v xγ . By transfinite induction, we proved that 〈xδ : δ ∈ µ(L)〉 is an

ascending chain, which, by definition of µ(L), cannot be strictly increasing: {∃ε ∈
µ(L) : (ε+ 1) ∈ µ(L) and xε = xε+1}. Since ε+ 1 is a successor ordinal, xε = xε+1 is

a post-fixpoint of f . Indeed, xε+1 could not have been computed by applying the rule

4.1.1.0.1.(b) because xε = xε+1 = xεtf(xε) implies xε = f(xε) which would contradict

xε 6∈ postfp(f). So, the rule 4.1.1.0.1.(c) implies that 〈xδ : δ ∈ µ(L)〉 is stationary and

(4)-4

there exists an ordinal ε such that xδ = xε for any ordinal δ ∈ µ(L) such that δ ≥ ε.

Theorem 2.5.3.0.1 implies that luis(λx .xtf(x))(d) v xε because xε is a post-fixpoint

of f that is greater than d.

End of proof.

Decreasing under-approximated iteration sequence

By the duality principle, we get:

DEFINITION 4.1.1.0.3
Let L(v,⊥,>,t,u) be a complete lattice and f ∈ mon(L→ L), then a decreas-

ing under-approximated iteration sequence for f starting from d ∈ L is a sequence

〈xδ : δ ∈ µ(L)〉 of elements in L such that:

(a) - x0 = d

(b) - xδ v xδ−1 u f(xδ−1) if δ is a successor ordinal such that xδ−1 6∈ prefp(f)

(c) - xδ = xδ−1 if δ is a successor ordinal such that xδ−1 ∈ prefp(f)

(d) - xδ v
l

α<δ

xα if δ is a limit ordinal

THEOREM 4.1.1.0.4
Let d ∈ L(v,⊥,>,t,u) and f ∈ mon(L → L), then a decreasing under-

approximated iteration sequence for f starting from d ∈ L is a stationary descending

chain the limit of which is a pre-fixpoint of f and an under-approximation of llis(λx .
x u f(x))(d).

Increasing under-approximated iteration sequence

DEFINITION 4.1.1.0.5

(4)-5

Let L(v,⊥,>,t,u) be a complete lattice, f ∈ mon(L→ L), then an increasing

under-approximated iteration sequence for f starting from d ∈ L is a sequence 〈xδ :

δ ∈ µ(L)〉 of elements in L such that:

(a) - x0 = d

(b) - xδ−1 v xδ v f(xδ−1) t xδ−1 if δ is a successor ordinal

(c) - xδ =
⊔
α<δ

xα if δ is a limit ordinal

THEOREM 4.1.1.0.6
Let d ∈ L(v,⊥,>,t,u) and f ∈ mon(L → L), then an increasing under-

approximated iteration sequence for f starting from d is an ascending chain and all

terms are under-approximations of luis(λx .x t f(x))(d).

Proof: Let 〈xδ : δ ∈ µ(L)〉 be an increasing under-approximated iteration sequence

for f starting from d. Let us prove that {∀δ ∈ µ(L),∀β ∈ µ(L), {δ ≤ β} ⇒ {xδ v xβ}}.
Assume that δ is given, the proof is done by transfinite induction on β. If β = δ, then

the lemma holds since v is reflexive. Assume that the lemma holds for any β such that

δ ≤ β < γ < µ(L). If γ is a successor ordinal, then xδ v xγ−1 by induction hypothesis

and xγ−1 v xγ by 4.1.1.0.5.(b). Likewise, if γ is a limit ordinal, then xδ v
⊔
β<γ

xβ = xγ .

We proved, by transfinite induction, that 〈xδ : δ ∈ µ(L)〉 is an ascending chain.

Let 〈yδ : δ ∈ µ(L)〉 be the increasing under-approximated iteration sequence

starting from d and defined by λx .xtf(x). We know that x0 = y0 = d. Assume that

for any γ < δ we have xγ v yγ . If δ is a successor ordinal, then, in particular, xδ−1 v
yδ−1. So, by 4.1.1.0.5.(b) and monotonicity, xδ v f(xδ−1)txδ−1 v f(yδ−1)tyδ−1 = yδ.

If δ is a limit ordinal, then we have xδ =
⊔
γ<δ

xγ v
⊔
γ<δ

yγ = yδ. By transfinite induction

and Theorem 2.5.3.0.1, we proved that ∀δ ∈ µ(L), xδ v yδ v luis(λx .x t f(x))(d).

End of proof.

Decreasing over-approximated iteration sequence

(4)-6

By the duality principle, we get:

DEFINITION 4.1.1.0.7
Let L(v,⊥,>,t,u) be a complete lattice and f ∈ mon(L→ L), then a decreas-

ing over-approximated iteration sequence for f starting from d ∈ L is a sequence 〈xδ :

δ ∈ µ(L)〉 of elements in L such that:

(a) - x0 = d

(b) - f(xδ−1) u xδ−1 v xδ v xδ−1 if δ is a successor ordinal

(c) - xδ =
l

α<δ

xα if δ is a limit ordinal

THEOREM 4.1.1.0.8
Let d ∈ L(v,⊥,>,t,u) and f ∈ mon(L → L), then a decreasing over-

approximated iteration sequence for f starting from d is a descending chain and

all terms are over-approximations of llis(λx .x u f(x))(d).

Chapter 2 has shown that the fixpoints of a monotone operator f on a complete

lattice can be computed as the limits of increasing or decreasing iteration sequences

for λx .x t f(x) and λx .x u f(x) (Theorem 2.5.5.0.2). Having defined in a very

general framework some iterative methods with accelerated convergence that enable

under- and over- approximations of these limits, we can now describe some fixpoint

approximation methods for a monotone operator on a complete lattice.

Remark 4.1.1.0.9 Approximation of the extreme fixpoints of a monotone operator

on a complete lattice

We want to bound the least fixpoint lfp(f) of a monotone operator f ∈ mon(L→
L) on the complete lattice L(v,⊥,>,t,u). It is always possible to first find d and

D ∈ L that bound lfp(f), since we can choose for instance d = ⊥ v lfp(f) v > = D,

(4)-7

and then, to improve this result since d v luis(λx .x t f(x))(d) = lfp(f) v llis(λx .
xuf(x))(D) v D. In practice, we can approach these limits by any term of an increasing

under-approximated iteration sequence for f starting from d (IUIS(f, d)) and of a

decreasing over-approximated iteration sequence for f starting from D (DOIS(f,D)),

since Theorems 4.1.1.0.6 and 4.1.1.0.8 imply that d v IUIS(f, d) v luis(λx .x t
f(x))(d) = lfp(f) v llis(λx .x u f(x))(D) v DOIS(f,D) v D. By stopping after

a given iteration rank, the convergence of approximation algorithms can always be

enforced.

In order to improve the initial over-approximation D of lfp(f) by the terms of

DOIS(f,D), no fixpoint of f shall be jumped over (that is to say the choice of a term

x in DOIS(f,D) such that x v P = f(P) v D shall not be allowed) for the good

reason that it would then be possible to jump below lfp(f) in particular, which leads

to an unsound over-approximation. So, if D is greater than another fixpoint P of f , all

the terms of DOIS(f,D) are greater than P , which does not lead to an accurate over-

approximation of lfp(f). It is better to use the limit of an increasing over-approximated

iteration sequence for f starting from an under-approximation d (IOIS(f, d)). Indeed,

Theorem 4.1.1.0.2 implies that lfp(f) = luis(λx .x t f(x))(d) v IOIS(f, d) and it

is always possible to enforce the convergence by choosing approximate terms that are

large enough, but smaller than D, which ensure that lfp(f) v IOIS(f, d) v D. If the

limit of IOIS(f, d) is not a fixpoint of f , it is possible to improve it by applying, as

previously, Theorem 4.1.1.0.8. To sum up, having under- and over-approximations d

and D of lfp(f), we propose to improve them as follows:

d v IUIS(f, d) v lfp(f) v DOIS(f,D u IOIS(f, d)) v D

It is always possible to choose d = ⊥ and D = >, which gives graphically:

(4)-8

IOIS(f,)

DOIS(f,P)

P

IUIS(f,)

IOIS(f,)

gfp(f)

prefp(f)

lfp(f)

fp(f)

postfp(f)

x and f(x) not comparable

L

⊥

⊥

⊥ ⊥

⊥

Legend:

f : monotone operator on the complete lattice L(v,⊥,>,t,u)

lfp(f) : least fixpoint of f

gfp(f) : greatest fixpoint f

prefp(f) : {x ∈ L : x v f(x)}
postfp(f) : {x ∈ L : f(x) v x}

Increasing over-approximated iteration sequence : IOIS

Increasing under-approximated iteration sequence : IUIS

Decreasing over-approximated iteration sequence : DOIS

Decreasing under-approximated iteration sequence : DUIS

Dually, given am approximation d v gfp(f) v D of the greatest fixpoint of

f , we will get a better over-approximation of gfp(f) by any term of a decreasing

(4)-9

over-approximated iteration sequence for f starting from D (DOIS(f,D)) (Theorem

4.1.1.0.8). In order to get a better under-approximation of gfp(f), we will compute

the limit of a decreasing under-approximated iteration sequence for f starting from D

(DUIS(f,D)) by choosing all terms greater than d (Theorem 4.1.1.0.4). If the result

is not a fixpoint, we will improve it by an increasing under-approximated iteration

sequence for f . As a summary, we will have:

d v IUIS(f, d tDUIS(f,D)) v gfp(f) v DOIS(f,D) v D

which gives graphically, for the choice d = ⊥, D = >:

IOIS(f,)

prefp(f)

IUIS(f,)

DOIS(f,P)

P

lfp(f) gfp(f)

postfp(f)

fp(f)

DOIS(f,)

IUIS(f,Q)

Q

DUIS(f,) ⊥

⊥
⊥

⊥

⊥
⊥

End of remark.

4.1.2 Approximation of the solution of a system of equations

We complete the preceding study of the iterative methods to approximate the fixpoints

of monotone operators, based on convergence acceleration by extrapolation, with the

(4)-10

case of a system of equations. Our goal is to show how the use of extrapolations can be

applied to the methods of chaotic iterations (Theorem 2.9.1.0.2) and, more particularly,

to take into account the structure of the equations so that only a minimal amount of

extrapolation is performed while ensuring the convergence.

DEFINITION 4.1.2.0.1 Dependency graph of a system of equations
Let X = F (X) be a system of equations where F ∈ Ln(v,⊥,>,t,u) has the

following form:
X1 = F1(X1, . . . , Xn)

. . .

Xn = Fn(X1, . . . , Xn)

A dependency graph associated with this system of equations satisfies the following

conditions:

- The graph contains n edges numbered 1, . . . , n. Some of these edges are labeled

“simple”, whereas some others are labeled “head of circuit.”

- We say that f ∈ (Ln → L) “depends on the i-th component” if and only if

{∃x1, . . . , xi, x
′
i, . . . , xn ∈ Ln+1 : f(x1, . . . , xi, . . . , xn) 6= f(x1, . . . , x

′
i, . . . , xn)}.

Then, for all i, j = 1, . . . , n, the target of the edge numbered i is the source of the

edge numbered j if Fj depends on the i-th component.

- Any circuit (Berge [1973, p. 8]) of the graph passes through an edge labelled “head

of circuit” and the number of edges labelled “head of circuits” is minimal.

Remark 4.1.2.0.2 Choosing the heads of circuits

Let us consider the system of forward semantic equations associated with a

program π. Then, the graph of the program π is a dependency graph of this system

of equations. We have shown that we can choose as set of head circuits any minimal

(4)-11

set (with respect to set inclusion) in the family of the grids of the hypergraph (Berge

[1973, p. 404–405]) such that each edge is the set of outgoing edges from the junction

nodes belonging to an elementary circuit of the program graph. As this choice is not

unique, various heuristics have been proposed in Cousot & Cousot [1975b, p. 40–46].

In particular, when the graph is reducible as defined in Allen & Cocke [1972] (and

according to Knuth [1971], 95% of FORTRAN programs satisfy this property), the

edges labeled “head of circuit” are the outgoing edges from the junction nodes that are

the heads of the intervals of the program graph.

End of remark.

LEMMA 4.1.2.0.3 Necessary and sufficient condition to ensure the convergence of a

chaotic iteration
Let 〈xδ : δ ∈ Ord〉 be a chaotic iteration starting from D and defined by F ∈

(Ln → Ln) and 〈Jδ : δ ∈ Ord〉 (satisfying the assumption 2.9.2.0.1.(a)). Let G be a

dependency graph of the system of equations X = F (X).

The sequence 〈xδ : δ ∈ Ord〉 is stationary if and only if the sequence 〈Xδ
i :

δ ∈ Ord〉 is stationary for all i in 1, . . . , n such that the edge numbered i in G is

labeled “head of circuit.”

Lemma 4.1.2.0.3 shows that an arbitrary chaotic iteration defined by an arbi-

trary operator on Ln is stationary if and only if all the “head of circuit” components

are stable after a finite number of iterations. So, we see that, in order to accelerate

the convergence of a chaotic iteration, it is sufficient to only enforce the convergence of

the “head of circuit” components. During the iteration, we will use only one extrapo-

lation method that is formalized by “widening” and “narrowing” operators. Again, we

consider increasing and decreasing iterations with over- and under-extrapolation.

Chaotic increasing iteration sequence with upper widening

(4)-12

DEFINITION 4.1.2.0.4 Upper widening
Let L(v,⊥,>,t,u) be a complete lattice, then ∇̄ ∈ (L × L → L) is called an

upper widening if and only if it satisfies the following conditions:

(a) - {∀x, y ∈ L, x t y v x ∇̄ y}

(b) - For any ascending chain 〈xδ : δ ∈ ω〉 of elements in L, the sequence 〈yδ : δ ∈ ω〉
defined as y0 = x0 and yδ+1 = yδ ∇̄ xδ+1 is a non-strictly ascending chain.

DEFINITION 4.1.2.0.5 Chaotic increasing iteration sequence with upper widening
Let L(v,⊥,>,t,u) be a complete lattice and F ∈ mon(Ln → L), then a chaotic

increasing iteration sequence with upper widening starting from D ∈ Ln and defined

by F , the upper widening ∇̄ , the dependency graph G of the system of equations

X = F (X), and the sequence 〈Jδ : δ ∈ ω〉 (that satisfies the condition 2.9.2.0.1.(a))

is a sequence 〈Xδ : δ ∈ ω〉 of elements in Ln defined as:

(a) - X0 = D

(b) - Xδ
i = Xδ−1

i t Fi(Xδ−1) whenever δ > 0, i ∈ Jδ, the edge numbered i in
G is “simple” and not(Fi(Xδ−1) v Xδ−1

i)

(c) - Xδ
i = Xδ−1

i ∇̄ Fi(Xδ−1) whenever δ > 0, i ∈ Jδ, the edge numbered i

in G is “head of circuit” and not(Fi(Xδ−1) v
Xδ−1
i)

(d) - Xδ
i = Xδ−1

i whenever δ > 0 and ((i 6∈ Jδ) or (Fi(Xδ−1) v
Xδ−1
i))

THEOREM 4.1.2.0.6 Convergence of a chaotic increasing iteration sequence with up-

per widening
Let D ∈ Ln(v,⊥,>,t,u) and F ∈ mon(Ln → Ln), then a chaotic increasing

iteration sequence 〈Xδ : δ ∈ ω〉 with upper widening for F and D is an ascending

chain that is stationary after a finite number of steps, and its limit is a post-fixpoint

of F . Moreover, this limit is an over-approximation of luis(λX .X t F (X))(D).

(4)-13

Proof: The sequence 〈Xδ : δ ∈ ω〉 is an ascending chain since, for any i = 1, . . . , n, we

have eitherXδ
i = Xδ−1

i tFi(Xδ−1
1 , . . . , Xδ−1

n) w Xδ−1
i , orXδ

i = Xδ−1
i ∇̄Fi(Xδ−1

1 , . . . , Xδ−1
n) w

Xδ−1
i t Fi(Xδ−1

1 , . . . , Xδ−1
n) w Xδ−1

i , or lastly Xδ
i = Xδ−1

i .

Let i be an arbitrary element in {1, . . . , n} such that the edge numbered i in

G is labeled “head of circuit.” Let us consider the sequence δ1, . . . , δk, . . . such that

δ0 = 0 and such that, for any k ≥ 1, we have i ∈ Jδ
k

whereas, for any δ satisfying

δk−1 < δ < δk, we have i 6∈ Jδ. According to Definition 4.1.2.0.5, we know that

Xδk−1

i = Xδk−1+1
i = . . . = Xδk−1

i and Xδk

i = Xδk−1
i ∇̄ Fi(Xδk−1) which implies

that Xδk

i = Xδk−1

i ∇̄ Fi(Xδk−1
). Since 〈Xδ : δ ∈ ω〉 is an ascending chain and Fi

is monotone, Definition 4.1.2.0.4.(b) implies that the sequence Xδ0

i , . . . , X
δk

i , . . . is an

ascending chain which is stationary after a finite number of steps, and so is the sequence

〈Xδ
i : δ ∈ ω〉.

According to Lemma 4.1.2.0.3, the ascending chain 〈Xδ : δ ∈ ω〉 is stationary

after a finite number of steps.

Since the ascending chain 〈Xδ : δ ∈ ω〉 is stationary after a finite number ε of

steps, we know that for any i = 1, . . . , n, there exists, according to the definition of

〈Jδ : δ ∈ ω〉, an integer δ ∈ ω such that δ > ε and i ∈ Jδ, where Xε = Xδ−1 = Xδ.

The computation of Xδ
i did not involve the rule 4.1.2.0.5.(b) nor the rule 4.1.2.0.5.(c)

because Xδ
i = Xδ−1

i t Fi(Xδ−1) and Xδ
i = Xδ−1

i imply that Fi(Xδ−1) v Xδ−1
i , which

is in contradiction with not(Fi(Xδ−1) v Xδ−1
i). Likewise, Xδ

i = Xδ−1
i ∇̄ Fi(Xδ−1)

and Xδ = Xδ−1 imply that Xδ−1
i = Xδ−1

i ∇̄ Fi(Xδ−1) w Xδ−1
i t Fi(Xδ−1), and so,

Xδ−1
i = Xδ−1

i t Fi(Xδ−1), which is in contradiction with not(Fi(Xδ−1) v Xδ−1
i). So,

we have applied the rule 4.1.2.0.4.(d) in order to get Xδ
i and, since i ∈ Jδ, we have

Fi(Xδ−1) v Xδ−1
i . We deduce that Xε is a post-fixpoint of F greater than D, so, it is

an over-approximation of luis(λX .X t F (X))(D).

End of proof.

Remark 4.1.2.0.7 On the convergence speed and the accuracy of the results

(4)-14

(a) - When the starting point D of the chaotic iteration is a pre-fixpoint of F , then

the rule 4.1.2.0.5.(b) can be simplified into Xδ
i = Fi(Xδ−1).

(b) - The convergence does not depend on the iteration order (that is to say on the

choice of 〈Jδ : δ ∈ ω〉) but the convergence speed does. Moreover, when the

widening is not monotone, the accuracy of the result depends on the iteration

order as well.

(c) - We can, in the rule 4.1.2.0.5.(c), choose to use a different upper widening ∇̄ δ at

each application of this rule, provided that {∀x, y ∈ L,∀δ ∈ ω, x t y v x ∇̄ δ
y}

and for any sequence 〈xδ : δ ∈ ω〉 of elements in L, the sequence 〈yδ : δ ∈ ω〉
defined as y0 = x0, yδ+1 = yδ ∇̄ δ+1

xδ+1 is a non-strictly ascending chain.

(d) - In the rule 4.1.2.0.5.(c) the widening enables an extrapolation that is based on

two consecutive iterates, so, we have chosen an iterative method with separated

steps. It is also possible to base the extrapolation on all the iterates at rank

strictly smaller than δ or to choose a method based on related steps using the

iterates at rank δ − 1, . . . , δ − p.

(e) - Let M ⊆ L such that F (Mn) ⊆ Mn. Whenever D ∈ M but luis(λX .
X t F (X))(D) 6∈ M , it is possible to find an over-approximation of luis(λX .
X t F (X))(D) in M by using a chaotic and increasing iteration with an upper

widening ∇̄ such that ∀x, y ∈M, (x ∇̄ y) ∈M .

End of remark.

Chaotic decreasing iteration sequence with lower widening

By the duality principle, we get:

(4)-15

DEFINITION 4.1.2.0.8 Lower widening
Let L(v,⊥,>,t,u) be a complete lattice, then ∇ ∈ (L × L → L) is called a

lower widening operator if and only if:

(a) - {∀x, y ∈ L, x∇ y v x u y}

(b) - For any descending chain 〈xδ : δ ∈ ω〉 of elements in L, the sequence 〈yδ :

δ ∈ ω〉 defined as y0 = x0 and yδ+1 = yδ ∇ xδ+1 is a non-strictly descending

chain.

DEFINITION 4.1.2.0.9 Chaotic decreasing iteration sequence with lower widening
Let L(v,⊥,>,t,u) be a complete lattice and F ∈ mon(Ln → Ln), then a

chaotic decreasing iteration sequence with lower widening starting from D ∈ Ln

and defined by F , the lower widening ∇ , the dependency graph G of the system

of equations X = F (X), and the sequence 〈Jδ : δ ∈ ω〉 (that satisfies the condition

2.9.2.0.1.(a)) is a sequence 〈Xδ : δ ∈ ω〉 of elements in Ln defined as follows:

(a) - X0 = D

(b) - Xδ
i = Xδ−1

i u Fi(Xδ−1) whenever δ > 0, i ∈ Jδ and the edge numbered
i in G is “simple” and not(Xδ−1

i v Fi(Xδ−1))

(c) - Xδ
i = Xδ−1

i ∇ Fi(Xδ−1) whenever δ > 0, i ∈ Jδ and the edge num-
bered i in G is “head of circuit” and not(Xδ−1

i v
Fi(Xδ−1))

(d) - Xδ
i = Xδ−1

i whenever δ > 0 and ((i 6∈ Jδ) or (Xδ−1
i v

Fi(Xδ−1))

THEOREM 4.1.2.0.10 Convergence of a chaotic decreasing iteration sequence with

lower widening

(4)-16

Let D ∈ Ln(v,⊥,>,t,u) and F ∈ mon(Ln → Ln), then a chaotic decreasing

iteration sequence with lower widening for F and D is a descending chain that is

stationary after a finite number of steps, and its limit is a pre-fixpoint of F which is

an under-approximation of llis(λX .X u F (X))(D).

Chaotic increasing iteration sequence with upper narrowing

DEFINITION 4.1.2.0.11 Upper narrowing
Let L(v,⊥,>,t,u) be a complete lattice, then ∆̄ ∈ (L × L → L) is called an

upper narrowing operator if and only if:

(a) - {∀x, y ∈ L, x v x∆̄y v x t y}

(b) - For any ascending chain 〈xδ : δ ∈ ω〉 of elements in L, the sequence 〈yδ : δ ∈ ω〉
defined as y0 = x0 and yδ+1 = yδ∆̄xδ+1 is a non-strictly ascending chain.

DEFINITION 4.1.2.0.12 Chaotic increasing iteration sequence with upper narrowing

Let Ln(v,⊥,>,t,u) be a complete lattice and F ∈ mon(Ln → Ln), then a

chaotic increasing iteration sequence with upper narrowing starting from D ∈ Ln

and defined by F , the upper narrowing ∆̄ , the dependency graph G of the system

of equations X = F (X), and the sequence 〈Jδ : δ ∈ ω〉 (that satisfies the condition

2.9.2.0.1.(a)) is a sequence 〈Xδ : δ ∈ ω〉 of elements in Ln defined as follows:

(a) - X0 = D

(b) - Xδ
i = Xδ−1

i t Fi(Xδ−1) whenever δ > 0, i ∈ Jδ, and the edge numbered
i in G is “simple”

(c) - Xδ
i = Xδ−1

i ∆̄ Fi(Xδ−1) whenever δ > 0, i ∈ Jδ, and the edge numbered
i in G is “head of circuit”

(d) - Xδ
i = Xδ−1

i whenever δ > 0 and i 6∈ Jδ

(4)-17

THEOREM 4.1.2.0.13 Convergence of a chaotic increasing iteration sequence with

upper narrowing
Let D ∈ Ln(v,⊥,>,t,u) and F ∈ mon(Ln → Ln), then a chaotic increasing

iteration sequence 〈Xδ : δ ∈ ω〉 with upper narrowing for F and D is an ascending

chain which is stationary after a finite number of steps, and each term is an under-

approximation of luis(λX .X t F (X))(D).

Proof: The proof that 〈Xδ : δ ∈ ω〉 is an ascending chain is completely similar to the

proof that was given for Theorem 4.1.2.0.6.

Each term of the increasing chaotic iteration 〈Y δ : δ ∈ ω〉 starting from D and

defined by λX .XtF (X) and 〈Jδ : δ ∈ ω〉 is greater than or equal to the corresponding

term in 〈Xδ : δ ∈ ω〉. Indeed, X0 = Y 0 = D. Let us assume that Xδ−1 v Y δ−1.

If i 6∈ Jδ, then Xδ = Xδ−1 v Y δ−1 = Y δ. If i ∈ Jδ, then, whenever the edge

numbered i in G is “simple”, we have Xδ
i = Xδ−1

i t Fi(Xδ−1) v Y δ−1
i t Fi(Y δ−1)

because Fi is monotone; otherwise, the edge numbered i in G is “head of circuit” and

then Xδ
i = Xδ−1

i ∆̄Fi(Xδ−1) v Xδ−1
i t Fi(Xδ−1) v Y δ−1 t Fi(Y δ−1) by the condition

4.1.2.0.11.(a), the induction hypothesis, and monotonicity. By induction on δ, we get

that Xδ v Y δ for any δ ∈ ω. Moreover, we know that 〈Y δ : δ ∈ ω〉 is an ascending

chain and that Y ω v luis(λX .X t F (X))(D). As a consequence, for any δ ∈ ω, we
have Xδ v luis(λX .X t F (X))(D).

End of proof.

Remark 4.1.2.0.14

Remark 4.1.2.0.7 holds for chaotic iterations with upper narrowing. In particular,

when D is a pre-fixpoint of F , the condition 4.1.2.0.11.(a) can be replaced with {∀x, y ∈
L, {x v y} ⇒ {x v x ∆̄ y v y}} whereas the rule 4.1.2.0.12.(b) can be simplified into

Xδ
i = Fi(Xδ−1). We rediscover the (dual) conditions of Cousot & Cousot [1977a].

End of remark.

(4)-18

Chaotic decreasing iteration sequence with lower narrowing

By the duality principle, we get:

DEFINITION 4.1.2.0.15 Lower narrowing
Let L(v,⊥,>,t,u) be a complete lattice, then ∆ ∈ (L × L → L) is called a

lower narrowing operator if and only if:

(a) - {∀x, y ∈ L, x u y v x∆y v x}

(b) - For any descending chain 〈xδ : δ ∈ ω〉 of elements in L, the sequence 〈yδ :

δ ∈ ω〉 defined as y0 = x0 and yδ+1 = yδ∆xδ+1 is a non-strictly descending

chain.

DEFINITION 4.1.2.0.16 Chaotic decreasing iteration sequence with lower narrowing

Let Ln(v,⊥,>,t,u) be a complete lattice and F ∈ mon(Ln → Ln), then a

chaotic decreasing iteration sequence with lower narrowing starting from D ∈ Ln

and defined by F , the lower narrowing ∆ , the dependency graph G of the system

of equations X = F (X), and the sequence 〈Jδ : δ ∈ ω〉 (that satisfies the condition

2.9.2.0.1.(a)) is a sequence 〈Xδ : δ ∈ ω〉 of elements in Ln defined as follows:

(a) - X0 = D

(b) - Xδ
i = Xδ−1

i u Fi(Xδ−1) whenever δ > 0, i ∈ Jδ, and the edge numbered i
in G is “simple”

(c) - Xδ
i = Xδ−1

i ∆Fi(Xδ−1) whenever δ > 0, i ∈ Jδ, and the edge numbered i
in G is “head of circuit”

(d) - Xδ
i = Xδ−1

i whenever δ > 0 and i 6∈ Jδ

THEOREM 4.1.2.0.17 Convergence of a chaotic decreasing iteration sequence with

lower narrowing

(4)-19

Let D ∈ Ln(v,⊥,>,t,u) and F ∈ mon(Ln → Ln), then a chaotic decreasing

iteration sequence with lower narrowing for F and D is a descending chain that is

stationary after a finite number of steps, and each term is an over-approximation of

llis(λX .X u F (X))(D).

Now we can use these different results together with Remark 4.1.1.0.9 in order to

under- and over-approximate the extreme solutions of a system of monotone equations

on a complete lattice.

We have decided to formulate the iterative methods of fixpoint approximation

based on convergence acceleration within a very general context. In particular, the no-

tion of extrapolation has been formalized while keeping only the minimal assumptions,

and this provides no conceptual answer to the issue of choosing the best widening and

narrowing operations with respect to both the efficiency of the computation and the

accuracy of the approximation. Indeed, a good choice of extrapolation shall take into

account the particular properties of the lattices and of the systems of equations that

we consider, as shown in Chapter 5 on some practical examples.

4.2 CLOSURE OPERATORS ON A COMPLETE LATTICE

The algorithms to approximate the solutions of a system of monotone equations on a

complete lattice, based on a simplification of the equations, rely on the fact that, in

order to over- (respectively under-)approximate the least fixpoint of f ∈ mon(L →
L), it is sufficient to find g such that f v g (respectively g v f) and such that

the least fixpoint of g can be computed or over- (respectively under-)approximated

because lfp(f) v lfp(g) (respectively lfp(g) v lfp(f)). In particular, we can build an

approximation g of f by using a closure operator on L, which enables the restriction

of the space of program properties to a subspace modeling the information we want to

collect about programs and abstracting away the information we have a priori decided

to ignore.

(4)-20

4.2.1 Definition, characterizations, and properties of closure operators

Recall the definitions of upper and lower closure operators given in Paragraph 2.3:

DEFINITION 4.2.1.0.1 Upper closure operator (Moore [1910])
Let L(v,⊥,>,t,u) be a complete lattice. A function ρ̄ on L is an upper closure

operator if and only if:

(a) - ρ̄ is monotone {∀x, y ∈ L, {x v y} ⇒ {ρ̄(x) v ρ̄(y)}}
(b) - ρ̄ is extensive {∀x ∈ L, x v ρ̄(x)}
(d) - ρ̄ is idempotent {∀x ∈ L, ρ̄(x) = ρ̄(ρ̄(x))}

DEFINITION 4.2.1.0.2 Lower closure operator
A function ρ on L(v,⊥,>,t,u) is a lower closure operator if and only if ρ is

monotone, reductive {∀x ∈ L, ρ(x) v x}, and idempotent.

As both notions are dual, we will study in particular upper closure operators.

We start by restating some definitions of upper closure operators that are equivalent

to the classic Definition 4.2.1.0.1.

CHARACTERIZATION 4.2.1.0.3 (Monteiro [1945])
ρ ∈ (L → L) is an upper closure operator if and only if {∀x, y ∈ L, y t ρ(y) t

ρ(ρ(x)) v ρ(x t y)}.

CHARACTERIZATION 4.2.1.0.4 (Iseki [1951])
ρ ∈ (L→ L) is an upper closure operator if and only if {∀x, y ∈ L, xtρ(ρ(x)) v

ρ(x t y)}.

CHARACTERIZATION 4.2.1.0.5 (Morgado [1962b])
ρ ∈ (L → L) is an upper closure operator if and only if {∀x, y ∈ L, {{x v

ρ(y)} ⇔ {ρ(x) v ρ(y)}}}.

(4)-21

CHARACTERIZATION 4.2.1.0.6 (Morgado [1965b])
ρ ∈ (L→ L) is an upper closure operator if and only if {∀f ∈ (L→ L), {{λx .

x v f} ⇒ {λx .x v ρ ◦ ρ v ρ ◦ f}}}.

CHARACTERIZATION 4.2.1.0.7 (Morgado [1965b])
ρ ∈ (L→ L) is an upper closure operator if and only if {∀f ∈ (L→ L), {{λx .

x v ρ ◦ f} ⇔ {ρ v ρ ◦ f}}}.

PROPOSITION 4.2.1.0.8 (Ward [1942])
An upper closure operator ρ on L(v,⊥,>,t,u) is a complete upper quasi-

morphism, that is to say, {∀S ⊆ L, ρ(tS) = ρ(tρ(S)) and uρ(S) = ρ(uρ(S))}.

4.2.2 Characterization of a subset of a complete lattice as the image of this
lattice by an upper closure operator

Theorems 2.3.0.1 and 2.3.0.3 that we owe to Ward show that the image of a complete

lattice by an upper closure operator is a complete lattice. Conversely, Monteiro and

Ribeiro have studied the properties of the subsets of a complete lattice that can be

described as the image of this complete lattice by an upper closure operator. We recall

these results and complete them.

THEOREM 4.2.2.0.1 (Monteiro & Ribeiro [1942, Thm. 5.2])
Let L(v,⊥,>,t,u) be a complete lattice. An extensive operator ρ on L is

uniquely defined by the set of its fixpoints if and only if ρ is an upper closure operator

on L.

DEFINITION 4.2.2.0.2 Lower Moore family
Let L(v,⊥,>,t,u) be a complete lattice, we will say that M ⊆ L is a lower

Moore family of L if and only if, for any x in L, the set {y ∈M : x v y} is not empty

and has a least element.

(4)-22

LEMMA 4.2.2.0.3 Characterization of a lower Moore family
Let L(v,⊥,>,t,u) be a complete lattice, then M ⊆ L is a lower Moore family

of L if and only if:

(a) - {> ∈ L}
(b) - {∀S ⊆M, (uS) ∈M}

Proof: Let M ⊆ L be such that {> ∈ L} and {∀S ⊆ M, (uS) ∈ M}, then for any

x in L, the set M ′ = {y ∈ M : x v y} is not empty (since > ∈ M) and has a least

element uM ′ (for any y in M ′, (uM ′) v y and (uM ′) ∈M ′).
Conversely, let M be a lower Moore family. For > ∈ L, the set {y ∈M : > v y}

is not empty, so, we have > ∈ M . Let S ⊆ M such that (uS) 6∈ M . We consider

M ′ = {y ∈ M : (uS) v y} and y0 the least element of M ′. We have y0 ∈ M ′, and so,

(uS) v y0. But S ⊆M ′, so, y0 v (uS). Then, by antisymmetry, y0 = (uS) ∈M ′ ⊆M ,

which contradicts (uS) 6∈M . By contradiction, we have {∀S ⊆M, (uS) ∈M}.
End of proof.

THEOREM 4.2.2.0.4 (Monteiro & Ribeiro [1942, Thm. 5.3])
Let L(v,⊥,>,t,u) be a complete lattice and M ⊆ L. Then, there exists an

upper closure operator ρ on L such that ρ(L) = M if and only if M is a lower Moore

family of L (in such a case ρ = λx . u {y ∈M : x v y}).

THEOREM 4.2.2.0.5
Let L(v,⊥,>,t,u) be a complete lattice and S ⊆ L. The upper closure operator

ρ on L such that ρ(L) is the least lower Moore family that contains S is ρ = λx .
u {y ∈ (S ∪ {>}) : x v y}.

Proof: Let us first prove that ρ is an upper closure operator:

- ∀x ∈ L, x v u{y ∈ (S ∪ {>}) : x v y}, so, ρ is extensive.

(4)-23

- If x v z then ∀y ∈ (S ∪ {>}), {z v y} implies {x v y}, so, u{y ∈ (S ∪ {>}) : x v
y} v u{y ∈ (S ∪ {>}) : z v y}, which proves that ρ is monotone.

- Let y ∈ (S ∪ {>}) such that x v y. Then, (u{z ∈ (S ∪ {>}) : x v z}) v y, and so,

u{y ∈ (S∪{>}) : (u{z ∈ (S∪{>}) : x v z}) v y v u{y ∈ (S∪{>}) : x v y}, thus,
ρ(ρ(x)) v ρ(x), moreover ρ(x) v ρ(ρ(x)), and so, by antisymmetry, ρ is idempotent.

Now:

- For any x ∈ S, ρ(x) = x, so, S ⊆ ρ(L).

- Let θ be an upper closure operator such that S ⊆ θ(L). ∀z ∈ ρ(L),∃y ∈ L such

that z = ρ(y) = u{x ∈ (S ∪ {>}) : y v x}. Let R = {t ∈ L : θ(t) ∈ (S ∪ {>})}. We

have z = u{θ(t) : y v θ(t) and t ∈ R} which is the meet of some elements of θ(L),

and so, according to 2.3.0.1, z ∈ θ(L). We conclude that ρ(L) ⊆ θ(L).

End of proof.

4.2.3 Lattice of the upper closure operators on a complete lattice and lattice
of the induced spaces

The upper closure operators on a complete lattice L are partially ordered by the point-

wise ordering on L, that is to say {ρ v η} ⇔ {∀x ∈ L, ρ(x) v η(x)}.

PROPOSITION 4.2.3.0.1 Characterization of the order on upper closure operators

(Ore [1943a,1943b])
Let ρ and η be two upper closure operators on L, then:

(a) - {ρ1 v ρ2} ⇔ {∀x ∈ L, {ρ2(x) = x} ⇒ {ρ1(x) = x}}
(b) - {ρ1 v ρ2} ⇔ {ρ2(L) ⊆ ρ1(L)}
(c) - {ρ1 v ρ2} ⇔ {ρ1 ◦ ρ2 = ρ2} ⇔ {ρ2 ◦ ρ1 = ρ2}

(4)-24

It is well-known that the set of all upper closure operators on a complete lattice

is a complete lattice for the order v defined above:

PROPOSITION 4.2.3.0.2 The complete lattice of the upper closure operators on a

complete lattice (Ward [1942])
Let L(v,⊥,>,t,u) be a complete lattice. The set R of the upper closure oper-

ators on L is a complete lattice (v,λx .x,λx .>,λS . u {η ∈ R : {∀ρ ∈ S, ρ v η}},
u).

We now give a constructive version of this theorem using our constructive version

of Tarski’s theorem (2.5.5.0.1).

LEMMA 4.2.3.0.3 Complete lattice of the extensive operators on a complete lattice
Let ext = λ f . (λx .xtf(x)). Then, ext is an upper closure operator on L→ L

and, for any f ∈ (L→ L), ext(f) is the least extensive operator on L that is greater

than or equal to f . The set ext(L→ L) of all extensive operators on L is a complete

lattice (v,λx .x,λx .>,t,u).

Proof: An operator on L is extensive if and only if ext(f) = f . We check that ext

is an upper closure operator on L → L. Moreover, ext is a complete join-morphism,

and so, ext(L → L) is a complete sub-lattice of L → L (Theorem 2.3.0.3). The least

element of this lattice is ext(λx .⊥) = λx .x t ⊥ = λx .x.
End of proof.

LEMMA 4.2.3.0.4 Complete lattice of the monotone and extensive operators on a

complete lattice

- mon ◦ ext = ext ◦ mon is an upper closure operator on L→ L

- mon(L → L) ∩ ext(L → L) = mon ◦ ext(L → L) = ext ◦ mon(L → L) is a

complete sub-lattice (v,λx .x,>,t,u) of (L→ L)

(4)-25

Proof: Since v is reflexive, for any f ∈ (L→ L) and x ∈ L, we have x v t{ytf(y) :

y v x} and, as a consequence, mon(ext(f))(x) = t{ytf(y) : y v x} = xt(t{ytf(y) :

y v x}) = t{x t y t f(y) : y v x} = t{x t f(y) : y v x} = x t (t{f(y) : y v x}) =

ext(mon(f))(x). mon ◦ ext is a composition of monotone and extensive operators

(2.4.0.3, 4.2.3.0.3), and so, it is monotone and extensive. Since mon and ext commute

and are idempotent, mon ◦ ext is idempotent. mon ◦ ext is an upper closure operator

on (L→ L) and is a complete join-morphism, and so, mon ◦ ext(L→ L) is a complete

sub-lattice (v,mon ◦ ext(⊥) = λx .x,>,t,u) on (L → L) (Theorem 2.3.0.3). Thus,

∀f ∈ (L → L), (f ∈ mon(L → L) ∩ ext(L → L)) ⇔ (mon(f) = f and ext(f) = f) ⇔
(f = mon(ext(f)))⇔ (f ∈ mon ◦ ext(L→ L)).

End of proof.

THEOREM 4.2.3.0.5 Complete lattice of the upper closure operators on a complete

lattice
Let L(v,⊥,>,t,u) be a complete lattice, idem = λ f . luis(λ g . g ◦ g)(f) and

clos = idem ◦ ext ◦ mon = idem ◦ mon ◦ ext . clos is an upper closure operator on

(L → L) and, for any f ∈ (L → L), the least upper closure operator on L greater

than or equal to f is clos(f). The set clos(L→ L) of all upper closure operators on

L is a complete lattice (v,λx .x,>,λS . clos(tS) = λS . luis(λ g . g ◦ g)(tS),u).

Proof: According to Definition 4.2.1.0.1, the set of all upper closure operators on

the complete lattice L is the set of elements of (mon(L → L) ∩ ext(L → L)) that are

idempotent, that is to say, fixpoints of λ g . g ◦ g. λ g . g ◦ g is a monotone operator

on (mon(L → L) ∩ ext(L → L)). Indeed, let us take f ,g such that f, g ∈ (mon(L →
L) ∩ ext(L → L)) and f v g. Since f ∈ mon(L → L), we have f ◦ f v f ◦ g. Since

f ◦ g v g ◦ g, we have f ◦ f v g ◦ g. Moreover, fp(λ g . g ◦ g) = postfp(λ g . g ◦ g)

because, if f ∈ (mon(L → L) ∩ ext(L → L)) such that f ∈ postfp(λ g . g ◦ g), then

f ◦ f v f and f v f ◦ f (since λx .x v f by extensivity, then f v f ◦ f by mono-

tonicity). Thus, by antisymmetry, f = f ◦ f . According to Theorem 2.5.3.0.2, the

(4)-26

set of all upper closure operators on L is then a complete lattice postfp(λ g . g ◦ g)(v,
luis(λ g . g ◦ g)(λx .x) = λx .x,>,λS . luis(λ g . g ◦ g)(tS),u) which is the image of

the complete lattice (mon(L→ L) ∩ ext(L→ L))(v,λx .x,>,t,u) by the upper clo-

sure operator idem = λ f . luis(λ g . g t g ◦ g)(f). But, for any, f ∈ ext(L → L) we

have f ∈ prefp(λ g . g ◦ g), and so, idem = λ f . luis(λ g . g ◦ g)(f).

clos = idem ◦ ext ◦ mon is monotone and extensive as a composition of mono-

tone and extensive operators. For any f ∈ (L → L), clos(clos(f)) = idem ◦ ext ◦

mon(clos(f)) = idem ◦ ext(clos(f)) = idem(clos(f)) = clos(f) because clos(f) is

monotone, extensive, and idempotent. So, clos is idempotent, which finishes the proof

that clos is an upper closure operator.

According to Proposition 2.3.0.4.(a), for any f ∈ (L→ L), the set {ρ ∈ clos(L→
L) : f v ρ} of upper closure operators on L that are greater than or equal to f is not

empty and has a least element which is equal to clos(f).

End of proof.

Let us note that an upper closure operator ρ on a complete lattice L(v,⊥,>,t,
u) is monotone (so, ρ = mon(ρ), Theorem 2.4.0.2), extensive (so, ρ = ext(ρ), Theorem

4.2.3.0.3), and idempotent (so, ρ = ρ ◦ ρ), which implies that ρ = mon(ext(ρ ◦ ρ)).

Conversely, if ρ = mon(ext(ρ ◦ ρ)), then ρ is monotone, and so, ext(ρ ◦ ρ) is monotone

as well, which implies that ρ = ext(ρ ◦ ρ). Since ρ is extensive, ρ ◦ ρ which is extensive

as well is a fixpoint of ext , which implies that ρ is idempotent. So, we have the

characterization:

If L(v,⊥,>,t,u) is a complete lattice and ρ ∈ (L → L), then {ρ ∈ clos(L →
L)} ⇔ {ρ = λx . t {y t ρ(ρ(y)) : (y ∈ L) and (y v x)}}

In the following, we give several useful characterizations of clos:

PROPOSITION 4.2.3.0.6

(4)-27

clos = λ f . (λx . luis(λ y . ext(mon(f))(y))(x))

Proof: According to Theorems 2.5.2.0.5 and 2.5.3.0.1, we know that for any f ∈ (L→
L), λx . luis(λ y . y tmon(f)(y))(x) is an upper closure operator on L that is greater

than f . Let ρ be an upper closure operator on L such that f v ρ. Then, ext(mon(f)) v
ext(mon(ρ)) = ρ. So, λx . luis(λ y . ext(mon(f))(y))(x) v λx . luis(ρ)(x) = ρ since ρ

is idempotent. We conclude that for any f ∈ (L→ L),λx . luis(λ y . ytmon(f)(y))(x)

is the least upper closure operator on L that is greater than or equal to f , so, it is

clos(f).

End of proof.

COROLLARY 4.2.3.0.7
Let L(v,⊥,>,t,u) be a complete lattice, then the set clos(L→ L) of the upper

closure operators on L is a complete lattice (v,λx .x,λx .>,λS . luis(tS),u).

We know (Devidé [1964]) that λx . lfp(λ y .xtf(y)) is an upper closure operator

on L when f is monotone. Then, we remark that, according to Theorem 2.5.3.0.1, λx .
luis(λ y . y t f(y))(x) = λx . luis(λ y .x t f(y))(x) = λx . lfp(λ y .x t f(y)), which

gives:

PROPOSITION 4.2.3.0.8

clos = λ f . (λx . lfp(λ y .x tmon(f)(y))(x))

COROLLARY 4.2.3.0.9
Let L(v,⊥,>,t,u) be a complete lattice, then the set clos(L → L)

of the upper closure operators on L is a complete lattice (v,λx .x,λx .>,
λS . (λx . lfp(λ y .x t (tS)(y))),u).

