SOAP 2021 10th ACM SIGPLAN International Workshop on the State of the Art in Program Analysis

Dynamic abstract interpretation

Patrick Cousot

NYU, New York pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

Tuesday, June 22th, 2021

Interval arithmetics

- In scientific computing a real number is represented by a float (floating point number) [IEEE, 1985].
- Because of rounding errors, the floating point computation represents an uncertain real computation.
- Ramon E. Moore [Moore, 1966; Moore, Kearfott, and Cloud, 2009] invented "interval arithmetic" to put bounds on rounding errors in floating point computations.
- This guarantees that the uncertain real computation is between floating point bounds
- We show that "interval arithmetic" is a sound abstract interpretation of the program semantics (on reals).
- Maybe the first dynamic analysis of programs.

en.wikipedia.org/wiki/Interval_arithmetic

Abstract interpretation

Interval abstraction

Galois connection

 $\alpha(c) \prec a \Leftrightarrow c \sqsubset \nu(a)$ $\langle \mathcal{C}, \sqsubseteq \rangle \xrightarrow[\alpha]{'}$ $\frac{\gamma}{\gamma}$ $\langle \mathscr{A}, \preceq \rangle$ $\alpha(c) \leq a \Leftrightarrow c \subseteq \gamma(a)$

Galois retraction/insertion

 $\alpha(\epsilon) \prec a \Leftrightarrow \epsilon \sqsubset \nu(a) \wedge \alpha$ surjective $\langle \mathcal{C}, \subseteq \rangle \xrightarrow[\alpha]{'}$ $\frac{\gamma}{\gamma}$ $\langle \mathcal{A}, \preceq \rangle$ $\alpha(c)\preceq a \Leftrightarrow c\sqsubseteq \gamma(a)\wedge\alpha$ surjective

Interval abstraction

Values

- Programs compute on values **V**.
- Values **V** can be the set of
	- **R** of reals.
	- **F** of floats¹
	- $Pⁱ$ of float intervals

For simplicity, we assume that execution stops in case of error (e.g. when dividing by zero or returning NaN).

Properties

- Properties are sets of values e.g. $\{x \in \mathbb{V} \mid x > 0\}$ is "to be positive"
- A semantics is the strongest property of executions

¹We include ±infinity but exclude NaN, -0, +0 for simplicity of the presentation, not hard to handle. $^{\bullet}$ "Dynamic abstract interpretation" – 8/64 – $-8/64$ – $-8/64$ – \bullet P. Cousot, NYU, CIMS, CS, Tuesday, June 22th, 2021

Interval abstraction

- The interval abstraction abstracts a set of numerical values, possibly unbounded, by their minimum and maximal values.
- The interval abstraction is

 $\alpha_i(S) \triangleq \text{ [min } S, \text{max } S \text{]}$ $\gamma_i([\underline{x}, \overline{x}]) \triangleq {\{z \in \mathbb{R} \mid \underline{x} \leq z \leq \overline{x}\}}$

Example 1 In interval arithmetics, a real is abstracted by the pair of enclosing floats. This is also the abstraction of the set of reals between these two floats

Abstract domain of numerical intervals

• We let the abstract domain of float intervals be

$$
\mathbb{P}^i \triangleq \bigcup_{\{[\infty,\overline{x}] \mid \overline{x}, \overline{\epsilon} \in \mathbb{F} \setminus \{-\infty,\infty\} \land \underline{x} \leq \overline{x}\}} \{[-\infty,\overline{x}] \mid \overline{x} \in \mathbb{F} \setminus \{-\infty\}\} \cup \{[\underline{x},\infty] \mid \underline{x} \in \mathbb{F} \setminus \{\infty\}\}
$$

where the empty interval $\bot^i=\varnothing$ can be encoded by any $[\underline{x},\overline{x}]$ with $\overline{x}<\underline{x}$ (e.g. normalized to $[\infty, -\infty]$).

• The intervals $[-\infty, -\infty] \notin \mathbb{P}^i$ and $[\infty, \infty] \notin \mathbb{P}^i$ are excluded.

Abstract domain of numerical intervals

• We let the abstract domain of float intervals be

 \mathbb{P}^i \triangleq $\{ \emptyset \}$ ∪ $\{[\underline{x}, \overline{x}] | \underline{x}, \overline{x} \in \mathbb{F} \setminus \{-\infty, \infty\} \wedge \underline{x} \leq \overline{x} \}$
 $\{[-\infty, \overline{x}] | \overline{x} \in \mathbb{F} \setminus \{-\infty\}\}$ ∪ $\{\underline{x}, \infty\} | \underline{x} \in \mathbb{F} \setminus \{\infty\}\}$

where the empty interval $\bot^i=\varnothing$ can be encoded by any $[\underline{x},\overline{x}]$ with $\overline{x}<\underline{x}$ (e.g. normalized to $[\infty, -\infty]$).