(4)-28

We deduce immediately from 4.2.3.0.1.(b) the following theorem:

THEOREM 4.2.3.0.10 (Ward [1942])
Let L(v,⊥,>,t,u) be a complete lattice, then clos(L → L) is isomorphic to

the dual of the complete lattice of the lower Moore families of L for the order ⊆ (set

inclusion), least element {>}, greatest element L, meet ∩ (set meet), and join λS .
{uP : P ⊆ ∪S}.

4.2.4 Composition of upper closure operators on a complete lattice

The composition ρ1 ◦ ρ2 of two upper closure operators ρ1 and ρ2 on L(v,⊥,>,t,
u) is monotone and extensive but not necessarily idempotent, so that ρ1 ◦ ρ2 is not

necessarily an upper closure operator. So, we give necessary and sufficient conditions

in order for the composition of two upper closure operators to be an upper closure

operator. After proving:

PROPOSITION 4.2.4.0.1

∀ρ1, ρ2 ∈ clos(L→ L), clos(ρ1 t ρ2) = clos(ρ1 ◦ ρ2) = clos(ρ2 ◦ ρ1)

Proof: ρ1 v clos(ρ1 t ρ2) and ρ2 v clos(ρ1 t ρ2) imply, by monotonicity, that

ρ1 ◦ ρ2 v clos(ρ1 t ρ2) ◦ clos(ρ1 t ρ2) = clos(ρ1 t ρ2). Since λx .x v ρ2, we get that

ρ1 v ρ1 ◦ ρ2 and ρ2 v ρ1 ◦ ρ2, since ρ1 is extensive, and so, ρ1 t ρ2 v ρ1 ◦ ρ2 v
clos(ρ1 t ρ2). So, clos(ρ1 t ρ2) v clos(ρ1 ◦ ρ2) v clos(clos(ρ1 ◦ ρ2)) = clos(ρ1 t ρ2).

End of proof.

The following propositions which we owe to Ore [1943b, p. 524–526] are imme-

diate consequences of this proposition:

(4)-29

PROPOSITION 4.2.4.0.2 (Ore [1943b])
If ρ1 and ρ2 are two upper closure operators on the complete lattice L(v,⊥,>,

t,u), then clos(ρ1 t ρ2) is the least upper closure operator on L that is greater than

or equal to ρ1 ◦ ρ2.

PROPOSITION 4.2.4.0.3 (Ore [1943b])
If ρ1 and ρ2 are two upper closure operators on the complete lattice L(v,⊥,>,t,

u), then ρ1 ◦ ρ2 is an upper closure operator on L if and only if ρ1 ◦ ρ2 = clos(ρ1tρ2).

PROPOSITION 4.2.4.0.4 (Ore [1943b])
A necessary and sufficient condition in order to ensure that the composition

ρ1 ◦ ρ2 of two upper closure operators ρ1 and ρ2 on a complete lattice L is an upper

closure operator on L is that ρ2 ◦ ρ1 ◦ ρ2 = ρ1 ◦ ρ2.

THEOREM 4.2.4.0.5 (Ore [1943b])
A necessary and sufficient condition in order to ensure that both compositions

ρ1 ◦ ρ2 and ρ2 ◦ ρ1 of two upper closure operators ρ1 and ρ2 on a complete lattice L

are upper closure operators is that ρ1 and ρ2 commute (i.e., ρ1 ◦ ρ2 = ρ2 ◦ ρ1).

In order to define upper closure operators on L, we will often proceed in two

steps: first, we will define ρ ∈ clos(L → L), then η ∈ clos(ρ(L) → ρ(L)), which gives

η ◦ ρ ∈ clos(L→ L). This process can be repeated in a cascade.

LEMMA 4.2.4.0.6
Let L(v,⊥,>,t,u) be a complete lattice and ρ ∈ clos(L → L). If η ∈

clos(ρ(L)→ ρ(L)), then η ◦ ρ ∈ clos(L→ L) and ρ v η ◦ ρ.

Proof: Since η is extensive, we have ρ v η ◦ ρ, so, according to 4.2.3.0.1.(c), ρ ◦ η ◦

ρ = η ◦ ρ, then, according to 4.2.4.0.4, we get that η ◦ ρ ∈ clos(L→ L).

End of proof.

(4)-30

THEOREM 4.2.4.0.7
Let L(v,⊥,>,t,u) be a complete lattice and ρ ∈ clos(L→ L). Then, the com-

plete lattice clos(ρ(L) → ρ(L)) is isomorphic to the complete lattice {θ ∈ clos(L →
L) : ρ v θ} by the complete morphism λ η . η ◦ ρ, and its inverse morphism is λ θ .
θ ◦ ρ.

Proof: Let η ∈ clos(ρ(L) → ρ(L)), we have η ◦ ρ ◦ ρ = η ◦ ρ, but, whenever

η ◦ ρ is applied to an element x in ρ(L), we have η(ρ(x)) = η(x). Conversely, let

θ ∈ clos(L → L) such that ρ v θ, we have (θ ◦ ρ) ◦ ρ = θ ◦ ρ = θ, since ρ v θ and by

Theorem 4.2.3.0.1.(c). Since (λ η . η ◦ ρ) ◦ (λ θ . θ ◦ ρ) and (λ θ . θ ◦ ρ) ◦ (λ η . η ◦ ρ)

are the identity function, we know that λ η . η ◦ ρ is bijective and that λ θ . θ ◦ ρ is its

inverse.

Let {θi : i ∈ I} be a family of elements of {θ ∈ clos(L → L) : ρ v θ}, then
(
l

i∈I
θi) ◦ ρ =

l

i∈I
(θi ◦ ρ). The same way, clos(

⊔
i∈I

θi) ◦ ρ = clos(
⊔
i∈I

θi ◦ ρ) (since

θi ◦ ρ = θi whenever ρ v θi) and clos(
⊔
i∈I

θi ◦ ρ) ∈ clos(ρ(L) → ρ(L)). Indeed,

clos(
⊔
i∈I

θi ◦ ρ) = clos((
⊔
i∈I

θi) ◦ ρ) = clos((
⊔
i∈I

θi) t ρ) w clos(ρ) = ρ and, since

ρ v clos(
⊔
i∈I

θi ◦ ρ), we have clos(
⊔
i∈I

θi ◦ ρ)(L) v ρ(L). So, it comes that clos(
⊔
i∈I

θi ◦

ρ) = clos(
⊔
i∈I

θi ◦ ρ) ◦ ρ and, by transitivity, clos(
⊔
i∈I

θi) ◦ ρ = clos(
⊔
i∈I

θi ◦ ρ). We

proved that λ θ . θ ◦ ρ is a bijective function from {θ ∈ clos(L → L) : ρ v θ} to

clos(ρ(L)→ ρ(L)) and also a complete morphism. Since the composition of λ θ . θ ◦ ρ
and λ η . η ◦ ρ is the identity function, we can deduce immediately that λ η . η ◦ ρ is a

complete isomorphism from clos(ρ(L)→ ρ(L)) to {θ ∈ clos(L→ L) : ρ v θ}.
End of proof.

(4)-31

4.2.5 Definition of an upper closure operator by a family of principal ideals

PROPOSITION 4.2.5.0.1
Let L(v,⊥,>,t,u) be a complete lattice and ρ ∈ clos(L → L). The set of

elements of L that have the same closure by ρ is a complete convex sub-join-semi-

lattice of L. (Recall that S ⊆ L is convex if and only if {∀x, y ∈ S,∀t ∈ L, {x v t v
y} ⇒ {t ∈ S}}.)

Proof: Let a ∈ ρ(L) and Sa = {x ∈ L : ρ(x) = a}. Sa is not empty because

ρ(a) = a. Let S be a non-empty subset of Sa. Then, ∀x ∈ S, x v ρ(x) = a, and so,

(tS) v a. This gives, by monotonicity, ρ(tS) v ρ(a) = a. Then, by monotonicity

again, ρ(tS) w tρ(S) = a, and so, ρ(tS) = a. This proves that (tS) ∈ Sa and implies

that Sa is a complete sub-join-semi-lattice of L. Now, if x, y ∈ Sa and x v t v y, we

have a = ρ(x) v ρ(t) v ρ(y) = a. Thus, ρ(t) = a which implies that t ∈ Sa and proves

that Sa is convex.

End of proof.

An ideal J of a complete lattice L is a non-empty subset of L such that (i) :

{{a ∈ J, x ∈ L, x v a} ⇒ {x ∈ J}}, (ii) : {{a ∈ J, b ∈ J} ⇒ {(a t b) ∈ J}}. An

equivalent characterization of an ideal J of L is that {J ⊆ L, J 6= ∅, {{a ∈ J, b ∈ J} ⇔
{(a t b) ∈ J}}}. The meet of an infinite family of ideals of L is an ideal of L.

The principal ideals of L are the subsets {x ∈ L, x v a} for any a in L. The

meet of an infinite family of principal ideals of L is again a principal ideal of L. In

particular, in a lattice that satisfies the ascending chain condition, any ideal is principal.

A semi-ideal I of a complete lattice L is a subset of L such that {∀a ∈ I, {x ∈
L and x v a} ⇒ {x ∈ I}}. A dual semi-ideal J of L is such that {∀a ∈ J, {x ∈
L and a v x} ⇒ {x ∈ J}}.

(4)-32

PROPOSITION 4.2.5.0.2
Let I be a principal ideal of a complete lattice L(v,⊥,>,t,u) and J be a dual

semi-ideal of L. Whenever (I ∩ J) 6= ∅, then I ∩ J is a complete convex sub-join-

semi-lattice of L. Moreover, any complete convex sub-join-semi-lattice C of L can be

written as I ∩J where I = {x ∈ L : x v (tC)} and {x ∈ L : {∃y ∈ C : y v x}} ⊆ J .

Proof: Let us set D = I ∩ J and let S ⊆ D be such that S 6= ∅. Then, S ⊆ I,

and so, (tS) v (tI). This ensures that (tS) ∈ I. Since S is not empty, {∃x ∈ S :

x ∈ J and x v (tS)}, and so, (tS) ∈ J . Thus, (tS) ∈ D. So, D is a complete

sub-join-semi-lattice of L. If x, y ∈ D and t ∈ L are such that x v t v y, then t v y

and y ∈ I imply t ∈ I. x v t and x ∈ I also imply t ∈ J , thus, t ∈ D. This ensures

that D is convex.

Let C be a complete convex sub-join-semi-lattice of L. Let us set I = {x ∈
L : x v (tC)}. The set I is a principal ideal of L. Let us set J = {x ∈ L :

{∃y ∈ C : y v x}}. The set J is a dual semi-ideal of L. Then, C ⊆ (I ∩ J) since

∀x ∈ C, x v x v (tC). If t ∈ (I ∩ J), then t ∈ I, and so, t v (tC) with (tC) ∈ C.
Moreover, t ∈ J , so that ∃c ∈ C such that c v t. Since C is convex, t ∈ C, which

ensures that C = I ∩ J .
Let us assume now that C can be written as C = I1 ∩ J1. Since C ⊆ I1, we can

deduce that {x ∈ L : x v (tC)} ⊆ I1. Let a ∈ I1 and x be an arbitrary element in

C. Then, (a t x) ∈ I1. Moreover, (a t x) w x and x ∈ J1 imply that (a t x) ∈ J1

and (a t x) ∈ (I1 ∩ J1) = C. So, a v (a t x) v (tC) ∈ {x ∈ L : x v (tC)}. Thus,

I1 ⊆ {x ∈ L : x v (tC)} and, by antisymmetry, I1 = {x ∈ L : x v (tC)}. Likewise,

since C ⊆ J1, we get that J = {x ∈ L : {∃y ∈ C : y v x}} ⊆ J1. However, the choice

of J1 is not unique, as shown in the following counter-example:

(4)-33

C

I

J

C

I

J

End of proof.

THEOREM 4.2.5.0.3
Let {Ii : i ∈ ∆} be a family of principal ideals of the complete lattice L(v,⊥,

>,t,u). Then, λx . t (∩{J ∈ ({L} ∪ {Ii : i ∈ ∆}) : x ∈ J}) is the upper closure

operator that is generated by {Ii : i ∈ ∆}.

Proof: For x ∈ L, let us set Sx = ∩{J ∈ ({L} ∪ {Ii : i ∈ ∆}) : x ∈ J} and

ρ(x) = (tSx). Since x ∈ L, we have x ∈ Sx and x v (tSx). This ensures that ρ

is extensive. If x v y then Sx ⊆ Sy since y ∈ J, x ∈ L, and x v y imply x ∈ J

for any ideal J of L. So, ρ(x) = (tSx) v (tSy) = ρ(y), which ensures that ρ is

monotone. For any J ∈ ({L} ∪ {Ii : i ∈ ∆}), x ∈ J implies that (tSx) ∈ J , since

x ∈ J implies that Sx ⊆ J . So, ∩{J ∈ ({L} ∪ {Ii : i ∈ ∆}) : (tSx) ∈ J} is a

subset of ∩{J ∈ ({L} ∪ {Ii : i ∈ ∆}) : x ∈ J}, and so, ρ(ρ(x)) v ρ(x). Moreover,

ρ(x) v ρ(ρ(x)) since ρ is extensive and monotone, and, by antisymmetry, we conclude

that ρ is idempotent.

End of proof.

COROLLARY 4.2.5.0.4
Let L(v,⊥,>,t,u) be a complete lattice and ρ ∈ clos(L→ L), then ρ is equal

to the upper closure operator on L that is generated by {{y ∈ L : y v a} : a ∈ ρ(L)}.

Proof: Since > ∈ ρ(L), we have λx . t (∩{J ∈ {{y ∈ L : y v a} : a ∈ ρ(L)} : x ∈

(4)-34

J}) = λx . t (∩{{y ∈ L : y v a} : a ∈ ρ(L) and x v a}) = λx . u {a ∈ ρ(L)} : x v
a} = ρ(x).

End of proof.

4.2.6 Definition of an upper closure operator by a join-complete congruence
relation

DEFINITION 4.2.6.0.1 Join-complete congruence relation
Let L(v,⊥,>,t,u) be a complete lattice, then a join-complete congruence rela-

tion on L is an equivalence relation θ that satisfies both the substitution property for

the join {∀x, y, u ∈ L, {{x ≡ y(θ)} ⇒ {(x t u) ≡ (y t u)(θ)}}} and the completeness

property {∀x ∈ L, x ≡ t([x]θ)(θ)} where [x]θ = {y ∈ L : x ≡ y(θ)}.

The substitution property for the join can be written equivalently as {∀x1, y1, x2, y2 ∈
L, {{x1 ≡ y1(θ)} and {x2 ≡ y2(θ)}} ⇒ {(x1 t x2) ≡ (y1 t y2)(θ)}}.

PROPOSITION 4.2.6.0.2
Let L(v,⊥,>,t,u) be a complete lattice and ρ ∈ clos(L→ L), then the relation

(ρ) defined as {x ≡ y(ρ)} ⇔ {ρ(x) = ρ(y)} is a join-complete congruence relation.

Proof: For any ρ ∈ (L → L), it is well-known that (ρ) is an equivalence relation.

Let us assume that ρ ∈ clos(L → L) and x, y, u ∈ L, then ρ(x) = ρ(y) implies that

ρ(xtu) = ρ(ρ(x)tρ(u)) = ρ(ρ(y)tρ(u)) = ρ(ytu) since ρ is a complete upper quasi-

morphism (4.2.1.0.8). As a consequence, x ≡ y(ρ) implies that (x t u) ≡ (y t u)(ρ).

Moreover, ∀y ∈ [x](ρ), ρ(y) = ρ(x) , so that t{ρ(y) : y ∈ [x](ρ)} = ρ(x). Now,

ρ(t([x](ρ))) = ρ(tρ([x](ρ))) = ρ(t{ρ(y) : y ∈ [x](ρ)}) = ρ(ρ(x)) = ρ(x), which gives

x ≡ t([x](ρ))(ρ).

End of proof.

COROLLARY 4.2.6.0.3

(4)-35

Let ρ ∈ clos(L→ L), then ρ = λx . t ([x](ρ)).

THEOREM 4.2.6.0.4
Let θ be a join-complete congruence relation on L, then, for any x in L, [x]θ is

a complete convex sub-join-semi-lattice. Moreover, λx . t ([x]θ) ∈ clos(L→ L).

Proof: Let x ∈ L and y, z ∈ ([x]θ). Let t ∈ L such that y v t v z. Since y ≡ z(θ), we
have (y t t) ≡ (z t t)(θ). Moreover, t = y t t and z t t = z, so, t ≡ z(θ) and z ≡ x(θ).

This implies that t ≡ x(θ) and t ∈ ([x]θ), so, [x]θ is a convex subset of L.

Let S ⊆ ([x]θ) be such that S 6= ∅, ∃y ∈ S such that y ≡ x(θ). Moreover,

t([x]θ) ≡ x(θ) and y v tS v t([x]θ). So, (tS) ∈ ([x]θ). This ensures that [x]θ is a

complete sub-join-semi-lattice of L.

Let us set ρ = λx . t ([x]θ). ρ is extensive, since x ∈ ([x]θ) implies that

x v t([x]θ) = ρ(x). Moreover, t([x]θ) ∈ ([x]θ), so that ρ(ρ(x)) = ρ(t([x]θ)) =

t[t([x]θ)]θ = t([x]θ) = ρ(x). Thus, ρ is idempotent. If x v y, then y = x t y ≡
(ρ(x) t ρ(y))(θ) by the substitution property for the join. So, y ≡ ρ(y)(θ) and, by

transitivity, we have that ρ(x)tρ(y) belongs to [ρ(y)]θ. Thus, as a consequence, (ρ(x)t
ρ(y)) v t([ρ(y)]θ) = ρ(y). Since ρ(y) v ρ(x)tρ(y), we conclude by antisymmetry that

ρ(x) v ρ(y). Thus, ρ is monotone.

End of proof.

Tedious computations are sometimes necessary to prove that a given binary

relation is a join-complete congruence relation. Computations are often made easier

thanks to the following theorem (that we can compare to the theorem that has been

stated on congruences in Grätzer & Schmidt [1958]).

PROPOSITION 4.2.6.0.5

(4)-36

A reflexive and symmetric binary relation θ on a complete lattice L(v,⊥,>,t,
u) is a join-complete congruence relation if and only if the following three properties

are satisfied for any x, y, z, t ∈ L and S ⊆ L:

(a) - {x ≡ y(θ)} ⇔ {∃u ∈ L : (x t y) v u and u ≡ x(θ) and u ≡ y(θ)}
(b) - {x v y v z and x ≡ y(θ) and y ≡ z(θ)} ⇒ {x ≡ z(θ)}
(c) - {x v y and x ≡ y(θ)} ⇒ {(x t t) ≡ (y t t)(θ)}

Proof: A join-complete congruence relation satisfies (a) since {x ≡ y(θ)} ⇒ {(xty) ≡
x(θ) and (x t y) ≡ y(θ)} and {∃u ∈ L : u ≡ x(θ) and u ≡ (tS)(θ)} ⇒ {x ≡ (tS)(θ)}.
(b) holds by transitivity and (c) is true because of the reflexivity and the substitution

property for t.
Conversely, let θ be a reflexive and symmetric binary relation that satisfies (a),

(b), and (c).

- θ is transitive, since x ≡ y(θ) and y ≡ z(θ) and (a) imply that {∃u, u′ ∈ L : x v
u, y v u, z v u′, y v u′, x ≡ u(θ), y ≡ u(θ), y ≡ u′(θ), z ≡ u′(θ)}. Then, according

to (c), we have that u′ = (y t u′) ≡ (u t u′)(θ) and u = (y t u) ≡ (u t u′)(θ).
According to (b), x v u v (u t u′), so, x ≡ (u t u′)(θ). Likewise, z ≡ (u t u′)(θ).
So, (x t z) ≡ (u t u′)(θ) and, thus, according to (a), we conclude that x ≡ z(θ).

- θ satisfies the substitution property for t. We have to prove that x ≡ y(θ) implies

(x t t) ≡ (y t t)(θ). According to (a), {∃u ∈ L : x v u, y v u, x ≡ u(θ), y ≡ u(θ)},
so, according to (c), (x t t) ≡ (u t t)(θ) and (y t t) ≡ (u t t)(θ). The transitivity

property that we have just shown implies that (x t t) ≡ (y t t)(θ).

End of proof.

In order to check that a congruence relation is join-complete, it is sufficient to

prove the additional property {∀x ∈ L, x ≡ t([x]θ)(θ)}.

(4)-37

4.2.7 Definition of an upper closure operator by a pair of adjoint functions

Let L be a complete lattice and ρ ∈ clos(L → L). In order to describe the elements

of ρ(L), we will use a complete lattice M(v,⊥,>,t,u) that is isomorphic to ρ(L) by

a complete isomorphism β ∈ (ρ(L) → M). Let @ be equal to β ◦ ρ and let γ be the

extension of β−1 to L:

γ

β

β−1

M

L

ρ

(L)ρ

@

In reference to our first work (Cousot & Cousot [1975a,1975b], Cousot & Cousot

[1976]), we call @ an abstraction operator and γ a concretization operator. It is easy

to check that @ is monotone and surjective, γ is monotone and injective, @ ◦ γ = λx .
x, and γ ◦ @ w λx .x, which immediately imply that {∀x ∈ L,∀y ∈M, {x v γ(y)} ⇔
{@(x) v y}}. Moreover, γ is a complete morphism and @ is a complete join-morphism.

Indeed, let 〈xi : i ∈ ∆〉 be a family of elements in L, then, by monotonicity @(
⊔
i∈∆

xi) w⊔
i∈∆

@(xi). Moreover, @(
⊔
i∈∆

xi) v @(
⊔
i∈∆

γ(@(xi))) = @(γ(
⊔
i∈∆

@(xi)) =
⊔
i∈∆

@(xi). By

antisymmetry, we have @(
⊔
i∈∆

xi) =
⊔
i∈∆

@(xi).

DEFINITION 4.2.7.0.1 Pair of upper adjoint functions

(4)-38

Let L(v,⊥,>,t,u) and M(v,⊥,>,t,u) be two complete lattices. A pair of

monotone functions @ ∈ (L→M) and γ ∈ (M → L) is called a pair of upper adjoint

functions if and only if {∀x ∈ L,∀y ∈M, {{x v γ(y)} ⇔ {@(x) v y}}}.

The notion of pair of adjoint functions appeared already in Cousot & Cousot [1975a,1975b]

with the same assumptions. We have borrowed the term “pair of adjoint functions” from

Scott [1976] who is using the dual notion with the additional hypotheses that @ and γ

are upper continuous and that L and M are “continuous lattices.” Theorem 4.2.7.0.3

generalizes Scott’s result and shows that these additional assumptions are useless.

PROPOSITION 4.2.7.0.2
Let L(v,⊥,>,t,u) and M(v,⊥,>,t,u) be two complete lattices and ρ ∈

clos(L → L) such that β ∈ (ρ(L) → M) is a complete isomorphism. Then, (@, γ)

is a pair of upper adjoint functions, @ is surjective, γ is injective, @ is a complete

join-morphism, and γ is a complete morphism.

Conversely, we use pairs of adjoint functions in order to define upper closure

operators:

THEOREM 4.2.7.0.3

(4)-39

Let L(v,⊥,>,t,u) and M(v,⊥,>,t,u) be two complete lattices and (@, γ)

with @ ∈ (L→M) and γ ∈ (M → L) be a pair of upper adjoint functions.

(a) - In a pair (@, γ) of upper adjoint functions, each function fully defines the other

in a unique way and λx .x v γ ◦ @ and @ ◦ γ v λ y . y.

(b) - @ is surjective if and only if γ is injective.

(c) - Whenever @ is surjective or γ is injective, then:

• γ ◦ @ ∈ clos(L→ L) and @ ◦ γ = λ y . y,
• @ is a complete join-morphism and γ is a complete meet-morphism,

• @ = λx . u {y ∈M : x v γ(y)} and γ = λ y . t {x ∈ L : @(x) v y},

• γ ◦ @(L) andM are isomorphic by the complete isomorphism (@ | γ ◦ @(L))

the inverse of which is γ.

Proof:

(a) - ∀x ∈ L,@(x) v @(x) and, according to 4.2.7.0.1, this implies that x v
γ(@(x)). Likewise, ∀y ∈M,γ(y) v γ(y) implies that @(γ(y)) v y.

Let f be such that (f, γ) is a pair of upper adjoint functions. Then, ∀x ∈
L, x v γ(f(x)) and, since @ is monotone, we have @(x) v @(γ(f(x))) v f(x).

Moreover, ∀x ∈ L, x v γ(@(x)) and, since f is monotone, we have f(x) v
f(γ(@(x))) v @(x). By antisymmetry, we conclude that f = @.

Let f be such that (@, f) is a pair of upper adjoint functions. Then, ∀y ∈
L,@(f(y)) v y, so, since γ is monotone, we have that γ(y) w γ(@(f(y))) w f(y).

Likewise, f(y) w f(@(γ(y))) w γ(y) and, by antisymmetry, we conclude that

f = γ.

(b) - Let us assume that γ is injective and let us prove that @ is surjective. For

(4)-40

any y in M , we have @(γ(y)) v y and, by monotonicity, γ(@(γ(y))) v γ(y).

Moreover, γ(y) v γ(@(γ(y))), so, by antisymmetry, γ(y) = γ(@(γ(y))). Since

γ is injective, this implies that @(γ(y)) = y. So, for any y in M , there exists

x = γ(y) ∈ L such that y = @(x), and so, @ is surjective.

Let us assume that @ is surjective and monotone, and let us prove that γ is

injective. Indeed, ∀y ∈ M,∃x ∈ L : y = @(x). So, γ(y) = γ(@(x)) w x. The

monotonicity of @ implies that @(γ(y)) w @(x) = y. Moreover, we always have

@(γ(y)) v y, and so, by antisymmetry, @(γ(y)) = y. Let y1, y2 ∈ M , then

γ(y1) = γ(y2) implies that @(γ(y1)) = @(γ(y2)), which implies that y1 = y2,

that is to say that γ is injective.

(c) - Note that if γ is injective or if @ is surjective, then we have @ ◦ γ = λ y . y.
Let us prove that γ ◦ @ is an upper closure operator on L. ∀x ∈ L, x v γ(@(x)),

so that γ ◦ @ is extensive. γ ◦ @ is a composition of monotone functions, so, it

is monotone. Since @ ◦ γ = λ y . y, we have (γ ◦ @) ◦ (γ ◦ @) = γ ◦ @, which

proves that γ ◦ @ is idempotent.

- Let {xi : i ∈ ∆} be a family of elements in L. Then, by monotonicity,

@(
⊔
i∈∆

xi) w
⊔
i∈∆

@(xi). Moreover, @(
⊔
i∈∆

xi) v @(
⊔
i∈∆

γ(@(xi))) v @(γ(
⊔
i∈∆

@(xi))) =⊔
i∈∆

@(xi), by monotonicity of γ, @, and @ ◦ γ = λ y . y. By antisymmetry, @ is

a complete join-morphism. Likewise, by monotonicity, γ(
l

i∈∆

xi) v
l

i∈∆

γ(xi) and
l

i∈∆

γ(xi) v γ(@(
l

i∈∆

γ(xi))) v γ(
l

i∈∆

@(γ(xi))) = γ(
l

i∈∆

xi). Thus, we conclude,

by antisymmetry, that γ is a complete meet-morphism.

- Let f = λ y . t {x ∈ L : @(x) v y}. Since @ is surjective for any y in M ,

there exists x ∈ L such that @(x) = y, so, {x ∈ L : @(x) v y} is not empty and,

since L is a complete lattice, t{x ∈ L : @(x) v y} exists, which ensures that f

is a total function from M to L.

(4)-41

Let t, u be two elements in M such that t v u. Then, ∀x ∈ L, {@(x) v t} ⇒
{@(x) v u}, so, t{x ∈ L : @(x) v t} v t{x ∈ L : @(x) v u}, which is

equivalent to f(t) v f(u). This ensures that f is monotone.

∀x ∈ L,∀y ∈ M, {x v f(y)} ⇒ {@(x) v @(f(y))} since @ is monotone.

@(f(y)) = @(t{z ∈ L : @(z) v y}) = t{@(z) : @(z) v y} since @ is a complete

join-morphism. So, @(f(y)) v y. By transitivity, {x v f(y)} ⇒ {@(x) v y}.
Let us now assume that @(x) v y, then f(@(x)) v f(y) since f is monotone.

So, f(@(x)) = t{z ∈ L : @(z) v @(x)} w t{z ∈ L : z v x} = x. We get, by

transitivity, that {@(x) v y} ⇒ {x v f(y)}. So, (@, f) is a pair of upper adjoint

functions and, as one defines the other, we conclude that f = γ.

- Since @ is monotone and surjective, we have @(>) = >. So, > v γ ◦

@(>) = γ(>) v >, which is equivalent to γ(>) = >. So, let γ be an injective

complete meet-morphism fromM to L such that γ(>) = >. Let us set f = λx .
u {y ∈M : x v γ(y)}. For any x in L, we have x v > = γ(>), so, {y ∈M : x v
γ(y)} is not empty and, since M is a complete lattice, f is a total function from

L to M .

Let t v u, then ∀y ∈ M, {u v γ(y)} ⇒ {t v γ(y)}, so, u{y ∈ M : t v
γ(y)} v u{y ∈M : u v γ(y)} and f is monotone.

∀x ∈ L,∀y ∈M, {x v γ(y)} ⇒ {f(x) v f(γ(y))} by monotonicity. f(γ(y)) =

u{z ∈ M : γ(y) v γ(z)} v u{z ∈ M : y v z} = y. By transitivity, {x v
γ(y)} ⇒ {f(x) v y}. Let us now assume that f(x) v y, then γ(f(x)) v γ(y).

We have γ(f(x)) = γ(u{z ∈ M : x v γ(z)}) = u{γ(z) : x v γ(z)} w x since

γ is a complete meet-morphism. So, {f(x) v y)} ⇒ {x v γ(y)} and (f, γ) is

a pair of upper adjoint functions and, since one defines the other, we conclude

that f = @.

- Let us prove that γ ◦ @(L) and M are isomorphic by the complete iso-

(4)-42

morphism (@ | γ ◦ @(L)). Let us prove that the restriction (@ | γ ◦ @(L))

of @ to γ ◦ @(L) is bijective. ∀y ∈ M,y ∈ @(L), since @ is surjective. So,

γ(y) ∈ (γ ◦ @(L)) and @ ◦ γ(y) = y. Thus, ∀y ∈ M,∃x ∈ (γ ◦ @(L)) such

that @(x) = y and (@ | γ ◦ @(L)) is surjective. Now, γ ◦ @(L) = γ(M)

and γ is surjective from M to γ(M), so, ∀x ∈ (γ ◦ @(L)),∃y ∈ M such

that x = γ(y). Then, (@ | γ ◦ @(L))(x) = (@ | γ ◦ @(L)) ◦ γ(y) = y, so,

γ ◦ (@ | γ ◦ @(L))(x) = γ(y) = x. Now, let x1, x2 ∈ γ ◦ @(L) be such that

(@ | γ ◦ @(L))(x1) = (@ | γ ◦ @(L))(x2). Then, x1 = γ((@ | γ ◦ @(L))(x1)) =

γ((@ | γ ◦ @(L))(x2)) = x2, which ensures that (@ | γ ◦ @(L)) is injective.

Moreover, its inverse is γ.

We are left to prove that (@ | γ ◦ @(L)) is a complete isomorphism. Since

(γ ◦ @) ∈ clos(L → L), we know that γ ◦ @(L) is a complete lattice (v,
γ ◦ @(⊥),>,λS . γ ◦ @(tS),u). Let S ⊆ γ ◦ @(L). The least upper bound of

S in γ ◦ @(L) is γ ◦ @(tS), and @(γ ◦ @(tS)) = @(tS) = t@(S), so, (@ | γ ◦
@(L))(γ ◦ @(tS)) = t(@ | γ ◦ @(L))(S). Moreover, γ(u@(S)) = u(γ(@(S))) =

γ ◦ @(u(γ ◦ @(S))) = γ ◦ @(uS) since γ ◦ @(S) is a set of fixpoints of the

upper closure operator γ ◦ @, and so, u(γ ◦ @(S)) = (uS) ∈ (γ ◦ @(L)). Since

γ is injective, we have u@(S) = @(uS) and u(@ | γ ◦ @(L))(S) = (@ | γ ◦
@(L))(uS).

End of proof.

COROLLARY 4.2.7.0.4
Let L(v,⊥,>,t,u) and M(v,⊥,>,t,u) be two complete lattices and @ be a

complete surjective join-morphism from L to M . Then, (@,λ y . t {x ∈ L : @(x) v
y}) is a pair of upper adjoint functions.

COROLLARY 4.2.7.0.5

(4)-43

Let L(v,⊥,>,t,u) and M(v,⊥,>,t,u) be two complete lattices and γ be a

complete injective meet-morphism from M to L such that γ(>) = >. Then, (λx .
u {y ∈M : x v γ(y)}, γ) is a pair of upper adjoint functions.

DEFINITION 4.2.7.0.6 Over-approximated image of a complete lattice
Let L(v,⊥,>,t,u) and M(v,⊥,>,t,u) be two complete lattices. We will say

that M is the over-approximated image of L (which we shall write as L�̄M) if and

only if there exists ρ ∈ clos(L → L) such that ρ(L)(v, ρ(⊥),>,λS . ρ(tS),u) and

M(v,⊥,>,t,u) are completely isomorphic.

COROLLARY 4.2.7.0.7
Let L(v,⊥,>,t,u) and M(v,⊥,>,t,u) be two complete lattices.

{L�̄M} ⇔ {∃@ ∈ (L → M) surjective, ∃γ ∈ (M → L) injective: (@, γ) is a
pair of upper adjoint functions}

{L�̄M} ⇔ {∃γ ∈ (M → L): injective, complete meet-morphism such that
γ(>) = >}

{L�̄M} ⇔ {∃@ ∈ (L→M): surjective, complete join-morphism}

4.2.8 Induced closure operator on the space of monotone operators on a
complete lattice L by a closure operator on L

THEOREM 4.2.8.0.1
Let L(v,⊥,>,t,u) be a complete lattice and ρ ∈ clos(L→ L), then

λ f . ρ ◦ f ◦ ρ ∈ clos(mon(L→ L)→ mon(L→ L))

Proof: Let f, g ∈ mon(L → L) be such that f v g, then ρ ◦ f ◦ ρ v ρ ◦ g ◦ ρ,

since ρ is monotone. So, λ f . ρ ◦ f ◦ ρ is monotone. Moreover, f v ρ ◦ f ◦ ρ, since

∀x ∈ L, f(x) v ρ(f(ρ(x))) because ρ is extensive and both f and ρ are monotone.

Finally, ρ ◦ ρ ◦ f ◦ ρ ◦ ρ = ρ ◦ f ◦ ρ, which ensures that λ f . ρ ◦ f ◦ ρ is idempotent.

(4)-44

End of proof.

DEFINITION 4.2.8.0.2
Let L(v,⊥,>,t,u) be a complete lattice and ρ be an upper closure operator

on L. We denote by ρ̄ = λ f . ρ ◦ f ◦ ρ the upper closure operator that is induced on

the space of monotone operators on L by ρ.

We shall note that ρ̄(f) is the least monotone function on (ρ(L)→ ρ(L)) that is

greater than the restriction of f to ρ(L). (Indeed, let g ∈ mon(ρ(L) → ρ(L)) be such

that (f | ρ(L)) v g, then ρ ◦ f ◦ ρ v ρ ◦ g ◦ ρ = g.)

THEOREM 4.2.8.0.3

{L�̄(@, γ)M}
⇒ {mon(L→ L)�̄(λ f .@ ◦ f ◦ γ,λ f . γ ◦ f ◦ @) mon(M →M)}

COROLLARY 4.2.8.0.4
Let L,M be two complete lattices such that L�̄(@, γ)M and mon(L →

L)�̄(@̄, γ̄) mon(M → M) with @̄ = λ f .@ ◦ f ◦ γ and γ̄ = λ f . γ ◦ f ◦ @.

Let F,G ∈ mon(L→ L), then:

(a) - {lfp(F) v γ(lfp(@̄(F)))}
(b) - {F̄ ∈ mon(M →M) and @̄(F) v F̄} ⇒ {lfp(F) v γ(lfp(F̄))}
(c) - {lfp(F ◦ G) v γ(lfp(@̄(F) ◦ @̄(G)))}
(d) - {F̄ , Ḡ ∈ mon(M →M) and @̄(F) v F̄ and @̄(G) v Ḡ}

⇒ {lfp(F ◦ G) v γ(lfp(F̄ ◦ Ḡ))}

(the same holds for gfp).

PROPOSITION 4.2.8.0.5

(4)-45

Let L(v,⊥,>,t,u) be a complete lattice, ρ1, ρ2 ∈ clos(L → L), and f ∈
mon(L→ L), then:

lfp((ρ1 u ρ2) ◦ f ◦ (ρ1 u ρ2)) v lfp(ρ1 ◦ f ◦ ρ1) u lfp(ρ2 ◦ f ◦ ρ2)

Proof: ρ1 u ρ2 v ρ1 and f is monotone imply that (ρ1 u ρ2) ◦ f ◦ (ρ1 u ρ2) v (ρ1 ◦

f ◦ ρ1). Since lfp is monotone, we have lfp((ρ1 u ρ2) ◦ f ◦ (ρ1 u ρ2)) v lfp(ρ1 ◦ f ◦ ρ1).

The same holds for ρ2.

End of proof.

4.3 APPROXIMATION OF THE FIXPOINTS OF AN OPERA-
TOR BY APPROXIMATION OF THE OPERATOR

The complex computation of the extreme fixpoints of an operator F can be replaced

with the easier computation of the fixpoints of an operator F̄ that approximates F as

follows:

THEOREM 4.3.0.1
Let L(v,⊥,>,t,u) be a complete lattice and F,G ∈ mon(L→ L), then

{{F v G} ⇒ {{ lfp(F) v lfp(G)} and {gfp(F) v gfp(G)}}}

Proof: Recall that lfp(F) = u{X ∈ L : F (X) v X} and lfp(G) = u{X ∈ L :

G(X) v X}. Since F v G, we have {∀X ∈ L : {G(X) v X} ⇒ {F (X) v X}}, which
implies lfp(F) v lfp(G) and, by duality, {{F w G} ⇒ {gfp(F) w gfp(G)}}.
End of proof.

(4)-46

4.3.1 Induced approximation of an operator on a complete lattice by an
approximated image of the lattice

In order to approximate the fixpoints of a monotone operator F on a complete lattice

L(v,⊥,>,t,u), we will compute the fixpoints of a simpler operator F̄ that will be

chosen so that the algorithm that computes F̄ is less complex than the algorithm that

computes F . Let us consider the case of an over-approximation (the case of an under-

approximation is dual), that is to say that we have to choose F̄ such that F v F̄

(Theorem 4.3.0.1). The issue is to find a means to derive F̄ from F .

We propose to define a subsetM of L in which will be chosen the approximation

of the fixpoints of F . To achieve that goal, having fixed M , we will choose F̄ as the

best over-approximation of F that belongs to (L→M).

We also propose to choose M independently from F and, as a consequence, we

will choose a subset M of L such that each element x in L has an over-approximation

in M . Let ρ ∈ (L → M) be an operator which maps each element x in L to an

over-approximation ρ(x) of x in M . Since ρ is extensive, it is uniquely defined by the

choice of M if and only if ρ is an upper closure operator on L (4.2.2.0.1) and M is a

lower Moore family of L (4.2.2.0.4). Indeed, all the elements y in M that are greater

than x are an over-approximation of x. In particular, the supremum > of L can be

over-approximated only by >, and so, > ∈M . Among the over-approximations of x in

M , some are better than the others. Since the comparison criterion is the order v on

L, a ∈ M is a better approximation of x ∈ L than b ∈ M only if x v a v b. The best

approximations of x in M are the minimal elements of {y ∈ M : x v y}. There exists

a unique best approximation of an arbitrary element x of L in M if {y ∈ M : x v y}
has a least element, that is to say, if M is a lower Moore family (4.2.2.0.2).

Let us assume that we have chosen a subset M of L that is not a lower Moore

family. In such a case, some elements of L have several minimal over-approximations

in M and it is impossible to choose a best one independently from a given F . In this

(4)-47

case, Theorem 4.2.2.0.5 gives the minimal set of elements of L to add to M in order to

avoid the ambiguity.

A lower Moore family M induces a unique upper closure operator ρ such that

ρ(L) = M (4.2.2.0.5) and, conversely, an upper closure operator ρ uniquely defines a

lower Moore family (2.3.0.1), so that the choice of a set M can be replaced with the

choice of an upper closure operator ρ by defining M = ρ(L). Thus, we have restated

several characterizations of upper closure operators (4.2.1).

If we choose an operator ρ that is not an upper closure operator, Theorem

4.2.3.0.5 shows that clos(ρ) is the least upper closure operator on L such that any x

in L has a best over-approximation clos(ρ)(x) greater than ρ(x). We have thus given

several equivalent definitions of clos (4.2.3.0.5, 4.2.3.0.6, 4.2.3.0.8).

We have studied several ways to build upper closure operators (4.2.1, 4.2.5,

4.2.6, 4.2.7) and to compose them (4.2.3, 4.2.4). In particular, the definition of an

upper closure operator by a family of principal ideals (4.2.5.0.3) or, better, the use of a

join-complete congruence relation (4.2.6.0.4) emphasizes the idea of not distinguishing

the elements in an equivalence class, which are all approximated by the supremum of

this class.

We will often use combinations of closure operators in order to strengthen an ap-

proximation (4.2.3.0.5, 4.2.4.0.7) or, contrariwise, to refine it (meet of closure operators

4.2.4.0.5). (Note that Propositions 4.2.4.0.2 and 4.2.4.0.3 show that it is always better

to use the join clos(ρ1 t ρ2) rather than the composition ρ1 ◦ ρ2 of two closures ρ1 and

ρ2, since clos(ρ1 t ρ2) is always a closure operator, whereas ρ1 ◦ ρ2 is not necessarily a

closure operator and, if ρ1 ◦ ρ2 is a closure operator, then ρ1 ◦ ρ2 = clos(ρ1 t ρ2).)

The choice of the space M of approximated values or of the induced upper

closure operator depends on the problem to be solved, on the desired accuracy in the

approximation, and of the cost that we can afford in order to solve the problem. This

will be largely illustrated in Chapter 5. Theorems 4.2.4.0.5 and 4.2.3.0.10 enable the

(4)-48

partial ordering of approximations according to their accuracy, thanks to the partial

order defined on closure operators or the corresponding Moore families.

Having chosen an upper closure operator ρ, the best over-approximation of F ∈
mon(L → L) in mon(L → ρ(L)) is ρ ◦ F . Nevertheless, in order to restrict the

computation domain to ρ(L), we will choose F̄ = ρ ◦ F ◦ ρ, which is the least monotone

function on (ρ(L) → ρ(L)) that is greater than the restriction of F to ρ(L) (4.2.8).

Then, lfp(F) v lfp(F̄) = luis(ρ ◦ F ◦ ρ)(⊥) = luis(ρ ◦ F)(ρ(⊥)) = lfp((ρ ◦ F | ρ(L))).

Likewise, gfp(F) is over-approximated by gfp((ρ ◦ F | ρ(L))).

When the elements of ρ(L) are not computer-representable, we will use a space

of approximated valuesM such that L�̄(@, γ)M with ρ = γ ◦ @, and chooseM so that

its elements can be easily represented in a computer. Then, the best approximation

of F ∈ mon(L → L) in mon(M → M) is @ ◦ F ◦ γ (4.2.8.0.3). When it is difficult

to write an algorithm that would compute @ ◦ F ◦ γ, we will choose to implement

F̄ ∈ mon(M →M) such that @ ◦ F ◦ γ v F̄ . Then, lfp(F) v γ(lfp(F̄)) and gfp(F) v
γ(gfp(F̄)) (4.2.8.0.4.(b)). Usually, F is a composition of elementary functions, which

enables a systematic derivation of F̄ from F by over-approximating each elementary

function f ∈ mon(L→ L) by an elementary approximate function f̄ ∈ mon(M →M)

such that f̄ v γ ◦ f ◦ @ (4.2.8.0.4.(d)).

Note that instead of approximating the monotone operator F by a monotone

operator F̄ , we could also use an extensive operator (or, dually, reductive):

PROPOSITION 4.3.1.0.1
Let L(v,⊥,>,t,u) be a complete lattice and f ∈ ext(L → L), then fp(f) =

luis(f)(L).

PROPOSITION 4.3.1.0.2
Let L(v,⊥,>,t,u) be a complete lattice and f ∈ mon(L → L), f̄ ∈ (L → L)

such that f v f̄ , then lfp(f) v luis(ext(f̄))(⊥).

(4)-49

4.3.2 Improving the approximation of a fixpoint of a monotone operator

The results of Paragraph 4.1.1 enable the improvement of the approximation of an

extreme fixpoint of a monotone operator f on a complete lattice L. We now specialize

these results to the case when we have an approximation g of f , (g v f or f v g).

THEOREM 4.3.2.0.1
Let L(v,⊥,>,t,u) be a complete lattice and f, g ∈ mon(L→ L),

{{∃y ∈ L : y v lfp(f)} and {g v f}}
⇒ {y v lfp(λx . y t g(x)) v luis(λx .x t g(x))(y) v lfp(f)}

Proof: Let y v lfp(f) and g v f . Let us consider the increasing iteration sequence

〈xδ : δ ∈ µ(L)〉 starting from y and defined by λx .x t g(x) (2.5.1.0.1). This is an

increasing under-approximated iteration sequence for f starting from y (4.1.1.0.5). In-

deed, x0 = y, whenever δ is a successor ordinal, then xδ−1 v xδ = xδ−1 t g(xδ−1) v
xδ−1 t f(xδ−1) since g v f , and, whenever δ is a limit ordinal, xδ =

⊔
α<δ

xα. As a

consequence, Theorem 4.1.1.0.6 implies that the limit luis(λx .x t g(x))(y) of 〈xδ :

δ ∈ µ(L)〉 is an under-approximation of luis(λx .xtf(x))(y). But, according to Theo-

rems 2.5.2.0.5 and 2.5.3.0.1, luis(λx .xtg(x))(y) = luis(λx . ytg(x))(y) w luis(λx .
y t g(x))(⊥) = lfp(λx . y t g(x)) w y. Moreover, ⊥ v y v lfp(f) implies lfp(f) =

luis(λx .x t f(x))(⊥) v luis(λx .x t f(x))(y) v luis(λx .x t f(x))(lfp(f)) = lfp(f),

which enables us to conclude that y v lfp(λx . y t g(x)) v luis(λx .x t g(x))(y) v
lfp(f)

End of proof.

Remark 4.3.2.0.2

Let y be an under-approximation of lfp(f). Given g v f , we can improve y

because y v luis(λx .x t g(x))(y) v lfp(f). It is impossible to improve luis(λx .x t

(4)-50

g(x))(y) by iterating this process because luis(λx .xt g(x)) is idempotent. Moreover,

Theorem 2.5.4.0.2 shows that luis(λx .x t g(x))(y) is the greatest value of L which

can possibly be obtained from y by using t,u, and g. So, luis(λx .x t g(x))(y) is the

best under-approximation of lfp(f) that can be obtained by using only these elements.

End of remark.

By the duality principle, we get:

THEOREM 4.3.2.0.3
Let L(v,⊥,>,t,u) be a complete lattice and f, g ∈ mon(L→ L),

{{∃y ∈ L : gfp(f) v y} and {f v g}}
⇒ {gfp(f) v llis(λx .x u g(x))(y) v gfp(λx . y u g(x)) v y}

THEOREM 4.3.2.0.4
Let L(v,⊥,>,t,u) be a complete lattice and f, g ∈ mon(L→ L),

{{∃y ∈ L : lfp(f) v y} and {f v g}}
⇒ {lfp(f) v lfp(λx . y u g(x)) v llis(λx .x u g(x))(y) v y}

Proof: Let lfp(f) v y and f v g. We consider the increasing iteration sequence

〈xδ : δ ∈ µ(L)〉 starting from ⊥ and defined by λx . y u g(x) (2.5.1.0.1). It is an

ascending chain with limit P = lfp(λx . y u g(x)) (2.5.3.0.1 and 2.5.3.0.2). Since

P < y u g(P) v y, we have xδ v P v y for any δ ∈ µ(L). For any successor

ordinal δ ∈ µ(L), we have xδ−1 v xδ = (y u g(xδ−1)) v g(xδ−1). Let us prove that

〈xδ : δ ∈ µ(L)〉 is an increasing over-approximated iteration sequence for λx . y u f(x)

starting from ⊥ (4.1.1.0.1). Indeed, x0 = ⊥. For any successor ordinal, we have

xδ−1 t (y u f(xδ−1)) v xδ = y u g(xδ−1) because xδ−1 v y, y u f(xδ−1) v y, xδ−1 v

(4)-51

g(xδ−1) and y u f(xδ−1) v g(xδ−1), since y u f(xδ−1) v f(xδ−1) v g(xδ−1), as f v g.

Theorem 4.1.1.0.2 implies that lfp(λx . yug(x)) is an over-approximation of luis(λx .
xt(yuf(x)))(⊥). Let 〈tδ : δ ∈ µ(L)〉 be the increasing iteration sequence starting from

⊥ and defined by f and let 〈zδ : δ ∈ µ(L)〉 be the increasing iteration sequence starting

from ⊥ and defined by λx .x t (y u f(x)). We have t0 = z0 = ⊥. Let us assume that

tα = zα for all α < δ. Whenever δ is a limit ordinal, we have tδ =
⊔
α<δ

tα =
⊔
α<δ

zα = zδ.

Whenever δ is a successor ordinal, we have, in particular, tδ−1 = zδ−1. Since tδ−1 v
tδ = f(tδ−1) v lfp(f) v y, we have y u f(zδ−1) = y u f(tδ−1) = f(tδ−1) = f(zδ−1).

Since zδ−1 v f(zδ−1), we have that tδ = f(tδ−1) = f(zδ−1) = zδ−1 t (y u f(zδ−1)).

By transfinite induction, we conclude that {∀δ ∈ µ(L), tδ = zδ} and, in particular,

luis(λx .x t (y u f(x)))(⊥) = luis(f)(⊥) = lfp(f). Moreover, it is easy to prove that

each term of 〈xδ : δ ∈ µ(L)〉 is smaller than the corresponding term in the decreasing

iteration sequence starting from y and defined by λx .xug(x) (2.5.1.0.2), which enables

us to conclude that lfp(f) v lfp(λx . y u g(x)) v llis(λx .x u g(x))(y) v y.
End of proof.

THEOREM 4.3.2.0.5
Let L(v,⊥,>,t,u) be a complete lattice and g ∈ mon(L → L), then λ y .

lfp(λx . y u g(x)) is a lower closure operator on L that is smaller than g.

Proof: Let us set h = λ y . lfp(λx . y u g(x)). Theorem 4.3.2.0.5 stated that h is

reductive. Moreover, y v z implies that λx . y u g(x) v λx . z u g(x) and lfp(λx .
y u g(x)) v lfp(λx . z u g(x)) (4.3.0.1), which proves that h is monotone. Let 〈xδ :

δ ∈ µ(L)〉 and 〈yδ : δ ∈ µ(L)〉 be the increasing iteration sequences starting from ⊥
and defined respectively by λx . y u g(x) and λx .h(y) u g(x) (2.5.1.0.1). Since 〈xδ :

δ ∈ µ(L)〉 is a stationary chain with limit h(y), we have, for any δ ∈ µ(L), xδ v h(y).

For δ = 0, we have x0 = y0 = ⊥. Let us assume that, for any α < δ, we have

xα = yα. If δ is a limit ordinal, then we have xδ =
⊔
α<δ

xα =
⊔
α<δ

yα = yδ. If δ is

(4)-52

a successor ordinal, then xδ−1 = yδ−1 and yδ = (h(y) u g(yδ−1)) = h(y) u g(xδ−1) =

yug(h(y))ug(xδ−1). Since xδ−1 v h(y) and g is monotone, we have g(xδ−1) v g(h(y)),

so, g(h(y)) u g(xδ−1) = g(xδ−1), which ensures that yδ = y u g(xδ−1) = xδ. By

transfinite induction, we have in particular h(y) = luis(λx . y u g(x))(⊥) = luis(λx .
h(y) u g(x))(⊥) = h(h(y)). Finally, ∀y ∈ L, h(y) = y u g(h(y)) v g(h(y)) v g(y).

End of proof.

Remark 4.3.2.0.6

Given g v f , an over-approximation y of lfp(f) can, as previously, be improved as

lfp(λx . yug(x)). This process cannot be iterated to further improve the approximation

since λ y . lfp(λx . y u g(x)) is idempotent. Let us note that lfp(λx . y u g(x)) is a

better approximation of lfp(f) than llis(λx .xu g(x))(y) which, according to the dual

of Theorem 2.5.4.0.2, is the least value in L that can be computed by using t, u, g,
and y. As observed in Remark 4.1.1.0.9, we have achieved a better improvement of the

over-approximation y of lfp(f) by using 4.1.1.0.1 with λx . yuf(x) than we would have

by using 4.1.1.0.7 starting from y. This leads us to come back to Remark 4.1.1.0.9 in

order to note that, if y = DOIS(f, IOIS(f,⊥)), we have IOIS(λx . y u f(x),⊥) = y

whenever the same extrapolation method is used when computing IOIS(f,⊥) and

IOIS(λx . y u f(x),⊥) (for instance, by choosing the same ∇̄ in 4.1.2.0.5). So, it is

again impossible to improve y.

End of remark.

THEOREM 4.3.2.0.7
Let L(v,⊥,>,t,u) be a complete lattice and f, g ∈ mon(L→ L),

{{∃y ∈ L : y v gfp(f)} and {g v f}}
⇒ {y v luis(λx .x t g(x))(y) v gfp(λx . y t g(x)) v gfp(f)}

(4)-53

4.4 BIBLIOGRAPHIC NOTES

Approximation methods of fixpoints that are known in numerical analysis (for instance

Amann [1976], Kuhn & MacKinnon [1975], Rockafellar [1976], Scarf [1967], Todd [1976],

etc.) are not very useful to us because we are working on non-numerical spaces for

which we have no notion of distance. In particular, we do not know how to measure

the accuracy of approximations.

The idea of under- and over-approximating a fixpoint is classic in functional

analysis (Krasnosel’skii [1964]) and is also seen, with a distinct perspective, in Cousot &

Cousot [1977a]. However, examples were only provided for over-approximations, which

did not emphasize under-approximations. This is why we have systematically stated

the dual of all methods of approximation in Paragraph 4.1. However, in Paragraph 4.2,

the dual results were kept implicit.

Paragraph 4.1 on iterative methods of approximation of fixpoints based on con-

vergence acceleration by extrapolation is a formalization of the algorithms used in

Cousot & Cousot [1975a, 1976], even though the fact that these algorithms are based

on the approximation of the solutions of the equation systems associated with programs

is implicit in those works. This idea is explicitly stated in Cousot & Cousot [1977a].

At the same time, M. Sintzoff and A. van Lamsweerde have also designed methods to

compute or approximate fixpoints in order to solve their problems of construction or

improvement of non-deterministic programs (Sintzoff [1977a, 1977b], van Lamsweerde

[1977]) or parallel programs (van Lamsweerde & Sintzoff [1976]).

The formalization of the idea of simplification of equation systems (Paragraph

4.3) by the means of a closure operator (Paragraph 4.2) initially comes from Cousot &

Cousot [1975a, 1975b,1976, 1977a] where we were using a pair of upper adjoint func-

tions. The relation between the notion of closure operator is presented in Cousot &

Cousot [1977d], Cousot [1977b, 1977c]. In addition to the known results on closure op-

erators we restated in Paragraph 4.2 (also providing references but not proofs), we can

(4)-54

quote Achache [1969], Dubreil-Jacotin, Lesieur & Croisot [1963], Dwinger [1954, 1955],

Iseki [1951], Ladegaillerie [1973], Monteiro [1945], Monteiro & Ribeiro [1942], Morgado

[1960, 1961, 1962a, 1962b, 1963, 1964, 1965a, 1965b, 1966], Ore [1943a, 1943b], Ward

[1942]. The only use (apart from ours) of the notion of closure operator that we have

found in Computer Science is Scott [1976].

CHAPTER 5.

APPROXIMATE SEMANTIC ANALYSIS OF PROGRAMS AND
APPLICATIONS

5. APPROXIMATE SEMANTIC ANALYSIS OF PROGRAMS
AND APPLICATIONS

5.1 Building an approximate program analysis technique for a given class of se-

mantic properties . 2

5.2 Example in automatically discovering the sign of the numeric variables of a

program using a forward semantic analysis with over-approximation 6

5.2.1 Defining a space of approximate properties by an upper closure op-

erator . 6

5.2.2 Rules to construct the approximate system of forward equations

associated with a program . 11

5.2.3 Iterative solving of an approximate system of equations when the

convergence occurs naturally with example 17

5.3 Example in automatically and approximately discovering the parity of the inte-

ger variables of a program . 19

5.4 Combining approximate analyses: sign and parity of the integer variables of a

program . 22

5.5 Classic program optimisation techniques . 26

5.5.1 Boolean techniques to optimise programs 26
5.5.1.1 Live variables of a program . 26
5.5.1.2 Available expressions . 27

5.5.2 Non-boolean techniques to optimise programs: the example of con-

stant propagation . 29

5.6 Automatically discovering the type of the variables of a program 32

5.6.1 Handling pointers . 33
5.6.1.1 Nil and non-nil pointers . 34
5.6.1.2 Pointers referencing distinct records 35

5.6.2 Discovering the type of objects in a program in a very high-level

language without declarations . 41
5.6.2.1 Approximate system of forward equations 42
5.6.2.2 Approximate system of backward equations 43
5.6.2.3 Gist of the solving method . 45
5.6.2.4 Example . 45

5.7 Approximation techniques for infinite spaces of approximate properties: exam-

ple in automatically discovering an interval of values for the numeric variables

of a program . 47

5.7.1 Space of approximate properties . 49

5.7.2 Rules to construct the approximate system of forward equations

associated with a program . 53

5.7.3 Solving the approximate system of equations by dynamic approxi-

mation . 56
5.7.3.1 Approximating the least solution using an increasing chaotic it-

eration sequence with upper widening 56
5.7.3.2 Improving the approximate solution using a decreasing chaotic

iteration sequence with lower narrowing 58

5.7.4 Example in eliminating run-time bound checks 59

5.7.5 Combining forward and backward approximate analyses 63

5.8 Automatically discovering linear equality or inequality relations between the

numeric variables of a program . 68

5.8.1 Space of approximate properties . 70

5.8.2 Rules to construct the approximate system of forward equations

associated with a program . 72

5.8.3 Approximate solving of the system of equations by increasing chaotic

iteration sequences with upper widening 74

5.8.4 Example . 80

5.9 Hierarchy of applications . 81

5.10 Bibliographic notes . 83

5. APPROXIMATE SEMANTIC ANALYSIS OF PROGRAMS
AND APPLICATIONS

In Chapter 3, we reduced the problem of the static analysis of programs to the prob-

lem of solving systems of forward and backward semantic equations associated with the

program. Some problems of semantic analysis of programs, such as the termination

problem (Manna [1974, §4.2]) or the seemingly simpler problem of discovering constant

program expressions (Rief & Lewis [1977]) being undecidable, solving these semantic

equations cannot be performed automatically. Even solving them manually is often ex-

tremely difficult (consider, for instance, the open problem of proving that the following

program terminates for any positive integer initial value of n:

while n 6= 1 do
n := if even(n) then n/2 else 3n + 1 endif ;

redo.)

In practice, one must be content with partial answers to questions about the

semantics of a program. For instance, it is easy to prove that the above program

terminates for any positive initial value of n which is a power of two, and this provides a

partial answer to the problem of the termination of the program. In another application

field, a compiler need only answer with “yes” or “don’t know” to the question of whether

some expression is constant at a given program point. Indeed, if the compiler can prove

that the expression is constant, it will compute its value once and for all before the

execution but, if it cannot, it will produce machine code to compute the value at

execution time.

To perform the approximate semantic analysis of a program, we propose to

compute an approximate solution to the forward and backward semantic equations as-

(5)-2

sociated with the program. This consists in applying the approximate equation solving

methods developed in Chapter 4 to the semantic equations considered in Chapter 3.

We show how, given a class of program properties answering a specific problem, the

results of Chapter 4 can be used to construct an algorithm to automatically analyze

an arbitrary program for this class of properties. We demonstrate the method by con-

structing a list of example algorithms that perform approximate semantic analyses of

programs. This list is in no way exhaustive as we chose to develop a methodology of

approximate semantic analysis of programs instead of solving specific problems and

providing hasty implementations from which one cannot learn any lesson — which is

often the case in computer science research. Moreover, we focus our examples on com-

pilation problems for which no satisfying solution exists yet, as solving these problems

has a considerable economical impact.

5.1 BUILDING AN APPROXIMATE PROGRAM ANALYSIS TECH-
NIQUE FOR A GIVEN CLASS OF SEMANTIC PROPER-
TIES

In order to build a method for the semantic analysis of programs, we must first state

which questions to ask about programs. We then explain how, using the results of

Chapter 3, an over- or under-approximation of the solutions of the systems of semantic

equations associated with a program can answer these questions. Finally, Chapter 4

provides a panel of methods to solve approximately these semantic equations.

Example

To solve the problem “find the domain of termination of a program π”, we can

compute lfp(Bπ(λx . true))ε (Definition 3.5.0.1 and Theorem 3.5.0.5). A partial an-

swer may consist in discovering subsets of the domain of termination. This kind of

approximate answers is then obtained by characterising a sub-domain of termination

(5)-3

by a predicate R such that R ⇒ lfp(Bπ(λx . true))ε. Thus, to compute an under-

approximation of the least fixpoint of λP . {λn . [((n 6= 1) and even(n) and P (n/2)) or

((n 6= 1)andodd(n) andP (3n+1))or (n = 1)]}, we first simplify this operator into λP .
{λn . [(even(n) and P (n/2)) or (n = 1)]}, which gives R = λn . {∃k ≥ 0 : n = 2k}.
End of example.

Although it is sufficient, when considering a manual analysis, to state some

general principles to solve approximately semantic equations — which leaves us free

to choose the best method according to each individual program — it is necessary, in

the case of automatic analysis, to provide one algorithm to solve approximately the

semantic equations permitting the analysis of any program. In this case, we plan to

choose, for a given problem, a specific kind of answers to this problem. Chapter 3 then

provides a way to design an approximate analysis method for this kind of semantic

properties.

For instance, let π be a program with n variables x1, . . . , xn with value in

U and α program points a1, . . . , aα where aε and aσ denote respectively the en-

try and exit program points. To answer the question “what is the domain of pos-

sible values of the variables of the program during any execution of the program”,

we may compute lfp(Fπ(φ)) (Definition 3.3.0.1 and Theorem 3.3.0.2). Actually, any

P ∈ (Pn)α = (Un → {true, false})α such that lfp(Fπ(φ)) ⇒ P provides a partial an-

swer to the problem by characterising an over-approximation of the domain of possible

values at each program point. In general, there exists infinitely many P that are over-

approximations of lfp(Fπ(φ)), but some are more enlightening than others for a given

problem. When performing a manual analysis, one guesses intuitively the optimal shape

P should take while performing the computation itself. On the contrary, in an auto-

matic analysis, we cannot rely on intuition to drive the computation of the approximate

solution. Thus, we suggest to fix, before starting the analysis, the shape that approxi-

mate solutions should take. This amounts to choosing a priori a subsetR of (Pn)α such

(5)-4

that an over-approximation P of lfp(Fπ(φ)) in R answers partially the given problem in

an intuitively satisfying way. In order for any predicate P on (Pn)α to enjoy a best over-

approximation ρ̄(P) inR, it is necessary and sufficient forR to be a lower Moore family,

i.e., ρ̄ should be an upper closure operator on (Pn)α such that ρ̄(Pn)α = R (Theorems

4.2.2.0.1 and 4.2.2.0.4). WhenR is not a lower Moore family, we can construct the least

lower Moore family R̄ containing R (Theorem 4.2.2.0.5). The least monotone operator

on R̄ greater than or equal to Fπ(φ) restricted to R̄ is then ρ̄ ◦ Fπ(φ) ◦ ρ̄ (Paragraph

4.2.8) and, according to Theorem 4.3.1.0.1, lfp(Fπ(φ))⇒ lfp(ρ̄ ◦ (Fπ(φ)) ◦ ρ̄) holds. In

a way, choosing a space R̄ of approximate properties simplifies the system of equations

to solve as computing lfp(ρ̄ ◦ Fπ(φ) ◦ ρ̄) reduces to computing the least solution of

the system of approximate equations X = ρ̄(Fπ(φ))(X) defined on R̄. This system of

approximate equations is simpler than X = Fπ(φ)(X) as it is defined on a space R̄
of properties simpler than (Pn)α. Specifically, R̄ will be chosen so that its elements

have a simple machine representation. However, the machine evaluation of ρ̄ ◦ Fπ(φ)

poses the same difficulty as that of evaluating Fπ(φ) because the elements in (Pn)α do

not have a canonical representation, which makes the computation hard to automatise

due to simplification issues. Thus, we suggest to evaluate ρ̄ ◦ Fπ(φ) manually or, more

precisely, to design by hand an algorithm to compute ρ̄ ◦ Fπ(φ) or, when this is too

difficult, an algorithm to compute F̄π ∈ mon(R̄ → R̄) where ρ̄ ◦ Fπ(φ) ⇒ F̄π so that

lfp(ρ̄ ◦ Fπ(φ)) ⇒ lfp(F̄π) (see Theorem 4.3.0.1 and also 4.3.1.0.1–2). To avoid redoing

this work for every program π, we will design an algorithm to directly construct an

approximate system of equations X = F̄π(X) associated with an arbitrary program

π. Most often, all the approximate properties to compute at each program point will

have the same shape, which amounts to choosing ρ̄ ∈ ((Pn)α → (Pn)α) of the form

ρ̄ = (ρ̄1, . . . , ρ̄α) where ρ̄1 = ρ̄2 = . . . = ρ̄α = ρ and ρ ∈ (Pn → Pn). In this case,

to each rule Xi = Fi(X1, . . . , Xα) from Definition 3.3.0.1 corresponds an approximate

rule Xi = F̄i(X1, . . . , Xn) where Xj ∈ R̄ and ρ̄ ◦ Fi ⇒ F̄i. The algorithm to associate

(5)-5

with each program π the approximate system of equations X = F̄ (X) can be written

once and for all using as parameter the machine representation of elements in R̄ and

the functions corresponding to elementary rules. Likewise, algorithms to solve approx-

imate systems of equations X = F̄π(X) can be written once and for all. We distinguish

the case where R̄ satisfies the ascending chain condition, in which case either Theo-

rem 2.9.1.0.2, 2.9.2.0.2, or 2.9.3.0.9 may be applied to compute iteratively, in a finite

number of steps, the least solution of X = F̄π(X) starting from the infimum of R̄. In

the case where the convergence does not hold naturally, Remark 4.1.1.0.9 suggests we

use an increasing iteration sequence with over-approximation (4.1.1.0.1) followed with

a decreasing iteration sequence with over-approximation (4.1.1.0.7). This algorithm is

parametrized by an upper widening (4.1.2.0.5) and a lower narrowing (4.1.2.0.16) that

must be chosen for each application.

To sum up, in order to define an algorithm for the approximate analysis of

programs for a given class of semantic properties we suggest to:

1 - choose a closure operator (parametrized by the number n of variables) on Pn,
which defines a sub-space R̄ of approximate properties,

2 - use this closure operator and the rules defining the systems of forward or back-

ward semantic equations to design, by hand, the rules defining the approximate

systems of equations,

3 - write the algorithm that associates with each program the approximate systems

of (forward and/or backward) equations,

4 - write an algorithm to solve these systems (maybe using convergence acceleration

methods, when the convergence is not guaranteed to occur naturally in a finite

number of steps).

(5)-6

We first provide very simple examples to illustrate the method in detail. We then

provide more complex examples related to concrete problems. Specifically, Paragraphs

5.6 and 5.7 develop and demonstrate the backward semantic analysis method as well

as the method of combining forward and backward semantic analyses.

5.2 EXAMPLE IN AUTOMATICALLY DISCOVERING THE SIGN
OF THE NUMERIC VARIABLES OF A PROGRAM US-
ING A FORWARD SEMANTIC ANALYSIS WITH OVER-
APPROXIMATION

The goal of this very simple example is to demonstrate in an intuitive way our technique

of approximate analysis of the semantic properties of programs.

5.2.1 Defining a space of approximate properties by an upper closure oper-
ator

To study the sign of the values of the variables of a program π, it is necessary to

discover, at each program point, invariants of the form
n

AND
i=1

(xi ri 0), where ri is an

inequality relation ≥ or ≤. Given this specific class of semantic properties, we now

construct the corresponding upper closure operator.

We will often encounter the case where the space of approximate properties

does not expose the relationships between variables x1, . . . , xn. For instance, an over-

approximation of P = λ (x, y) . [(x ≥ y > 0) or (x = y = 0)] exposing only relations on

a single variable may be λ (x, y) . (x ≥ 0 and y ≥ 0). To define such an approximation

by an upper closure operator, we proceed as follows:

For all j = 1, . . . , n, let:

σnj ∈ Pn → P1 where Pn = (Un → B) and B = {true, false}

(5)-7

σnj = λP . [λx .∃(v1, . . . , vj−1, vj+1, . . . , vn) ∈ Un−1 :
P (v1, . . . , vj−1, x, vj+1, . . . , vn)]

@ ∈ Pn → (P1)n

@ = λP . (σn1 (P), σn2 (P), . . . , σnn(P))

γ ∈ (P1)n → Pn
γ = λ (P1, . . . , Pn) . [λ (x1, . . . , xn) . (

n

AND
j=1

Pj(xj))]

ζ ∈ γ ◦ @ ∈ (Pn → Pn)

ζ = λP . [λ (x1, . . . , xn) . (
n

AND
j=1

σnj (P)(xj))]

Graphically, we get:

......

ζ

@

γ

Pn

(P1)n

σn
1

σn
2

σn
n

We check that ζ is an upper closure operator on Pn (Definition 4.2.1.0.1) and that

ζ(Pn) is the set of predicates on x1, . . . , xn that do not express any relationship be-

tween these variables, that is, ζ(Pn) is fully isomorphic to (P1)n = (U → {true, false})n

by the complete isomorphism γ with inverse @.

As even predicates on a single variable can still be very complex, we introduce

an upper closure operator η on P1 so as to keep only the properties that are of interest

for a given problem. For instance, to study the sign of the values of the variables,

(5)-8

we may choose predicates of the form λx . (x = Ω), λx . (x ≥ 0 or x = Ω), λx .
(x > 0 or x = Ω), λx . (x ≤ 0 or x = Ω), λx . (x < 0 or x = Ω). We assume that Ω ∈ U
is the value of uninitialized variables. We chose predicates that are in disjunction with

λx . (x = Ω) as it seems difficult to study the proper initialization of variables based

only on their sign. Also note that this set is not a lower Moore family as it does not

contain λx . (x ≥ 0 or x = Ω) and λx . (x ≤ 0 or x = Ω) = λx . (x = 0 or x = Ω). In

this case, the predicate λx . (x = 0) has two possible approximations, i.e., either λx .
(x ≥ 0 or x = Ω) or λx . (x ≤ 0 or x = Ω). There is no best approximation for the

predicate λx . (x = 0) independently from the choice of a program as, for instance,

using the approximation λx . (x ≥ 0 or x = Ω) in:

x := 0 {λx . (x ≥ 0 or x = Ω)} ; x := x + 1 {λx . (x ≥ 0 or x = Ω)} ;

results in a finer analysis than using the approximation λx . (x ≤ 0 or x = Ω):

x := 0 {λx . (x ≤ 0 or x = Ω)} ; x := x + 1 {λx . true} ;

whereas

x := 0 {λx . (x ≤ 0 or x = Ω)} ; x := x− 1 {λx . (x ≤ 0 or x = Ω)} ;

is better than:

x := 0 {λx . (x ≥ 0 or x = Ω)} ; x := x− 1 {λx . true} ;

To define an approximation of a predicate that would be the best approximation on

all programs to be analyzed, there should exist a best choice with respect to the order

in the lattice P1 as this is our only “metric” for the quality of an approximation. This

requires the existence of an over-approximation which is smaller than all others, which

amounts to choosing a set of approximate properties that forms a lower Moore family

(this is always possible according to Theorem 4.2.2.0.5). In our example, we will then

define:

(5)-9

η = λP . case

P ⇒ λx . (x = Ω) → λx . (x = Ω) ;

P ⇒ λx . (x = 0 or x = Ω) → λx . (x = 0 or x = Ω) ;

P ⇒ λx . (x > 0 or x = Ω) → λx . (x > 0 or x = Ω) ;

P ⇒ λx . (x < 0 or x = Ω) → λx . (x < 0 or x = Ω) ;

P ⇒ λx . (x ≥ 0 or x = Ω) → λx . (x ≥ 0 or x = Ω) ;

P ⇒ λx . (x ≤ 0 or x = Ω) → λx . (x ≤ 0 or x = Ω) ;

P ⇒ λx . true → λx . true ;

endcase ;

To represent the elements in η(P1) in a computer, we use the following lattice:

�

⊥

−̇ +̇

+− 0

which is isomorphic to the lattice η(P1) by the α isomorphism:

α = λP . caseP in

λx . (x = Ω) → ⊥ ;

λx . (x = 0 or x = Ω) → 0 ;

λx . (x > 0 or x = Ω) → + ;

λx . (x < 0 or x = Ω) → − ;

λx . (x ≥ 0 or x = Ω) → +̇ ;

(5)-10

λx . (x ≤ 0 or x = Ω) → −̇ ;

λx . true → > ;

endcase ;

the inverse of which will be denoted as α−1. At this stage, the situation looks like

this:

ζ

γ

@

Pn

(P1)n

Lα

α−1

σn
1

σn
2

σn
n

...

... η

The simplest way to go is to perform the same approximation for all program variables.

We check easily that:

η̄ = λ (P1, . . . , Pn) . (η(P1), η(P2), . . . , η(Pn))

is an upper closure operator on (P1)n and that η̄(Pn1) is fully isomorphic to Ln by the

following complete isomorphism:

ᾱ = λ (P1, . . . , Pn) . (α(P1), α(P2), . . . , α(Pn))

with inverse:

ᾱ−1 = λ (v1, . . . , vn) . (α−1(v1), α−1(v2), . . . , α−1(vn))

It follows from Theorem 4.2.4.0.6 that we can define a closure operator ρ on Pn as:

(5)-11

ρ = γ ◦ η̄ ◦ @ ◦ ζ

and ρ(Pn) is isomorphic to Ln by ᾱ ◦ @ with inverse γ ◦ ᾱ−1. Thus, we obtain an

over-approximation of Pn which is easily represented in a computer:

η

α

α−1

γ

ζ

ρ

@

Ln

Pn

(P1)n

Given our closure operator ρ on Pn, it is natural to use the same approximation at

all program points (although this is in no way mandatory) and we obtain a closure

operator ρ̄ on (Pn)α defined as:

ρ̄ = λ (P1, . . . , Pα) . (ρ(P1), ρ(P2), . . . , ρ(Pα))

5.2.2 Rules to construct the approximate system of forward equations asso-
ciated with a program

It follows from Theorem 3.3.0.2 that the sign of the values of the variables during the

execution of a program π starting in a state satisfying φ is ρ̄(lfp(Fπ(φ))), which we will

over-approximate as lfp(ρ̄ ◦ Fπ(φ) | ρ̄((Pn)α)). Given our choice of representing the

(5)-12

elements of ρ̄((Pn)α) by the elements of (Ln)α in a computer, we now define by hand

a computer representation for (ρ̄ ◦ Fπ(φ) | ρ̄((Pn)α)). To do this independently from

the choice of a specific program π, we need to state rules to construct an approximate

system of equations X = F̄π(φ̄)(X) on (Ln)α. These rules are justified by proving

that {(ρ ◦ Fπ(φ)j ◦ ρ) ⇒ (γ ◦ ᾱ−1 ◦ F̄π(φ̄)j ◦ α ◦ @)} as, according to Theorem

4.3.0.1, this implies that, for all j = 1, . . . , α, {lfp(Fπ(φ))j ⇒ lfp(ρ̄ ◦ Fπ(φ) ◦ ρ̄)j ⇒ γ ◦

α−1(lfp(F̄π(φ̄))j)}. We state and justify these rules as follows:

Program entry :

If aj is the entry point of the program, then Xj = ᾱ ◦ @ ◦ ρ(φ) and this compu-

tation is performed manually by the user that directly inputs an element of Ln instead

of an element of Pn as entry condition. In most cases, the entry specification is stan-

dard (the simplest cases being the case where no variable is initialized (⊥,⊥, . . . ,⊥)

and the case where all variables are initialized with unknown values (>,>, . . . ,>)).

Path junction:

If aj is a program point following a label following the program points ai1 , . . . , aik ,

then Xj =
k⊔
l=1

Xil where t is the join in the lattice Ln(v,⊥,>,t,u).

To justify this rule, we must prove that (Theorem 4.3.0.1):

∀(Xi1 , . . . , Xik) ∈ (Ln)k, ρ(
k

OR
l=1

γ ◦ ᾱ−1(Xil)) ⇒ γ ◦ ᾱ−1(
k⊔
l=1

Xil)

(Intuitively, the computations in Ln should be over-approximations of those in ρ(Pn).

Ideally, one could wish them to be equal, which is the case in this example.)

As ρ = γ ◦ η̄ ◦ @ ◦ ζ = γ ◦ η̄ ◦ @ ◦ γ ◦ @ = γ ◦ η̄ ◦ @, it is sufficient to prove that:

η̄ ◦ @(
k

OR
l=1

γ ◦ α−1(Xil)) = ᾱ−1(
k⊔
l=1

Xil)

(5)-13

This is done one component at a time, which reduces to proving that ∀m = 1, . . . , n

the following holds:

η ◦ σnm(
k

OR
l=1

γ ◦ α−1(Xil)) = α−1(
k⊔
l=1

(Xil)m)

that is:

η ◦ σnm(
k

OR
l=1

(λ (x1, . . . , xn) . (
n

AND
j=1

α−1(Xil)j(xj)))) = α−1(
k⊔
l=1

(Xil)m)

as α−1 is a complete isomorphism from L to η(P1) and the join in η(P1) is given by

Theorem 2.3.0.1. We are left to prove that:

η ◦ σnm(λ (x1, . . . , xn) . (
k

OR
l=1

(
n

AND
j=1

α−1(Xil)j(xj)))) = η(
k

OR
l=1

α−1((Xil)m))

By eliminating η and replacing σnm with its definition, we get:

λx . {∃(v1, . . . , vm−1, vm+1, . . . , vn) ∈ Un−1 :
k

OR
l=1

((
n

AND
j=1,j 6=m

α−1(Xil)j(vj)) and (α−1(Xil)m)(x))}

Given j ∈ {1, . . . , n} − {m} and choosing vj = Ω, α−1(Xil)j(vj) always holds as

α−1(Xil) has the form λx . ((x = Ω) or . . .), so that we get:

k

OR
l=1

(α−1(Xil)m)

which concludes the proof.

Test :

We consider the case where aj is the true exit point from a test p. To simplify,

we assume that p has the form λ (x, y) . (x = y), λ (x, y) . (x 6= y), λ (x, y) . (x > y),

or λ (x, y) . (x ≥ y). (This is in no way a theoretical limitation as all other cases

can be handled through composition using Theorem 4.2.6.0.4.(c)–(d). Thus, (if x <

y then I1 else I2 endif) is equivalent to (if y > x then I2 else I1 endif); moreover,

(5)-14

(if x = 0 then . . .) is equivalent to (z := 0 ; if x = z then . . .), (if (x = z) and (y >

z) then . . .) is equivalent to (if x = y then (if y > z then . . .) endif ;), etc. Of course, it

is more efficient in practice to consider the tests in their most general form as specified

in the language. However, the computations are too tedious to be presented here and

do not contribute further to the understanding of the topic.)

Let Xj and Xi ∈ Ln be associated respectively with the true exit point aj and to

the entry point ai of a test with condition p. Given the value of Xi, we must compute

a value for Xj that is equal to or greater than:

ᾱ ◦ @ ◦ ρ(test(p)(γ ◦ ᾱ−1(Xi)))

As ᾱ ◦ @ ◦ ρ = ᾱ ◦ @ ◦ γ ◦ η̄ ◦ @ ◦ ζ = ᾱ ◦ η̄ ◦ @ ◦ γ ◦ @ = ᾱ ◦ η̄ ◦ @ and according to

Definition 3.3.0.1, we must construct an over-approximation of:

ᾱ ◦ η̄ ◦ @(λ (x1, . . . , xn) . {γ ◦ ᾱ−1(Xi)(x1, . . . , xn) and (x1, . . . , xn) ∈ dom(p) and
p(x1, . . . , xn)})

⇒ ᾱ ◦ η̄ ◦ @(λ (x1, . . . , xn) . {γ ◦ ᾱ−1(Xi)(x1, . . . , xn) and p(x1, . . . , xn)})

because ᾱ, η̄, and @ are monotone. We ignore here the cases where the test is incorrect.

Continuing the computation component-wise, we must find, for q = 1, . . . , n, an over-

approximation of:

α ◦ η ◦ σnq (λ (x1, . . . , xn) . {γ ◦ ᾱ−1(Xi)(x1, . . . , xn) and p(x1, . . . , xn)})
= α ◦ η(λx . {∃(v1, . . . , vq−1, vq+1, . . . , vn) ∈ Un−1 :

γ ◦ ᾱ−1(Xi)(v1, . . . , x, . . . , vn) and p(v1, . . . , x, . . . , vn)})
= α ◦ η(λx . {∃(v1, . . . , vn) ∈ Un−1 :

n

AND
l=1,l 6=q

(α−1(Xi)l)(vl) and (α−1(Xi)q)(x) and p(v1, . . . , x, . . . , vn)})

- When the variable xq does not occur in the test, we get that for every x ∈ Un,
p(v1, . . . , x, . . . , vn) = p(v1, . . . ,Ω, . . . , vn). So, putting v1 = . . . = vq−1 = vq+1 = . . . =

vn = Ω, we can simplify into:

= α ◦ η(α−1(Xi)q) = (Xi)q

(5)-15

For all the variables that do not occur in the test, we will then pick (Xj)q = (Xi)q.

Obviously, the outcome for the other variables depends on the test.

- When p = λ (x1, . . . , xn) . (xq = xr), we must construct an over-approximation of:

α ◦ η(λx . {∃(v1, . . . , vn) ∈ Un−1 :
n

AND
l=1,l 6=q

(α−1(Xi)l)(vl) and (α−1(Xi)q)(x) and

x = vr})
= α ◦ η(λx . {∃vr ∈ U : (α−1(Xi)q)(x) and (α−1(Xi)r)(vr) and x = vr})
= α ◦ η{α−1(Xi)q and α−1(Xi)r}
= {α ◦ η ◦ α−1(Xi)q u α ◦ η ◦ α−1(Xi)r}

as η is a closure operator, by Theorem 2.3.0.1, and by the fact that α is a complete
isomorphism from η(P1) to L

= (Xi)q u (Xi)r

We conclude that if Xi is associated with the entry point ai of a test xq = xr, we

get Xj = Xi(xq ← xq u xr, xr ← xq u xr) on the true exit arc, where this notation

means that (Xj)m = (Xi)m for m ∈ {1, . . . , n} − {q, r}, (Xj)q = (Xi)q u (Xi)r and

(Xj)r = (Xi)q u (Xi)r.

- When p = λ (x1, . . . , xn) . (xq ≥ xr), we must construct an over-approximation of:

α ◦ η(λx . {∃(v1, . . . , vn) ∈ Un−1 :
n

AND
l=1,l 6=q,l 6=r

(α−1(Xi)l)(vl) and (α−1(Xi)q)(x) and (α−1(Xi)r)(vr) and x ≥ vr})

= α ◦ η(λx . {∃vr : (α−1(Xi)q)(x) and (α−1(Xi)r)(vr) and x ≥ vr})

We now distinguish several cases:

• If (α−1(Xi)r)(vr) = (vr = Ω), then x ≥ Ω is undefined and we may consider

that the semantics of the language states that neither exit branch from the test is

taken. This amounts to saying that the test is false for the true exit branch (and

true for the false exit branch):

α ◦ η(λx . false) = α(λx . (x = Ω)) = ⊥

(5)-16

• If (α−1(Xi)r)(vr) = (vr = 0 or vr = Ω), then:

= α ◦ η(λx . {∃vr : (α−1(Xi)q)(x) and ((vr = 0 or vr = Ω) and x ≥ vr)})
= α ◦ η(λx . {∃vr : (α−1(Xi)q)(x) and ((vr = 0 and x ≥ vr) or (vr = Ω and x ≥

vr))})
As x ≥ Ω is false, we get:

= α ◦ η(λx . {(α−1(Xi)q)(x) and (x ≥ 0)}
⇒ α ◦ η(λx . {(α−1(Xi)q)(x) and (x ≥ 0 or x = Ω)}
= α ◦ η ◦ α−1(Xi)q u α ◦ η ◦ α−1(+̇)

= (Xi)q u +̇

We see that we obtain the same result when (α−1(Xi)r)(vr) = (vr ≥ 0 or vr = Ω)

while, when (α−1(Xi)r)(vr) = (vr > 0 or vr = Ω), we obtain:

(Xi)q u+

• If (α−1(Xi)r)(vr) = (vr ≤ 0 or vr = Ω), we must find an over-approximation of:

α ◦ η(λx . {∃vr : (α−1(Xi)q)(x) and (vr ≤ 0 and x ≥ vr)}) = (Xi)q

The result is similar when (Xi)r = > or −.

We could keep on studying all the different p and provide composition rules to handle

tests with and , or , and not . This is unnecessary as, in this example, we can follow

our intuition. Nevertheless, we will keep in mind that the theory provides an excellent

guide to devise construction rules for approximate systems of equations. Moreover, it

provides a proof of their correctness, which in turn proves that the approximate anal-

ysis of any program will also be correct.

Assignment :

Let us nevertheless briefly state the rule for the assignment instruction. It is

sufficient to replace, in the right-hand side of the assignment, all variables with their

(5)-17

sign, do the same for constants with absolute value not equal to 1, and then apply the

rule of signs, as in ⊥ + +̇ = ⊥, + + +̇ = +, + − 1 = +̇, +̇ + −̇ = >, etc. We obtain

this way the sign of the expression on the right-hand side of the assignment, which can

be assigned to the variable on the left-hand side. To sum up, the equation associated

with the assignment:

“aj : xq := f(x1, . . . , xn) ; ai : . . .′′

is:

Xj = Xi(xq ← f̄((Xi)1, . . . , (Xi)n))

where f̄ is constructed from f by applying the rule of signs.

5.2.3 Iterative solving of an approximate system of equations when the con-
vergence occurs naturally with example

Let us now consider an example program (Manna [1974, p. 185]). This program com-

putes d√xe assuming that x ≥ 0:

{1}
(y1, y2, y3) := (0, 0, 1) ;

{2}
L:

{3}
y2 := y2 + y3 ;

{4}
if y2 ≤ x then

{5}
(y1, y3) := (y1 + 1, y3 + 2) ;

{6}
goto L ;

endif ;
{7}

The rules we just provided can be used to associate automatically the following ap-

proximate system of equations with this program:

(5)-18

P1 = 〈(x, +̇), (y1,⊥), (y2,⊥), (y3,⊥)〉

P2 = P1(y1 ← 0, y2 ← 0, y3 ← +)

P3 = P2 t P6

P4 = P3(y2 ← y2 + y3)

P5 = P4(y2 ← if x = ⊥ then ⊥ else y2 u (x t −) endif,

x ← if y2 = ⊥ then ⊥ else x u (y2 t+) endif)

P6 = P5(y1 ← y1 + 1, y3 ← y3 + +)

P7 = P4(y2 ← if x = ⊥ then ⊥ elsif (x = 0) or (x = +) or (x = +̇)

then y2 u+ else y2 endif,

x ← if y2 = ⊥ then ⊥ elsif (y2 = 0) or (y2 = −) or (y2 = −̇)

then x u − else x endif)

Given that L is finite, (Ln)α is finite and the computation of lfp(F̄π(ᾱ)) through suc-

cessive approximations converges in a finite number of steps.

This computation gives the following result:

x y1 y2 y3

{1} +̇ ⊥ ⊥ ⊥
{2} +̇ 0 0 +
{3} +̇ +̇ +̇ +
{4} +̇ +̇ + +
{5} + +̇ + +
{6} + + + +
{7} +̇ +̇ + +

From this example, we learn the following lesson. When developing an algorithm

for the approximate semantic analysis of programs, the choice of a space of approxi-

(5)-19

mate properties adapted to solving a given problem is left to the human being. Once

this space is chosen, our theory provides the rules to construct an approximate system

of equations. As shown in the example, this simply amounts to simplifying the ap-

proximate predicate transformers that may occur at the various program points. We

left this simplification task to the human being, although one may consider computer

assistance to perform these symbolic computations. Once this task is completed once

and for all, the computer will be able to provide an approximate system of equations to

each particular program and solve it using an iterative method. When the convergence

is not guaranteed naturally, human intervention is required to devise once and for all a

method of dynamic approximation, which mainly amounts to choosing a widening and

a narrowing (see Paragraph 4.1.2).

5.3 EXAMPLE IN AUTOMATICALLY AND APPROXIMATELY
DISCOVERING THE PARITY OF THE INTEGER VARI-
ABLES OF A PROGRAM

Another very simple example is the discovery of the parity of the variables of a pro-

gram. Let n be the number of integer variables x1, . . . , xn in the program. We consider

an over-approximation Ln of the complete lattice Pn of predicates on these variables

defined as follows:

�

⊥

even oddL =

(5)-20

γ = λ (v1, . . . , vn) . [λ (x1, . . . , xn) . n

AND
j=1

γ1(vj)(xj)]

γ1 = λ v . case v in

⊥ → λx . (x = Ω) ;

even → λx . ((x modulo 2 = 0) or (x = Ω)) ;

odd → λx . ((x modulo 2 = 1) or (x = Ω)) ;

> → λx . true ;

endcase ;

Remark that γ is an injective complete meet-morphism, and so, Theorem 4.2.7.0.5

provides the matching abstraction function. We do not provide in detail the method to

associate an approximate system of equations with a program (5.2.2) but simply give

an example (the product of two integers a and b):

r := 0 ; i := 1 ;
{1}

until i = abs(b) do
{2}

r := r + a ; i := i + 1 ;
{3}

redo ;
{4}

if b < 0 then r :=−r; endif ;
{5}

Let α, β be the parity of the initial values of variables a and b. The approximate system

of equations associated with this program is:

(5)-21

X1 = 〈(a, α), (b, β), (r, even), (i, odd)〉

X2 = X1 tX3

X3 = X2(r ← r + a, i← i+ odd)

X4 = (X1 tX3)(i← i u b, b← i u b)

X5 = X4

Note that the test i = abs(b) provides some information, i.e., that i and abs(b), and so

i and b, have the same parity when the test holds. On the contrary, the tests i 6= abs(b)

and b < 0 do not provide any parity information. Arithmetic expressions are handled

using the rules even + even → even, even + odd → odd, odd + odd → even, etc. As

the lattice Ln is finite, the least solution of these equations can be obtained by a finite

iteration.

If a is initially even and b is odd, we get:
X1 = 〈(a, even), (b, odd), (r, even), (i, odd)〉

X2, X3 = 〈(a, even), (b, odd), (r, even), (i,>)〉

X4, X5 = 〈(a, even), (b, odd), (r, even), (i, odd)〉

The loss of precision due to the approximation appears in the case where a is initially

odd and b is even. Indeed we get:
X1 = 〈(a, odd), (b, even), (r, even), (i, odd)〉

X2, X3 = 〈(a, odd), (b, even), (r,>), (i,>)〉

X4, X5 = 〈(a, odd), (b, even), (r,>), (i, even)〉

Actually, when the initial value of a is odd and that of b is even, the final value of

r when the program exits is even. To prove this, we would use the fact that when

adding an odd number to itself an even number of times, the result is an even number.

As this proof explicitly uses the value of b, it cannot be performed when using an

approximation that forgets this value.

(5)-22

5.4 COMBINING APPROXIMATE ANALYSES: SIGN AND PAR-
ITY OF THE INTEGER VARIABLES OF A PROGRAM

The goal of this example is to demonstrate Paragraph 4.2.3 on the combination of

approximate analyses of a program by combination of the corresponding closure oper-

ators.

For the rule of signs (not considering properties about the strict positivity or

negativity) the upper closure operator is:

ρ1 = λP . case

P ⇒ λx . (x = Ω) → ⊥ ;

P ⇒ λx . (x = 0 or x = Ω) → 0 ;

P ⇒ λx . (x ≥ 0 or x = Ω) → +̇ ;

P ⇒ λx . (x ≤ 0 or x = Ω) → −̇ ;

P ⇒ λx . true → > ;

endcase ;

Note incidentally that ρ1 is constructed from η (5.2.1) as the family of principal ideals

(4.2.5) generated by the suprema +̇, −̇, and ⊥:

�

⊥

−̇ +̇

+− 0

�

⊥

−̇ +̇

0

To study the parity, we used:

(5)-23

ρ2 = λP . case

P ⇒ λx . (x = Ω) → ⊥ ;

P ⇒ λx . (x modulo 2 = 0 or x = Ω) → even ;

P ⇒ λx . (x modulo 2 = 1 or x = Ω) → odd ;

P ⇒ λx . true → > ;

endcase ;

It follows from Theorem 4.2.3.0.10 that, to compute ρ1 t ρ2, it is sufficient to

compute the intersection of the sets {⊥, 0, +̇, −̇,>} and {⊥, even, odd,>}, which gives

{⊥,>} and is a Moore family corresponding to following the closure operator:

ρ1 t ρ2 = λP . case

P ⇒ λx . (x = Ω) → ⊥ ;

P ⇒ λx . true → > ;

endcase ;

In this example, the approximation we obtain is so coarse as to seem useless but

this is not the case as it allows proving that the program graph is connected!

It follows also from Theorem 4.2.3.0.10 that, in order to obtain ρ1uρ2, it is suffi-

cient to construct the least Moore family containing {⊥, 0, +̇, −̇,>} and {⊥, even, odd,>}.
It is obtained by adding all the meets that are not in this set:

(5)-24

�

⊥

−̇+̇

0

even odd

&even+̇
−̇&even &odd+̇ −̇ &odd

After performing a topological sort, we obtain the corresponding closure operator:

ρ1 u ρ2 = λP . case

P ⇒ λx . (x = Ω) → ⊥ ;

P ⇒ λx . (x = 0 or x = Ω) → 0 ;

P ⇒ λx . (((x ≥ 0) and (x modulo 2 = 0)) or (x = Ω)) → +̇& even ;

P ⇒ λx . (((x ≤ 0) and (x modulo 2 = 0)) or (x = Ω)) → −̇& even ;

P ⇒ λx . (((x ≥ 0) and (x modulo 2 = 1)) or (x = Ω)) → +̇& odd ;

P ⇒ λx . (((x ≤ 0) and (x modulo 2 = 1)) or (x = Ω)) → −̇& odd ;

P ⇒ λx . ((x modulo 2 = 0) or (x = Ω)) → even ;

P ⇒ λx . (x ≥ 0 or x = Ω) → +̇ ;

P ⇒ λx . (x ≤ 0 or x = Ω) → −̇ ;

P ⇒ λx . ((x modulo 2 = 1) or (x = Ω)) → odd ;

P ⇒ λx . true → > ;

endcase ;

The benefit of this combination of two analyses is that it gives better results than each

analysis performed separately. Consider, for instance, the following program (Manna

(5)-25

[1974, p. 179]) to compute y3 = xx2
1 (using the convention 00 = 1) for any integer x1

and any natural number x2:

〈y1, y2, y3〉 := 〈x1, x2, 1〉 ;
{1}

until y2 = 0 do
{2}

if odd(y2) then
{3}

〈y2, y3〉 := 〈y2 − 1, y1 ∗ y3〉 ;
{4}

else
{5}

〈y1, y2〉 := 〈y1 ∗ y1, y2/2〉 ;
{6}

endif ;
{7}

redo ;
{8}

If we perform only a sign analysis (corresponding to the closure operator ρ1), we obtain

for the variable y2:

{1} {2} {3} {4} {5} {6} {7} {8}

y2 +̇ > > > > > > 0

If we perform only a parity analysis (corresponding to the closure operator ρ2), we get:

{1} {2} {3} {4} {5} {6} {7} {8}

y2 > > odd even even > > even

Intersecting the results of these two separate analyses does not provide any further

information on the sign of y2. On the contrary, combining these two analyses into an

analysis corresponding to the closure operator ρ1 u ρ2 enables the rule (+̇ & odd)− 1 =

(5)-26

(+̇ & even), which improves the result on the sign of y2:

{1} {2} {3} {4} {5} {6} {7} {8}

y2 +̇ +̇ +̇ & odd +̇ & even +̇ & even +̇ +̇ 0

This example teaches us the following lesson: when planning to analyse several

disjoint properties on programs — that is, properties corresponding to closure operators

ρ1 and ρ2 that cannot be compared — it is always better — for both speed and precision

— to combine them using the methods of Paragraph 4.2.3. In all generality, Theorem

4.2.8.0.5 proves that the analysis corresponding to ρ1 u ρ2 gives a better result than

intersecting the results of the separate analyses corresponding to ρ1 and ρ2.

5.5 CLASSIC PROGRAM OPTIMISATION TECHNIQUES

A large amount of techniques to optimise programs, such as determining which variables

are live at each program point, are purely syntactic. They correspond to checking

program properties that are not related to the values of the variables. Others, such as

constant propagation, are semantic. In both cases, they can be reduced to the problem

of solving a system of equations associated with the program.

5.5.1 Boolean techniques to optimise programs

5.5.1.1 Live variables of a program

A variable is “live” at a program point (Aho & Ullman [1977], Hecht & Ullman [1973],

Kennedy [1971], Kennedy [1976], Ullman [1975]) if its value is used along some execution

path of the program starting from this point. (For instance, in begin x := 1 ; y :=

2 ; {1}y :=x+ 1 end, x is live at point {1} while y is not. This information is obviously

useful to perform register allocation.) Let us denote by used(b), for each program node

b, the set of variables the value of which is used in this node, and by transparent(b) the

(5)-27

set of variables the value of which is not modified in this node. Then, the set live(b) of

live variables at the entry of program node b can be obtained by computing the least

solution (with respect to set inclusion ⊆) of the system of fixpoint equations associated

with the program by the following backward rule:

live(b) = used(b) ∪
⋃

x∈succ(b)

(transparent(b) ∩ live(x))

and, at exit nodes:

live(b) = ∅

(A variable is live at the entry of a block b if it is used in this block, or if its value is

not changed in block b and the variable is used in an execution path starting from the

block exit, that is, if it is live at the block exit.)

Consider the following example with two variables α and β, and vectors used

and transparent defined syntactically as follows:

0

1

2

3

4

5

node 0 1 2 3 4

used ∅ {β} ∅ ∅ {α}

transparent ∅ {α, β} {α, β} {α, β} {α}

The least solution of the above
system of equations is:

node 0 1 2 3 4 5

live ∅ {α, β} {α, β} {α, β} {α} ∅

(5)-28

In the iterative computation, live is initialized to used, which is smaller than the

least fixpoint. In a computer, we would represent these sets as boolean vectors with

length the number of program variables.

5.5.1.2 Available expressions

An expression is available at a program point (Cocke [1970], Hecht & Ullman [1973],

Morel & Renvoise [1974], Schaefer [1973], Ullman [1974],Urschler [1974]) if the value of

the expression has been computed in the past and the value of no argument in the

expression has been modified since the expression has been evaluated last. If the value

of an available expression has been saved, it does not need to be recomputed.

We associate with each program node b the set transparent(b) of elementary

program expressions such that the value of none of their arguments is modified in this

node. Let loc–available(b) be the set of elementary program expressions that are locally

available at node b, that is, are evaluated in the node while none of their arguments

are modified. This information can be computed at each program point using simple

syntactic criteria. The set available(b) of expressions that are available at the exit of

every program point is then given by the greatest solution (with respect to set inclusion

⊆) of the system of equations associated with a program using the following forward

rule:

available(b) = loc–available(b) ∪
⋂

x∈pred(b)

(transparent(b) ∩ available(x))

while, at the entry nodes, we have:

available(b) = ∅

(An expression is available at a block exit if its value is computed within the block, or

if it is available at the block entry and none of its arguments is modified within the

block.)

Consider, for instance, the following program template:

(5)-29

1: begin
2: I := . . . ; J := . . . ;
3: K := I + J ;
4: . . .
5: if . . . then
6: I := . . . ;
7: K := I + J ;

goto 4 ;
else

8: . . .

9: if . . .K . . . then
goto 10 ;

endif ;
goto 4 ;

endif ;
10: end .

We get:

b 1 2 3 4 5 6 7 8 9

transparent(b) ∅ {I + J} {I + J} {I + J} ∅ {I + J} {I + J} {I + J}

loc–available(b) ∅ {I + J} ∅ ∅ ∅ {I + J} ∅ ∅

available(b) ∅ ∅ {I + J} {I + J} {I + J} ∅ {I + J} {I + J} {I + J}

5.5.2 Non-boolean techniques to optimise programs: the example of con-
stant propagation

Classic non-boolean techniques are rather scarce (Aho & Ullman [1977]), the most

widespread being certainly “constant propagation” (? [1976], Kam & Ullman [1977],

Kildall [1973], Rief & Lewis [1977]). It is presented as a symbolic execution of the

(5)-30

program where a variable can optionally take the symbolic value > (meaning: not

constant) when, at the junction of several execution paths, the variable might not have

the same constant value on all these paths. On the following example:

a := 1 ; b := 2 ; c := 3 ; d := 3 ; e := 0 ;
{1}

while . . . do
{2}

b := 2 ∗ a ; d := d + 1 ; e := e− a ;
{3}

a := b− a ; c := e + d ;
{4}

redo ;

this symbolic execution gives:

a b c d e

{1} 1 2 3 3 0

{2} 1 2 3 3 0

{3} 1 2 3 4 −1

{4} 1 2 3 4 −1

{2} 1 2 3 > > ← As the values of d and e changed at this point.

{3} 1 2 3 > >

{4} 1 2 > > > ← As c is the sum of two non-constant values.

{2} 1 2 > > >

{3} 1 2 > > >

{4} 1 2 > > > ← The symbolic execution stops when the values
of the variables at all program points do not
change anymore.

(5)-31

We may view this symbolic execution as solving by chaotic iterations an approx-

imate system of equations constructed from the upper closure operator ρ defined as

follows (see 5.2.1):

�

⊥

..........
0 1 2 3-1-2-3L =

We do not present in detail the rules to construct the approximate equations, but only

give the system associated with our running example:

P1 = (a = 1, b = 2, c = 3, d = 3, e = 0)

P2 = P1 t P4

P3 = P2(b← 2 ∗ a, d← d+ 1, e← e− a)

P4 = P3(a← b− a, c← e+ d)

The lattice (L5)4 is infinite but it satisfies the ascending chain condition, so, we can

solve the approximate system of equations by iteration in a finite number of steps.

If we choose a chaotic strategy corresponding to the program graph, we retrieve the

classic presentation in terms of symbolic execution, which gives: P1 = (a = 1, b = 2, c = 3, d = 3, e = 0)

P2, P3, P4 = (a = 1, b = 2, c = >, d = >, e = >)

A compiler may optimise the program by replacing a and b with the values 1 and

2, and by eliminating the variables a and b from the object program. Note that, due to

(5)-32

the static approximation we chose, we cannot discover that, at line {3}, e+d = 3 holds,

and so, that c is constant and equals 3 in the program. We will present in Paragraph

5.8 a less coarse but more costly approximation that can discover automatically the

loop invariant {a = 1, b = 2, c = 3, e ≤ 0, d+ e = 3}.
Note that we discover at each program point invariants of the form {(a = i) or

(a = Ω)}. If at the corresponding point in the object program the variable a is replaced

with the value i, the source and object programs will not be equivalent in the case where

a may not be initialized at this point in the source program. To avoid this behavior,

we would choose instead a closure operator of the following kind:

λP . case

P = λx . false → ⊥ ;

P = λx . (x = Ω) → Ω ;

P ⇒ λx . (x = i) → i ;

P ⇒ λx . true → > ;

endcase ;

(defining this closure operator is sufficient to fully define the corresponding analysis

method).

5.6 AUTOMATICALLY DISCOVERING THE TYPE OF THE
VARIABLES OF A PROGRAM

In classic programming languages, the type of a variable at a given program point

is often a sub-type of the declared type (even though this sub-type may not exist

explicitly in the language definition). For instance, a variable with global type “pointer

to a record of type R” may have locally the sub-type “non-nil pointer to a record of

(5)-33

type R.” This information can be critical in the code generation phase, for instance

in order to avoid testing dynamically that an indirect access to the record is valid.

Likewise, in other languages such as APL (Iverson [1962]) or SETL (Schwartz [1973]),

there is no declaration and the type of the objects manipulated by the program must be

computed at execution time. The language implementation is based on interpretation

and, to design a compiler, one must first and foremost solve the problem of statically

determining the type of the objects manipulated by the programs.

5.6.1 Handling pointers

In programming languages such as PASCAL (Jensen & Wirth [1975]) or LIS (Ichbiah,

Rissen, Héliard & Cousot [1974]), using variables with a pointer type to access indirectly

to a memory block requires the machine to check that the pointer is not nil beforehand.

Most compilers delay this check until the program is executed. These tests have a

negligible cost at run-time when implemented using memory protection mechanisms.

However, this solution suffers from the fact that programming errors are discovered

very late, and it cannot be used in system implementation programming languages

such as LIS as programs may run in supervisor mode. In this case, performing tests

at run-time is costly and a static analysis of the program is mandatory to reduce this

cost.

As pointers give access to dynamically allocated memory, this poses the problem

for the compiler of discovering which objects can be accessed or modified through them.

The following example illustrates this problem:

type E = record A,B : integer end ;

var P,Q : ref E ;

var X,Y : integer ;

...

{1} X := P.A + P.B ;

{2} Q.A := O ;

(5)-34

{3} Y := P.A + P.B ;

If the compiler can prove statically that P and Q do not reference the same

record at line {2}, then the expression P.A+ P.B is available at line {3} and does not

need to be recomputed. If, however, the compiler cannot prove that P and Q point to

distinct records, it must assume that assigning the value O to Q.A may also modify

P.A, and so, the expression P.A+ P.B must be recomputed at line {3}. To solve this

problem, we suggest in Paragraph 5.6.1.2 an analysis to compute a partition of pointer

variables into groups such that two variables in distinct groups can never reference

indirectly the same object.

(Note that this issue is not specific to the use of pointers as it also arises with

array indexes, which also permit dynamic memory accesses. In that case, the problem is

even more complex (see 5.8) as arrays can implement explicit computations of memory

addresses that are forbidden for pointers, at least in high-level languages.)

5.6.1.1 Nil and non-nil pointers

This example is similar to the applications of Paragraphs 5.2 and 5.3, and so, we will

not present it in detail. We choose as approximate properties of pointers the following

lattice:

�

⊥

nil not-nil

The following program (Jensen & Wirth [1975]) looks for integer n in a linked list of

(5)-35

integers:

L ...

value next

α β γ ω

pt := L ; b := true ;
{1}

while (pt 6= nil andb) do
{2}

if pt ↑ . value = n then

b := false ;
{3}

else
{4}

pt := pt ↑ .next ;
{5}

endif ;

redo ;

The associated equation system is:

P1 = > (list L may be empty or non-empty)

P2 = (P1 t P5) u non–nil

P3 = P2

P4 = P2

P5 = P4 t >

and its solution is:

{1} {2} {3} {4} {5}

pt > non–nil non–nil non–nil >

(5)-36

When using pt to access a record, it is never nil, and so, all the pointer uses in this

program are correct.

5.6.1.2 Pointers referencing distinct records

In classic programming languages, the only answer to the question “which objects can

be referenced by a pointer variable?” is that a given pointer can only reference records

of a same type. The notion of “domain” in LIS (Ichbiah, Rissen, Héliard & Cousot

[1974]) that also inspired that of “collection” in EUCLID (Lampson et al. [1976]) allows

a finer partitioning of the set of pointer variables referencing records of the same type.

This improvement is not satisfactory because global declarations are not precise enough

to describe the specific situation at each program point. We thus propose to construct

at each program point a partition of the set of pointer variables referencing records of

a given type. Two pointer variables will be equivalent if they can reference the same

record. Two pointer variables belonging to distinct equivalence classes may not refer-

ence, even indirectly, the same object. For instance, one partition that describes the

following situation:

A B C D E

may be:

(5)-37

A B C D E

which is denoted as /A,B/C,D,E/.

We now briefly present the rules to construct a system of equations associated

with a program:

Pointer that is either nil or the only pointer to reference a newly allocated record:

P = {/X,X1, . . . , Xp/Y1, . . . , Yq/ . . . /Z1, . . . , Zr/}

(partition before instruction)

X := nil ;
X := Y ; (where Y is nil thanks to 5.6.1.1)
if X = nil then . . .

allocate(X) ;

ε(X,P) = {/X/X1, . . . , Xp/Y1, . . . , Yq/ . . . /Z1, . . . , Zr/}

(partition after instruction)

Pointer assignment:

P = {/X,X1, . . . , Xp/Y, Y1, . . . , Yq/ . . . /Z1, . . . , Zr/}

X ↑ .A . . . ↑ .B︸ ︷︷ ︸
optional

:=Y ↑ .C . . . ↑ .D︸ ︷︷ ︸
optional

;

(5)-38

P t {/X, Y/X1/ . . . /Xp/Y1/ . . . /Yq/ . . . /Z1/ . . . /Zr/} (partition join)

= {/X,X1, . . . , Xp, Y, Y1, . . . , Yq/ . . . /Z1, . . . , Zr/}

(As X and Y reference the same object, they are put in the same partition. As we do

not know the precise organisation of data, we ignore the possibility that the instruction

may split a partition into two disjoint partitions.)

P = {/X,X1, . . . , Xp/Y1, . . . , Yq/ . . . /Z1, . . . , Zr/}

X := Y ↑ .C . . . ↑ .D︸ ︷︷ ︸
optimal

;

ε(X,P) t {/X, Y/X1/ . . . /Zr/}

= {/X1, . . . , Xp/X, Y, Y1, . . . , Yq/ . . . /Z1, . . . , Zr/}

(After the assignment, X cannot reference, even indirectly, an object referenced by

X1, . . . , Xp.)

Let us consider, as an example, the following program that duplicates a linked list:

...

val next

α β γ ωL1

P1

α β γL2

P2L

(5)-39

procedure copy(L1 : list ; var L2 : list) ;

var P1,P2,L : list ;

begin
{1}

P1 := L1 ; L2 := nil ; L := nil ;
{2}

while P1 6= nil do
{3}

allocate(P2) ; P2 ↑ . value :=P1 ↑ . value ; P2 ↑ .next := nil ;
{4}

if L = nil then
{5}

L2 := P2 ;
{6}

else
{7}

L ↑ .next :=P2 ;
{8}

endif ;
{9}

L := P2 ; P1 := P1 ↑ .next ;
{10}

redo ;
{11}

end ;

The corresponding approximate system of equations is:

(5)-40

S1 = {/L1, L2/P1, P2, L/}

S2 = ε(L, ε(L2, ε(P1, S1) t {/P1, L1/L/L2/P2/}))

S3 = S2 t S10

S4 = ε(P2, S3)

S5 = ε(L, S4)

S6 = ε(L2, S5) t {/L2, P2/L/L1/P1/}

S7 = S4

S8 = S7 t {/L, P2/L1/L2/P1/}

S9 = S6 t S8

S10 = ε(L, S9) t {/L, P2/L1/L2/P1/}

S11 = ε(P1, S2 t S10)

At line {1}, the parameters and the local variables belong to disjoint partitions. At

lines {3} and {7}, the tests P1 6= nil and L 6= nil do not provide any information on the

partitioning of pointer variables. At line {4}, the assignment P2 ↑ . value :=P1 ↑ . value

of a non-pointer value and the deep modification P2 ↑ .next := nil in the partition of P2

are ignored. At line {10}, P1 := P1 ↑ .next is ignored as the instruction cannot make

P1 reference indirectly any record that was not already reachable from P1.

As the number of pointer variables is finite, the lattice of partitions of their

names is finite and the system can be solved by iteration in a finite number of steps,

starting from the infimum {/L1/L2/L/P1/P2/}. We obtain:

(5)-41

S1 = {/L1, L2/P1, P2, L/}

S2 = {/L1, P1/L2/P2/L/}

S3 = {/L1, P1/L2, P2, L/}

S4 = {/L1, P1/L2, L/P2/}

S5 = {/L1, P1/L2/P2/L/}

S6 = {/L1, P1/L2, P2/L/}

S7 = {/L1, P1/L2, L/P2/}

S8 = {/L1, P1/L2, L, P2/}

S9 = {/L1, P1/L2, P2, L/}

S10 = {/L1, P1/L2, P2, L/}

S11 = {/L1/P1/L2, P2, L/}

Thus, we have proved automatically by simple means that, although L1 and L2 can

reference the same record before calling the procedure copy(L1, L2), after this call, they

cannot reference, even indirectly, the same object.

More details on applications to pointer handling (in particular in the case of

records with variants) can be found in Cousot & Cousot [1977b]. Note that such in-

formation can also be useful to garbage collectors (in particular when it is explicit, in

which case it is necessary to check that the freed memory is not referenced).

5.6.2 Discovering the type of objects in a program in a very high-level lan-
guage without declarations

We select here an example which is too simple to demonstrate the power of a language

such as SETL (Schwartz [1973]) but is adequate to present an application of the results

from Paragraph 3.6.

(5)-42

Consider a language with base types integers (int), reals (real), character strings

(char), and no declaration. Now, consider the following program:

{1}
s := 0 ;

{2}
L:

{3}
read(x, y) ;

{4}
if x ≥ 0 then

{5}
x := (x modulo 2) + y ;

{6}
s := s + x ;

{7}
endif ;

{8}
if (y modulo x) 6= 0 then

{9}
goto L ;

endif ;
{10}

In this program, the type of a variable can be any element in the set L of

subsets of T = {int, real, char}, with the convention that, at execution time, an object

of type t ⊆ T must have one of the elementary types in t. The language operators are

polymorphic, but may not be defined for all types of arguments. The read procedure

is defined for all types of arguments. The comparison x ≥ 0 is only defined if x has

numeric value. The operation x modulo y is only defined if x and y are integers. The

+ operation is defined for all types of arguments: it may denote the concatenation of

two character strings, the concatenation of a string with a numeric value converted to

a string, or the sum of two numeric values. If x has type α and y has type β, then

x+ y has type α+̄β defined as:

(5)-43

+̄ = λα, β . caseα, β in

char , ? → char ;

? , char → char ;

real , ? → real ;

? , real → real ;

? , ? → int ;

endcase ;

5.6.2.1 Approximate system of forward equations

The approximate system of forward equations P = F̄ (φ̄)(P), where F̄ (φ̄) ∈ mon((L3)10 →
(L3)10), associated with the program is:

P1 = φ̄

P2 = P1(s← {int})

P3 = P2 ∪ P9

P4 = P3(x← >, y ← >)

P5 = P4(x← x ∩ {int, real})

P6 = P5(x← {int} ¯̄+y)

P7 = P6(s← s ¯̄+x)

P8 = P7 ∪ P4(x← x ∩ {int, real})

P9 = P8(x← x ∩ {int}, y ← y ∩ {int})

P10 = P8(x← x ∩ {int}, y ← y ∩ {int})

To establish P4, we took into account the ability of read to store into x and y

values of arbitrary elementary type. In P5 and P8, we take into account the fact that

(5)-44

the test x ≥ 0 is only defined for numeric values of x. Likewise, in P10 and P9, the test

(y modulo x) 6= 0 requires that x and y are integers, otherwise the program terminates

with an error. Finally, ¯̄+ = λ (t1, t2) . {α+̄β : α ∈ t1 and β ∈ t2} provides the set of

possible types for the result of + given the set of possible types for its parameters.

5.6.2.2 Approximate system of backward equations

The approximate system of backward equations P = B̄(ψ̄)(P), where B̄(ψ̄) ∈ mon((L3)10 →
(L3)10), associated with the program is:

P1 = P2(s← >)

P2 = P3

P3 = P4(x← >, y ← >)

P4 = (P5 ∪ P8)(x← x ∩ {int, real})

P5 = P6(x← x ∩ {int}, y ← y ∩ plus2(x, int, y)

P6 = P7(x← x ∩ plus2(s,>, x), s← s ∩ plus1(s,>, x))

P7 = P8

P8 = (P9 ∪ P10)(x← x ∩ {int}, y ← y ∩ {int})

P9 = P3

P10 = ψ̄

To establish P4 and P8, we take into account the fact that the tests must be well-

defined. In P6, we take into account the fact that (x modulo 2) is well-defined only if

x is integer, in which case the result is an integer. Moreover, we use:

plus1(t0, t1, t2) = {β ∈ t1 : {∃α ∈ t0,∃γ ∈ t2 : α = β + γ}}

plus2(t0, t1, t2) = {γ ∈ t2 : {∃α ∈ t0,∃β ∈ t1 : α = β + γ}}

Indeed, given the possible types t0 of the result and the possible types t1, . . . , tn of

the n arguments before an operation f(x1, . . . , xn) has been applied (and these are the

(5)-45

same as the types after the operation has been carried out for the arguments that are

not modified by the instruction), we can deduce that only some of the combinations

could actually have occurred before the operation was applied for the type of the result

to have the expected type. For instance, for 1 + y to have char type, it is mandatory

that y has type plus2(char, int,>) = char.

5.6.2.3 Gist of the solving method

Let Fπ and Bπ be the systems of semantic equations associated with the program π

above, and φ and ψ be the entry and exit specifications. (In our example, we will

take φ = λ (x, y, s) . (x = y = s = Ω) and ψ = λ (x, y, s) . true.) We wish to find

an over-approximation of lfp(Fπ(φ)) and lfp(Bπ(ψ)), that is, to find for each program

point a super-set of the values of the variables that can be encountered on an arbitrary

execution path that starts at the entry point in a state satisfying the entry condition

φ, then reaches this point (Proposition 3.3.0.2), and finally finishes in a state satisfying

the exit specification ψ (Proposition 3.5.0.2). We are equipped with φ̄ w φ, ψ̄ w ψ,

F̄ (φ̄) w Fπ(φ), and B̄(ψ̄) w Bπ(ψ).

We propose to compute the limit of the decreasing sequence P 1 = lfp(F̄π(φ̄)),

P 2 = lfp(λX .P 1 and B̄(ψ̄)(X)), . . . , P 2k+1 = lfp(λX .P 2k and F̄ (φ̄)(X)), P 2k+2 =

lfp(λX .P 2k+1 and B̄(ψ̄)(X)), It follows from Theorem 4.3.2.0.5 that this sequence

is decreasing and, as in our case the space (L3)10 of approximate properties satisfies

the descending chain condition, this sequence is stationary after a finite rank. To prove

that this choice is indeed valid, it is sufficient to prove that every term is greater than

(lfp(Fπ(φ)) and lfp(Bπ(ψ))):

We get P 1 = lfp(F̄ (φ̄)) w lfp(Fπ(φ)) w (lfp(Fπ(φ)) and lfp(Bπ(ψ))). As λX .
[P 1 and B̄(ψ̄)(X)] w λX . [lfp(Fπ(φ)) and Bπ(ψ)(X)], we deduce by monotonicity

that P 2 = lfp(λX . [P 1 and B̄(ψ̄)(X)]) w lfp(λX . [lfp(Fπ(φ)) and Bπ(ψ)(X)]), which

is equal, according to Proposition 3.7.0.1.(c), to (lfp(Fπ(φ)) and lfp(Bπ(ψ))). The

induction step is similar and uses Proposition 3.7.0.1.(e)–(f).

(5)-46

5.6.2.4 Example

On our example, we get:

φ̄ = ((x = ∅), (y = ∅), (s = ∅))

ψ̄ = ((x = >), (y = >), (s = >))

P 1 = lfp(F̄ (φ̄))

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10}

x ∅ ∅ {int} > {int, real} > > {int, real} {int} {int}

y ∅ ∅ {int} > > > > > {int} {int}

s ∅ {int} > > > > > > > >

P 2 = lfp(λX .P 1 ∩ B̄(ψ̄))

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10}

x ∅ ∅ {int} {int} {int} {int} {int} {int} {int} {int}

y ∅ ∅ {int} {int} {int} {int} {int} {int} {int} {int}

s ∅ {int} > {int} > > > > > >

P 3 = lfp(λX .P 2 ∩ F̄ (φ̄))

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10}

(5)-47

x ∅ ∅ {int} {int} {int} {int} {int} {int} {int} {int}

y ∅ ∅ {int} {int} {int} {int} {int} {int} {int} {int}

s ∅ {int} {int} {int} {int} {int} {int} {int} {int} {int}

Finally, P 4 = lfp(λX .P 3 ∩ B̄(ψ̄)) gives the same result, which proves that x, y, and

s must be declared as integers in order for the program to terminate correctly and not

crash with an error. An intuitive proof of this result lies in remarking that, if the value

of x or y is not integer, then the test (y modulo x) 6= 0 is eventually evaluated, which

leads to an error for real or string arguments. As x and y must be integers, it follows

that s must also be an integer as it is initialized and incremented with an integer value.

Indeed, these two proof steps appear clearly in P 2 and P 3.

5.7 APPROXIMATION TECHNIQUES FOR INFINITE SPACES
OF APPROXIMATE PROPERTIES: EXAMPLE IN AUTO-
MATICALLY DISCOVERING AN INTERVAL OF VALUES
FOR THE NUMERIC VARIABLES OF A PROGRAM

In a PASCAL program (Jensen & Wirth [1975]), it is possible to declare an integer

that lies between two numeric bounds. In addition to the benefit of more precise

declarations, this also allows a compiler to optimise memory allocation (in particular

for arrays of words, half-words, and bytes that can be easily handled on most machines).

A drawback is the prohibitive cost of checking the consistency of programs at run-time,

as the hardware seldom provides hardwired overflow checking for non word or double-

word arithmetic.

To highlight the cost of run-time checks, we review some figures (on a CDC

6600 computer running the SCOPE 3.4 operating system) given by Wirth [1976] for

the following programs: (1) Computing 2k and 1/2k for k = 1..90, (2) Finding all num-

(5)-48

bers between 1 and 1000 the square of which are palindromic, (3) Quicksort (Hoare

[1962]), (4) Solving the 8-queens problem (Wirth [1971]), and (5) Computing the first

1000 prime numbers. For each program, we provide the number “n” of program lines in

PASCAL, the number “a” of array accesses in the program source, and the execution

times “ta” and “ts” in ms when running the program respectively with and without

dynamic array index bound checking:

Program n a ta ts

(1) 34 9 916 813

(2) 16 2 3466 2695

(3) 26 7 4098 2861

(4) 34 15 1017 679

(5) 30 8 1347 1061

This time gain (around 20% on average, but sometimes much higher) causes

programmers to almost exclusively use the compiler option to remove run-time checks.

This can have surprising results, as shown in the following example:

begin
x : 0..255 ;
x := 1 ;
while x 6= 0 do

x := x + 1 ;
redo ;

end.

Using a compiler that does not generate checks that, in the loop body, the value

of x must lie between 0 and 255, we observed the following behavior: as x is declared

with type 0..255, the compiler allocates one byte of memory to x. During program

(5)-49

execution, x is naturally incremented by 1 until it reaches the value 255. At this point,

during the evaluation of x := x + 1, the value 255 in x is loaded into a register. The

register value is incremented by 1, which results in the value 256 and does not cause

any overflow, as the register is 4−byte wide. Then, the least significant byte of the

register, which is zero, is stored into x. As x has reached the value zero, the loop

terminates successfully despite the fact that the program is obviously incorrect.

Such an example clearly shows that checking interval declarations is mandatory.

Run-time tests being very costly — especially for programs that are run many times

— we would like to eliminate most useless tests using a precise analysis at compilation-

time. We now develop a useful model to solve this problem in the case of programming

languages, such as PASCAL, where the declarations of integer variables and arrays

contain numeric bounds.

5.7.1 Space of approximate properties

Let Z be the set of positive or negative integers ordered by the natural order ≤ and

Z? = Z ∪ {−∞,+∞}, where −∞ ≤ −∞ ≤ i ≤ +∞ ≤ +∞ for any i in Z. Let L be

the complete lattice with infimum ⊥ and, as other elements, pairs [a, b] where a, b ∈ Z?

and a ≤ b. The partial order v on L is defined as ⊥ v x for every x in L and {[a, b] v
[c, d]} ⇔ {c ≤ a ≤ b ≤ d}. The join is defined as [a, b]t [c, d] = [min(a, c),max(b, d)], ⊥
is an identity element, and > = [−∞,+∞] is an absorbing element. The meet is defined

as [a, b] u [c, d] = if max(a, c) ≤ min(b, d) then [max(a, c),min(b, d)] else ⊥ endif, >
is an identity element, and ⊥ is an absorbing element. We define the concretization

function (4.2.7) as follows:

γ ∈ L→ (2Z∪{Ω} → {true, false}) = P1

= λx . casex in

⊥ → λx . (x = Ω) ;

(5)-50

[a, b] → λx . ((a ≤ x ≤ b) or (x = Ω)) ;

endcase ;

Let n be the number of program variables, then Ln is an over-approximated

image of Pn = (2Z∪{Ω})n → {true, false} by the following injective concretization

function:

γ̄ = λ (v1, . . . , vn) . (λ (x1, . . . , xn) . (
n

AND
j=1

γ(vj)(xj)))

The corresponding abstraction function is defined as:

@ ∈ P1 → L

= λP . if P ⇒ λx . (x = Ω) then

⊥

else

[min{x ∈ Z : P (x)},max{x ∈ Z : P (x)}]

endif ;

Note that this definition of @ is valid since not(P ⇒ λx . (x = Ω)) implies {∃x ∈ Z :

P (x)} and since min(Z) = −∞ and max(Z) = +∞. Moreover, @ is surjective.

For all j = 1, . . . , n, we define:

σnj ∈ Pn → P1

= λP . [λx . {∃(v1, . . . , vj−1, vj+1, . . . , vn) ∈ (Z ∪ {Ω})n :
P (v1, . . . , vj−1, x, vj+1, . . . , vn)}]

@̄ ∈ Pn → Ln

= λP . (@(σn1 (P)),@(σn2 (P)), . . . ,@(σnn(P)))

(5)-51

We now prove that (γ̄, @̄) forms a pair of upper adjoint functions (Definition 4.2.7.0.1).

• To prove that the concretization γ̄ and the abstraction @̄ are monotone, it is sufficient

to prove that γ and @ are monotone, which is easy as ([a, b] v [c, d]) ⇒ (c ≤ a ≤ b ≤
d)⇒ λx . ((a ≤ x ≤ b) or (x = Ω))⇒ λx . ((c ≤ x ≤ d) or (x = Ω)) and, on the other

hand, not(P ⇒ λx . (x = Ω)), not(Q ⇒ λx . (x = Ω)), and (P ⇒ Q) imply min{x ∈
Z : Q(x)} ≤ min{x ∈ Z : P (x)} ≤ max{x ∈ Z : P (x)} ≤ max{x ∈ Z : Q(x)}.

• Let us now prove that ∀Q ∈ P1, Q⇒ γ ◦ @(Q).

- If Q = λx . false or Q = λx . (x = Ω), then γ ◦ @(Q) = γ(⊥) = λx . (x = Ω), in

which case Q⇒ λx . (x = Ω).

- Otherwise, we get not(Q⇒ λx . (x = Ω)) and

γ ◦ @(Q) = γ([min{x ∈ Z : Q(x)},max{x ∈ Z : Q(x)}])

= λ z . ((min{x ∈ Z : Q(x)} ≤ z ≤ max{x ∈ Z : Q(x)}) or (z = Ω))

and so, ∀z ∈ (Z ∪ {Ω}) and we get Q(z)⇒ γ ◦ @(Q)(z).

• Let us now prove that ∀v ∈ L, v = @ ◦ γ(v).

- If v = ⊥, then @ ◦ γ(⊥) = @(λx . (x = Ω)) = ⊥

- If v = [a, b] where a, b ∈ Z? and a ≤ b, then

@ ◦ γ([a, b]) = @(λx . (a ≤ x ≤ b) or (x = Ω))

= [min{x ∈ Z : a ≤ x ≤ b},max{x ∈ Z : a ≤ x ≤ b}]

= [a, b]

• Let P ∈ P1 and v ∈ L then, on the one hand, (P ⇒ γ(v)) implies by monotonicity

@(P) v @ ◦ γ(v) = v and, on the other hand, (@(P) v v) implies P ⇒ γ ◦ @(P) ⇒
γ(v), thus, (@, γ) is a pair of upper adjoint functions.

• Let us now prove that ∀Q ∈ Pn, Q⇒ γ̄ ◦ @̄(Q).

(5)-52

γ̄ ◦ @̄(Q) = γ̄(@(σn1 (Q)), . . . ,@(σnn(Q)))

= λ (x1, . . . , xn) . n

AND
j=1

γ(@(σnj (Q)))(xj)

For any j, σnj (Q)⇒ γ ◦ @(σnj (Q)), so, γ̄ ◦ @̄(Q)⇐ λ (x1, . . . , xn) . (
n

AND
j=1

σnj (Q)(xj))⇐

Q asQ(x1, . . . , xn)⇒
n

AND
j=1
{∃(x1, . . . , xj−1, xj+1, . . . , xn ∈ (Z∪{Ω}) : Q(x1, . . . , xj , . . . , xn)}

• If v ∈ Ln, then v = @̄ ◦ γ̄(v), indeed:

@̄ ◦ γ̄(v) = @̄(λ (x1, . . . , xn) . (
n

AND
j=1

γ(vj)(xj)))

and, for the j−th component:

(@̄ ◦ γ̄(v))j = @ ◦ σnj (λ (x1, . . . , xn) . (
n

AND
j=1

γ(vj)(xj))) = @ ◦ γ(vj) = vj

• As before, (@̄, γ̄) is a pair of upper adjoint functions and it follows from 4.2.7.0.3

that γ̄ ◦ @̄ is an upper closure operator on Pn, @ is a complete join-morphism, and γ̄

is a complete meet-morphism.

Note that the upper closure operator η used in Paragraph 5.2.1 to discover the

sign of the numeric variables of a program can be derived from the upper closure

operator γ ◦ @ we just defined by using the join-complete congruence relation (4.2.6)

the equivalence classes of which are defined as follows (using the image L of γ ◦ @(P1)):

(5)-53

⊥

[-2,2]

[-1,2]

[0,2]

[1,2]

[2,2]

[-2,1]

[-2,0]

[-2,-1]

[-2,-2]

[-1,1]

[-1,0]

[-1,-1]

[0,1]

[0,0] [1,1]

while the upper closure operator used in the constant propagation (5.5.2) can be de-

rived from the join-complete congruence relation defined by the following equivalence

classes:

⊥

[-2,2]

[-1,2]

[0,2]

[1,2]

[2,2]

[-2,1]

[-2,0]

[-2,-1]

[-2,-2]

[-1,1]

[-1,0]

[-1,-1]

[0,1]

[0,0] [1,1]

...

...

...

...

...

...

...

...

...

...

(5)-54

5.7.2 Rules to construct the approximate system of forward equations asso-
ciated with a program

We present a few rules without giving much detail (these can be found in Cousot &

Cousot [1975a]).

Path junction:

Xj =
⊔

i∈pred(j)

Xi

Assignment :

We evaluate the right-hand side using interval arithmetic and assign the resulting

value to the left-hand side:

{((x = [1, 10]), (y = [−2, 3]))}
x := x + y + 1 ;

{((x = [0, 14]), (y = [−2, 3]))}
as [1, 10] + [−2, 3] + [1, 1] = [1− 2 + 1, 10 + 3 + 1] = [0, 14]

{((x = [1,+∞]), (y = [−∞, 10]))}
x := x + y + 1 ;

{((x = [−∞,+∞]), (y = [−∞, 10]))}
as [1,+∞] + [−∞, 10] + [1, 1] = [−∞+ 2,+∞+ 11] = [−∞,+∞]

Test :

{((x = [a, b]), (y = [c, d]))}
if x ≤ y then

{((x = [a, b] u [−∞, d]), (y = [c, d] u [a,+∞]))}
. . .

else

{((x = [a, b] u [c+ 1,+∞]), (y = [c, d] u [−∞, b− 1]))}
. . .

(5)-55

endif ;

{((x = [a, b]), (y = [c, d]))}
if x = y then

{((x = [a, b] u [c, d]), (y = [a, b] u [c, d]))}
. . .

else

{if a = b = c then ((x = [a, b]), (y = [c+ 1, d]))

elsif a = b = d then ((x = [a, b]), (y = [c, d− 1]))

elsif a = c = d then ((x = [a+ 1, b]), (y = [c, d]))

elsif b = c = d then ((x = [a, b− 1]), (y = [c, d]))

else ((x = [a, b]), (y = [c, d]))

endif}
. . .

endif ;

(Using the convention: [a, b] = ⊥ when b < a.)

Example 5.7.2.0.1

The equation system associated with the program:

begin n : 0..1000 ; n : integer ;

read(n) ; {0 ≤ n ≤ 1000 must be checked at run-time}
{1}

x := 0 ;
{2}

L:
{3}

if x ≤ n then
{4}

x := x + 2 ;
{5}

goto L ;

endif ;
{6}

end.

(5)-56

is (denoting ub(⊥) = +∞, ub([a, b]) = b, lb(⊥) = −∞, and lb([a, b]) = a):

P1 = ((x = ⊥), (n = [0, 1000]))

P2 = ((x = [0, 0]), (n = P1(n)))

P3 = P2 t P5

P4 = ((x = P3(x) u [−∞,ub(P3(n))]), (n = P3(n) u [lb(P3(x)),+∞]))

P5 = ((x = P4(x) + [2, 2]), (n = P4(n)))

P6 = ((x = P3(x) u [lb(P3(n)) + 1,+∞]), (n = P3(n) u [−∞,ub(P3(x))− 1]))

End of example.

5.7.3 Solving the approximate system of equations by dynamic approxima-
tion

As the lattice L is infinite, it is easy to prove that solving the equations iteratively does

not converge in a finite number of steps in the general case. Thus, we use the dynamic

approximation techniques introduced in Paragraph 4.1.2.

5.7.3.1 Approximating the least solution using an increasing chaotic iteration sequence
with upper widening

To define once and for all an approximation method to make an increasing iteration

sequence converge in a finite number of steps, we introduce an upper widening ∇̄ on

L (4.1.2.0.4) defined as:

− ∀x ∈ L,⊥ ∇̄ x = x ∇̄ ⊥ = x

− [a, b] ∇̄ [c, d] = [if c < a then −∞ else a endif,

if d > b then +∞ else b endif]

We can check that this upper widening satisfies the hypotheses from Definition 4.1.2.0.4.

Note that ∇̄ is not monotone (see 4.1.2.0.7.(b)). The widening ¯̄∇ on Ln is obtained

(5)-57

by computing ∇̄ component-wise. Definition 4.1.2.0.5 can then be applied so that

Theorem 4.1.2.0.6 guarantees the convergence of the iterates and the correctness of the

approximation.

We demonstrate our method on Example 5.7.2.0.1. The graph of the program

being reducible in the sense of Allen and Cocke, we choose {3} as head of the circuit

(4.1.2.0.2). By convention, ((x = α), (n = β)) will be abbreviated as (α, β). Moreover,

we use Remark 4.1.2.0.7.(a):

P 0
j = (⊥,⊥) for j = 1, . . . , 6

P 1
1 = (⊥, [0, 1000])

P 1
2 = ([0, 0], P 1

1 (n)) = ([0, 0], [0, 1000])

P 1
3 = P 0

3
¯̄∇ (P 1

2 t P 0
5) = (⊥,⊥) ¯̄∇ (P 1

2 t (⊥,⊥)) = ([0, 0], [0, 1000])

P 1
4 = (P 1

3 (x) u [−∞,ub(P 1
3 (n))], P 1

3 (n) u [lb(P 1
3 (x)),+∞])

= ([0, 0] u [−∞, 1000], [0, 1000] u [0,+∞]) = ([0, 0], [0, 1000])

P 1
5 = (P 1

4 (x) + [2, 2], P 1
4 (n)) = ([0, 0] + [2, 2], [0, 1000]) = ([2, 2], [0, 1000])

P 2
3 = P 1

3
¯̄∇ (P 1

2 tP 1
5) = ([0, 0] ∇̄ ([0, 0]t [2, 2]), [0, 1000] ∇̄ ([0, 1000]t [0, 1000]))

= ([0, 0] ∇̄ [0, 2], [0, 1000] ∇̄ [0, 1000]) = ([0,+∞], [0, 1000])

P 2
4 = (P 2

3 (x) u [−∞,ub(P 2
3 (n))], P 2

3 (n) u [lb(P 2
3 (x)),+∞])

= ([0,+∞] u [−∞, 1000], [0, 1000] u [0,+∞]) = ([0, 1000], [0, 1000])

P 2
5 = (P 2

4 (x) + [2, 2], P 2
4 (n)) = ([2, 1002], [0, 1000])

As P 2
5 t P 1

2 v P 2
3 , the head of the circuit is stable and we are left to

compute:

(5)-58

P 2
6 = (P 2

3 (x) u [lb(P 2
3 (n)) + 1,+∞], P 2

3 (n) u [−∞,ub(P 2
3 (x))− 1])

= ([0,+∞] u [1,+∞], [0, 1000] u [−∞,+∞]) = ([1,+∞], [0, 1000])

Thus, we obtain the following over-approximated solution:

P1 = (⊥, [0, 1000])

P2 = ([0, 0], [0, 1000])

P3 = ([0,+∞], [0, 1000])

P4 = ([0, 1000], [0, 1000])

P5 = ([2, 1002], [0, 1000])

P6 = ([1,+∞], [0, 1000])

A chaotic iteration sequence without widening would stabilize after 500 compu-

tation steps, whereas the widening makes the computation converge in 2 steps. Ob-

viously, the result is less precise. However, it follows from Remark 4.1.1.0.9 that our

approximate solution can be improved.

5.7.3.2 Improving the approximate solution using a decreasing chaotic iteration sequence
with lower narrowing

Given our post-fixpoint P of X = F (X), lfp(F) v llis(λX .X u F (X))(P) holds.

As the computation of llis(λX .X u F (X))(P) may not converge in a finite number

of steps, we suggest to compute an over-approximation of it by exploiting Definition

4.1.2.0.16 and Theorem 4.1.2.0.17.

Let us define a lower narrowing ∆ on L as:

− ∀x ∈ L,⊥∆ x = x∆ ⊥ = ⊥

− [a, b] ∆ [c, d] = [if a = −∞ then c else min(a, c) endif,

if b = +∞ then d else max(b, d) endif]

(5)-59

The hypotheses from Definition 4.1.2.0.15 are satisfied (see the dual of Remark 4.1.2.0.14).

As before, ∆ is defined on Ln by component-wise application of ∆ . Coming back to

Example 5.7.2.0.1, we compute:

P 0
1 = (⊥, [0, 1000])

P 0
2 = ([0, 0], [0, 1000])

P 0
3 = ([0,+∞], [0, 1000])

P 0
4 = ([0, 1000], [0, 1000])

P 0
5 = ([2, 1002], [0, 1000])

P 0
6 = ([1,+∞], [0, 1000])

P 1
3 = (P 0

3 ∆ (P 0
2 t P 0

5)

= ([0,+∞]) ∆ ([0, 0] t [2, 1002]), [0, 1000] ∆ ([0, 1000] t [0, 1000]))

= ([0,+∞]) ∆ [0, 1002], [0, 1000] ∆ [0, 1000]) = ([0, 1002], [0, 1000])

P 1
4 = ([0, 1002] u [−∞, 1000], [0, 1000] u [0,+∞]) = ([0, 1000], [0, 1000])

P 1
5 = ([0, 1000] + [2, 2], [0, 1000]) = ([2, 1002], [0, 1000])

P 1
6 = ([0, 1002] u [1,+∞], [0, 1000] u [−∞, 1001]) = ([1, 1002], [0, 1000])

Now that the computation has reached a fixpoint, the final result is:

P1 = (⊥, [0, 1000])

P2 = ([0, 0], [0, 1000])

P3 = ([0, 1002], [0, 1000])

P4 = ([0, 1000], [0, 1000])

P5 = ([2, 1002], [0, 1000])

P6 = ([1, 1002], [0, 1000])

(5)-60

In an actual implementation, arithmetic overflows may occur in the interval

computations. It is thus necessary to catch this interrupt and return the infinite result

−∞ or +∞. Moreover, it is possible to take declarations into account by inserting

tests on the bounds at the intermediate language level, then applying our method, and

finally eliminating dead branches before code generation.

5.7.4 Example in eliminating run-time bound checks

Our first example is a binary search of a key k in a table R of 100 elements sorted in

increasing order of keys. The analysis result is given directly in the program source as

comments:

type table = array[1, 100] of integers ;
procedure binary–search(var R : table ; k : value integer ; m : result integer) ;

var lb,ub : integer ;
begin

lb := lb(table) ; ub := ub(table) ;

{((lb = [1, 1]), (ub = [100, 100]), (m = ⊥))}

while lb ≤ ub do

{((lb = [1, 100]), (ub = [1, 100]), (m = [1, 100]))}

m := (lb + ub) div 2 ;

{((lb = [1, 100]), (ub = [1, 100]), (m = [1, 100]))}

if k = R(m) then
lb := ub + 1 ;

{((lb = [2, 101]), (ub = [1, 100]), (m = [1, 100]))}

elsif k < R(m) then
ub := m− 1 ;

{((lb = [1, 100]), (ub = [0, 99]), (m = [1, 100]))}

else

(5)-61

lb := m + 1 ;

{((lb = [2, 101]), (ub = [1, 100]), (m = [1, 100]))}

endif ;

{((lb = [1, 101]), (ub = [0, 100]), (m = [1, 100]))}

redo

{((lb = [1, 101]), (ub = [0, 100]), (m = [1, 100]))}

if R(m) 6= k then m := lb(table)− 1 endif ;

{((lb = [1, 101]), (ub = [0, 100]), (m = [0, 100]))}

end.

The compiler can prove that all the accesses to the array R are correct (as 1 ≤
m ≤ 100 always holds) and that there is no overflow in the additions and subtractions

(thus, it is useless to insert code to warn the programmer of run-time errors). Moreover,

by taking the union of intervals obtained on all program points for each variable,

the compiler can deduce that a valid declaration could have been m : result 0..100,

var lb : 1..101, varub : 0..100; in particular, the knowledge that the result m is an

integer between 0 and 100 can be propagated to all the calls of the procedure. Finally,

in m := (lb + ub) div 2, the analysis has proved that (lb + ub) ∈ [2, 200], and so,

(lb + ub) ≥ 0. As a consequence, the division can be implemented as a right shift —

which would not be possible if we had (lb+ub) < 0. According to Welsh [1977], inserting

run-time tests and not optimizing the division causes an increase of approximately 50%

in the size of the generated code, and 60% in average execution time.

It is enlightening to compare our method to discover intervals of values of in-

teger variables to the verification method of Welsh [1977]. Welsh’s method is a classic

compilation technique consisting in assuming that, whenever a variable is accessed, its

value is in the interval specified by the user in the declaration and checking, whenever a

variable is assigned, that the assigned value — using the same interval arithmetic that

(5)-62

we used to compute the right-hand side of assignments — is in the declared interval

— and generate a test if this is not the case. This one-pass method is cheap but not

very effective. One can observe that programmers seldom — or incorrectly — exercise

the option to declare integer variables in a numeric interval in PASCAL as introduced

by Wirth. (It is sufficient to look at the examples given by Wirth himself in Wirth

[1976] where this option is never exercised.) The reason for it is that, as bounds are

compelled to be numeric constants — and not symbolic constants that are evaluated at

compile-time as in LIS (Ichbiah, Rissen, Héliard & Cousot [1974]) — it is often required

to change all the bounds when changing a declaration. In our procedure binary-search,

we could have declared m : 0..100, lb : 1..101, ub : 0..100 but, if the number of ele-

ments in the table is changed, then all bounds in m, lb, ub as well as the initialization

of lb and ub must be changed by hand. On the contrary, in LIS, we could declare

m : lb(table) − 1.. ub(table), lb : lb(table)..ub(table) + 1, ub : lb(table) − 1..ub(table)

so that, when changing a bound of table, the compiler can take this change into ac-

count automatically. Coming back to Walsh’s method, if the programmer declares

m, lb, ub : integer, then 3 tests are required on array bounds as well as 4 overflow tests.

If the programmer declares m : 0..100, lb : 1..101, ub : 0..100 (which is the declaration

we found automatically), then all overflow tests are eliminated and the division can be

optimised, but 3 tests remain on the lower bounds of the array (as the access R(m)

requires that 1 ≤ m ≤ 100, while we found 0 ≤ m ≤ 100). This results in an increase

of 19% in code size and of 17% in average execution time with respect to our optimal

solution — figures courtesy of Welsh. A verification method based solely on global

declarations is necessarily incomplete as the type of a variable at a given program

point is almost always a sub-type of the globally declared type (Meertens [1975]). In

our example, a programmer knowledgeable in compilation methods could make explicit

the fact that the type of m is not the same within the loop and when exiting the loop

by introducing a new variable p and writing:

(5)-63

procedure binary–search(var R : table ; k : value integer ; p : result 0..100) ;
var lb : 1..101 ; ub : 0..100 ; m : 1..100 ;

begin
lb := 1 ; ub := 100 ;
while lb ≤ ub do

m := (lb + ub) div 2 ;
if R(m) = k then

lb := ub + 1 ;
elsif R(m) > k then

ub := m− 1 ;
else

lb := m + 1 ;
endif ;

redo ;
p := if R(m) = k then m else 0 endif ;

end.

However, this solution is still not satisfactory as, in the instruction m := (lb+ub) div 2,

the type of the right-hand side is ([1, 101] + [0, 100]) div [2, 2] = [0, 100] and a test must

be inserted to check that (lb+ ub) div 2 ≥ 1! The problem is now to compare the cost

of this run-time test with the cost of an analysis that can remove it. A more decisive

argument is that our method allows discovering many more programming errors before

program execution. Finally, our approach also works in the case of symbolic bounds

(see 5.8).

5.7.5 Combining forward and backward approximate analyses

We demonstrate the technique presented in Paragraph 5.6.2.3 when the convergence

does not hold naturally. Given the over-approximations F̄ (φ̄) and B̄(ψ̄) of the systems

of forward and backward semantic equations Fπ(φ) and Bπ(ψ), we compute:

P 1 w lfp(F̄ (φ̄))

(5)-64

P 2 = P 1 ∆ X2 where X2 w lfp(λX .P 1 u B̄(ψ̄)(X))

. . .

P 2k+1 = P 2k ∆ X2k+1 where X2k+1 w lfp(λX .P 2k u F̄ (φ̄)(X))

P 2k+2 = P 2k+1 ∆ X2k+2 where X2k+2 w lfp(λX .P 2k+1 u B̄(ψ̄)(X))

. . .

It follows from Definition 4.1.2.0.15 of the lower narrowing ∆ that the sequence is finite

and every term is greater than lfp(Fπ(φ)) and lfp(Bπ(ψ)). To compute Xk, we perform

an increasing chaotic iteration sequence with upper widening and, if the solution we

obtain is not a fixpoint, we improve on it using a decreasing chaotic iteration sequence

with lower narrowing.

We demonstrate this technique on an array sorting program from Manna [1974,

p. 191] using the “bubble sort” method. After removing all the instructions pertaining to

the array to sort (which is ignored in the approximate analysis), the program becomes:

{1}
i := n ;

{2}
L:

{3}
if i 6= 0 then

{4}
j := 0 ;

{5}
M:

{6}
if j = i then

{7}
i := i− 1 ;

{8}
goto L ;

endif ;
{9}

(5)-65

j := j + 1 ;
{10}

goto M ;

endif ;
{11}

The approximate system of forward equations associated with the program is as fol-

lows:

P1 = φ̄

P2 = P1(i← n)

P3 = P2 t P8

P4 = P3(i← i 6= 0)

P5 = P4(j ← [0, 0])

P6 = P5 t P10

P7 = P6(i← i u j, j ← i u j)

P8 = P7(i← i− 1)

P9 = P6(i← i 6= j, j ← i 6= j)

P10 = P9(j ← j + 1)

P11 = P3(i← i u [0, 0])

1

2

3

4

5

6

9 7

8

10

11

Graph of dependences
(loop test: 6)

The approximate system of backward equations associated with the program is as

follows:

(5)-66

P1 = P2(i← [−∞,+∞], n← i)

P2 = P3

P3 = P11 t P4

P4 = P5(j ← [−∞,+∞])

P5 = P6

P6 = P7 t P9

P7 = P8(i← i+ 1)

P8 = P3

P9 = P10(j ← j − 1)

P10 = P6

P11 = ψ̄

1 2

3

4

5

6

7

8

11

Graph of dependences
(loop test: 6)

10

9

We analyze the program with respect to the following specifications:

φ̄ = ((i = ⊥), (j = ⊥), (n = [−∞,+∞]))

ψ̄ = ((i = [−∞,+∞]), (j = [−∞,+∞]), (n = [−∞,+∞]))

Without giving the details of the computation, we get:

P 1 w lfp(F̄ (φ̄))

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11}

i ⊥ [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [0,+∞] [−1,+∞] [−∞,+∞] [−∞,+∞] [0, 0]

j ⊥ ⊥ [0,+∞] [0,+∞] [0, 0] [0,+∞] [0,+∞] [0,+∞] [0,+∞] [1,+∞] [0,+∞]

n [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞]

(5)-67

This result is very disappointing, except for j which is found to be positive as it is

initialized to zero and incremented by one. The backward analysis provides some im-

provement:

P 2 = P 1 ∆ X2 where X2 w lfp(λX .P 1 u B̄(ψ̄)(X))

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11}

i ⊥ [0,+∞] [0,+∞] [1,+∞] [1,+∞] [1,+∞] [1,+∞] [0,+∞] [1,+∞] [1,+∞] [0, 0]

j ⊥ ⊥ [0,+∞] [0,+∞] [0,+∞] [0,+∞] [0,+∞] [0,+∞] [0,+∞] [1,+∞] [0,+∞]

n [0,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞] [−∞,+∞]

The backward analysis was precise enough to discover that, as i is decremented by one

in a loop ending with i = 0, i is necessarily positive before entering the loop for the

loop to terminate. The information we just found can be propagated forward:

P 3 = P 2 ∆ X3 where X3 w lfp(λX .P 2 u F̄ (φ̄)(X))

{1} {2} {3} {4} {5} {6} {7} {8} {9} {10} {11}

i ⊥ [0,+∞] [0,+∞] [1,+∞] [1,+∞] [1,+∞] [1,+∞] [0,+∞] [1,+∞] [1,+∞] [0, 0]

j ⊥ ⊥ [1,+∞] [1,+∞] [0, 0] [0,+∞] [1,+∞] [1,+∞] [0,+∞] [1,+∞] [1,+∞]

n [0,+∞] [0,+∞] [0,+∞] [0,+∞] [0,+∞] [0,+∞] [0,+∞] [0,+∞] [0,+∞] [0,+∞] [0,+∞]

A subsequent step would show that these results are stable. Indeed, we have found the

best result we could obtain with the considered approximate system of equations. In

(5)-68

particular, we proved that, if n ∈ [−∞,−1], then the program either does not termi-

nate or results in an error. The entry specification n ≥ 0 is indeed provided by Manna

[1974, p. 191], but it is valuable to note that, if it is not provided by the programmer,

we can prove easily and automatically that there is an error.

Now that we discovered the entry condition:

((i = ⊥), (j = ⊥), (n = [0,+∞]))

as well as the declarations that must appear in the program:

D = ((i = [0,+∞]), (j = [0,+∞]), (n = [0,+∞]))

it is left to us to discover where run-time tests are to be inserted. Given our knowledge

of the properties P 3
k of the variables at the entry ak of an instruction I, it is sufficient

to check, using the system of forward equations, that the image P of P 3
k by I at the exit

point al of I is included in D. When this is not the case, a run-time test is required,

that is:

- At the entry point, we must check that n ≥ 0.

- When decrementing i, as [1,+∞]− [1, 1] v [0,+∞], no test is required.

- When incrementing j, as [0,+∞] + [1, 1] = [0,+∞ + 1], the compiler must foresee

a possible detection by the hardware of some overflow during the incrementation.

Actually, this is useless as we can see that j ≤ i. Due to the approximation chosen

in 5.6.1, it is not possible to express the relationships between variables, and so, to

discover this inequality. We now present a less coarse approximation method that

can discover relationships between the numeric variables of a program.

(5)-69

5.8 AUTOMATICALLY DISCOVERING LINEAR EQUALITY OR
INEQUALITY RELATIONS BETWEEN THE NUMERIC VARI-
ABLES OF A PROGRAM

It is not often that a reasoning on a program does not require discovering invariant

relations between the variables x1, . . . , xn of the program — see for instance 5.6.1.2. In

the following application, we plan to discover linear equality (ax1 +bx2 + . . .+wxn = α

where a, b, . . ., w, and α are constants) or inequality (ax1+bx2+. . .+wxn ≤ α) relations
between the numeric variables x1, . . . , xn of a program. As an introductory example,

we present the analysis of the sorting algorithm “bubble sort” from Knuth [1973, p. 107]:

procedure sort(N : value integer ; K : array[1,N] of reals) ;
var B, J,T : integer ;

begin
B := N ;

{1}
while B ≥ 1 do

{2}
J := 1 ; T := 0 ;

{3}
while J ≤ (B− 1) do

{4}
if K[J] ≥ K[J + 1] then

{5}
exchange(J, J + 1) ; {no side-effect on N,B, J,T}

{6}
T := J ;

{7}
endif ;

{8}
J := J + 1 ;

{9}
redo ;

{10}
if T = 0 then return endif ;

{11}
B := T ;

(5)-70

{12}
redo ;

{13}
end ;

The automatic analysis of this procedure — performed using the experimental imple-

mentation by N. Halbwachs — provides the following invariants:

P1 = {B = N}

P2 = {1 ≤ B ≤ N}

P3 = {1 ≤ B ≤ N, J = 1, T = 0}

P4, P5, P6 = {B ≤ N,T ≥ 0, T + 1 ≤ J, J + 1 ≤ B}

P7 = {B ≤ N, J ≥ 1, J + 1 ≤ B, J = T}

P8 = {B ≤ N, J + 1 ≤ B, J ≥ 1, T ≥ 0, T ≤ J}

P9 = {B ≤ N, J ≤ B, J ≥ 2, T ≥ 0, T + 1 ≤ J}

P10, P11 = {B ≤ N, J ≤ B, T ≥ 0, T + 1 ≤ J,B ≤ J + 1}

P12 = {J ≤ N,T ≥ 0, T + 1 ≤ J, T = B}

P13 = {B ≤ N,B ≤ 1}

This information is useful to check that all array indexes lie within array bounds,

especially when these bounds are provided as symbolic constants — while the applica-

tion from 5.7 is better suited to the case of numeric bounds. Moreover, these invariants

are required to validate the program and complement the specifications provided by

the programmer, that often do not feature this level of detail.

5.8.1 Space of approximate properties

Let P ∈ Pn = Un → {true, false} be a property over n variables with values in the set

U of rationals. The space of approximate properties is defined by the upper closure

operator ρ, where ρ(P) is the characteristic property of the set of points in the convex

hull of the set characterised by P . The geometrical interpretation is thus:

(5)-71

P(x,y)

y

x

(P)(x,y)

y

x

ρ

To compare this application to the previous one concerning the discovery of an

interval of values for each numeric variable, we must observe that the closure operator

used in Paragraph 5.7 was simply:

P(x,y)

y

x

(P)(x,y)

y

x

ρ

For the application at hand, we must study the set ρ(Pn). Let P ∈ Pn. As

U is the set of integers, rationals, or reals that can be represented in a computer, it

is finite. Thus, the number of values in Un satisfying P is finite, and so, ρ(P) is a

convex polyhedron, as it is the convex hull of a finite number of points in Un. This

(5)-72

implies that we can represent ρ(P) by a finite number of linear equality or inequality

relations between program variables. On a more abstract level, we can forget about the

traditional limitations of programming languages and consider that program variables

have values in the set R of reals. In this case, ρ(Pn) denotes the convex subsets

of Rn, some of which cannot be described by a finite system of linear equality or

inequality relations. Then, the space of approximate properties corresponding to convex

polyhedra does not form a complete lattice. Nevertheless, when using the dynamic

approximation algorithms introduced in Paragraph 4.1, solving iteratively the systems

of equations associated with programs always takes a finite number of steps so that the

limit of the sequence of iterates is a convex polyhedron (see Remark 4.1.2.0.7.(e)).

5.8.2 Rules to construct the approximate system of forward equations asso-
ciated with a program

Assignment :

Let X be the column vector of the variables of the program and AX ≤ B be the

constraint system before an assignment instruction (for the sake of simplicity, equality

relations are represented as pairs of opposite inequality relations):

- If the assignment is not linear (for instance x := x2 + yz− t), then the constraint

system after the assignment is constructed by eliminating x from the system AX ≤
B.

- Otherwise, the assignment is linear and has the form xk := a1x1 + . . .+ anxn + b

where a1, . . . , an, b are rational coefficients.

• If ak is not zero, then the assignment is invertible, that is, it is possible to

compute the former value of xk satisfying a given constraint system given its new

value. The constraint system after assignment is thus constructed by replacing

xk with (xk−a1x1− . . .−ak−1xk−1−ak+1xk+1− . . .−anxn−b)/ak in AX ≤ B.

(5)-73

• If ak is zero, then the former value of xk is lost, so, we eliminate xk from the

constraint system AX ≤ B. We then add the constraint xk = a1x1 + . . . +

ak−1xk−1 + ak+1xk+1 + . . .+ anxn + b.

Example

Constraint system
before assignment:

x2 ≥ 1

x1 + x2 ≥ 5

x1 − x2 ≥ −1

Non-linear
assignment:

Non-invertible
linear assignment:

Invertible
linear assignment:

x2 := (x1)2 − (x2)2 x2 := x1 + 1 x2 := x1 + x2/2 + 1

Output constraint system:

[
x1 ≥ 2

 x1 ≥ 2

− x1 + x2 = 1

− 2x1 + 2x2 ≥ 3

− x1 + 2x2 ≥ 7

+ 3x1 − 2x2 ≥ −3

End of example.

Test :

If the test is linear, then the output constraints are constructed by adding the

test constraint to the input constraint system. If the test is not linear, then it is simply

ignored and the input and output constraints are equal.

(5)-74

Path junction:

At a path junction a1, . . . , ak where the respective constraint systems are A1X ≤
B1, . . . , AkX ≤ Bk, we compute the constraint system corresponding to the convex hull

of the convex polyhedra defined by A1X ≤ B1, . . . , AkX ≤ Bk. To partly avoid this

costly computation, we keep in the implementation a double representation of the

abstract properties: a constraint system and a system of generators corresponding to

the polyhedron (Lanery [1966]).

Example

x1 ≥ 0

x2 ≥ 0

x1 + x2 ≤ 1
x1

x2

1

1

0

 x1 ≥ 1

x2 = 2

x1

x2

1

2

0

y
x1 ≥ 0

x2 ≥ 0

x2 ≤ 2

− x1 + x2 ≤ 1 x1

x2

1

2

0

1

End of example.

5.8.3 Approximate solving of the system of equations by increasing chaotic
iteration sequences with upper widening

The iterative solving of the system of equations associated with a program does not

converge in a finite number of steps in general, so, we employ an increasing chaotic

iteration sequence with upper widening (Definition 4.1.2.0.5).

(5)-75

The upper widening P1 ∇̄ P2 is defined as the set of constraints from P1 that

are satisfied by the elements in the system of generators of P2. As the number of

constraints can only decrease, the hypotheses in Definition 4.1.2.0.4 hold.

Example

Q1

−I + 2J ≤ −2

I + 2J ≤ 6

J ≥ 0

20

1

J

I6

Q2

−I + 2J ≤ −2

I + 2J ≤ 10

J ≥ 0

20

1

J

I10

Q1 ∇̄ Q2

 −I + 2J ≤ −2

J ≥ 0

20

1

J

I

End of example.

We demonstrate how to solve an approximate system of equations associated

with a program on the following example:

{1}
I := 2 ; J := 0 ;

{2}
L:

{3}
if . . . then

(5)-76

{4}
I := I + 4 ;

{5}
else

{6}
I := I + 2 ; J := J + 1 ;

{7}
endif ;

{8}
goto L ;

(The test of a non-linear condition is ignored.)

The rules stated in Paragraph 5.8.2 give the following approximate system of

forward equations associated with the program:

P1 = >

P2 = assign(I := 2) ◦ assign(J := 0)(P1)

P3 = convex–hull(P2, P8)

P4 = P3

P5 = assign(I := I + 4)(P4)

P6 = P3

P7 = assign(J := J + 1) ◦ assign(I := I + 2)(P6)

P8 = convex–hull(P5, P7)

As this example is very simple, we can now demonstrate how to compute an

approximate solution of this system of equations. As permitted by Remark 4.1.2.0.7.(c),

the widening is only used when a sufficient amount of information is gathered at each

program point.

P 0
i = ⊥ for i = 1, . . . , 8 (empty polyhedron)

P 1
1 = >

(5)-77

P 1
2 = assign(I := 2) ◦ assign(J := 0)(P 1

1)

= {I = 2, J = 0}

P 1
3 = convex–hull(P 1

2 , P
0
8) = convex–hull(P 1

2 ,⊥) = P 1
2

P 1
4 = P 1

6 = P 1
3

P 1
5 = assign(I := I + 4)(P 1

3)

= {I = 6, J = 0}

P 1
7 = assign(J := J + 1) ◦ assign(I := I + 2)(P 1

6)

= {I = 4, J = 1}

P 1
8 = convex–hull(P 1

5 , P
1
7)

= {I + 2J = 6, 4 ≤ I ≤ 6}

20

1

J

I6 20

1

J

I64

P18

P15

P17

P12

P23

P 2
3 = convex–hull(P 1

2 , P
1
8)

= {2J + 2 ≤ I, I + 2J ≤ 6, 0 ≤ J}

P 2
4 = P 2

6 = P 2
3

P 2
5 = assign(I := I + 4)(P 2

4)

(5)-78

= {2J + 6 ≤ I, I + 2J ≤ 10, 0 ≤ J}

(I is replaced with I − 4 in P 2
4 as the assignment is invertible)

P 2
7 = assign(J := J + 1) ◦ assign(I := I + 2)(P 2

6)

= {2J + 2 ≤ I, I + 2J ≤ 10, 1 ≤ J}

(I and J are replaced with, respectively, I − 2 and J − 1 in P 2
6)

P 2
8 = convex–hull(P 2

5 , P
2
7)

= {2J + 2 ≤ I, 6 ≤ I + 2J ≤ 10, 0 ≤ J}

60

2

J

I10

P27

P25

20

2

J

I

P22

P28

P 3
3 = P 2

3 ∇̄ convex–hull(P 2
2 , P

2
8)

20

2

J

I106

P23

P22 P28Convex-hull(,)

20

2

J

I

P33

P 3
3 = {2J + 2 ≤ I, 0 ≤ J}

P 3
4 = P 3

6 = P 3
3

(5)-79

P 3
5 = assign(I := I + 4)(P 3

4)

= {2J + 6 ≤ I, 0 ≤ J}

P 3
7 = assign(J := J + 1) ◦ assign(I := I + 2)(P 3

6)

= {2J + 2 ≤ I, 1 ≤ J}

P 3
8 = convex–hull(P 3

5 , P
3
7)

60

2

J

I2

P35

P37

60

2

J

I2

P38

P32

P 3
8 = {2J + 2 ≤ I, 6 ≤ I + 2J, 0 ≤ J}

Then, convex–hull(P 3
2 , P

3
8) = P 3

6 , so, we reached a fixpoint of the system of equations

and the final result is:

{1}
I := 2 ; J := 0 ;

{2} {I = 2, J = 0}
L:

{3} {2J + 2 ≤ I, 0 ≤ J}
if . . . then

{4} {2J + 2 ≤ I, 0 ≤ J}
I := I + 4 ;

{5} {2J + 6 ≤ I, 0 ≤ J}
else

{6} {2J + 2 ≤ I, 0 ≤ J}

(5)-80

I := I + 2 ; J := J + 1 ;
{7} {2J + 2 ≤ I, 1 ≤ J}

endif ;
{8} {2J + 2 ≤ I, 6 ≤ I + 2J, 0 ≤ J}

goto L ;

In particular, we found a loop invariant {2J + 2 ≤ I, 0 ≤ J} expressing an invariant

relation between the program variables I and J , although this relation does not appear

explicitly in any program instruction.

More information on this application can be found in Cousot & Halbwachs [1978].

To complete this reference, we add that the results obtained after an increasing iteration

sequence with upper widening can be improved using a decreasing iteration sequence

with lower narrowing (as in Paragraph 5.7.3.2). Moreover, the technique in 5.7.5 can

be used to obtain necessary constraints for the program to terminate without any error.

5.8.4 Example

To conclude, let us come back to Example 5.7.4 on the binary search of a key k in a

table R containing n elements sorted in increasing order of keys. Note that the number

of elements in the array is now a symbolic constant with a fixed but unknown value and

no longer a numeric constant. We provide in comments in the procedure source the

results of an analysis of the linear equality or inequality relations between the variables

of the procedure. This analysis has been performed automatically on a computer. The

results can be favorably compared to those obtained by the verification methods in

Suzuki & Ishihata [1977], the heuristic methods in German [1978] based on trials and

errors, and the data-flow analysis methods in Gillett [1977].

type table = array[1,n] of integers ;

procedure binary–search(var R : table ; k : value integer ; m : result integer) ;

var lb,ub : integer ;

begin

(5)-81

lb := lb(table) ; ub := ub(table) ;

{lb = 1, ub = n}
while lb ≤ ub do

{1 ≤ lb ≤ ub ≤ n}
m := (lb + ub) div 2 ;

{1 ≤ lb ≤ ub ≤ n, 2m ≤ lb+ ub ≤ 2m+ 1 (and so, 1 ≤ m ≤ n, as m is an

integer)}
if k = R(m) then

lb := ub + 1 ;

{1 ≤ ub ≤ n, ub ≤ 2m ≤ 2ub, lb = ub+ 1}
elsif k < R(m) then

ub := m− 1 ;

{1 ≤ lb ≤ n, 2lb− 1 ≤ 2m ≤ lb+ n,m = ub+ 1}
else

lb := m + 1 ;

{1 ≤ ub ≤ n, ub ≤ 2m ≤ 2ub, lb = m+ 1}
endif ;

{m ≤ ub+ 1, 3lb ≤ 2ub+ n+ 3, 3lb ≤ 2ub+ 2m+ 3, 2lb ≤ 2ub+ 3,

ub+m+ 1 ≤ lb+ n, lb+m ≤ ub+ n+ 1, 1 ≤ n, ub ≤ n, ub ≤ 2m,

ub+ 4 ≤ 3lb+m, 1 ≤ 2m,ub+ 1 ≤ lb+m}
redo ;

{1 ≤ lb, ub ≤ n, ub < lb (note that when n < 1,m is not initialized)}
if R(m) 6= k then m := lb(table)− 1 endif ;

end.

5.9 HIERARCHY OF APPLICATIONS

To conclude this chapter, we provide a partial order of the few approximate analyses

that have been demonstrated here — using the intuitive notion of precision of the ap-

proximation corresponding to the order v in the lattice of closure operators:

(5)-82

Program connectivity
graph

Constant
propagation

Variables
sign

Variables
parity

Intervals of variables
values

Sign and parity of
variables

Linear relations of equality or
disequality between variables

Exact semantic
analysis

A task left to be done is to complete this lattice with other interesting appli-

cations. It might seem difficult to envision models that are approximate and useful,

but each example given in this chapter demonstrates that the theoretical scheme we

(5)-83

propose provides a very thorough guide highlighting the problems to be solved for each

specific application and offering general methods to solve them.

Finally, the method of program analysis we provide is the same, whether it is

to perform an exact semantic analysis (§3) or to perform an automatic but approxi-

mate semantic analysis (§5). Between these extremes, the same model could be used

to perform by hand analyses that are approximate but too complex to be fully auto-

mated. Although we did not provide such examples, this is a field open to stimulating

applications.

5.10 BIBLIOGRAPHIC NOTES

The boolean program optimisation techniques date back to Vyssotsky and Wegner

who applied them in a FORTRAN compiler. They used an iterative solving method.

Later, Allen [1970], Allen [1971], and Cocke [1970] introduced a solving method similar

to Gauss elimination and based on the intervals of the program graph. As this method

requires the equations to be boolean and the program graph to be “reducible”, it is

not general (Earnest [1974], Graham & Wegman [1976], Hecht & Ullman [1972], Hecht

& Ullman [1974], Kasvanov [1973], Kennedy [1972], Schaefer [1973], Tarjan [1974]). It-

erative solving of boolean equations has been used independently by Ichbiah, Morel &

Renvoise [1972] and Hecht & Ullman [1973]. It has obviously no restriction. Attempts at

comparing the direct and iterative methods (Hecht & Ullman [1975], Kennedy [1976],

Tarjan [1975]) are not very conclusive because the hypotheses required to use direct

methods generally also guarantee a fast convergence of the iterative methods. For in-

stance, in the case of live variable analysis (5.5.1.1), we can prove that there exists an

optimal order to traverse the program graph (Kennedy [1975], Tarjan [1976]) and, when

the program is reducible, there exists an algorithm to construct this order (Aho & Ull-

man [1976]). This proves, in particular, that the theoretical search for optimal chaotic

strategies may be successful in some interesting special cases. Spillman [1971], Boom

(5)-84

[1974], and Aho & Ullman [1977, Chap. 14.7] discuss how to use classic optimisation

techniques in the presence of pointers.

Our method to analyze programs generalizes the idea, now quite old, of per-

forming a symbolic execution using abstract values that characterise the properties to

discover (Jensen [1965], Naur [1965], Sintzoff [1972], Kildall [1973], Karr [1975], Schwartz

[1975], Wegbreit [1975]).

Example techniques to discover at compile-time the type of the objects manipu-

lated by a high-level language can be found in Bauer & Saal [1974], Tenenbaum [1974],

Jones & Müchnich [1976], and Kaplan & Ullman [1978].

Our application to discover an interval of values for the numeric variables of a

program (§5.7) can be compared to the empirical method of Harrison [1977]. For the

sake of completeness, let us also cite the verification methods used by Welsh [1977] and

Suzuki & Ishihata [1977].

Our application to discover linear equality or inequality relations between the

variables of a program (§5.8) improves on the results by Karr [1976] on the simpler

problem of determining linear equality constraints. Other approaches exist that give

partial answers to the problem of discovering invariant relations between the variables

of a program: Cooper [1971], Caplain [1975], Elspas [1974], German & Wegbreit [1975],

Katz & Manna [1976], Wegbreit [1974], Wegbreit [1977].

To conclude, let us note that our application to discover automatically an interval

of values for the numeric variables of a program has been implemented by a student

of J. Cohen at the University Brandeis following Cousot & Cousot [1976]. Curry [1977]

applies the abstract interpretation idea from Cousot & Cousot [1977a] to a graphical

programming language.

CHAPTER 6.

SEMANTIC ANALYSIS OF RECURSIVE PROCEDURES

6. SEMANTIC ANALYSIS OF RECURSIVE PROCEDURES

6.1 Forward deductive semantics of recursive procedures 2

6.2 Constructive methods to approximate solutions of a system of functional equa-

tions . 26

6.2.1 Resolution of a system of functional fixpoint equations in a finite

space by chaotic iteration . 29

6.2.2 Increasing chaotic iteration sequence with upper widening to ap-

proximate the solution of a system of functional equations 33

6.3 Examples of approximate forward semantic analysis of recursive procedures . . 35

6.3.1 Case of a finite space of approximate properties 35
6.3.1.1 Sign of the variables of a procedure 35
6.3.1.2 Nil pointers and non-nil pointers 42
6.3.1.3 Pointers pointing to different records 44

6.3.2 Case of a space of approximate properties satisfying the ascending

chain condition . 48

6.3.3 General case of an infinite space of approximate properties not sat-

isfying the ascending chain condition 49

6.4 Bibliographic notes . 52

6. SEMANTIC ANALYSIS OF RECURSIVE PROCEDURES

In this chapter, we consider a more general programming language than before, with

assignments, conditional instructions, unconditional branching, block structures, and

possibly recursive procedures (with value-result parameter passing). Studying those

concepts is necessary to take into account widely used programming language features.

Also, it shows that the reasoning we developed in the preceding chapters to design

a method of semantic program analysis is indeed general. We repeat the outline we

followed for sequential iterative programs, except that, instead of considering systems

of equations X = F (X), we have to consider systems of the form f(X) = F (f)(X). In-

deed, in the preceding chapter, we observed that a sequential iterative program π could

be analyzed by associating with each program point α a predicate Pα(ϕ) depending

implicitly on an entry specification ϕ. These predicates were obtained as the solution of

a system of equations P (ϕ) = G(P)(ϕ). Observing that the system of equations can be

written as P (ϕ) = Fπ(ϕ)(P (ϕ)) and analyzing the program for a given specification ϕ,

it was not necessary to consider a system of functional equations, since we could write

Xα = Pα(ϕ) and solve X = F (X) with F = Fπ(ϕ). In the case of a recursive proce-

dure, the system of equations P (ϕ) = G(P)(ϕ) can be written as P (ϕ) = H(P (g(ϕ)))

since, for each recursive procedure call, there is a different entry specification which

depends on the entry specification of the main call. To solve P (ϕ) = G(P)(ϕ) exactly,

it is not possible to simplify and consider only the entry specification of a given main

call, as this leads to considering the entry specifications corresponding to each possible

recursive procedure call, meaning generally an infinite number of equations. Thus,

it is necessary to associate with each procedure point a predicate function (or predi-

cate transformer). This does not raise any new theoretical difficulty, as the system of

(6)-2

equations P (ϕ) = G(P)(ϕ) can be solved using the results obtained in the preceding

chapters (writing P = F (P) with F = λP . {λϕ . [G(P)(ϕ)]}). However, in the case

of an approximate analysis, it is possible to specialize the automatic methods of ap-

proximate resolution to the case of systems of functional equations, while avoiding the

difficult issue of the machine representation of functions. The concepts of given entry

specifications and approximation are sufficient to avoid considering an infinite number

of entry specifications.

6.1 FORWARD DEDUCTIVE SEMANTICS OF RECURSIVE PRO-
CEDURES

Since the language we consider now contains block structures, not all program variables

are visible at every program point. It follows that we have to define an environment

at each program point (x1 : U1, . . . , xn : Un), in short (x̄ : Ū), which gives the visible

program variables at that point, and for each variable, its domain of values. This

environment is defined statically by the syntax of the language.

Let f be a procedure with α program points a1, . . . , aα and with parameters

passed by value v̄ = (v1, . . . , vp) and by result r̄ = (r1, . . . , rq) that take their values

in T̄ = (T1, . . . , Tp) and T̄ ′ = (T ′1 , . . . , T ′q). Each program point ai of the procedure

f is associated with a predicate transformer φi ∈ ((T̄ → B) → (Ū → B)) where

B = {true, false}, which is obtained as the least solution of a system of forward seman-

tic equations associated with procedure f . Let ϕ ∈ (T̄ → B) be an entry specification

of procedure f , then the set of possible values for variables x̄ at point ai during the exe-

cution of f (called with input parameters with values v̄ satisfying ϕ(v̄)) is characterized

by φi(ϕ).

Now, we give the rules to build the system of forward equations associated with

a procedure. The rules for an assignment, a test, or an unconditional branching are

the same as in Chapter 3, except that they take into account the scope of identifiers

(6)-3

resulting from the block structure. The main difficulty consists in stating the rules for

declarations and procedure calls.

Assignments:

Let (x̄ : Ū) and φi be the environment and predicate transformer associated

with point ai of a procedure, before the assignment x̄ := e(x̄), where e ∈ (Ū → Ū).

Then, the environment corresponding to point aj after the assignment is (x̄ : Ū) and

φj = assign(e) ◦ φi. To summarize, we write:

〈φi, (x̄ : Ū)〉
x̄ := e(x̄) ;

〈φj = assign(e) ◦ φi, (x̄ : Ū)〉

Conditional instruction:

〈φi, (x̄ : Ū)〉
if p(x̄) then (where p ∈ (Ū → B))

〈φj = test(p) ◦ φi, (x̄ : Ū)〉
. . .

else

〈φk = test(not(p)) ◦ φi, (x̄ : Ū)〉
. . .

endif ;

Block :

Unlike ALGOL 60 (Naur [1963]), we consider that only one declaration can apply

to an identifier at each program point, that is to say that, as in LIS, an identifier I

declared in a block A cannot be redeclared in a block B inside A (which would mean

that, inside B, the declaration of I from B hides the declaration of I from A). This

is not a semantic restriction since it is always possible to modify syntactically the

(6)-4

identifiers of the inner block. Besides, this language feature has been adopted by some

programing languages (Ichbiah, Rissen, Héliard & Cousot [1974], Lampson et al. [1976]).

〈φi, (x̄ : Ū)〉
begin

y1 : t1, . . . , ym : tm ;

〈φj = begin (Ū , T̄) ◦ φi, (x̄ : Ū , ȳ : T̄)〉
. . .

〈φk, (x̄ : Ū , ȳ : T̄)〉
end ;

〈φl = end(Ū , T̄) ◦ φk, (x̄ : Ū)〉

where

- the identifiers ȳ = y1, . . . , ym differ syntactically from x̄ = x1, . . . , xn.

- T̄ = T1× . . .×Tm and the T1, . . . , Tm are the domains of values for the variables of

type t1, . . . , tm.

- begin (Ū , T̄)

= begin ((U1 × . . .× Un), (T1 × . . .× Tm))

∈ ((Ū → B)→ (Ū × T̄ → B))

∈ ((U1 × . . .× Un → B)→ (U1 × . . .× Un × T1 × . . .× Tm → B))

= λP . {λ (x̄, ȳ) . [P (x̄) and ȳ = Ω̄]}

= λP . {λ (x1, . . . , xn, y1, . . . , ym) . [P (x1, . . . , xn) and (
m

AND
j=1

(yj = Ωj))]}

where Ωj is the “non-initialized” value in Tj

- end(Ū , T̄)

(6)-5

∈ ((U × T̄ → B)→ (Ū → B))

= λP . {λ (x̄) . [∃v̄ ∈ T̄ : P (x̄, v̄)]}

= λP . {λ (x1, . . . , xn) . [∃(v1, . . . , vm) ∈ T1 × . . . × Tm :
P (x1, . . . , xn, v1, . . . , vm)]}

We simply express that, in the block, the variables x1, . . . , xn and y1, . . . , ym are

visible. At the block entry, we know that variables x1, . . . , xn have the same value as

outside the block and that variables y1, . . . , ym are not initialized. At the block exit,

variables y1, . . . , ym, local to the block, are eliminated.

Let P, i, n, i1, . . . , iq be such that P ∈ (U1 × . . . × Un → B), (1 ≤ i, q ≤ n),

(∀k ∈ [1, q], (1 ≤ ik ≤ n)) and (∀k, l ∈ [1, q], (k 6= l) ⇒ (ik 6= il)). In the following we

will use the notations:

σ̄ni (P) = λ (v1, . . . , vi−1, vi+1, . . . , vn) . [∃a ∈ Ui :
P (v1, . . . , vi−1, a, vi+1, . . . , vn)]

σ̄ni1,...,iq = σ̄n−q+1
i1

◦ σ̄n−q+2
i2

◦ . . . ◦ σ̄n−1
iq−1

◦ σ̄niq

(note that: end((U1 × . . .× Un), (T1 × . . .× Tm)) = σ̄n+m
n+1,...,n+m)

σni (P) = λx . [∃(a1, . . . , ai−1, ai+1, . . . , an) ∈ (U1×. . .×Ui−1×Ui+1×. . .×Un) :
P (a1, . . . , ai−1, x, ai+1, . . . , an)]

σni1,...,iq (P) = λ (x1, . . . , xq) . [(∀k ∈ [1, n]− {i1, . . . , iq},∃ak ∈ Uk : P (v1, . . . , vn)]

where ∀l ∈ [1, n], vl = if (∃j ∈ [1, q] : l = ij) then xj else al endif ;

Unconditional branching and labels:

We assume that the values of all labels are statically determined and that an

(6)-6

unconditional branching always occurs within the same procedure. (Jumping outside

a procedure, which would lead to more complex equations, is thus excluded.)

The predicate transformer φi associated with the program point ai following a

label L is the disjunction of the predicate transformers φj associated with the program

points aj preceding an instruction goto L or the label L. In the case of an unconditional

branching outside a block, the block exit must be considered. Since we want to avoid

an heavy syntactic formalism to describe that rule, an example will be sufficient:

〈(x̄ : Ū)〉
. . .

{1}
goto L ;
. . .

{2}
L:

{3}
. . .

begin
y1 : t1 ;
. . .
begin

y2 : t2 ;
. . .

{4}
goto L ;
. . .

end ;
. . .

{5}
goto L ;
. . .

end ;
. . .

{6}
goto L ;

We have:

(6)-7

φ3 = [φ1] or [φ2] or [end((Ū×T1), (T2)) ◦ end((Ū), (T1)) ◦ φ4] or [end((Ū), (T1)) ◦
φ5] or [φ6]

Body of a procedure:

We consider that parameters are passed either by value (the value of the ac-

tual parameter is copied into the formal parameter before the procedure call) or by

result (the value of the formal parameter is copied into the actual parameter after the

procedure call). To simplify the rules to construct the system of forward semantic

equations:

- We consider that, for a parameter passed by value, the actual parameter is a vari-

able. (We can derive the rule corresponding to the general case by considering that

the call f(e) is equivalent to begin z : t ; z := e ; f(z) ; end ; .)

- We will not consider parameter passing by value–result (since the call f(x) is equiv-

alent to begin z : t ; f ′(x, z) ; x := z ; end ; where the body of procedure f ′ is the

same as f except that it ends with the assignment of x to z).

- We consider also that no global variable is visible inside the procedure (since the

mechanism of parameter passing can be used to access or modify a global variable,

provided that the global variables which are accessible in the body of the procedure

are also accessible at each call point).

- We leave out functions, which are a mere syntactic convenience that can always be

replaced with a procedure introducing an additional result parameter.

All the above restrictions in fact concern only writing conveniences and the only

semantic restriction is the following:

(6)-8

- We suppose that we can always associate statically a procedure body with a proce-

dure call (which excludes passing functions or procedures as procedure parameters).

We can now state the construction rule for the equations associated with the

body of a procedure:

procedure f(v̄ : t̄ value ; r̄ : t̄′ result) =

〈φi = input(T̄ , T̄ ′), (v̄′ : T̄ , v̄ : T̄ , r̄ : T̄ ′)〉
. . .

〈φj〉
end–proc ;

〈φk = output(T̄ , T̄ ′) ◦ φj〉

where

- The variables v̄′ do not appear in the body of the procedure,

- T̄ and T̄ ′ are the domains of values of variables v̄ and r̄ of types t̄ and t̄′,

- input(T̄ , T̄ ′)

∈ ((T̄ → B)→ (T̄ × T̄ ′ × T̄ → B))

= λP . {λ (v̄′, r̄, v̄) . [P (v̄′) and (v̄ = v̄′) and (r̄ = Ω̄)]}

- output(T̄ , T̄ ′)

∈ ((T̄ × T̄ ′ × T̄ → B)→ (T̄ × T̄ ′ → B))

= λP . {λ (v̄′, r̄) . [∃v̄ ∈ T̄ : P (v̄′, v̄, r̄)]}

We note that, if T̄ = T1 × . . .× Tp and T̄ ′ = Tp+1 × . . .× Tq, then

output(T̄ , T̄ ′) = σp+q1,...,q

(6)-9

Intuitively, a specification of the parameters passed by value v̄ is known, whereas

the parameters passed by result r̄ are not initialized. The initial value of the input pa-

rameters v̄ is copied into ancillary variables v̄′ so that, at the procedure exit, we know

a predicate, on the initial value of the input parameters and the final value of the input

and output parameters, that expresses the termination condition for the procedure as

well as the final value of the parameters. Since the final value of the input parameters

is of no interest in the call context, the variables v̄ are eliminated at the exit of the

procedure.

Procedure call :

To avoid choosing an order of parameters passed by result, we suppose that all

the actual parameters are syntactically different variables.

Let P (x̄, v̄, r̄) be a predicate characterizing the domain of the variables x̄, v̄, and

r̄ before the call to procedure f(v̄, r̄) which takes place in the syntactic environment

(x̄ : Ū , v̄ : T̄ , r̄ : T̄ ′). The variables x̄ do not occur in the call and the parameters

v̄ passed by value are not modified, so that Q(x̄, v̄) = {∃r̄ ∈ T̄ ′ : P (x̄, v̄, r̄)} is true

after the call. The specification of the input parameters v̄ before the call is ϕ = λ v̄ .
{∃x̄ ∈ Ū ,∃r̄ ∈ T̄ ′ : P (x̄, v̄, r̄)}. Let f̄ be the predicate transformer associated with

procedure f , we saw that f̄(ϕ)(v̄, r̄) expresses a condition on the values of the input

parameters v̄ such that the execution of f terminates and characterizes the domain of

the results r̄ of the procedure. So, we have:

〈P (x̄, v̄, r̄), (x̄ : Ū , v̄ : T̄ , r̄ : T̄ ′)〉

f(v̄; r̄) ;

〈(f̄(ϕ)(v̄, r̄) and Q(x̄, v̄)), (x̄ : Ū , v̄ : T̄ , r̄ : T̄ ′)〉

where

(6)-10

- ϕ = λ v̄ . {∃x̄ ∈ Ū ,∃r̄ ∈ T̄ ′ : P (x̄, v̄, r̄)}

- Q = λ (x̄, v̄) . {∃r̄ ∈ T̄ ′ : P (x̄, v̄, r̄)}

To be more precise, we can detail this rule as follows:

〈φi, (x1 : U1, . . . , xn : Un)〉

f(xi1 , . . . , xip ; xip+1 , . . . , xiq) ;

〈φj = call(f, (U1×. . .×Un), (i1, . . . , ip), (ip+1, . . . , iq)) ◦ φi, (x1 : U1, . . . , xn :
Un)〉

where

- call(f, (U1 × . . .× Un), (i1, . . . , ip), (ip+1, . . . , iq))

∈ ((U1 × . . .× Un → B)→ (U1 × . . .× Un → B))

= λP . {λ (x1, . . . , xn) . [φk(σni1,...,ip(P))(xi1 , . . . , xip , xip+1 , . . . , xiq) and
n∑

ip+1,...,iq

(σ̄nip+1,...,iq (P))(x1, . . . , xn)]}

where

- φk is associated with the program point following the end–proc of the body of

procedure f ,

- If (r ≤ n), (∀k ∈ [1, r], 1 ≤ ik ≤ n), (∀k, l ∈ [1, r], (k 6= l) ⇒ (ik 6= il)) and P ∈

(U1 × . . . × Un−r → B), then
n∑

i1,...,ir

(P) = λ (x1, . . . , xn) . [P (vj1 , . . . , vjn−r)] where

∀k ∈ [1, n− r], jk = min{i : (i > jk−1) and (∀l ∈ [1, r], i 6= il)} with j0 = 0.

Example 6.1.0.1

We illustrate the association of a system of forward semantic equations with a

recursive procedure call on the classic factorial example:

(6)-11

procedure f(x : integer value ; y : integer result) =
{1}

if x = 0 then
{2}

y := 1 ;
{3}

else
{4}

begin z : integer ;
{5}

z := x− 1 ;
{6}

f(z; y) ;
{7}

y := x ∗ y ;
{8}

end ;
{9}

endif ;
{10}

end–proc ;
{11}

The system of forward semantic equations associated with this procedure is:

φ1 ∈ (integer→ B)→ (integer3 → B)

= input[(integer), (integer)]

= λP . {λ (a, y, x) . [P (a) and (x = a) and (y = Ω)]}

φ2 ∈ (integer→ B)→ (integer3 → B)

= test(λ (a, y, x) . (x = 0)) ◦ φ1

= λP . {λ (a, y, x) . [φ1(P)(a, y, x) and (x = 0)]}

φ3 ∈ (integer→ B)→ (integer3 → B)

= assign(λ (a, y, x) . (a, 1, x)) ◦ φ2

= λP . {λ (a, y, x) . [∃m : φ2(P)(a,m, x) and (y = 1)]}

(6)-12

φ4 ∈ (integer→ B)→ (integer3 → B)

= test(λ (a, y, x) . (x 6= 0)) ◦ φ1

= λP . {λ (a, y, x) . [φ1(P)(a, y, x) and (x 6= 0)]}

φ5 ∈ (integer→ B)→ (integer4 → B)

= begin (integer3, integer) ◦ φ4

= λP . {λ (a, y, x, z) . [φ4(P)(a, y, x) and (z = Ω)]}

φ6 ∈ (integer→ B)→ (integer4 → B)

= assign(λ (a, y, x, z) . (a, y, x, x− 1)) ◦ φ5

= λP . {λ (a, y, x, z) . [∃m : φ5(P)(a, y, x,m) and (z = x− 1)]}

φ7 ∈ (integer→ B)→ (integer4 → B)

= call(f, integer4, (4), (2)) ◦ φ6

= λP . {λ (a, y, x, z) . [φ11(σ4
4(P))(z, y) and σ̄4

2(P)(a, x, z)]} ◦ φ6

= λP . {λ (a, y, x, z) . [φ11(σ4
4(φ6(P)))(z, y) and σ̄4

2(φ6(P))(a, x, z)]}

φ8 ∈ (integer→ B)→ (integer4 → B)

= assign(λ (a, y, x, z) . (a, x ∗ y, x, z)) ◦ φ7

= λP . {λ (a, y, x, z) . [∃n : φ7(P)(a, n, x, z) and (y = x ∗ n)]}

φ9 ∈ (integer→ B)→ (integer4 → B)

= end(integer3, integer) ◦ φ8

= σ̄4
4 ◦ φ8

φ10 ∈ (integer→ B)→ (integer3 → B)

(6)-13

= φ3 or φ9

φ11 ∈ (integer→ B)→ (integer2 → B)

= output[(integer), (integer)] ◦ φ10

= σ̄3
3 ◦ φ10

End of example.

The construction rules of the system of forward semantic equations associated

with a program including recursive procedures can be justified with respect to an

operational or denotational semantics. Except for the complexity introduced by the

recursion, the process if fundamentally the same as in Chapter 3. In particular, the

least solution (for implication) of the system of equations{
φ = λψ . JλP . {Fπ(ψ)(P)}KJφK

associated with program π is obtained by Theorem 2.7.0.1, since λψ . JλP . {Fπ(ψ)(P)}K
is a complete join-morphism.

Example 6.1.0.2

We solve the system of equations associated with the factorial procedure of

Example 6.1.0.1. To perform manual computations, it is easier to simplify the system

of equations, e.g., by eliminating φ1, . . . , φ10, which gives:
φ11 = λψ . JλP . {λ (a, y) . [(P (a) and (a = 0) and (y = 1)) or (∃n : ψ(λ z .

[P (z + 1) and (z + 1 6= 0)])(a− 1, n) and P (a) and (a 6= 0) and (y =
a ∗ n))]}KJφ11K

Solving this equation iteratively starting from the infimum of ((integer→ B)→
(integer2 → B)), we get for the first terms:

(6)-14

[
φ0

11 = λP . {λ (a, y) . [false]}[
φ1

11 = λP . {λ (a, y) . [P (a) and (a = 0) and (y = a!)]}[
φ2

11 = λP . {λ (a, y) . [P (a) and (0 ≤ a ≤ 1) and (y = a!)]}

The iteration is infinite, so, to get to the limit, we guess the general term φk11,

prove that it is correct by finite induction, and go to the limit by extending k to

infinity. Theorem 2.7.0.1 shows that this limit is the least solution (for implication) of

the functional equation. For the induction step, suppose we have:[
φk11 = λP . {λ (a, y) . [P (a) and (0 ≤ a ≤ (k − 1)) and (y = a!)]}

then we get:

- φk11(λ z . [P (z + 1) and (z + 1 6= 0)])

= λ (a, y) . [P (a+ 1) and (a+ 1 6= 0) and (0 ≤ a ≤ (k − 1)) and (y = a!)]

- φk11(λ z . [P (z + 1) and (z + 1 6= 0)])(a− 1, n)

= {P (a) and (1 ≤ a ≤ k) and (n = (a− 1)!)}

- (∃n : φ11(λ z . [P (z+1) and (z+1 6= 0)])(a−1, n) andP (a) and (a 6= 0) and (y = a∗n))

= {P (a) and (1 ≤ a ≤ k) and (y = a!)}[
φk+1

11 = λP . {λ (a, y) . [P (a) and (0 ≤ a ≤ k) and (y = a!)]}

Going to the limit, we obtain:

φω11 = OR
k∈ω

(λP . {λ (a, y) . [P (a) and (0 ≤ a ≤ k) and (y = a!)]})

(6)-15

[
φω11 = λP . {λ (a, y) . [P (a) and (0 ≤ a) and (y = a!)]}

In particular, note that factorial, as we wrote it, does not terminate for negative

values of its input parameter.

End of example.

Example 6.1.0.3

MacCarthy’s 91 function

f(x) = if x > 100 then x− 10 else f(f(x+ 11)) endif

which computes:

if x > 100 then x− 10 else 91 endif

illustrates the case of nested recursive calls. In our language, it can be written:

procedure f(x : integer value ; y : integer result) =
{1}

if x > 100 then
{2}

y := x− 10 ;
{3}

else
{4}

begin z : integer ;
{5}

z := x + 11 ;
{6}

begin t : integer ;
{7}

f(z; t) ;
{8}

f(t; y) ;
{9}

end ;
{10}

end ;

(6)-16

{11}
endif ;

{12}
end–proc ;

{13}

The system of forward semantic equations associated with this procedure is the

following:

φ1 ∈ (integer→ B)→ (integer3 → B)

= input[(integer), (integer)]

= λP . {λ (a, y, x) . [P (a) and (x = a) and (y = Ω)]}

φ2 ∈ (integer→ B)→ (integer3 → B)

= test(λ (a, y, x) . (x > 100)) ◦ φ1

= λP . {λ (a, y, x) . [φ1(P)(a, y, x) and (x > 100)]}

φ3 ∈ (integer→ B)→ (integer3 → B)

= assign(λ (a, y, x) . (a, x− 10, x)) ◦ φ2

= λP . {λ (a, y, x) . [∃m : φ2(P)(a,m, x) and (y = x− 10)]}

φ4 ∈ (integer→ B)→ (integer3 → B)

= test(λ (a, y, x) . (x ≤ 100)) ◦ φ1

= λP . {λ (a, y, x) . [φ1(P)(a, y, x) and (x ≤ 100)]}

φ5 ∈ (integer→ B)→ (integer4 → B)

= begin ((integer3), (integer)) ◦ φ4

= λP . {λ (a, y, x, z) . [φ4(P)(a, y, x) and (z = Ω)]}

φ6 ∈ (integer→ B)→ (integer4 → B)

(6)-17

= assign(λ (a, y, x, z) . (a, y, x, x+ 11)) ◦ φ5

= λP . {λ (a, y, x, z) . [∃m : φ5(P)(a, y, x,m) and (z = x+ 11)]}

φ7 ∈ (integer→ B)→ (integer5 → B)

= begin ((integer4), (integer)) ◦ φ6

= λP . {λ (a, y, x, z, t) . [φ6(P)(a, y, x, z) and (t = Ω)]}

φ8 ∈ (integer→ B)→ (integer5 → B)

= call(f, integer5, (4), (5)) ◦ φ7

= λP . {λ (a, y, x, z, t) . [φ13(σ5
4(φ7(P)))(z, t) and σ̄5

5(φ7(P))(a, y, x, z)]}

φ9 ∈ (integer→ B)→ (integer5 → B)

= call(f, integer5, (5), (2)) ◦ φ8

= λP . {λ (a, y, x, z, t) . [φ13(σ5
5(φ8(P)))(z, t) and σ̄5

2(φ8(P))(a, y, x, z)]}

φ10 ∈ (integer→ B)→ (integer4 → B)

= end((integer4), (integer)) ◦ φ9

= σ̄5
5 ◦ φ9

φ11 ∈ (integer→ B)→ (integer3 → B)

= end((integer3), (integer)) ◦ φ10

= σ̄4
4 ◦ φ10

φ12 ∈ (integer→ B)→ (integer3 → B)

= φ3 or φ11

φ13 ∈ (integer→ B)→ (integer2 → B)

(6)-18

= output[(integer), (integer)] ◦ φ12

= σ̄3
3 ◦ φ12

This system of equations can be simplified as follows:
φ8 = λP . {λ (a, y, x, z, t) . [φ13(λ z . [P (z − 11) and (z ≤ 111)])(z, t) and

P (a) and (x = a) and (y = Ω) and (x ≤ 100) and (z = x+ 11)]}
φ9 = λP . {λ (a, y, x, z, t) . [φ13(σ5

5(P))(t, y) and σ̄5
2(P)(a, x, z, t)]} ◦ φ8

φ13 = λP . {λ (a, y) . [P (a) and (a > 100) and (y = a− 10)]}) or (σ5
1,2 ◦ φ9)

which can be written:
φ = λP . {λ (a, y) . [P (a) and (a > 100) and (y = a − 10)] or

σ5
1,2(ψ(λ (a, y, x, z, t) . [φ(λ z . [P (z − 11) and (z ≤ 111)])(z, t) and
P (a) and (a ≤ 100) and (x = a) and (y = Ω) and (z = x+ 11)]))}

ψ = λP . {λ (a, y, x, z, t) . [φ(σ5
5(P))(t, y) and σ̄5

2(P)(a, x, z, t)]}

The least fixpoint is computed by successive approximations starting form the infimum: φ0 = λP . {λ (a, y) . [false]}

ψ0 = λP . {λ (a, y, x, z, t) . [false]}[
φ1 = λP . {λ (a, y) . [P (a) and (a > 100) and (y = a− 10)]}[
φ2 = λP . {λ (a, y) . [P (a) and(((a > 100)and(y = a−10))or ((a = 100)and

(y = 91)))]}

With a little imagination we foresee the general term of the sequence as follows:
φk = λP . {λ (a, y) . [P (a) and {((a > 100) and (y = a−10)) or ((k < 11) and

(102−k ≤ a ≤ 100) and (y = 91)) or ((k ≥ 11) and (91−11∗ (k−11) ≤
a ≤ 100) and (y = 91))}]}

ψk = λP . {λ (a, y, x, z, t) . [φk(σ5
5(P))(t, y) and σ̄5

2(P)(a, x, z, t)]}

The induction step (k ≥ 2) shows that this hypothesis is correct:

(6)-19

φk(λ z . [P (z − 11) and (z ≤ 111)])(z, t)

= [P (z − 11) and (z ≤ 111) and {((z > 100) and (t = z − 10)) or ((k ≤
11) and (102− k ≤ z ≤ 100) and (t = 91)) or ((k ≥ 11) and (91− 11 ∗
(k − 11) ≤ z ≤ 100) and (t = 91))}]

Let

Q = λ (a, y, x, z, t) . [φk(λ z . [P (z − 11) and (z ≤ 111)])(z, t) and P (a) and
(a ≤ 100) and (x = a) and (y = Ω) and (z = x+ 11)]

After substitution and simplification, we get:

Q = λ (a, y, x, z, t) . [P (a) and (x = a) and (y = Ω) and (z = a + 11) and
{((90 ≤ a ≤ 100) and (t = a + 1)) or ((k ≤ 11) and (91 − k ≤ a ≤
89) and (t = 91)) or ((k ≥ 11) and (91 − 11 ∗ ((k + 1) − 11) ≤ a ≤
89) and (t = 91))}]

It follows that σ5
5(Q) = λ t . [((91 ≤ t ≤ 100) and P (t − 1)) or (t = 91)], which allows

the evaluation of

φk(σ5
5(Q))(t, y)

= ((y = 91) and ({P (t−1) and {(t = 101) or ((k ≤ 11) and (102−k ≤ t ≤
100)) or ((k ≥ 11) and (91 ≤ t ≤ 100))}} or {(k ≥ 11) and (t = 91)}))

as

σ5
1,2(ψk(Q))

= λ (a, y) . [P (a) and (y = 91) and {(a = 100) or ((k ≤ 11) and (102−(k+
1) ≤ a ≤ 99)) or ((k ≥ 11) and (90 ≤ a ≤ 99)) or ((k ≥ 11) and (a =
90)) or ((k = 11) and (91 − k ≤ a ≤ 89)) or ((k ≥ 11) and (91 − 11 ∗
(k + 1)− 11 ≤ a ≤ 89))}]

we obtain: φk+1 = λP . {λ (a, y) . [P (a) and {((a > 100) and (y = a− 10)) or ((k+ 1 ≤
11) and (102 − (k + 1) ≤ a ≤ 100) and (y = 91)) or ((k + 1 ≥
11) and (91− 11 ∗ ((k + 1)− 11) ≤ a ≤ 100) and (y = 91))}]}

(6)-20

Going to the limit, the least fixpoint is:[
φω = λP . {λ (a, y) . [P (a) and {((a > 100) and (y = a − 10)) or ((a ≤

100) and (y = 91))}]}

End of example.

Example 6.1.0.4

This last example (computing powers of two) illustrates the use of Theorem

4.1.1.0.2 to compute, by hand, an over-approximation of the least fixpoint of the sys-

tem of equations associated with a procedure, which can provide a proof of partial

correctness.

procedure f(x : integer value ; y : integer result) =
{1}

y := 1 ;
{2}

L:
{3}

if x > 0 then
{4}

x := x− 1 ;
{5}

begin z : integer ;
{6}

f(x; z) ;
{7}

y := y + z ;
{8}

goto L ;
end ;

endif ;
{9}

end–proc ;
{10}

(6)-21

The system of forward semantic equations associated with this procedure is the

following:

φ1 ∈ (integer→ B)→ (integer3 → B)

= input[(integer), (integer)]

= λP . {λ (a, y, x) . [P (a) and (x = a) and (y = Ω)]}

φ2 ∈ (integer→ B)→ (integer3 → B)

= assign(λ (a, y, x) . (a, 1, x)) ◦ φ1

= λP . {λ (a, y, x) . [∃m : φ1(P)(a,m, x) and (y = 1)]}

φ3 ∈ (integer→ B)→ (integer3 → B)

= φ2 or end((integer4), (integer)) ◦ φ8

= φ2 or σ̄4
4 ◦ φ8

φ4 ∈ (integer→ B)→ (integer3 → B)

= test(λ (a, y, x) . (x > 0)) ◦ φ3

= λP . {λ (a, y, x) . [φ3(P)(a, y, x) and (x > 0)]}

φ5 ∈ (integer→ B)→ (integer3 → B)

= assign(λ (a, y, x) . [a, y, x− 1]) ◦ φ4

= λP . {λ (a, y, x) . [φ4(P)(a, y, x+ 1)]}

φ6 ∈ (integer→ B)→ (integer4 → B)

= begin ((integer3), (integer)) ◦ φ5

= λP . {λ (a, y, x, z) . [φ5(P)(a, y, x) and (z = Ω)]}

φ7 ∈ (integer→ B)→ (integer4 → B)

(6)-22

= call(f, integer4, 3, 4) ◦ φ6

= λP . {λ (a, y, x, z) . [φ10(σ4
3(φ6(P)))(x, z) and σ̄4

4(φ6(P))(a, y, x)]}

φ8 ∈ (integer→ B)→ (integer4 → B)

= assign(λ (a, y, x, z) . (a, y + z, x, z)) ◦ φ7

= λP . {λ (a, y, x, z) . [∃m : φ7(P)(a,m, x, z) and (y = m+ z)]}

φ9 ∈ (integer→ B)→ (integer3 → B)

= test(λ (a, y, x) . (x ≤ 0)) ◦ φ3

= λP . {λ (a, y, x) . [φ3(P)(a, y, x) and (x ≤ 0)]}

φ10 ∈ (integer→ B)→ (integer2 → B)

= output[(integer), (integer)] ◦ φ9

= σ̄3
3 ◦ φ9

This system of equations can be substantially simplified into:

φ3 = F1(φ3, φ10)

= λP . {λ (a, y, x) . [(P (a) and (x = a) and (y = 1)) or (∃m :
φ10(σ3

3(λ (a, y, x) . [φ3(P)(a, y, x + 1) and (x ≥ 0)]))(x, y − m) and
φ3(P)(a,m, x+ 1) and (x ≥ 0))]}

φ10 = F2(φ3, φ10)

= λP . {σ3
3(λ (a, y, x) . [φ3(P)(a, y, x) and (x ≤ 0)])}

Solving iteratively starting from the infimum: φ0
3 = λP . {λ (a, y, x) . [false]}

φ0
10 = λP . {λ (a, y) . [false]}

using Gauss–Seidel’s chaotic strategy:

(6)-23

 φk+1
3 = F1(φk3 , φ

k
10)

φk+1
10 = F2(φk+1

3 , φk10)

we obtain for the first terms: φ1
3 = λP . {λ (a, y, x) . [P (a) and (x = a) and (y = 1)]}

φ1
10 = λP . {λ (a, y) . [P (a) and (a ≤ 0) and (y = 1)]}
φ2

3 = λP . {λ (a, y, x) . ([P (a) and (x = a) and (y = 1)] or [P (a) and (x =
0) and (a = 1) and (y = 2)])}

φ2
10 = λP . {λ (a, y) . ([P (a) and (a ≤ 0) and (y = 1)] or [P (a) and (a =

1) and (y = 2)])}
φ3

3 = λP . {λ (a, y, x) . ([P (a) and (x = a) and (y = 1)] or [P (a) and (x =
0) and (a = 1) and (y = 2)] or [P (a) and (x = 1) and (a = 2) and (y =
3)])}

φ3
10 = λP . {λ (a, y) . ([P (a) and (a ≤ 0) and (y = 1)] or [P (a) and (a =

1) and (y = 2)])}
φ4

3 = λP . {λ (a, y, x) . ([P (a) and (x = a) and (y = 1)] or [P (a) and (x =
0) and (a = 1) and (y = 2)] or [P (a) and (x = 0) and (a = 2) and (y =
4)] or [P (a) and (x = 1) and (a = 2) and (y = 3)])}

φ4
10 = λP . {λ (a, y) . ([P (a) and (a ≤ 0) and (y = 1)] or [P (a) and (a =

1) and (y = 2)] or [P (a) and (a = 2) and (y = 4)])}

φ5
3 = λP . {λ (a, y, x) . ([P (a) and (x = a) and (y = 1)] or [P (a) and (x =

0) and (a = 1) and (y = 2)] or [P (a) and (x = 0) and (a = 2) and (y =
4)] or [P (a) and (x = 1) and (a = 2) and (y = 3)] or [P (a) and (x =
2) and (a = 3) and (y = 5)])}

φ5
10 = λP . {λ (a, y) . ([P (a) and (a ≤ 0) and (y = 1)] or [P (a) and (a =

1) and (y = 2)] or [P (a) and (a = 2) and (y = 4)])}

With a little intuition, the computation of these first terms allows us to foresee

the following form for the general term:

(6)-24

φk3 = λP . {λ (a, y, x) . ([P (a) and (x = a) and (y = 1)] or [P (a) and (0 ≤

x < a) and (y = 1 +
a−1∑
i=x

2i) and ((a ∗ (a+ 1))/2− x < k)])}

We deduce:

φk10 = λP . {λ (a, y) . ([P (a) and (a ≤ 0) and (y = 1)] or [P (a) and (0 <

a) and (y = 2a) and ((a ∗ (a+ 1))/2 < k)])}

It is easy to check that the first terms are of the above form. For the induction

step, we must prove that φk+1
3 = F1(φk3 , φ

k
10). The computation being complex, we will

settle for a simple check that F1(φk3 , φ
k
10) ⇒ φk+1

3 . As it is obvious that φk3 ⇒ φk+1
3 ,

we will have (φk3 or F1(φk3 , φ
k
10)) ⇒ φk+1

3 , which shows that φk3 is the general term of

an increasing over-approximated iteration sequence (4.1.1.0.1).

φk10(σ3
3(λ (a, y, x) . [φk3(P)(a, y, x+ 1) and (x ≥ 0)]))(x, y −m)

⇒ φk10(λx .x ≥ 0)(x, y −m)

⇒ [(x = 0) and (y−m = 1)] or [(0 < x) and (y−m = 2x) and ((x ∗ (x+
1))/2 < k)]

φk3(P)(a,m, x+ 1) and (x ≥ 0)

= [P (a) and (x+ 1 = a) and (m = 1) and (x ≥ 0)] or [P (a) and (0 ≤ x <

a− 1) and (m = 1 +
a−1∑
i=x+1

2i) and (((a ∗ (a+ 1))/2− x) < k + 1)]

so

F1(φk3 , φ
k
10)

(6)-25

⇒ λP . {λ (a, y, x) . ([P (a) and (x = a) and (y = 1)] or [P (a) and (x =
0) and (a = 1) and (y = 2)] or [P (a) and (x = 0 < a − 1) and (y =

1 +
a−1∑
i=x

2i) and (((a ∗ (a+ 1))/2− x) < k + 1)] or [P (a) and (0 < x =

a− 1) and (y = 1 + 2a−1) and ((a ∗ (a− 1))/2 < k)] or [P (a) and (0 <

x < a− 1) and (y = 1 +
a−1∑
i=x

2i) and (((a ∗ (a+ 1))/2− x) < k + 1)])}

⇒ λP . {λ (a, y, x) . ([P (a) and (x = a) and (y = 1)] or [P (a) and (0 ≤

x < a) and (y = 1 +
a−1∑
i=x

2i) and (((a ∗ (a+ 1))/2− x) < k + 1)])}

⇒ φk+1
3

The term at rank ω of the chaotic over-approximated increasing iteration se-

quence is thus φω3 =
⊔
k<ω

φk3 , that is:

 φω3 = λP . {λ (a, y, x) . [P (a) and (((x = a) and (y = 1)) or ((0 ≤ x <

a) and (y = 1 +
a−1∑
i=x

2i)))]}

we deduce:
φω10 = λP . {λ (a, y) . [P (a) and (((a ≤ 0) and (y = 1)) or ((a > 0) and (y =

1 +
a−1∑
i=0

2i)))]}

= λP . {λ (a, y) . [P (a) and (((a < 0) and (y = 1)) or ((a ≥ 0) and (y =
2a)))]}

Shortening the system of equations into φ = F (φ), we get:[
φω = OR

k<ω
φk = OR

k<ω
φk+1 ⇐ OR

k<ω
F (φk) = F (OR

k<ω
φk) = F (φω)

because we showed that (∀k < ω, F (φk)⇒ φk+1) and F is a complete join-morphism.

Since φω is a post-fixpoint of F , it is the limit of the iteration (4.1.1.0.1.(c)) and

(6)-26

Theorem 4.1.1.0.2 shows that lfp(F) ⇒ φω. We deduce that procedure f is partially

correct: if x is a positive of null integer and f(x, y) terminates, then y = 2x. The proof

of termination is obvious by finite induction.

End of example.

6.2 CONSTRUCTIVE METHODS TO APPROXIMATE SOLU-
TIONS OF A SYSTEM OF FUNCTIONAL EQUATIONS

The techniques developed in Chapter 4 are directly applicable to approach the least

fixpoint of the system of forward semantic equations:

φ = F (φ) where φ ∈ (
n∏
i=1

((Um → B)→ (Umi → B)))

associated with a recursive procedure (with m input parameters with value in U and

with n program points). For example, for an over-approximation, we will define an

over-approximated image Lk of (Uk → B) for all k ≥ 0 (Definition 4.2.7.0.6):

Lk �̄(@k, γk) (Uk → B)

so that Paragraph 4.2.8 indicates how to build a system of approximate equations by

defining (thanks to Theorem 4.2.8.0.3):

(Lm → Lmi) �̄(@mi,m, γmi,m) ((Um → B)→ (Umi → B))

with

@mi,m = λφ . (@mi ◦ φ ◦ γm)

γmi,m = λφ . (γmi ◦ φ ◦ @m)

and

(6)-27

n∏
i=1

(Lm → Lmi) �̄(@̄n, γ̄n) (
n∏
i=1

((Um → B)→ (Umi → B)))

with

@̄n = λ (φ1, . . . , φn) . (@m1,m(φ1), . . . ,@mn,m(φn))

γ̄n = λ (φ1, . . . , φn) . (γm1,m(φ1), . . . , γmn,m(φn))

which gives a system of approximate equations of the form:

φ = F (φ) where φ ∈ (
n∏
i=1

(Lm → Lmi))

where the rules of construction for F̄ ensure that:

¯̄@n(F) v F̄

with

¯̄@n = λF . @̄n ◦ F ◦ γ̄n
¯̄γn = λF . γ̄n ◦ F ◦ @̄n

After computing lfp(F̄), using Theorem 2.9.1.0.2, or an over-approximation φ̄ of

lfp(F̄), using the fixpoint approximation techniques based on convergence acceleration

by extrapolation, as in Paragraph 4.1, Theorem 4.2.8.0.4 ensures that:

lfp(F) ⇒ γ̄n(φ̄)

For example, let us perform an approximate analysis of the sign of the func-

tion:

f(x) = if x ≥ 1000 then x else −f(−2 ∗ x) endif ;

using the approximation defined in Paragraph 5.3. The function which associates the

sign of f(x) with the sign of x is the least fixpoint of the function:

(6)-28

{
F = λφ . {λP . [(P u +̇) t −φ(−P)]}

By iterative solving, we obtain:[
φ0 = λP .⊥[
φ1 = F (φ0) = λP . {(P u +̇) t −⊥} = λP . (P u +̇)

φ2 = F (φ1) = λP . {(P u +̇) t −((−P) u +̇)}

= λP . {(P u +̇) t (P u −̇)}

as (−P) u +̇ = −(P u −̇) and −− P = P

= λP . {P u (+̇ t −̇)}

= λP . {P u >}
= λP .P φ3 = F (φ2) = λP . {(P u +̇) t −− P}

= λP .P

We just showed that the sign of f(x) is the same as the sign of x. Our reasoning

is exactly the same as in Chapter 5, except that the unknowns φi of the system of equa-

tions φ = F̄ (φ) are functions φi ∈ (Lm → Lmi) whereas, in Chapter 5, we considered a

system of equations X = F̄ (X) where Xi ∈ Lk. Thus, in the above example, the com-

putation was performed on functions represented using symbolic lambda-expressions

and not on elements of the lattice L1 = {⊥, 0, +̇, −̇,>}. This representation of functions

is not practical in a computer because symbolic computations are hard to automate

and a representation of the elements of L1 → L1 by a table with five entries will be

more convenient. However, in the general case, the cardinal of L1 is high or infinite

and no finite representation of the elements of L1 → L1 is convenient for a computer.

(6)-29

However, in practice, it is not necessary to know the function lfp(F) but, much more

simply, the predicate lfp(F)(P) for a number of entry conditions P . It means that we

will only compute the over-approximation φ̄ ∈ (L1 → L1) of @̄1(lfp(F)) for a finite

number of arguments, which will allow the representation of φ̄ by a table. Among

possible ideas, we can consider approximating φ(x) by φ(>) for all x of L1, because

x v > implies by monotonicity that φ(x) v φ(>). Better still, we can compute φ̄(P)

where P is given by the various call contexts. Rather than analyzing the procedure at

declaration time, this amounts to performing the analysis for each call. For example,

to compute lfp(F̄)(+̇), we will get:

φ0(P) = ⊥ ∀P = {⊥, 0, +̇, −̇,>}

φ1(+̇) = (+̇ u +̇) t −φ0(−+̇) = +̇ t −φ0(−̇) = +̇ t ⊥ = +̇

φ1(−̇) = (−̇ u +̇) t −φ1(−−̇) = 0 t −φ1(+̇) = 0 t −+̇ = 0 t −̇ = −̇

φ2(+̇) = (+̇ u +̇) t −φ1(−+̇) = +̇ t −φ1(−̇) = +̇ t −−̇ = +̇ t +̇ = +̇

φ2(−̇) = (−̇ u +̇) t −φ2(−−̇) = 0 t −φ2(+̇) = 0 t −+̇ = 0 t −̇ = −̇

The computation of lfp(F̄)(+̇) does not need the complete knowledge of the

function lfp(F̄), but only of lfp(F̄)(−̇) and lfp(F̄)(+̇). Now, we formalize the ideas

presented above (6.2.1) and then we solve (6.2.2) the problems arising when considering

spaces of infinite cardinal, drawing our inspirations from 4.1.

6.2.1 Resolution of a system of functional fixpoint equations in a finite space
by chaotic iteration

DEFINITION 6.2.1.0.1 Finite chaotic iteration for a system of functional fixpoint

equations

(6)-30

For all i = 1, . . . , n, let Di, D
′
i, L =

n∏
i=1

(Di → D′i) be complete lattices. Let

F ∈ ucont(L→ L). We consider the system of functional equations φ = F (φ) which

can be expressed as:
φi = Fi(φ) where Fi ∈ (L→ (Di → D′i))

= λ (ψ1, . . . , ψn) . {λP . [fi(P,ψ1, . . . , ψn)]}(φ1, . . . , φn)

i = 1, . . . , n

- An index is a vector (J1, . . . , Jn) such that {∀i ∈ [1, n], Ji ⊆ Di}

- Given an index J ⊆
n∏
i=1

Di, we define Fj by:

∀φ ∈ L,Fj(φ) = ψ

where

∀i ∈ [1, n], ψi = λX . if X ∈ Ji then Fi(φ)(X) else φi(X) endif ;

- Let φ ∈ L, Y ∈ Dj . We will say that the evaluation of Fj(φ)(Y) requires the

evaluation of φi(X), and write it Fj(φ)(Y) ·→φi(X), if and only if Fj can be written

in the form λψ . {λP . [. . . ψi(f(P,ψ)) . . .]} and f(Y, φ) = X.

- Let V ⊆
n∏
i=1

Di, we will denote by F–closure(φ, V) the least vector (for set inclusion

⊆) V̄ ⊆
n∏
i=1

Di such that:

{∀i ∈ [1, n], V̄i = Vi ∪ {X ∈ Di : {∃k ∈ [1, n],∃Y ∈ V̄k : Fk(φ)(Y) ·→ φi(X)}}}

- A finite chaotic iteration sequence starting from φ0 ∈ L, for V ⊆
n∏
i=1

Di, and

defined by F and the sequence of eligible indexes J0, J1, . . . , Jk, . . . is a sequence

φ0, φ1, . . . , φk, . . . of elements of L such that:

• {∀k ≥ 1, φk = FJk−1(φk−1)}

• {(∀i ∈ [1, n]), (∀X ∈ Vi), (∀k ≥ 0), (∃l ≥ 1) : (X ∈ Jk+l
i) and (∀j ∈ [1, n], W̄j ⊆

l−1⋃
p=0

Jk+p
j)

where (Wi = {X}), (∀j ∈ [1, n] : (j 6= i), (Wj = ∅)), (W̄ = F–closure(φk+1,W))}

(6)-31

LEMMA 6.2.1.0.2
A finite chaotic iteration sequence defined by the functional F and starting from

φ0 ∈ prefp(F) is an ascending chain:

{∀k ≥ 0, φk v φk+1 v F (φk) v luis(F)(φ0)}

Proof: As φ0 v F (φ0) v luis(F)(φ0), for all i = 1, . . . , n and X ∈ Di, we have

φ0
i (X) v Fi(φ0)(X) v (luis(F)(φ0))i(X). If X ∈ J0

1 , then φ0
i (X) v φ1

i (X) =

Fi(φ0)(X), otherwise X 6∈ J0
1 , in which case φ0

i (X) = φ1
i (X) v Fi(φ0)(X).

For the induction step, we suppose that, for k > 0, we have φk−1 v φk v
F (φk−1) v luis(F)(φ0). For all i = 1, . . . , n and all X ∈ Di, we have either X ∈ Jk−1

i ,

in which case φki (X) = Fi(φk−1)(X) v Fi(φk)(X) v (luis(F)(φ0))i(X) because Fi

is monotone, or X 6∈ Jk−1 and, in that case, φki (X) = φk−1
i (X) v Fi(φk−1

i)(X) v
Fi(φk)(X) v (luis(F)(φ0))i(X), which proves that φki v Fi(φk) v (luis(F)(φ0))i.

Now, for all i = 1, . . . , n and all X in Di, we have either X ∈ Jki and φki (X) v
Fi(φk)(X) = φk+1

i (X), or X 6∈ Jki and φki (X) = φk+1
i (X) v Fi(φk)(X), which proves

that φk v φk+1 v F (φk) v luis(F)(φ0). By finite induction on k, the lemma is proved.

End of proof.

THEOREM 6.2.1.0.3
Let φ0 ∈ prefp(F) be such that φ0 v lfp(F), then a finite chaotic iteration

sequence defined for the functional F starting from φ0 for V ⊆
n∏
i=1

Di and stable

after ε steps is such that:

{(∀i ∈ [1, n]), (∀X ∈ Vi), φεi (X) = (lfp(F))i(X)}

Proof: LetW ε = F–closure(φε, V). Let i ∈ [1, n] andX ∈ Vi. By definition of eligible

sequences of indexes, ∃l ≥ 1 such that X ∈ Jε+li , and so, φε+l+1
i (X) = Fi(φε+l)(X)

(6)-32

and, as φε+l+1
i = φε+li = φεi , we have φεi = Fi(φεi). Now, let X ∈ (W ε

i − Vi), then
∃k ∈ [1, n],∃Y ∈ Vk such that Fk(φε)(Y)·→φεj(Z) and Fj(φε)(Z)·→. . .·→φεi (X), which

implies ∃l ≥ 1 such that Y ∈ Jε+lk and X ∈ F–closure(φε+1, (∅, ∅, . . . , {Y }, . . . , ∅))i,
where {Y } is in kth position. Therefore, ∃p ∈ [0, l − 1] such that X ∈ Jε+pi , in which

case, φε+p+1
i (X) = Fi(φε+p)(X), and so, φεi (X) = Fi(φε)(X). As Vi ⊆ W ε

i , we have

shown that {∀X ∈W ε
i , φ

ε
i (X) = Fi(φε)(X)}.

Let ψ0 ∈ L such that, for all i = 1, . . . , n and all X ∈ Di, we have ψ0
i =

if X ∈ Wi then φεi (X) else ⊥ endif. Then, ψ0 ∈ prefp(F) and, following 6.2.1.0.2,

ψ0 v luis(F)(φ0) = lfp(F) and, following Theorem 2.7.0.1, we have lfp(F) =
⊔
k∈ω

ψk,

where ψk = F (ψk−1). Let us prove that, for all k ∈ ω, we have F–closure(ψ0,W ε) =

F–closure(ψk,W ε) = W ε and ∀i ∈ [1, n],∀X ∈ W ε
i , ψ

k
i (X) = ψ0

i (X). For k = 0,

we have F–closure(ψ0,W ε) = F–closure(φ0,W ε) = F–closure(φ0, V) = W ε. Sup-

pose that the lemma is true up to k. We have ψk+1
i (X) = Fi(ψk)(X). For all

Z ∈ Dj such that Fi(ψk)(X) ·→ ψkj (Z), we know by induction hypothesis that Z ∈
W ε
j and, thus, ψki (Z) = ψ0

i (Z), which implies ψkj (Z) = ψ0
j (Z) and ψk+1

i (X) =

Fi(ψk)(X) = Fi(ψ0)(X) = ψ0
i (X). Moreover, F–closure(ψk+1,W ε) = W ε because,

for all Y ∈ W ε
j , Fj(ψ

k+1)(Y) ·→ φi(X) implies that Fj(ψ0)(Y) ·→ φi(X), and so,

X ∈ F–closure(ψ0,W ε) = W ε. By induction on k, we get ∀X ∈ W ε
i , ψ

k
i (X) = φεi (X),

and so, (lfp(F))i(X) =
⊔
k∈ω

ψki (X) = φεi (X).

End of proof.

In the case where the D′i, i = 1, . . . , n are lattices satisfying the ascending chain

condition, then the chaotic iteration sequence is stationary but it is possible that, to

satisfy Definition 6.2.1.0.1, any eligible sequence of indexes must contain an index with

an infinite component. For example, it is the case of the equation φ = λψ . {λX .
[ψ(X + 1)]}(φ) where φ ∈ (L → L), with L = Z ∪ {⊥,>} ordered by ⊥ v ⊥ v
X v X v > v > for all X ∈ Z, and ⊥ + 1 = ⊥ and > + 1 = >. So, in practice,

Definition 6.2.1.0.1 is applicable only to indexes of finite components, which is the case,

(6)-33

for example, if the D1, . . . , Dn are finite lattices.

Now, we tackle the general case by leveraging the algorithms for fixpoint ap-

proximation based on convergence acceleration by extrapolation from Paragraph 4.1

that we adapt to the case of functionals.

6.2.2 Increasing chaotic iteration sequence with upper widening to approxi-
mate the solution of a system of functional equations

DEFINITION 6.2.2.0.1 Increasing chaotic iteration sequence with upper widening for

a system of functional fixpoint equations

For i = 1, . . . , n, let Di, D
′
i, L =

n∏
i=1

(Di → D′i) be complete lattices and F ∈

mon(L→ L). Let F̃ ∈ (L→ L) be such that F v F̃ and, for i = 1, . . . , n, the upper

widenings ∇̄ i ∈ (D′i ×D′i → D′i) satisfying Definition 4.1.2.0.4.

- Given an index J ⊆
n∏
i=1

Di, we define F̃j as ∀φ ∈ L, F̃j(φ) = ψ with ∀i ∈ [1, n], ψi =

λX . if X ∈ Ji then φi(X) ∇̄ i F̃i(φ)(X) else φi(X) endif.

- An increasing chaotic iteration sequence starting from φ0 ∈ L, for V ⊆
n∏
i=1

Di,

and defined by F̃ and the eligible sequence of indexes J0, J1, . . . , Jk, . . . is a sequence

φ0, φ1, . . . , φk, . . . of elements in L such that:

• {∀k ≥ 1, φk = F̃Jk−1(φk−1)}

• {(∀i ∈ [1, n]), (∀X ∈ Vi), (∀k ≥ 0), (∃l ≥ 1) : (X ∈ Jk+l
i) and (∀j ∈ [1, n], W̄j ⊆

l−1⋃
p=0

Jk+p
j)

where (Wi = {X}), (∀j ∈ [1, n] : (j 6= i), (Wj = ∅)), (W̄ = F̃–closure(φk+1,W))}

THEOREM 6.2.2.0.2

(6)-34

A chaotic iteration sequence starting from φ0 ∈ L, for V ⊆
n∏
i=1

Di, and defined

by F and F̃ is a stationary ascending chain with limit φε such that:

{(∀i ∈ [1, n]), (∀X ∈ Vi), (lfp(F))i(X) v φεi (X)}

Proof: According to 4.1.2.0.4.(a), we have ∀X ∈ Di, φi(X) v φi(X) ∇̄ i F̄i(φ)(X),

which proves that F̃Jk is extensive for all k ≥ 0 and, consequently, the sequence

φ0, φ1, . . . , φk, . . . is an ascending chain. As X appears an infinite number of times

in the sequence J0, . . . , Jk, . . ., there exists a sequence i0, i1, . . . , ik such that ∀j ∈
[1, n], φik+1

j (X) = φikj (X)∇̄ jCj where Cj ∈ D′j , which proves, according to 4.1.2.0.4.(b),

that the sequence φ0, . . . , φk, . . . is stationary.

Let W ε = F̃–closure(φε, V). For all i = 1, . . . , n and all X ∈ Vi, we have

∃l ≥ 1 such that X ∈ Jε+li and, thus, φε+l+1
i (X) = φε+li (X) ∇̄ i F̃i(φε+l)(X), and so,

φεi (X) = φεi (X) ∇̄ i F̃i(φε)(X) w φεi (X) t F̃i(φε)(X) w φεi (X) and, thus, F̃i(φε)(X) v
φεi (X). Suppose now that X ∈ (W ε

i − Vi), then ∃k ∈ [1, n],∃Y ∈ Vk such that

Fk(φε)(Y)·→φεj(Z) and Fj(φε)(Z)·→. . .·→φεi (X), which implies ∃l ≥ 1 : Y ∈ Jε+lk and

X ∈ F–closure(φε+1, (∅, ∅, . . . , {Y }, . . . , ∅))i where {Y } is in kth position. Therefore,

∃p ∈ [0, l − 1] such that X ∈ Jε+pi and, thus, φk+p+1
i (X) = φε+pi (X) ∇̄ i F̃i(φε)(X)

which, as previously, implies that F̃i(φε)(X) v φεi (X).

Let us define ψ such that ∀i ∈ [1, n], ψi = λX . if X ∈ W ε
i then φεi (X) else

> endif ; ψ is a post-fixpoint of F̃ and, as F v F̃ , ψ is a post-fixpoint of F , so

that Theorem 2.5.5.0.1 implies lfp(F) v ψ, which proves ∀i ∈ [1, n],∀X ∈ Vi ⊆
W ε
i , (lfp(F))i(X) v φi(X).

End of proof.

(6)-35

6.3 EXAMPLES OF APPROXIMATE FORWARD SEMANTIC
ANALYSIS OF RECURSIVE PROCEDURES

This paragraph reviews some of the applications described in Chapter 5 to illustrate

the over-approximation of the least solution of a system of forward semantic functional

equations associated with a recursive procedure.

6.3.1 Case of a finite space of approximate properties

6.3.1.1 Sign of the variables of a procedure

Example 6.3.1.1.0.1

Let us consider the following procedure:

procedure f(x : integer value ; y : integer result) =
{1}

if x ≥ 1000 then
{2}

y := x ;
{3}

else
{4}

begin z : integer ;
{5}

z :=−2 ∗ x ;
{6}

f(z; y) ;
{7}

y :=−y ;
{8}

end ;
{9}

endif ;
{10}

end–proc ;
{11}

The system of forward semantic equations associated with this procedure is the follow-

(6)-36

ing:

φ1 = λP . {λ (a, y, x) . [P (a) and (x = a) and (y = Ω)]}

φ2 = test(λ (a, y, x) . (x ≥ 1000)) ◦ φ1

φ3 = assign(λ (a, y, x) . (a, x, x)) ◦ φ2

φ4 = test(λ (a, y, x) . (x < 1000)) ◦ φ1

φ5 = λP . {λ (a, y, x, z) . [P (a, y, x) and (z = Ω)]}

φ6 = assign(λ (a, y, x, z) . (a, y, x,−2 ∗ x)) ◦ φ5

φ7 = λP . {λ (a, y, x, z) . [φ11(σ4
4(P))(z, y) and σ̄4

2(P)(a, x, z)]} ◦ φ6

φ8 = assign(λ (a, y, x, z) . (a,−y, x, z)) ◦ φ7

φ9 = σ̄4
4 ◦ φ8

φ10 = φ3 or φ9

φ11 = σ3
1,2 ◦ φ10

Choosing the closure operator defined in Paragraph 5.2.1, a predicate P over n

variables is approximated by a vector of n elements of the lattice:

�

⊥

−̇ +̇

+− 0

The corresponding system of approximate equations is the following (we will

write P = (P (1), . . . , P (n)) when P ∈ Ln):

(6)-37

φ1 ∈ (L1 → L3)

= λP . (P (1),⊥, P (1))

φ2 ∈ (L1 → L3)

= λP . {φ1(P) u (>,>,+)}

φ3 ∈ (L1 → L3)

= λP . {φ2(P)(y ← x)}

φ4 ∈ (L1 → L3)

= φ1

φ5 ∈ (L1 → L4)

= λP . (P (1), P (2), P (3),⊥) ◦ φ4

φ6 ∈ (L1 → L4)

= λP . {φ5(P)(z ← −x)}

φ7 ∈ (L1 → L4)

= λP . {(>, φ11(P (4))(2),>, φ11(P (4))(1)) u (P (1),>, P (3), P (4))} ◦ φ6

φ8 ∈ (L1 → L4)

= λP . {φ7(P)(y ← −y)}

φ9 ∈ (L1 → L3)

= λP . (P (1), P (2), P (3)) ◦ φ8

φ10 ∈ (L1 → L3)

= λP . {φ3(P) t φ9(P)}

(6)-38

φ11 ∈ (L1 → L2)

= λP . (P (1), (P (2)) ◦ φ10

This system of equations can be simplified as follows:

φ11 ∈ (L1 → L2)

= λP . (P (1), {(P (1) u+) t −φ11(−P (1))(1)})

or, more simply: φ11 ∈ (L→ L)

= λx . {(x u+) t −φ11(−x)}

We have to compute φ11(+̇) using Definition 6.2.1.0.1. We have:

Step 0 :

φ0
11 = λx .⊥

Step 1 : J0 = ({+̇})

φ1
11(+̇) = (+̇ u+) t −φ0

11(−(+̇))

= + t ⊥

= +

Step 2 : J1 = ({−̇})

φ2
11(−̇) = (−̇ u+) t −φ1

11(−(−̇))

= ⊥ t−φ1
11(+̇)

= −

Step 3 : J2 = ({+̇})

(6)-39

φ3
11(+̇) = (+̇ u+) t −φ2

11(−(+̇))

= + t −φ2
11(−̇)

= + t −(−)

= + t+

= +

Step 4 : J3 = ({−̇})

φ4
11(−̇) = (−̇ u+) t −φ3

11(−(−̇))

= ⊥ t−φ3
11(+̇)

= −

The computation converges, and so, φ11(+̇) = + and φ11(−̇) = −.
End of example.

Example 6.3.1.1.0.2

Ackermann’s function defined on natural numbers provides a more complex ex-

ample:

f(x, y) = if x = 0 then

y + 1

elsif y = 0 then

f(x− 1, 1)

else

f(x− 1, f(x, y − 1))

endif ;

Choosing the following space of approximate properties:

(6)-40

�

⊥

+0L =

we must solve: φ1 = λ (x, y) . [incr(y)tφ1(decr(xu+),+)tφ2(xu+, φ1(xu+, decr(yu+)))]

φ2 = λ (x, y) . [φ1(decr(x), y)]

where

incr = λx . case x in ⊥ → ⊥ ; 0→ + ; +→ + ; > → + endcase ;

decr = λx . case x in ⊥ → ⊥ ; 0→ ⊥ ; +→ > ; > → > endcase ;

The value of φ1(>,>) can be computed by a finite chaotic iteration sequence for

V = ({(>,>)}, ∅) and starting from: φ0
1 = λ (x, y) .⊥
φ0

2 = λ (x, y) .⊥

Step 1 : J0 = ({(>,>), (+,>), (>,+)}, ∅)

φ1
1(>,>) = + t φ0

1(>,+) t φ0
2(+, φ0

1(+,>)) = +

φ1
1(+,>) = + t φ0

1(>,+) t φ0
2(+, φ0

1(+,>)) = +

φ1
1(>,+) = + t φ0

1(>,+) t φ0
2(+, φ0

1(+,>)) = +

F–closure(φ1, ({(>,>)}, ∅)) = ({(>,>), (>,+), (+,>)}, {(+,⊥)})

Step 2 : J1 = (∅, {(+,+)})

(6)-41

φ2
2(+,+) = φ1

1(>,+) = +

Step 3 : J2 = ({(>,>), (+,>), (>,+)}, ∅)

φ3
1(>,>) = + t φ2

1(>,+) t φ2
2(+, φ2

1(+,>))

= + t φ1
1(>,+) t φ2

2(+, φ1
1(+,>)) = +

φ3
1(+,>) = + t φ2

1(>,+) t φ2
2(+, φ2

1(+,>)) = +

φ3
1(>,+) = + t φ1

1(>,+) t φ2
2(+, φ1

1(+,>)) = +

F–closure(φ3, ({(>,>)}, ∅)) = ({(>,>), (>,+), (+,>)}, {(+,+)})

Step 4 : J3 = (∅, {(+,+)})

φ4
2(+,+) = φ3

1(>,+) = +

Step 5 : J4 = ({(>,>)})

φ5
1(>,>) = + t φ4

1(>,+) t φ4
2(+, φ4

1(+,>))

= + t φ3
1(>,+) t φ4

2(+, φ3
1(+,>)) = +

F–closure(φ5, ({(>,>)}, ∅)) = ({(>,>), (>,+), (+,>)}, {(+,+)})

We have proven automatically that, if Ackermann’s function is called with nat-

ural number arguments, then so are the subsequent recursive calls, and the result is a

strictly positive integer.

End of example.

Remark 6.3.1.1.0.3 Determination of an eligible sequence of indexes

In practice, the eligible sequence of indexes is determined during the computation

using, for example, the following algorithm:

(6)-42

At each step k, we evaluate φi(X) for all X ∈ Vi and, when Fi(X,φ) ?·→ φj(Y),

we determine the value Z of φj(Y) as follows:

- If φj(Y) has already been evaluated at step k, Z is the corresponding value;

- Else, if φj(Y) is being evaluated (that is to say Fj(Y, φ) ?·→ φj(Y)), then, if k > 1,

the value of Z is the same as φj(Y) at step k − 1, otherwise k = 1 and Z is the

infimum ⊥ of Dj ;

- Else, Z is the value of Fj(Y, φ).

End of remark.

6.3.1.2 Nil pointers and non-nil pointers

Let us consider the procedure reverse(L,nil, L′) which returns a copy L′ of the inverse

image of a linked list L:

type node = record
val : integer ;
next : ↑node ;

end ;
procedure reverse(x, y : ↑node value ; z : ↑node result) =

if x = nil then
z := y ;

else
begin t : ↑node ;

t := allocate(node) ;
t. val :=x.val ;
t.next :=y ;
reverse(x.next, t; z) ;

end ;
endif ;

end–proc ;

(6)-43

According to 5.6.1.1, the system of approximate equations associated with reverse

is:
φ1 = λ (x, y) . [casex in⊥ → ⊥ ; nil → y ;¬nil → σ?

3

3 (φ2(¬nil , y,⊥)) ;> →
y t σ?33 (φ2(>, y,⊥)) endcase ;]

φ2 = λ (x, y, z) . [σ̄?
4

4 (φ3(x, y, z,¬nil))]

φ3 = λ (x, y, z, t) . [(x, y, φ1(next(x), t), t)]

where

σ?
n

i {(x1, . . . , xi, . . . , xn)} = xi

σ̄?
n

i {(x1, . . . , xi, . . . , xn)} = (x1, . . . , xi−1, xi+1, . . . , xn)

next = λ p . [case p in⊥ → ⊥ ; nil → ⊥ ;¬nil → > ;> → > endcase ;]

Evaluating φ1(¬nil ,nil) while determining an eligible sequence of indexes by

Algorithm 6.3.1.1.0.3, we obtain:

Step 1 :

φ1(¬nil ,nil) = σ?
3

3 (φ2(¬nil ,nil ,⊥))

= σ?
3

3 (σ̄?
4

4 (φ3(¬nil ,nil ,⊥,nil)))

= σ?
3

3 (σ̄?
4

4 (¬nil ,nil , φ1(⊥,¬nil),¬nil))

= σ?
3

3 (σ̄?
4

4 (¬nil ,nil , (¬nil t σ?33 (φ2(>,¬nil ,⊥))),¬nil))

= σ?
3

3 (σ̄?
4

4 (¬nil ,nil , (¬nil tσ?33 (σ̄?
4

4 (φ3(>,¬nil ,⊥,¬nil)))),¬nil))

= σ?
3

3 (σ̄?
4

4 (¬nil ,nil , (¬niltσ?33 (σ̄?
4

4 (>,¬nil , φ1(>,¬nil),¬nil))),¬nil))

As φ1(>,¬nil) is under evaluation, it is approximated as ⊥:

= σ?
3

3 (σ̄?
4

4 (¬nil ,nil , (¬nil t σ?33 (σ̄?
4

4 (>,¬nil ,⊥,¬nil))),¬nil))

= ¬nil

(6)-44

Step 2 :

φ1(¬nil ,nil) = σ?
3

3 (σ̄?
4

4 (¬nil ,nil , φ1(⊥,¬nil),¬nil))

= σ?
3

3 (σ̄?
4

4 (¬nil ,nil , (¬niltσ?33 (σ̄?
4

4 (>,¬nil , φ1(>,¬nil),¬nil))),¬nil))

As φ1(>,¬nil) is under evaluation, it is approximated as the
value ¬nil obtained at the previous step:

= σ?
3

3 (σ̄?
4

4 (¬nil ,nil , (¬nil t σ?33 (σ̄?
4

4 (>,¬nil ,¬nil ,¬nil))),¬nil))

= ¬nil

Note that the computation can be reordered to correspond to Definition 6.2.1.0.1.

Concerning the example, we discovered automatically that reverse(L,nil;L′) returns

L′ different from nil when L is not nil.

6.3.1.3 Pointers pointing to different records

Let us review the example of the reverse procedure:

procedure reverse(x, y : ↑node value ; z : ↑node result) =
{1}

if x = nil then
{2}

z := y ;
{3}

else
{4}

begin t : ↑node ;
{5}

t := allocate(node) ; t. val :=x. val ;
{6}

t.next :=y ;
{7}

reverse(x.next, t; z) ;
{8}

end ;

(6)-45

{9}
endif ;

{10}
end–proc ;

{11}

and apply to it the approximate analysis from Paragraph 5.6.1.2. The approximate

image of a predicate over n variables of pointer types x1, . . . , xn is an application of the

form λ (x1, . . . , xn) .P , where P is a partition of {x1, . . . , xn}. Recall the convention

that, if xi and yj are in distinct partitions, then they cannot point to the same records,

even indirectly. We will write:

{/X1, . . . , Xn/ . . . /Y1, . . . , Ym/}+ {Z} = {/X1, . . . , Xn/ . . . /Y1, . . . , Ym/Z/}

{/X,X1, . . . , Xn/ . . . /Y1, . . . , Ym/} − {X} = {/X1, . . . , Xn/ . . . /Y1, . . . , Ym/}

Then, the system of approximate equations associated with reverse is:

φ1 = λC . (λ (a, b, z, x, y) . [(C(x, y) + {a, b, z}) t {/a, x/b, y/z/}])

φ2 = λC . (λ (a, b, z, x, y) . [ε(x,C(a, b, z, x, y))]) ◦ φ1

φ3 = λC . (λ (a, b, z, x, y) . [ε(z, C(a, b, z, x, y)) t {/a/b/x/y, z/}]) ◦ φ2

φ4 = φ1

φ5 = λC . (λ (a, b, z, x, y, t) . [C(a, b, x, y, z) + {t}]) ◦ φ4

φ6 = λC . (λ (a, b, z, x, y, t) . [ε(t, C(a, b, z, x, y, t))]) ◦ φ5

φ7 = λC . (λ (a, b, z, x, y, t) . [C(a, b, z, x, y, t) t {/a/b/z/x/t, y/}]) ◦ φ6

φ8 = λC . (λ (a, b, z, x, y, t) . [{φ11(λ (x, t) . [C(a, b, z, x, y, t) − {a, b, z, y}])
(x, t, z) + {a, b, y}} t ε(z, C(a, b, z, x, y, t))]) ◦ φ7

φ9 = λC . (λ (a, b, z, x, y) . [C(a, b, z, x, y, t)− {t}]) ◦ φ8

φ10 = φ3 t φ9

φ11 = λC . (λ (a, b, z) . [C(a, b, z, x, y)− {x, y}]) ◦ φ10

Let us solve this system of equations for the specification C = λ (x, y) . {/x/y/}
corresponding to the call reverse(L,nil;L′).

(6)-46

Step 1 :

φ1(C) = λ (a, b, z, x, y) . [({/x/y/}+ {a, b, z}) t {/a, x/b, y/z/}]

= λ (a, b, z, x, y) . {/a, x/b, y/z/}

φ2(C) = λ (a, b, z, x, y) . [ε(x, {/a, x/b, y/z/})]

= λ (a, b, z, x, y) . {/a/x/b, y/z/}

φ3(C) = λ (a, b, z, x, y) . [ε(z, {/a/x/b, y/z/}) t {/a/b/x/y, z/}])

= λ (a, b, z, x, y) . {/a/x/b, y, z/}

φ4(C) = λ (a, b, z, x, y) . {/a, x/b, y/z/}

φ5(C) = φ6(C)

= λ (a, b, z, x, y, t) . {/a, x/b, y/z/t/}

φ7(C) = λ (a, b, z, x, y, t) . ({/a, x/b, y/z/t/}) t {/a/b/z/x/t, y/})

= λ (a, b, z, x, y, t) . {/a, x/b, y, t/z/}

As λ (x, t) . [φ7(C)(a, b, z, x, y, t)− {a, b, z, y}]

= λ (x, t) . [/a, x/b, y, t/z/− {a, b, z, y}]

= λ (x, t) . {/x/t/} = C

and the first approximation of φ11(C) is the infimum λ (a, b, z) .
[{/a/b/z/}], we have:

φ8(C) = λ (a, b, z, x, y, t) . [λ (a, b, z) . [{/a/b/z/}](x, t, z) + {a, b, y}) t
ε(z, {/a, x/b, y, t/z/})]

= λ (a, b, z, x, y, t) . {/a, x/b, y, t/z/}

φ9(C) = λ (a, b, z, x, y) . [{/a, x/b, y, t/z/} − {t}]

(6)-47

= λ (a, b, z, x, y) . {/a, x/b, y/z/}

φ10(C) = φ3(C) t φ9(C)

= λ (a, b, z, x, y) . [{/a/x/b, y, z/} t {/a, x/b, y/z/}]

= λ (a, b, z, x, y) . {/a, x/b, y, z/}

φ11(C) = λ (a, b, z) . [{/a, x/b, y, z/} − {x, y}]

= λ (a, b, z) . {/a/b, z/}

Step 2 :

φ1(C) = φ4(C) = λ (a, b, z, x, y) . {/a, x/b, y/z/}

φ2(C) = λ (a, b, z, x, y) . {/a/x/b, y/z/}

φ3(C) = λ (a, b, z, x, y) . {/a/x/b, y, z/}

φ5(C) = φ6(C) = λ (a, b, z, x, y, t) . {/a, x/b, y/z/t/}

φ7(C) = λ (a, b, z, x, y, t) . {/a, x/b, y, t/z/}

Once again λ (x, t) . [φ7(C)(a, b, z, x, y, t)− {a, b, z, y}]

= λ (x, t) . {/x/t/} = C

and the value of φ11(C) being λ (a, b, z) . {/a/b, z/} at the previous
step, we have:

φ8(C) = λ (a, b, z, x, y, t) . {/a, x/b, y, t/z/}

φ9(C) = λ (a, b, z, x, y) . {/a, x/b, y/z/}

φ10(C) = λ (a, b, z, x, y) . {/a, x/b, y, z/}

φ11(C) = λ (a, b, z) . {/a/b, z/}

(6)-48

So, we have discovered automatically that, after the call to reverse(L,nil;L′),

the references L and L′ cannot point to the same records, even indirectly. Similar infor-

mation is available at each point in the procedure for the entry specification λ (x, y) .
{/x/y/}.

6.3.2 Case of a space of approximate properties satisfying the ascending
chain condition

Let us consider the procedure:

procedure factorial(x, y, z : integer value ; f : integer result) =
if x = y then

f := z ;
else

factorial(x, y + 1, z ∗ (y + 1); f) ;
endif ;

end–proc ;

such that factorial(n, 0, 1; f) returns f = n! when n ≥ 0. We propose to analyze it on

the following space of approximate properties:

�

⊥

−̇ +̇

... ...
10 2 3-1-2-3

+−

Ignoring the test (x = y), we have to solve:

(6)-49

φ = F (φ) = λ (x, y, z) . [z t φ(x, y + 1, z ∗ (y + 1))]

It is clear that φ(7, 0, 1) ·→ φ(7, 1, 1) ·→ φ(7, 2, 4) ·→ . . . ·→ φ(7, k, k!) ·→ . . . so that

any eligible sequence of indexes must contain an index with a component of infinite

cardinal.

So, we propose to approximate F as F̃ such that F v F̃ , so that lfp(F) v lfp(F̃)

(Theorem 4.3.0.1). Choosing:

φ̃ = F̃ (φ̃) = λ (x, y, z) . [z t φ̃(x t x, y t (y + 1), z t (z ∗ (y + 1))]

each time φ̃(x, y, z) ·→ φ̃(x′, y′, z′), we have (x, y, z) v (x′, y′, z′). As the lattice of

approximate properties satisfies the ascending chain condition, such a derivation is

necessarily finite.

φ̃(7, 0, 1) = 1 t φ̃(7, 0 t 1, 1 t 1) = 1 t φ̃(7, +̇, 1)

= 1 t (1 t φ̃(7, +̇,+))

= 1 t (1 t (+ t φ̃(7, +̇,+))) = 1 t (1 t (+ t ⊥)) = +

φ̃(7, 0, 1) = 1 t (1 t φ̃(7, +̇,+))

= 1 t (1 t (+ t φ̃(7, +̇,+))) = 1 t (1 t (+ t+)) = +

and, more generally, φ̃(>, 0, 1) = +, which shows that factorial(n, 0, 1; f) returns a

strictly positive integer f when it terminates.

6.3.3 General case of an infinite space of approximate properties not satis-
fying the ascending chain condition

As example of space of approximate properties not satisfying the ascending chain con-

dition, we consider the lattice of integer intervals from Paragraph 5.7.1. Consider the

following functional equation to solve:

(6)-50

{
φ1 = λx . {φ1(x+ [1, 1])}

It illustrates the problem, already encountered in the preceding paragraph, of a domain

of non-converging parameters, for example φ1([0, 255])·→φ1([1, 256])·→φ1([2, 257])·→
. . . which we handle by over-approximating φ1 by φ̃ defined as:{

φ̃1 = λx . {φ1(x ∇̄ (x+ [1, 1]))}

that we solve using Theorem 6.2.1.0.3. We obtain:

Step 1 :

φ̃1
1([0, 255]) = φ̃1([0, 255] ∇̄ [1, 256])

= φ̃1
1([0,+∞])

= φ̃1([0,+∞] ∇̄ [2,+∞]) = φ̃0
1([0,+∞]) = ⊥

Step 2 :

φ̃2
1([0, 255]) = φ̃2

1([0,+∞]) = φ̃1
1([0,+∞]) = ⊥

Now, let us consider the functional equation:{
φ2 = λx . {[0, 0] t ([1, 1] + φ2(x))}

which illustrates the problem, already encountered in Paragraph 5.7.3, of a non-converging

iteration sequence. Indeed, the computation of φ2([0, 255]) consists in solving x =

[0, 0] t ([1, 1] + x) where x = φ2([0, 255]). We handle that problem by solving:{
φ̃2 = λx . {φ̃2(x) ∇̄ ([0, 0] t ([1, 1] + φ̃2(x)))}

which gives:

(6)-51

Step 1 :

φ̃1
2([0, 255]) = φ̃0

2([0, 255]) ∇̄ ([0, 0] t ([1, 1] + φ̃0
2([0, 255])))

= ⊥ ∇̄ ([0, 0] t ⊥) = [0, 0]

Step 2 :

φ̃2
2([0, 255]) = φ̃1

2([0, 255]) ∇̄ ([0, 0] t ([1, 1] + φ̃1
2([0, 255])))

= [0, 0] ∇̄ ([0, 0] t [1, 1]) = [0,+∞]

Step 3 :

φ̃3
2([0, 255]) = φ̃2

2([0, 255]) ∇̄ ([0, 0] t ([1, 1] + φ̃2
2([0, 255])))

= [0,+∞] ∇̄ ([0, 0] t [1,+∞]) = [0,+∞]

φ̃2([0, 255]) v φ̃2
2([0, 255]) = [0,+∞]

In the general case where the two issues occur at the same time, they can be

solved as previously in the framework of Theorem 6.2.2.0.2. For example, the analysis

of MacCarthy’s 91 function (6.1.0.3) consists in solving:{
φ1 = λx . [((x u [101,+∞])− [10, 10]) t φ1(φ1((x u [−∞, 100]) + [11, 11]))]

which we over-approximate as:{
φ̃1 = λx . [φ̃1(x) ∇̄ {((x u [101,+∞]) − [10, 10]) t φ̃1(x ∇̄ φ̃1(x ∇̄ ((x u

[−∞, 100]) + [11, 11])))}]

and allows us to discover that MacCarthy’s function returns a result greater than or

equal to 91:[
φ̃1([−∞,+∞]) = [91,+∞]

(6)-52

6.4 BIBLIOGRAPHIC NOTES

The results in this chapter improve Cousot & Cousot [1977d], in particular concerning

the support for unconditional branching (a system of equations is now associated with

a program using the notion of program point and not anymore by induction on the

syntactic structure of the program). The Example 6.3.1.3 is also treated in a more

rigorous way.

In Paragraph 6.1, the usage of ancillary variables (that store initial values) to

express intermediate predicates in recursive procedures seems essential a posteriori ,

as it is in the rules of procedure proofs introduced by Hoare [1971] and generalized

by Igarashi, London & Luckham [1975], Ernst [1977], Apt & de Bakker [1977], Gut-

tag, Horning & London [1977] for the axiomatic system to be complete (de Bakker &

Merteens [1975], Cook [1975], Gorelick [1975], Apt & Meertens [1977], Apt, Bergstra &

Meertens [1977], Clarke [1977]). It allows also defining the meaning of a recursive pro-

cedure regardless of a particular call. Note that, to define the semantics of procedures,

we did not use the technique of syntactic substitutions (which seems of limited power,

de Bakker [1977b]) and not even resort to the concept of “continuation”, as in Milne

[1977]. That is possible as long as a procedure body can be statically associated with

every procedure name and excludes call by name, passing procedures and functions as

parameters, coroutines etc. Another element of comparison with Milne [1977] is that

we associate a system of equations, not with a language, but with a program, which is

useful to reason on approximation techniques.

The automatic analysis of semantic properties of recursive procedures was very

little studied. We can cite Sintzoff [1972] who studies the manual verification of prop-

erties with the help of symbolic execution, Wegbreit [1975] who deals with procedures

by expanding the body of the procedure at each call, and Karr [1976] who proposes

a symbolic execution of the iterative program corresponding to a compilation of the

procedure with a recursivity stack.

(6)-53

In the particular case of classic boolean program optimization techniques, we

can cite Spillman [1971], Allen [1974], Lomet [1975], Rosen [1975], and Barth [1977].

CHAPTER 7.

CONCLUSIONS

7. CONCLUSIONS

Concluding remarks having been given in each chapter, now we discuss some directions

for future work.

The fixpoint approach to study the behavior of discrete dynamic systems (Para-

graph 3.1) as well as the study of methods of fixpoint approximation (Chapter 4) show

quite clearly that we can study the techniques of semantic analysis of programs regard-

less of the languages used for programming. However, we devoted the best part of our

study to the case of deterministic discrete dynamic systems because deterministic pro-

grams or more frequent in practice in Computer Science. The case of non-deterministic

and parallel programs, which are worth studying too, is apparently more complex. Dis-

crete dynamic systems most probably offer a framework that is abstract enough to allow

for a study that would be independent of language issues (which, in general, make the

understanding of non-deterministic programming issues more complicated than easier.)

The language issues do not really appear before we have to make the semantic

analysis of programs written in a particular language. On that point, our work must be

completed to take into account on one hand the problems coming from complex data

structures and on the other hand the problems coming from dynamic control structures

(which do not allow a static partitioning of the set of states). Sometimes it is difficult

to derive a deductive semantics from a low level or informal semantics. This work could

be undertaken for the most commonly used programming languages. Indeed it seems

that it is not possible to do rigorous reasonings on programs written in a language if

it is not possible to define the deductive semantics of that language.

Thanks to the notions of closure and extrapolation, Chapter 4 potentially de-

fines all approximate and possibly automatable analyses we can consider for programs.

(7)-2

However, this point of view is theoretical and in practical applications an important

work is left which is necessary to find the good level of approximation, that is offering

a good cost/precision ratio for the analysis. It is certain that many applications can be

developed for classic languages, such as Algol 68 which features most of the difficulties

we can meet in other programming languages.

Perhaps is it rather preferable to envisage new languages or language features

designed towards the resolution of exact or approximate semantic analysis of programs.

For example, our study brings out that local declarations are more useful than global

declarations, that the analysis of properties of objects manipulated by a program de-

pends on the operations made on those objects (point of view of the ’abstract types’)

but also and most of all on the context in which those operations are made, that the

extension of a programming language should come with the information necessary for

the analysis of the features in the extension, that the type of objects can be analyzed

with more or less refinement and that there exists a hierarchy between type notions

and assertions. Those ideas, that need further elaboration, could guide the concep-

tion of a programming language, that would be a point of view often neglected in the

development of very high level languages.

In Chapters 2 and 4, we studied the construction and approximation of fixpoints

of monotonic operators on a lattice, from a purely algebraic point of view. The fact

remains that the analogy with numeric analysis was useful and could certainly be

successfully exploited again. It is possible to improve the efficiency of the iterative

methods and to go into our notion of approximation in more depth. New methods (not

necessarily iterative) of resolution of approximate semantic equations can be devised.

Our hypothesis of monotone equations over a complete lattice was well suited to our

problems. It is a little too strong for some problems which involve a non monotonic

negation. So we have to think about hypotheses weaker than monotonicity. It is certain

that we also have to envisage stronger hypotheses, for we have observed in applications

(7)-3

that some hypotheses specific to particular applications are nonetheless useful to devise

methods of resolution.

CHAPTER 8.

Bibliography

8. Bibliography

ABIAN S. & BROWN A.B. [1971], A theorem on partially ordered set with application
to fixed point theorems, Canad. J. Math., 13(1961), 78–82.

ABTROUN A. [1977], Recherche d’une permutation optimale des variables dans la
méthode itérative de Gauss-Seidel, Thèse de 3ème cycle, Université Scientifique
et Médicale de Grenoble, (mai 1977).

ACHACHE A. [1969], Structure de l’ensemble de fermetures d’un treillis complet, Por-
tugal. Math., 28(1969), 111–119.

AHO A.V. & ULLMAN J.D. [1976], Node listings for reducible flow graphs, J. Computer
and Systems Sciences 13, 3(1976). 286–299.

AHO A.V. & ULLMAN J.D. [1977], Principles of compiler design, Addison Wesley
Pub. Co., (1977).

ALLEN F.E. [1970], Control flow analysis, SIGPLAN Notices 5. 7(1970). 1–19.

ALLEN F.E. [1971], A basis for program optimization, Proc. IFIP Congress 71, Vol.1.
North-Holland Pub. Co., Amsterdam, (1971), 385–390.

ALLEN F.E. [1974], Interprocedural data flow analysis, Proc. IFIP Congress 74, North-
Holland Pub. Co., Amsterdam, (1974), 398–402.

ALLEN F.E. & COCKE J. [1972], Graph theoretic constructs for program flow analysis,
IBM Res. Rep. RC-3923. T.J. Watson Research Center, Yorktown Heights.
N.Y., U.S.A., (July 1972).

AMANN H. [1976], Fixed point equations and non-linear eigenvalue problems in ordered
Banach spaces, SIAM Review, 18(Oct. 1976), 620–709.

APT K.R. & de BAKKER J.W. [1977], Semantics and proof theory of PASCAL pro-
cedures, Tech. Rep., Stichting Mathematisch Centrum, Amsterdam, (1977).

(8)-2

APT K.R. & MEERTENS L. [1977], Completeness with finite systems of intermedi-
ate assertions for recursive program schemes, Report IW-84/77, Mathematisch
Centrum, Amsterdam, (1977)1.

APT K.R., BERGSTRA J.A. & MEERTENS L.G. [1977], Recursive assertions are not
enough or are they?, Report IW-92/77. Mathematisch Centrum, Amsterdam,
(1977)2.

BASU S.K. & YEH R.T. [1975], Strong verification of programs, Res. Rep. SESLTR-13.
Soft. Eng. and Syst. Lab., Univ. of Texas at Austin, (June 1975)3.

BARTH J.M. [1977], An interprocedural data flow analysis algorithm, Proc. of the
Fourth ACM Symp. on Principles of Programming Languages, Los Angeles,
Calif., U.S.A., (Jan. 1977), 119–131.

BAUDET G. [1976], Asynchronous iterative methods for multiprocessors, Research Re-
port. Carnegie Mellon Univ., Pittsburgh. PA., (Nov. 1976). (à paraître dans
JACM4).

BAUER A. & SAAL H. [1974], Does APL really need run-time checking, Software
Practice and Experience 4. 2(1974).

BEKIĆ H. [1969], Definable operations in generaL algebras and the theory of automata
and flowcharts, Manuscript. IBM Lab., Vienne, (1969)5.

BERGE C. [1973], Graphes et hypergraphes, Dunod, Paris (1973).

BIRD R. [1976], Programs and machines: an introduction to the theory of computation,
Wiley & Sons. London, (1976).

BIRKHOFF G. [1967], Lattice theory, AMS Colloquim Publications. XXV, Third edi-
tion. Providence, R.I., U.S.A., (1967).

BJØRNER O. [1977a], Programming languages: formal development of interpreters and
1SIAM J. on Computing, Vol. 9, Issue 4, 665–671, SIAM 1980
2Theoretical Computer Science, Vol. 8, 73–87, 1979.
3IEEE Trans. Software Eng. 1(3): 339-346 (1975)
4Journal of the ACM (JACM), Volume 25, Issue 2 (April 1978), 226–244.
5Lecture Notes In Computer Science; Vol. 177, Programming Languages and Their Definition,

30–55, 1984

(8)-3

compilers, Int. Comp. Symp., North-Holland Pub. Co., (1977).

BJØRNER O. [1977b], Programming languages: linguistics and semantics, Int. Comp.
Symp., North-Holland Pub. Co., (1977).

BOOMH. [1974],Optimization analysis of programs in languages with pointer variables,
Ph.D. Thesis, Dept. Appl. Math. and Comp. Science. University of Waterloo.
U.S.A., (1974).

BOURBAKI N. [1967], Théorie des ensembles, Livre I, Chap. III, Fas. XX, Ed. Her-
mann, 2ème édition, Paris, (1967).

BURSTALL R.M. [1969], Proving properties of programs by structural induction, Com-
puter Journal 12, (1969), 41–48.

BURSTALL R.M. [1974], Program proving as hand simulation with a little induc-
tion, Proc. IFIP Congress 74, Software, North-Holland Pub. Co., Amsterdam,
(1974), 308–312.

CAPLAIN M. [1975], Finding invariant assertion for proving programs, Proc. Int. Conf.
on Reliable Software, Los Angeles, Calif., U.S.A., (April 1975), 165–171.

CARTWRIGHT R. & OPPEN D.C. [1978], Unrestricted procedure calls in Hoare’s
logic, Conf. Rec. of the 5th ACM Symp. on Principles of Programming Lan-
guages, Tucson, Ariz., U.S.A., (Jan. 1978), 131–140.

CHARNAY M. [1975], Itérations chaotiques sur un produit d’espaces métriques, Thèse
de 3ème cycle, Lyon, (1975).

CHAZAN O. & MIRANKER W. [1969], Chaotic relaxation, Linear Algebra and its
Appl., 2(1969), 199–222.

CHURCH A. [1951], The calculi of lambda-conversion, Annals of Math. Studies.
6(1951).

CLARKE E.M. Jr. [1977], Program invariants as fixed points, Proc. 18th Annual Symp.
on Foundations of Computer Science, Providence, R.I., U.S.A., (Oct.31–Nov.2
1977). 18–29.

(8)-4

CLINT M. & HOARE C.A.R. [1972], Program proving jumps and functions, Acta In-
formatica, 1(1972), 214–224.

COCKE J. [1970], Global common subexpressions elimination, SIGPLAN Notices 5,
7(1970), 20–24.

COMTE P. [1976], Algorithmes de relaxation-décentralisation, Thèse de 3ème cycle,
Besançon, (1976).

COOK S.A. [1975], Axiomatic and interpretative semantics for an ALGOL fragment,
Tech. Rep. 79, Dept. of Comp. Science, U. of Toronto, Canada (1975).

COOPER D.C. [1971], Programs for mechanical program verification, Machine Intelli-
gence 6, American Elsevier, New York, (1971), 43–59.

COUSOT P. [1974], Définition interprétative et implantation de langages de program-
mation, Thèse Docteur-Ingénieur, Université Scientifique et Médicale de Greno-
ble, (Déc. 1974).

COUSOT P. [1976], The system implementation language LIS, an introduction, édité
par IRIA. Rocquencourt, (Juin 1976).

COUSOT P. [1977b], A mathematical theory of global program analysis, Présenté au
"Panel: Mathematical Theory of Data Flow Analysis". Chairman: ULLMAN
J.D. (U.S.A.), Panelists: COUSOT P. (F.); KENNEDY K. (U.S.A.), ROSEN B.
(U.S.A.), TARJAN R. (U.S.A.). IFIP Congress 1977, Toronto, Canada, (Aug.
1977).

COUSOT P. [1977c], Analysis of programs properties, Présenté au "Panel : Use and
Benefit of Formal Description Techniques, Report of W.G.2.2.". Chairman:
NEUHOLD E. (D.), Panelists: BLUM E. (U.S.A.), BOEHM B. (I.), COUSOT
P. (F.), De BAKKER J. (N.L.), IGARASHI S. (J.), NIVAT M. (F.), OWICKI
S. (U.S.A.), TENNENT R. (C.D.N.), IFIP Congress 1977, Toronto, Canada,
(Aug. 1977).

COUSOT P. [1977d], Iterative and approximate methods for compile time analysis
of programs, IBM Seminar, T.J. Watson Research Center, Computer Sciences
Dept., Yorktown Heights, N.Y., U.S.A., (August 18, 1977).

(8)-5

COUSOT P. [1977e], Asynchronous iterative methods for solving a fixed point system
of monotone equations in a complete lattice, Rapport de Recherche n◦ 88, Lab-
oratoire IMAG, Grenoble, (Sept. 1977).

COUSOT P. [1978], Chaotic and asynchronous iterative methods for solving a fixed
point system of monotone equations in a complete lattice, IBM Seminar, T.J.
Watson Research Center, Mathematical Sciences Dept., Yorktown Heights,
N.Y., U.S.A., (January 26, 1978).

COUSOT P. & COUSOT R. [1975a], Vérification statique de la cohérence dynamique
des programmes, Rapport du contrat IRIA-SESDRI 75-035, (Sept. 1975).

COUSOT P. & COUSOT R. [1975b], Static verification of dynamic type properties of
variables, Rapport de Recherche n◦ 25, Laboratoire IMAG, Grenoble, (Nov.
1975).

COUSOT P. & COUSOT R. [1976], Static determination of dynamic properties of
programs, Proc. 2nd Int. Symp. on Programming, Dunod. Paris, (Avril 1976),
106–130. [Aussi dans MOL Bulletin 5, Cousot P. (Ed.), IRIA Rocquencourt,
(Sept. 1976), 27–52].

COUSOT P. & COUSOT R. [1977a], Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fixpoints,
Conf. Rec. of the 4th ACM Symp. on Principles of Programming Languages,
Los Angeles, Calif., U.S.A., (Janv. 1977), 238–252.

COUSOT P. & COUSOT R. [1977b], Static determination of dynamic properties of
generalized type unions, ACM Conf. on Language Design for Reliable Software,
Raleigh, N.C., U.S.A., (March 1977). SIGPLAN Notices 12, 3(March 1977),
77–94.

COUSOT P. & COUSOT R. [1977c],. Fixed point approach to the approximate semantic
analysis of programs, (Juin 1977).

COUSOT P. & COUSOT R. [1977d], Static determination of dynamic properties of
recursive procedures, IFIP W.G.2.2. Working Conf. on Formal Description of
Programming Concepts, St-Andrews. N.B., Canada, North-Holland Pub. Co.
(Aug. 1977).

(8)-6

COUSOT P. & COUSOT R. [1977e], Automatic synthesis of optimal invariant asser-
tions: mathematical foundations, Proc. of the ACM Symp. on Artificial Intel-
ligence & Programming Languages, Rochester, New York, SIGPLAN Notices
12, 8(Aug. 1977), 1–12.

COUSOT P. & COUSOT R. [1977f], Constructive versions of Tarski’s fixed points
theorems, Rapport de Recherche n◦ 85. Laboratoire IMAG, Grenoble, (Sept.
1977)6.

COUSOT P. & HALBWACHS N. [1978], Automatic discovery of linear restraints
among variables of a program, Conf. Rec. of the 5th ACM Symp. on Principles
of Programming Languages, Tucson, Ariz., U.S.A., (Jan. 1978), 84–97.

CURRY G. [1977], Programming by abstract demonstration, Technical Report n◦ 77-
08-02. Computer Sci. Department, University of Washington, U.S.A., (Aug.
1977).

De BAKKER J.W. [1976], Semantics and termination of non deterministic recursive
programs, 3rd Int. ColI. Automata. Languages and Programming, University
Press, Edinburgh, (1976), 435–477.

De BAKKER J.W. [1977a]. Topics in denotational semantics, Lecture Notes for the
Advanced Summer School on Math. Foundations of Computer Science, Turku,
(June 1977).

De BAKKER J.W. [1977b], Recursive programs as predicate transformers, IFIP Work-
ing Conf. on Formal Description of Programming Concepts, St.Andrews,
Canada, North-Holland Pub. Co., (Aug. 1977).

De BAKKER J.W. & MEERTENS L.G. [1975], On the completeness of the inductive
assertion method, Journal of Computer and System Sciences 11, 3(1975), 323–
357.

De BAKKER J.W. & SCOTT D. [1969]. A theory of programs, IBM Seminar, Vienna,
(1969).

De MARR R. [1964], Common fixed points for isotone mappings, Colloquium Math.
6Pacific Journal of Mathematics, Vol. 82, No. 1, 1979, pp. 43–57.

(8)-7

13(1964), 45–48.

DEVIDE V. [1964], On monotonous mappings of complete lattices, Fundamenta Math-
ematicae, LIII(2), (1964), 147–154.

DIJKSTRA E.W. [1968], GO TO Statement considered harmful, Letter to the editor,
CACM 11, 3(March 1968).

DIJKSTRA E.W. [1975], Guarded commands, non determinacy and formal derivation
of programs, CACM 18, 8(Aug. 1975). 453–457.

DIJKSTRA E.W. [1976], A discipline of programming, Prentice-Hall, Englewood Cliffs,
N.J., U.S.A., (1976).

DIJKSTRA E.W. [1977], On making solutions more and more fine grained, Note
EW0622 www.cs.utexas.edu/users/EWD/ewd06xx/EWD622.PDF.

DUBREIL-JACOTIN M.L., LESIEUR L. & CROISOT R. [1963], Leçons sur la théorie
des treillis des structures algébriques ordonnées et des treillis géométriques,
Gauthier-Villars, Paris, (1963).

DWINGER Ph. [1954], On the closure operators of a complete lattice, Nederl. Akad.
Wetench. Proc. Ser. A, 57(1954), 560–563.

DWINGER Ph. [1955], The closure operators of the cardinal and ordinal sums and
products of partially ordered sets and closed lattices, Nederl. Akad. Wetensch.
Proc. Ser. A, 17(1955), 341–351.

EARNEST C. [1974], Some topics in code optimization, JACM 21, 1(1974), 76–102.

ELSPAS B. [1974], The semi-automatic generation of inductive assertions for proving
program correctness, Research Rep., SRI, Menlo Park, Calif., U.S.A., (July
1974).

EL TARAZI M.N. [1976], Sur des algorithmes mixtes par blocs de type Newton-
Relaxation chaotique à retards, CRAS Paris, t. 283, Série A, (Oct. 1976), 721–
724.

ERNST G.W. [1977], Rules of inference for procedure calls, Acta Informatica 8, (1977),

http://www.cs.utexas.edu/users/EWD/ewd06xx/EWD622.PDF

(8)-8

145–152.

FINANCE J.P. [1976], Une formalisation de la sémantique des langages de program-
mation, RAIRO 2(Août 1976), 10(Dec. 1976).

FLOYD R.W. [1967], Assigning meaning to programs, Proc. Symp. in Applied Math.,
Vo1. 19. AMS. Providence, R.I., U.S.A., (1967), 19–32.

GERMAN S. [1978], Automating proofs of the absence of common runtime errors, Conf.
Rec. of the 5th ACM Symp. on Principles of Programming Languages, Tucson,
Ariz., U.S.A., (Jan. 1978), 105–118.

GERMAN S. & WEGBREIT B. [1975], A synthesizer of inductive assertions, IEEE
Trans. Software Eng., SE-1, 1(March 1975), 68–75.

GILLETT W.O. [1977], Iterative global flow techniques for detecting program anoma-
lies, Ph.D Thesis. UIUCOCS-R-77-848, U. of Illinois at Urbana Champaign,
(Jan. 1977).

GORELICK G.A. [1975], A complete axiomatic system for proving assertions about
recursive and non-recursive programs, Tech. Rep. 75, Dept. of Comp. Science,
U. of Toronto, Canada, (Jan. 1975).

GRAHAM S.L. & WEGMAN M. [1976], A fast and usually linear algorithm for global
flow analysis, JACM 23, 1(1976), 172–202.

GRÄTZER G. [1971], Lattice theory first concepts and distributive lattices, W.H. Free-
man and Co., San Francisco, Calif., U.S.A., (1971).

GRÄTZER G. & SCHMIDT E.T. [1958], Ideals and congruence relations in lattices,
Acta Mathematica Hungarica, Volume 9, Numbers 1-2, (1958), 137-175.

GUTTAG J.V., HORNING J.J. & LONDON R.L. [1977], A proof rule for EUCLID
procedures, IFIP W.G.2.2 Working Conf. on Formal Description of Program-
ming Concepts, St-Andrews, N.B., Canada, North-Holland Pub. Co., (Aug.
1977).

HANTLER S.L. & KING J.C. [1976], An introduction to proving the correctness of
programs, Comp. Surveys 8, 3(Sept. 1976), 331–353.

(8)-9

HARRISON W. [1977], Compiler analysis of the value ranges of variables, IEEE Trans.
on Software Engineering, 3(1977), 243–250.

HECHT M.S. & ULLMAN J.D. [1972], Flow graph reducibility, SIAM J. Computing
1. 2(1972), 188–202.

HECHT M.S. & ULLMAN J.D. [1973], A simple algorithm for global data flow anal-
ysis, Conf. Rec. of the ACM Symp. on Principles of Programming Languages,
Boston, Mass., U.S.A., (Oct. 1973), 207–217. [Aussi SIAM J. Computing
4,4(1975), 519–532].

HECHT M.S. & ULLMAN J.D. [1974], Characterizations of reducible flow graphs,
JACM 21, 3(1974), 367–375.

HECHT M.S. & ULLMAN J.D. [1975], A simple algorithm for global data flow analysis
of programs, SIAM J. Computing 4, 4(1975), 519–532.

HEHNER E. C.R. [1976], DO considered OD : a contribution to the programming
calculus, Tech. Rep. CSRG-75, Comp. Syst. Res. Group, U. of Toronto, Canada,
(Nov. 1976)7.

HITCHCOCK P. & PARK D. [1973], Induction rules and proofs of termination, Proc.
Symp. on Automata, Languages and Programming, North-Holland Pub. Co.,
(1973), 225–251.

HOARE C.A.R. [1962], Quicksort, Computer Journal 5, 1(1962), 10–15.

HOARE C.A.R. [1969], An axiomatic approach to computer programming, CACM 12,
10(Oct. 1969), 576–580,583.

HOARE C.A. R. [1971], Procedures and parameters: an axiomatic approach, Lect. Notes
in Math. 188, Springer-Verlag, Berlin, (1971), 102–116.

HÖFT H. & HÖFT M. [1976], Some fixed point theorems for partially ordered sets,
Canad. J. Math., 5(1976), 992–997.

HOPCROFT J.E. & ULLMAN J.D. [1969], Formal languages and their relation to
7DO considered OD: A contribution to the programming calculus, Acta Informatica, Vol. 11, Nb.

4, Dec. 1979, 287–304

(8)-10

automata, Addison-Wesley. Reading, Mass., (1969).

ICHBIAH J.D., MOREL E. & RENVOISE C. [1972], Une méthode directe de réso-
lution des systèmes d’équations de redondance, Note de programmation CII-
OSB/AS/72/023, (Juin 1972).

ICHBIAH J.D., RISSEN J.P., HÉLLlARD J.C. & COUSOT P. [1974], The system
implementation language LIS, Reference Manual, Rapport CII-4549-E1/EN.
(Déc. 1974), Révisé (Jan. 1976).

IGARASHI S., LONDON R.L. & LUCKHAM D.C. [1975], Automatic program verifi-
cation. I. A logical basis and its implementation, Acta Informatica 4, (1975),
145–182.

ISEKI K. [1951], On closure operation in lattice theory, Nederl. Akad. Wetensch. Proc.
Ser. A, 54, Indag. Math., 13(1951), 318–320.

IVERSON K. E. [1962], A Programming Language, J. Wiley & Sons Inc., (1962).

JACQUEMARD C. [1977], Contribution à l’étude d’algorithmes de relaxation à con-
vergence monotone, Thèse de 3ème cycle, Besançon, (Mai 1977).

JENSEN J. [1965], Generation of machine code in ALGOL compilers, BIT 5, (1965),
235–245.

JENSEN K. & WIRTH N. [1976], PASCAL user manual and report, Second edition,
Springer-Verlag, Heidelberg, (1975).

JONES N.D. & MUCHNICK S.S. [1976], Binding time optimization in programming
languages: some thoughts toward the design of an ideal language, Conf. Rec. of
the 3rd ACM Symp. on Principles of Programming Languages, Atlanta, G.A.,
U.S.A., (Jan. 1976), 77–91.

KAM J.B. & ULLMAN J.D. [1977], Monotone data flow analysis frameworks, Acta
Informatica, 7:3(Sep. 1977), 305–317.

KAPLAN M.A. & ULLMAN J.D. [1978], A general scheme for the automatic inference
of variable types, Conf. Rec. of the 5th ACM symp. on Principes of Program-
ming Languages, Tucson, Ariz., U.S.A., (Jan. 1978), 60–75.

(8)-11

KARRM. [1975], Gathering information about programs, Mass. Compo Associates Inc.,
CA-7507-1411, (July 1975).

KARR M. [1976], Affine relationships among variables of a program, Acta Informatica
6 (April 1976), 188–206.

KASVANOV V.N. [1973], Some properties of fully reducible graphs, Information Pro-
cessing Letters 2, 4(1974), 113–117.

KATZ S. & MANNA Z. [1976], Logical analysis of program, CACM 19, 4(Avril 1976),
188–206.

KENNEDY K. [1971], A global flow analysis algorithm, Int. J. Computer Math. 3,
(1971), 5–15.

KENNEDY K. [1972], Index register allocation in straight line code and simple loops,
in: Rustin R., Design and Optimization of Compilers, Prentice-Hall, Englewood
Cliffs, N.J., U.S.A., (1972).

KENNEDY K. [1975], Node listings applied to dataflow analysis, Conf. Rec. of the
2nd ACM Symp. on Principles of Programming Languages, Palo Alto, Calif.,
U.S.A., (Jan. 1975), 10–21.

KENNEDY K. [1976], A comparison of two algorithms for global data flow analysis,
SIAM J. Computing 1, (Mar. 1976), 158–180.

KILDALL G. [1973], A unified approach to global program optimization, Conf. Rec. of
the ACM Symp. on Principles of Programming Languages, Boston, Mass. (Oct.
1973), 194–206.

KLEENE S.C. [1952], Introduction to metamathematics, North-Holland. Pub. Co., Am-
sterdam, (1952).

KNASTER B. [1928], Un théorème sur les fonctions d’ensembles, Ann. Soc. Polon.
Math., 5(1928), 133–134.

KNUTH D.E. [1971], An empirical study of FORTRAN Programs, Software Practice
and Experience 1, 2(1971), 105–134.

(8)-12

KNUTH D.E. [1973], The art of computer programming, vol. 3, sorting and searching,
Addison-Wesley Pub. Co., Reading, Mass., U.S.A., (1973).

KNUTH D.E. [1974], Structured programming with GOTO statements, Computing Sur-
veys 6, 4(Dec. 1974).

KOLODNER I.I. [1968], On completeness of partially ordered sets and fix-points theo-
rems for isotone mappings, Amer. Math. Monthly, 75(1968), 48–49.

KRASNOSEL’SKII M.A. [1964], Positive solutions of operator equations, P. Noordhoff
Ltd, Groningen, The Netherlands, (1964).

KUHN H.W. & MacKINNON J. [1975], Sandwich method for finding fixpoints, J. Op-
timiz. Th. and Applications, 17(1975), 189–204.

LADEGAILLERIE Y. [1973], Préfermeture sur un ensemble ordonné, RAIRO 1(1973),
35–43.

LAMPSON B.W., HORNING J.J., LONDON R.L., MITCHELL J.G. & POPEK G.J.
[1976], Report on the programming language EUCLID, MOL Bulletin 5. Cousot
P. (Ed.), (Sept. 1976), 92–172., SIGPLAN Notices 12, 2(Feb. 1977).

LANERY E. [1966], Recherche d’un système générateur minimal d’un polyèdre convexe,
Thèse de 3ème cycle, Caen, (1966).

LESZCZYLOWSKI J. [1971], A theorem on resolving equations in the space of lan-
guages, Bull. Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 12(1971),
967–970.

LOMET D.B. [1975], Data flow analysis in the presence of procedure calls, IBM Re-
port RC-5728, T.J. Watson Research Center, Yorktown Heights, N.Y., U.S.A.,
(1975)8.

LORHO B. [1974], De la définition à la traduction des langages de programmation :
méthode des attributs sémantiques, Thèse d’Etat, Université Paul Sabatier de
Toulouse, (Déc. 1974).

LUCKHAM D. & SUZUKI N. [1976], Automatic program verification V : verification-
8IBM J. of Research and Development, Vol. 21, Nb. 6, 559–571, 1977.

(8)-13

oriented proof rules for arrays, records and pointers, Report STAN-CS-76-549,
Comp. Sci. Dept., Stanford Univ.,Calif., U.S.A., (March 1976)9.

LUONG N.X. [1975], Algorithmes de relaxation conduits par l’algorithme secondaire,
Thèse de 3ème cycle, Besançon, (1975).

MAHJOUB Z. [1977], Expérimentation de stratégies itératives chaotiques sur les prob-
Lèmes de point fixe à grand nombre de variables, Thèse de Docteur-Ingénieur.
Université Scientifique et Médicale de Grenoble. (Mai 1977).

MANNA Z. [1974], Mathematical theory of computation, Mac-Graw Hill Book Co., New
York, U.S.A., (1974).

MANNA Z., NESS Z. & VUILLEMIN J. [1973], Inductive methods for proving proper-
ties of programs, CACM 16, 8(Aug. 1973), 491–502.

MANNA Z. & SHAMIR A. [1977], The convergence of functions to fixed points of
recursive definitions, Report STAN-CS-77-614. Stanford Univ., Calif., U.S.A.,
(May 1977)10.

MARKOWSKY G. [1976], Chain-complete posets and directed sets with applications,
Algebra Univ., 6(1976), 53–58.

MEERTENS L. [1975], Mode and meaning, dans Schuman S. (Ed.), New directions in
algorithmic languages 1975, IFIP W.G. 2.1., IRIA Pub., (1975).

MIELLOU J.C. [1975a], Algorithmes de relaxation chaotique à retards, RAIRO, Revue
Rouge. AFCET RI, (1975), 55–82.

MIELLOU J.C. [1975b], Itérations chaotiques à retards ; étude de la convergence dans
le cas d’espaces partiellement ordonnés, CRAS Paris, t. 280, Série A, (Jan.
1975), 233–236.

MIELLOU J.C. [1977], Algorithmes de relaxation : propriétés de convergence monotone,
Séminaire d’Analyse Numérique n◦ 278, Laboratoire IMAG, Grenoble, (Juin
1977).

9ACM Transactions on Programming Languages and Systems (TOPLAS), Vol. 1, Issue 2 (October
1979), 226–244, 1979.

10Theor. Comput. Sci. 6, 109–141 (1978).

(8)-14

MILNE R. [1977], Transforming predicate transformer, IFIP W.G.2.2. Working Conf.
an Formal Description of Programming Concepts, St-Andrews, N.B., Canada,
(Aug. 1977).

MILNE R. & STRACHEY C. [1976], A theory of programming language semantics,
Chapman and Hall (Londres) & Wiley (New York), (1976).

MIRANKERW.L. [1977], Parallel methods for solving equations, IBM Research Report
RC-6545 (# 28250), Mathematical Sciences Dept.,

MONK O. [1969], Introduction to set theory, Int. Series in Pure and Applied Mathe-
matics, Mac-Graw Hill Book Co., N.Y., U.S.A., (1969).

MONTEIRO A. [1945], Caractérisation de l’opération de fermeture par un seul axiome,
Portugal. Math. 4(1945), 158–160.

MONTEIRO A. & RIBEIRO H. [1942], L’opération de fermeture et ses invariants dans
les systèmes partiellement ordonnés, Portugal. Math. 3(1942), 171–184.

MOORE E.H. [1910], Introduction to a form of general analysis, New Haven Collo-
quium, (1910).

MOREL É. & RENVOISE C. [1974], Étude et réalisation d’un optimiseur global, Thèse
de 3ème cycle, Univ. de Paris VI, (Juin 1974).

MORGADO J. [1960]b Some results on closure operations of partially ordered sets,
Portugal. Math. 19(1960), 101 -139.

MORGADO J. [1961] On the closure operators of the ordinal sum of partially ordered
sets, Nederl. Akad. Wetench. Proc. Ser. 1, 23(1961), 546–550.

MORGADO J. [1962a], Note on complemented closure operators of complete lattices,
Portugal. Math. 21, 3(1962), 135–142.

MORGADO J. [1962b], A characterization of the closure operators by means of a single
axiom, Portugal. Math., 21(1962), 155–156.

MORGADO J. [1963], On the closure operators of the cardinal product of partially
ordered sets, Nederl. Akad. Wetench. Proc. Ser. A, 25(1963), 65–75.

(8)-15

MORGADO J. [1964], Note on the distributive closure operators of a complete lattice,
Portugal. Math. 23, 1(1964), 11–25.

MORGADO J. [1965a], Note on the system of closure operators of the ordinal product
of partially ordered sets, Portugal. Math. 24, 4(1965), 189–220.

MORGADO J. [1965b], A single axiom for closure operators of partially ordered sets,
Gazeta de Mathematica, 100(1965), 57–58.

MORGADO J. [1966], Factorization of the lattice of closure operators of a complete
lattice, Portugal. Math. 25, 1(1966), 181–185.

NAUR P. [1963], (Ed.). "Revised report on the algorithmic language ALGOL 60",
CACM 6, 1(Jan. 1963), 1–17.

NAUR P. [1965], Checking of operand types in ALGOL compilers, BIT 5, (1965), 151–
163.

NAUR P. [1966], Proof of algorithms by general snapshots, BIT 6, (1966). 310–316.

NIVAT M. [1972], Langages algébriques sur la magma libre et sémantique des schémas
de programmes, Proc. Coll. an Automata. Formal languages and Programming,
North-Holland Pub. Co., Amsterdam, (1972).

ORE O. [1943a], Some studies on closure relations, Duke Math. Journal 10, (1943),
761–785.

ORE O. [1943b], Combinations of closure relations, Ann. of Math., 44(1943), 514–533.

OSTROWSKI A. [1955], Determination mit überwiegender haupt diagonale und die
absolute konvergenz von linearen iterations prozessen, Comm. Math. Helv. 30,
(1955), 175–210.

PARK D. [1969], Fixpoint induction and proofs of program properties, Machine Intelli-
gence, 5(1969), 59–78.

PAIR C. [1974], Formalization of the notion of data, information and information struc-
ture, Data base management, North-Holland Pub. Co., Amsterdam, (1974).

PASINI A. [1974], Some fixed point theorems of the mappings of partially ordered, Rend.

(8)-16

Sem. Mat. Univ. Padova., 51(1974), 167–177.

PELCZAR A. [1961], On the invariant points of a transformation, Ann. Polan. Math.,
11(1961), 199–202.

PELCZAR A. [1971], Remarks on commuting mappings in partially ordered spaces,
Zeszyty Nauk. Univ. Jagiello., Prace Mat., Zeszyt, 15(1971), 131–133.

PNUELI A. [1977], The temporal logic of programs, Proc. 18th Annual Symp. an Foun-
dations of Computer Science, Providence, R.I., U.S.A., (Oct. 31–Nov. 2 1977),
46–57.

REMY J.L. [1974], Structure d’information, formalisation des notions d’accès et de
modification d’une donnée, Thèse de 3ème cycle, Univ. de Nancy I, (1974).

RIEF J.H. & LEWIS H.R. [1977], Symbolic evaluation and the global value graph, Conf.
Rec. of the 4th ACM Symposium on Principles of Programming Languages, Los
Angeles, Calif., U.S.A., (Jan. 1977), 104–118.

ROBERT F. [1974], Contraction en norme vectorielle. Convergence d’itérations chao-
tiques pour des équations de point fixe à plusieurs variables, Gatlingburgh VI
Symp. on Num. Alg., (Dec. 1974). Linear Algebra and its Appl. 13, (1976).
19–35.

ROBERT F. [1976a], Sur la transformation de Gauss-Seidel, Séminaire d’Analyse
Numérique n◦ 255, Laboratoire IMAG, Grenoble, (Nov. 1976).

ROBERT F. [1976b], Convergence locale d’itérations chaotiques non linéaires, Rapport
de Recherche n◦ 58. Laboratoire IMAG, Grenoble, (Déc. 1976).

ROCKAFELLAR R.T. [1976], Monotone operators and the proximal point algorithm,
SIAM J. Control and Optimization, 14(1976), 877–898.

ROSEN B.K. [1975], Data flow analysis for procedural languages, IBM Report RC-5211,
T.J. Watson Research Center, Yorktown Heights, N.Y., U.S.A., (1975)11.

ROSEN B.K. [1978], Monoids for rapid data analysis, Conf. Rec. of the 5th ACM
Symp. on Principles of Programming Languages, Tucson, Ariz., U.S.A., (Jan.

11Journal of the ACM (JACM), Vol. 26 , Issue 2 (April 1979), 322–344, 1979

(8)-17

1978), 47–59.

SCARF H. [1967], The approximation of fixed points of a continuous mapping, SIAM
J. Appl. Math., 15(1967), 1328–1343.

SCHAEFER M. [1973], A mathematical theory of global program optimization, Prentice
Hall, Englewood Cliffs, N.J., U.S.A., (1973).

SCHWARTZ J.T. [1973], On programming: an interim report on the SETL project
installment 1. Generalities, installment 2. The SETL language and examples
of its use, New York Univ., (1973).

SCHWARTZ J.T. [1975], Automatic data structure choice in a language of very high
level, CACM 18, 12(Dec. 1975), 722–728.

SCOTT D. [1972], Continuous lattices, Proc. 1971 Dalhousie Conf., Lect. Notes in
Math. 274, Springer-Verlag, New York, 97–136.

SCOTT D. [1976], Data types as lattices, SIAM J. on Computing 5, 3(Sept. 1976),
522–587.

SCOTT D. [1977a], 1976 ACM Turing award lecture : logic and programming languages,
CACM 20, 9(Sept. 1977).

SCOTT D. [1977b], Retracts, Notes de cours, École IRIA "Séminaire Avancé de Sé-
mantique", Sophia-Antipolis, (Oct. 1977).

SCOTT D. & STRACHEY C. [1971], Toward a mathematical semantics for com-
puter languages, Proc. Symp. on Computers and Automata. Polytechnic Inst.
of Brooklyn, Vol. 21, (1971), 19–46.

SINTZOFF M. [1972], Calculating properties of programs by valuations on specific mod-
els, Proc. ACM Conf. an Proving Assertions about Programs, SIGPLAN No-
tices 7, 1(1972), 203–207.

SINTZOFF M. [1975], Vérification d’assertions pour des fonctions utilisables comme
valeurs et affectant des variables extérieures, Proc. Int. Symp. on Proving and
Improving Programs, Arcs et Senans, (Juillet 1975), 11–27.

(8)-18

SINTZOFF M. [1976a]. Eliminating blind alleys from backtrack programs. 3rd Int. Coll.
an Automata Languages and Programming, Edinburgh, (July 1976).

SINTZOFF M. [1976b]. Iterative methods for the generation of successful programs.
Notes de travail, Lab. MBLE, Bruxelles, (Déc. 1976).

SINTZOFF M. [1977a]. Inventing program construction rules. IFIP W.G.2.4. Working
Conf. on Constructing Quality Software. Novosibirsk. North-Holland Pub. Co.,
(May 1977).

SINTZOFF M. [1977b]. Some logical construction rules for programs. Notes de travail,
CRI Nancy, (1977).

SINTZOFF M. & VAN LAMSWEERDE A. [1975], Constructing correct and efficient
concurrent programs,. Proc. Int. Conf. an Reliable Software, SIGPLAN Notices,
10(1975), 319–326.

SMITHSON R.E. [1973], Fixed points in partially ordered sets, Pacific J. Math., 1(1973),
363–367.

SOUTHWELL R.V. [1955], Relaxation methods in theoretical physics, Clarendon Press,
Oxford, (1946).

SPILLMAN T.C. [1971], Exposing side effects in a PL/I optimizing compiler. Proc.
IFIP Congress 71, North-Holland Pub. Co, Amsterdam, (1971). 376–361.

STEIN P. & ROSENBERG R.L. [1946], On the solution of linear simultaneous equa-
tions by iterations, J. London Math. Soc., 1948 s1-23(2):111–118.

STOY J. [1977], Denotational semantics, MIT Press. (1977).

STRACHEY C. & WADSWORTH C. [1974], Continuations: a mathematical semantics
for handling full jumps. Tech. Monograph PRG-11. Oxford U., Camp. Lab.,
Programming Research Group, (1974)12.

SUZUKI N. & ISHIHATA K. [1977], Implementation of an array bound checker, Conf.
Rec. of the 4th ACM Symp. an Principles of Programming Languages, Los
Angeles, Calif., U.S.A., (Jan. 1977), 132–143.

12Higher-Order and Symbolic Computation, Vol. 13, Nb. 1/2, April 2000, 135–152

(8)-19

SZÁSZ G. [1971], Théorie des treillis, Dunod, Paris, (1971).

TARJAN R.E. [1974], Testing flow graph reducibility, J. Computer and Systems Sci-
ences 9, 3(1974), 355–365.

TARJAN R.E. [1975], Solving path problems on directed graphs, Research Report
STAN-CS-75-526. Computer Sci. Dept., Stanford U., Calif., U.S.A., (1975)13.

TARJAN R.E. [1976], Iterative algorithmes for global flow analysis, Research Re-
port STAN-CS-75-545, Computer Sci. Dept., Stanford U., Calif., U.S.A., (Feb.
1976)14.

TARSKI A. [1955], A lattice theoretical fixpoint theorem and its applications, Pacific J.
Math., 5(1955), 285–310.

TENENBAUM A.M. [1974], Type determination for very high level languages, Report
NSD-3, Computer Sci. Dept., New York U., U.S.A., (Oct. 1974).

TENNENT R.D. [1976], The denotational semantics of programming languages, CACM
19, 8(1976), 437–453.

TODD M. [1976], The computation of fixed points and applications, Lecture Notes in
Economics and Math. Systems 114, Springer-Verlag, Berlin, (1976).

TRAUB J.F. [1964], Iterative methods for solutions of equations, Prentice Hall, (1964).

ULLMAN J.D. [1974], Fast algorithms for the elimination of common subexpressions,
Acta Informatica 2, 3(1974), 191–213.

ULLMAN J.D. [1975], Data flow analysis, Proc. 2nd USA-Japan Computer Conf.,
AFIPS Press, Montwale, N.J. (1975), 335–342.

URSCHLER G. [1974], Complete redundant expression elimination in flow diagrams,
IBM Research Report RC-4965, T.J. Watson Research Center, Yorktown
Heights, N.Y. (1974).

13See Fast Algorithms for Solving Path Problems, Journal of the ACM (JACM), Vol. 28 , Issue 3
(July 1981), 594–614.

14Algorithms and Complexity: New Directions and Recent Results, J.F. Traub, ed., Academic Press,
New York, (1976), 71–102.

(8)-20

VAN LAMSWEERDE A. [1977], From verifying termination to guaranteeing it : a case
study, IFIP Working Conf. on Formal Description of Programming concepts,
St-Andrews, N.B., Canada, North-Holland Pub. Co., (Aug. 1977).

VAN LAMSWEERDE A. & SINTZDFF M. [1976], Formal derivation of strongly cor-
rect parallel programs, rapport R338, Lab. MBLE, Bruxelles, (1976)15.

VUILLEMIN J.E. [1973], Proof techniques for recursive programs, Ph.D. Thesis, STAN-
CS-73-393, Stanford U., Calif. (Oct. 1973).

WARD M. [1942], The closure operators of a lattice, Annals Math., 43(1942), 191–196.

WARD L.E. Jr. [1957], Completeness in semi-lattices, Canad. J. Math., 9(1957), 578–
582.

WEGBREIT B. [1974], The synthesis of loop predicates, CACM 17, 2(Feb. 1974), 102–
112.

WEGBREIT B. [1975], Property extraction in well-founded property sets, IEEE Trans.
on Soft. Eng., SE-1, 3(Sept. 1975), 270–285.

WEGBREIT B. [1977], Complexity of synthesizing inductive assertion, JACM 24,
3(July 1977), 504–512.

WELSH J. [1977], Economic range checking in PASCAL, Dept. of Comp. Science,
Queen’s University, Belfast, Northern Ireland, (Oct. 1977)16.

WIRTH N. [1971], Programm development by stepwise refinement, CACM 14, 4(April
1971), 221–227.

WIRTH N. [1976], Programming languages: what to demand and how to assess them,
Symp. on Software Engineering, Belfast, (April 1976), [Aussi Rep. 17. Eid-
genössische Technische Hochschule Zürich, Institut für Informatik].

WOLK E.S. [1957], Dedekind completeness and a fixed point theorem, Canad. J. Math.,
9(1957), 400–405.

15Acta Informatica, Vol. 12, Nb 1, June, 1979, 1–31.
16Software: Practice and Experience, Vol.8, Issue 1, 85–97, 1978.

(8)-21

WONG J.S.W. [1967], Common fixed point of commuting monotone mappings, Canad.
J. Math., 19(1967), 617–620.

8.1 BIBLIOGRAPHIC ADDENDUM

[1] R.P. Agarwal, M. Meehan, and D. O’Regan. Fixed point theory and applications.
In Cambridge Tracts in Mathematics, volume 141. Cambridge University Press,
Cambridge, United Kingdom, 2001.

[2] K.R. Apt and E.-R. Olderog. Proof rules dealing with fairness. In Logic of Pro-
grams, Workshop, Lecture Notes in Computer Science 131, pages 1–8. Springer,
Berlin, Germany, 1981.

[3] J.M. Bahi, S. Contassot-Vivier, and R. Couturier. Evaluation of the asynchronous
iterative algorithms in the context of distant heterogeneous clusters. Parallel Com-
put., 31(5):439–461, May 2005.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monni-
aux, and X. Rival. Design and implementation of a special-purpose static program
analyzer for safety-critical real-time embedded software, invited chapter. In T. Mo-
gensen, D.A. Schmidt, and I.H. Sudborough, editors, The Essence of Computation:
Complexity, Analysis, Transformation. Essays Dedicated to Neil D. Jones, Lecture
Notes in Computer Science 2566, pages 85–108. Springer, Berlin, Germany, 2002.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A static analyzer for large safety-critical software. In Proceedings
of the ACM SIGPLAN ’2003 Conference on Programming Language Design and
Implementation (PLDI), pages 196–207, San Diego, California, United States, 7–
14 June 2003. ACM Press, New York, New York, United States.

[6] T.S. Blyth and M.F. Janowitz. Residuation Theory. Pergammon Press, Oxford,
United Kingdom, 1972.

[7] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. The Astrée analyser. In M. Sagiv, editor, Proceedings of the Fourteenth
European Symposium on Programming Languages and Systems, ESOP ’2005, Ed-
inburg, Scotland, volume 3444 of Lecture Notes in Computer Science, pages 21–30.
Springer, Berlin, Germany, 2–10 April 2005.

(8)-22

[8] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X.
Rival. Varieties of static analyzers: A comparison with Astrée, invited paper.
In M. Hinchey, He Jifeng, and J. Sanders, editors, Proceedings of the First IEEE
& IFIP International Symposium on Theoretical Aspects of Software Engineering,
TASE ’07, pages 3–17, Shanghai, China, 6–8 June 2007. IEEE Computer Society
Press, Los Alamitos, California, United States.

[9] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Ri-
val. Combination of abstractions in the Astrée static analyzer. In M. Okada and I.
Satoh, editors, Eleventh Annual Asian Computing Science Conference, ASIAN06,
pages 272–300, Tokyo, Japan, 6–8 December 2006, 2008. Lecture Notes in Com-
puter Science 4435, Springer, Berlin, Germany.

[10] B.A. Davey and H.A. Priestley. Introduction to Lattices and Order, Second Edition.
Cambridge University Press, Cambridge, United Kingdom, 2002.

[11] J. Dugundji and A. Granas. Fixed point theory. Springer, Berlin, Germany, 2003.

[12] N. Francez. Fairness. Springer, Berlin, Germany, 1986.

[13] G.A. Gratzer, B.A. Davey, R. Freese, B. Ganter, M. Greferath, P. Jipsen, H.A.
Priestley, H. Rose, E. T. Schmidt, S.E. Schmidt, F. Wehrung, and R. Wille. Gen-
eral Lattice Theory. Springer, Berlin, Germany, second edition, January 2003.

[14] D. Kozen K.R. Apt. Limits for automatic verification of finite-state concurrent
systems. Information Processing Letters, 22(6):307–309, 1986.

[15] W.A. Landi. Undecidability of static analysis. ACM Letters on Programming
Languages and Systems (LOPLAS), 1(4):323–337, December 1992.

[16] Z. Li and M. Parashar. A decentralized computational infrastructure for grid-based
parallel asynchronous iterative applications. J. Grid Computing, 4(4):355–372,
December 2006.

[17] L. Mauborgne. Astrée: Verification of absence of run-time error. In P. Jacquart,
editor, Building the Information Society, chapter 4, pages 385–392. Kluwer Aca-
demic Publishers, Dordrecht, The Netherlands, 2004.

[18] D. Monniaux. The parallel implementation of the Astrée static analyzer. In Pro-
ceedings of the Third Asian Symposium on Programming Languages and Systems,
APLAS ’2005, pages 86–96, Tsukuba, Japan, 3–5 November 2005. Lecture Notes
in Computer Science 3780, Springer, Berlin, Germany.

(8)-23

[19] D. Pataria. A constructive proof of Tarski’s fixed-point theorem for DCPO’s.
65th Peripatetic Seminar on Sheaves and Logic, Århus, Denmark, November 1997.
Reported by M.H. Escardó in “Joins in the frame of nuclei”, Applied Categorical
Structures, Vol. 11, Issue 2, Springer, Berlin, Germany, pp. 117-124, April 2003.

[20] J. Wei. Parallel asynchronous iterations of least fixed points. Parallel Comput.,
19(8):887–895, 1993.

CHAPTER 9.

INDEX

9. INDEX

upper widening, 4.12

chaotic decreasing iteration sequence with

lower narrowing starting fromD ∈
Ln and defined by F , the lower

narrowing ∆ , the dependency graph

G of the system of equationsX =

F (X), and the sequence 〈Jδ : δ ∈ ω〉,
4.18

chaotic increasing iteration sequence with

upper narrowing starting fromD ∈
Ln and defined by F , the upper

narrowing ∆̄ , the dependency graph

G of the system of equationsX =

F (X), and the sequence 〈Jδ : δ ∈ ω〉,
4.16

chaotic increasing iteration sequence with

upper widening starting fromD ∈
Ln and defined by F , the upper

widening ∇̄ , the dependency graph

G of the system of equationsX =

F (X), and the sequence 〈Jδ : δ ∈ ω〉,
4.12

decreasing over-approximated iteration se-

quence for f starting from d ∈ L,
4.6

decreasing under-approximated iteration se-

quence for f starting from d ∈ L,
4.4

increasing over-approximated iteration se-

quence for f starting from d ∈ L,
4.3

increasing under-approximated iteration se-

quence for f starting from d ∈ L,
4.5

abstraction, 4.37

〈L; 〈fi : i ∈ I〉〉 (algebra), 2.16
algorithm for the approximate analysis of

programs for a given class of se-

mantic properties, 5.5

→ (application), 2.3

ascendant/descendant chain condition, 2.22

ascending chain, 2.2

ascending chain condition, 2.3

asynchronous iterative methods, 2.28

⊥ (infimum), 2.2

(9)-2

u (greatest lower bound), 2.2

card (cardinal), 2.9

chaotic strategy, 2.28

complete, 2.2

complete join-morphism, 2.4

complete meet-morphism, 2.4

complete morphism, 2.4

complete upper quasi-morphism, 4.21

completeness property, 4.33

composition, 3.6

concretization, 4.37

continuous, 2.21

ucont (operator for upper-continuity), 2.22

t (least upper bound), 2.2

decreasing iteration, 2.10

descending chain, 2.3

descending chain condition, 2.3

deterministic, 3.4

deterministic discrete dynamic system, 3.16

direct decomposition, 2.25

discrete dynamic system, 3.3

dual semi-ideal, 4.31

entry states, 3.3

exit states, 3.3

erroneous states, 3.3

extensive, 2.4

family, 2.2

〈xδ : δ ∈ µ〉 (family), 2.2

fixpoints, 2.8

fp (fixpoint), 2.8

functional, 3.4

gfp (greatest fixpoint), 2.12

greatest lower bound, 2.2

ideal, 4.31

idempotent, 2.4

increasing, 2.4

increasing asynchronous iteration, 2.31

increasing asynchronous iteration with mem-

ory, 2.34

increasing chaotic iteration, 2.29

increasing iteration, 2.9

infimum, 2.2

injective, 3.4

inverse, 3.4

invertible, 3.4

isotone, 2.4

〈xδ : δ ∈ µ(L)〉 (iteration), 2.9
iterative asynchronous methods with mem-

ory, 2.28

join, 2.2

join-complete congruence relation, 4.33

lambda notation, 2.3

(9)-3

lattice, 2.2

least upper bound, 2.2

lfp (least fixpoint), 2.8

limit, 2.10

limit ordinal, 2.9

llis (limit of a decreasing iteration sequence),

2.10

lower closure operator, 2.5

lower connectivity axiom, 2.19

lower Moore family, 4.21

lower pre-closure operator, 2.19

lower-continuous, 2.21

luis (limit of an increasing iteration se-

quence, 2.10

maximal condition, 2.3

meet, 2.2

minimal condition, 2.3

mon (monotone), 2.6

monotone, 2.4, 2.6

µ(L) (ordinal of cardinal greater than card(L)),

2.9

ω (first infinite limit ordinal), 2.21

operators, 2.3

Ord (ordinals), 2.9

over-approximation, 4.1

partial, 3.4

partial order, 2.2

partitioned discrete dynamic system, 3.14

P (unary polynomials), 2.16

post-fixpoints, 2.11

postfp (post-fixpoint), 2.11

pre-fixpoints, 2.11

prefp (pre-fixpoint), 2.11

principal ideals, 4.31

reductive, 2.5

reflexive transitive closure, 3.6

resolvent, 2.26

semantic error, 3.22

semi-ideal, 4.31

set of descendants of the states which sat-

isfy condition, 3.7

set of states, 3.3

set of the ancestors of the states which sat-

isfy a condition, 3.7

stationary, 2.10

strict transitive closure, 3.6

strictly ascending chain, 2.3

strictly descending chain., 2.3

sub-join-semi-lattice, 2.4

sub-lattice, 2.4

sub-meet-semi-lattice, 2.4

v (partial order), 2.2

substitution property for the join, 4.33

(9)-4

successor ordinal, 2.9

supremum, 2.2

system of backward semantic equations,

3.35, 3.38

system of forward semantic equations, 3.25

terminates, 3.22

> (supremum), 2.2

total, 3.4

transition relation, 3.3

unary polynomials, 2.16

under-approximation, 4.1

upper closure operator, 2.4

upper closure operator that is induced on

the space of monotone operators

on L by ρ, 4.43

upper connectivity axiom, 2.19

upper pre-closure operator, 2.19

upper-continuous, 2.21

verification of partially correct behavior,

3.6

verification of totally correct behavior, 3.6

verification of invariance, 3.7

verification of termination, 3.6

lower widening, 4.15

without error recovery, 3.4

CHAPTER 10.

TABLE OF CONTENTS

10. TABLE OF CONTENTS

1. INTRODUCTION

2. FIXPOINT THEOREMS ON COMPLETE LATTICES

2.1 Complete Lattices . (2)-2

2.2 Complete lattice of the operators on a complete lattice (2)-3

2.3 Image of a complete lattice by a closure operator (2)-3

2.4 The complete lattice of monotone operators on a complete lattice (2)-6

2.5 Constructive version of Tarski’s fixpoint theorem (2)-8

2.5.1 Definition of a transfinite iteration (2)-9

2.5.2 Increasing iteration starting from a pre-fixpoint (2)-11

2.5.3 Constructive characterization of the sets of pre- and post-fixpoints

of a monotone operator on a complete lattice (2)-14

2.5.4 Unary monotone polynomials on a complete lattice defined by a

family of monotone operators (2)-16

2.5.5 Constructive characterisation of the set of all fixpoints of a mono-

tone operator on a complete lattice (2)-17

2.5.6 Non-computability of the fixpoints of a monotone operator of a

complete lattice . (2)-19

2.6 The complete lattice of upper-continuous operators on a complete lattice (2)-21

2.7 Fixpoint theorem for upper continuous operators on a complete lattice . . (2)-23

2.8 Formal method to solve a system of monotone fixpoint equations by means

of variable elimination . (2)-24

(10)-2

2.9 Chaotic, asynchronous, and asynchronous with memory iterative methods

to solve a system of monotone fixpoint equations on a complete lattice . (2)-27

2.9.1 Convergence of chaotic iterations (2)-29

2.9.2 Convergence of asynchronous iterations (2)-31

2.9.3 Convergence of asynchronous iterations with memory (2)-34

2.10 Bibliographic notes . (2)-40

2.11 Addendum . (2)-42

3. BEHAVIOR OF A DISCRETE DYNAMIC SYSTEM, EXACT SEMANTIC ANALYSIS OF
PROGRAMS, AND APPLICATIONS

3.1 Discrete dynamic systems . (3)-3

3.1.1 Notion of discrete dynamic system (3)-3

3.1.2 Specification of the behavior of a discrete dynamic system (3)-5

3.1.3 Fixpoint approach to study the behavior of a discrete dynamic

system . (3)-7

3.1.4 Discrete dynamic systems with partitioned set of states (3)-12

3.1.5 Properties of partitioned discrete dynamic systems (3)-15

3.2 Definition of the operational semantics of a programming language (3)-19

3.2.1 Abstract syntax of programs . (3)-19

3.2.2 Operational semantics of the language (3)-20

3.2.2.1 Set of states S (3)-20

3.2.2.2 Transition function τ̄ (3)-20

3.2.2.3 Partitioned deterministic total discrete dynamic

system defined by a sequential program . . . (3)-22

3.3 Forward deductive semantics . (3)-22

3.3.0.1. System of forward semantic equations associ-

ated with a program and an entry specification(3)-25

(10)-3

3.3.0.2. Property of the least fixpoint of the system

of forward semantic equations (3)-25

3.3.0.3. Conjunction and disjunction of entry specifi-

cations . (3)-26

3.4 Techniques for program analysis based on the forward deductive semantics (3)-26

3.4.1 Justification of the method by Floyd and Naur to verify the partial

correctness of a program . (3)-26

3.4.2 Extension of the method by Floyd and Naur to verify the total

correctness of a program . (3)-27

3.4.3 Justification of the criterion for the termination of programs by

Katz and Manna . (3)-28

3.4.4 Characterization of the descendants of the entry states and con-

ditions for the termination, non-termination, and erroneous exe-

cution of a program . (3)-29

3.4.5 Symbolic execution . (3)-32

3.5 Backward deductive semantics . (3)-35

3.5.0.1. System of backward semantic equations asso-

ciated with a program and an exit specification(3)-38

3.5.0.2. Properties of the least fixpoint of the system

of backward semantic equations (3)-39

3.5.0.3. Properties of any pre-fixpoint of the system

of backward semantic equations (3)-39

3.5.0.4. Properties of the greatest fixpoint of the sys-

tem of backward semantic equations (3)-39

3.5.0.5. Termination, non-termination, and semantic

errors of a program (3)-40

(10)-4

3.5.0.6. Conjunction and disjunction of exit specifi-

cations . (3)-41

3.6 Techniques for the analysis of programs based on the backward deductive

semantics . (3)-41

3.6.1 Justification of Hoare’s method to verify the partial correctness

of a program . (3)-41

3.6.2 Justification of Dijkstra’s method to verify the total correctness

of a program . (3)-42

3.6.3 Analysis of conditions of termination, non-termination, and erro-

neous execution of a program based on the backward deductive

semantics . (3)-44

3.6.4 Use of the backward deductive semantics in order to characterize,

for each program point, the set of descendants of the initial states

which satisfy an entry specification (3)-47

3.7 Combination of forward and backward semantic analyses of a program . . (3)-49

3.8 Bibliography . (3)-50

4. CONSTRUCTIVE METHODS TO APPROXIMATE FIXPOINTS OF MONOTONE OP-
ERATORS ON A COMPLETE LATTICE

4.1 Iterative algorithms to approximate fixpoints by accelerating the conver-

gence by extrapolation . (4)-2

4.1.1 Approximation of the fixpoints of monotone operators (4)-2

4.1.2 Approximation of the solution of a system of equations (4)-9

4.2 Closure operators on a complete lattice (4)-19

4.2.1 Definition, characterizations, and properties of closure operators . (4)-20

4.2.2 Characterization of a subset of a complete lattice as the image of

this lattice by an upper closure operator (4)-21

(10)-5

4.2.3 Lattice of the upper closure operators on a complete lattice and

lattice of the induced spaces . (4)-23

4.2.4 Composition of upper closure operators on a complete lattice . . (4)-28

4.2.5 Definition of an upper closure operator by a family of principal

ideals . (4)-31

4.2.6 Definition of an upper closure operator by a join-complete con-

gruence relation . (4)-34

4.2.7 Definition of an upper closure operator by a pair of adjoint functions(4)-37

4.2.8 Induced closure operator on the space of monotone operators on

a complete lattice L by a closure operator on L (4)-43

4.3 Approximation of the fixpoints of an operator by approximation of the

operator . (4)-45

4.3.1 Induced approximation of an operator on a complete lattice by an

approximated image of the lattice (4)-46

4.3.2 Improving the approximation of a fixpoint of a monotone operator (4)-49

4.4 Bibliographic notes . (4)-53

5. APPROXIMATE SEMANTIC ANALYSIS OF PROGRAMS AND APPLICATIONS

5.1 Building an approximate program analysis technique for a given class of

semantic properties . (5)-2

5.2 Example in automatically discovering the sign of the numeric variables of

a program using a forward semantic analysis with over-approximation . . (5)-6

5.2.1 Defining a space of approximate properties by an upper closure

operator . (5)-6

5.2.2 Rules to construct the approximate system of forward equations

associated with a program . (5)-11

5.2.3 Iterative solving of an approximate system of equations when the

convergence occurs naturally with example (5)-17

(10)-6

5.3 Example in automatically and approximately discovering the parity of the

integer variables of a program . (5)-19

5.4 Combining approximate analyses: sign and parity of the integer variables

of a program . (5)-22

5.5 Classic program optimisation techniques (5)-26

5.5.1 Boolean techniques to optimise programs (5)-26

5.5.1.1 Live variables of a program (5)-26

5.5.1.2 Available expressions (5)-28

5.5.2 Non-boolean techniques to optimise programs: the example of

constant propagation . (5)-29

5.6 Automatically discovering the type of the variables of a program (5)-32

5.6.1 Handling pointers . (5)-33

5.6.1.1 Nil and non-nil pointers (5)-34

5.6.1.2 Pointers referencing distinct records (5)-36

5.6.2 Discovering the type of objects in a program in a very high-level

language without declarations (5)-41

5.6.2.1 Approximate system of forward equations . . (5)-43

5.6.2.2 Approximate system of backward equations . (5)-44

5.6.2.3 Gist of the solving method (5)-45

5.6.2.4 Example . (5)-46

5.7 Approximation techniques for infinite spaces of approximate properties:

example in automatically discovering an interval of values for the numeric

variables of a program . (5)-47

5.7.1 Space of approximate properties (5)-49

5.7.2 Rules to construct the approximate system of forward equations

associated with a program . (5)-54

(10)-7

5.7.3 Solving the approximate system of equations by dynamic approx-

imation . (5)-56

5.7.3.1 Approximating the least solution using an in-

creasing chaotic iteration sequence with up-

per widening (5)-56

5.7.3.2 Improving the approximate solution using a

decreasing chaotic iteration sequence with lower

narrowing (5)-58

5.7.4 Example in eliminating run-time bound checks (5)-60

5.7.5 Combining forward and backward approximate analyses (5)-63

5.8 Automatically discovering linear equality or inequality relations between

the numeric variables of a program . (5)-69

5.8.1 Space of approximate properties (5)-70

5.8.2 Rules to construct the approximate system of forward equations

associated with a program . (5)-72

5.8.3 Approximate solving of the system of equations by increasing

chaotic iteration sequences with upper widening (5)-74

5.8.4 Example . (5)-80

5.9 Hierarchy of applications . (5)-81

5.10 Bibliographic notes . (5)-83

6. SEMANTIC ANALYSIS OF RECURSIVE PROCEDURES

6.1 Forward deductive semantics of recursive procedures (6)-2

6.2 Constructive methods to approximate solutions of a system of functional

equations . (6)-26

6.2.1 Resolution of a system of functional fixpoint equations in a finite

space by chaotic iteration . (6)-29

(10)-8

6.2.2 Increasing chaotic iteration sequence with upper widening to ap-

proximate the solution of a system of functional equations (6)-33

6.3 Examples of approximate forward semantic analysis of recursive procedures (6)-35

6.3.1 Case of a finite space of approximate properties (6)-35

6.3.1.1 Sign of the variables of a procedure (6)-35

6.3.1.2 Nil pointers and non-nil pointers (6)-42

6.3.1.3 Pointers pointing to different records (6)-44

6.3.2 Case of a space of approximate properties satisfying the ascending

chain condition . (6)-48

6.3.3 General case of an infinite space of approximate properties not

satisfying the ascending chain condition (6)-49

6.4 Bibliographic notes . (6)-52

7. CONCLUSIONS

8. BIBLIOGRAPHY

8.1 Bibliographic addendum . (8)-21

9. INDEX