- The intervals $[-\infty, -\infty] \notin \mathbb{P}^i$ and $[\infty, \infty] \notin \mathbb{P}^i$ are excluded.
- The partial order ⊑ⁱ on \mathbb{P}^i is interval inclusion $\bot^i \sqsubseteq^i \bot^i \sqsubseteq^i [\underline{x}, \overline{x}] \sqsubseteq^i [\underline{y}, \overline{y}]$ if and only if $\underline{y} \leq \underline{x} \leq \overline{x} \leq \overline{y}.$
- This is a complete lattice $\langle \mathbb{P}^i, \mathbb{E}^i, \varnothing, [-\infty, +\infty], \bigcap^i, \bigsqcup^i \rangle$

Abstract domain of numerical intervals

• We let the abstract domain of float intervals be

 \mathbb{P}^i \triangleq $\{ \emptyset \}$ ∪ $\{[\underline{x}, \overline{x}] | \underline{x}, \overline{x} \in \mathbb{F} \setminus \{-\infty, \infty\} \wedge \underline{x} \leq \overline{x} \}$
 $\{[-\infty, \overline{x}] | \overline{x} \in \mathbb{F} \setminus \{-\infty\}\}$ ∪ $\{\underline{x}, \infty\} | \underline{x} \in \mathbb{F} \setminus \{\infty\}\}$

where the empty interval $\bot^i=\varnothing$ can be encoded by any $[\underline{x},\overline{x}]$ with $\overline{x}<\underline{x}$ (e.g. normalized to $[\infty, -\infty]$).

- The intervals $[-\infty, -\infty] \notin \mathbb{P}^i$ and $[\infty, \infty] \notin \mathbb{P}^i$ are excluded.
- The partial order ⊑ⁱ on \mathbb{P}^i is interval inclusion $\bot^i \sqsubseteq^i \bot^i \sqsubseteq^i [\underline{x}, \overline{x}] \sqsubseteq^i [\underline{y}, \overline{y}]$ if and only if $y \leqslant \underline{x} \leqslant \overline{x} \leqslant \overline{y}$.
- This is a complete lattice $\langle \mathbb{P}^i, \mathbb{E}^i, \varnothing, [-\infty, +\infty], \bigcap^i, \bigsqcup^i \rangle$
- We have the Galois retraction

$$
\langle \wp(\mathbb{R}), \subseteq \rangle \xrightarrow[\alpha_i]{\gamma_i} \langle \mathbb{P}^i, \sqsubseteq^i \rangle
$$
 (2)

Soundness

• Given parameters $x \in [\underline{x}, \overline{x}]$, $y \in [y, \overline{y}]$, ... the interval computation of a function $f \in \mathbb{I}^n \to \mathbb{I}$ must return a sound interval $[f, \overline{f]}$ which contains all possible results for all possible values of the parameters.

 $\{f(x, y, ...) \mid x \in [\underline{x}, \overline{x}] \land y \in [\underline{y}, \overline{y}] \land ... \} \subseteq [\underline{f}, \overline{f}]$

Soundness

• Given parameters $x \in [\underline{x}, \overline{x}]$, $y \in [y, \overline{y}]$, ... the interval computation of a function $f \in \mathbb{I}^n \to \mathbb{I}$ must return a sound interval $[f, \overline{f}]$ which contains all possible results for all possible values of the parameters.

 $\left\{f(x, y, \ldots) \mid x \in [\underline{x}, \overline{x}] \wedge y \in [\underline{y}, \overline{y}] \wedge \ldots \right\} \ \subseteq \ [\underline{f}, \overline{f}]$

• The smaller interval, the better! α_i is the best/most precise abstraction.

Soundness

• Given parameters $x \in [\underline{x}, \overline{x}]$, $y \in [y, \overline{y}]$, ... the interval computation of a function $f \in \mathbb{I}^n \to \mathbb{I}$ must return a sound interval $[f, \overline{f}]$ which contains all possible results for all possible values of the parameters.

 $\{f(x, y, ...) \mid x \in [\underline{x}, \overline{x}] \land y \in [\underline{y}, \overline{y}] \land ... \} \subseteq [\underline{f}, \overline{f}]$

- The smaller interval, the better! α_i is the best/most precise abstraction.
- Formally, the soundness condition is

 $\alpha_i(\lbrace f(x, y, ...) \mid x \in \gamma_i([\underline{x}, \overline{x}]) \land y \in \gamma_i([\underline{y}, \overline{y}]) \land ... \rbrace) \subseteq^{i} [\underline{f}, \overline{f}]$

Syntax and trace semantics of programs

Syntax

variable (V not empty) arithmetic expression boolean expression statement assignment $conditionals$ iteration and break compound statement statement list program program component

The float constant 0.1 is $0.000(1100)^\infty$ in binary so has no exact finite binary representation. It is approximated as 0.10000000149011611938476562500….

Program labelling

Unique labelling to designate (sets of) program points $\ell \in \mathbb{Z}$:

Example of program labelling

 $rac{S}{S}$ S_h **while** ℓ⁰ (⋯) $\mathsf{s}_{\scriptscriptstyle b}$ $\overline{S_1}$ $\overline{S_2}$ $\overline{S_3}$ $\overline{S_4}$ $\{ \ell_1$ S_1 $\widehat{\ldots}_{\ell_2}$ S_2 ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞ **break** ; ⋯ ^ℓ³ S_3 $\overline{\text{break}}$; S_4 \cdots } ℓ_5 S_5 $\sum_{i=1}^n$ ℓ_0 = at $\llbracket S \rrbracket$ = after $\llbracket S_4 \rrbracket$ ℓ_1 = at $\llbracket S_1 \rrbracket$ = at $\llbracket S_b \rrbracket$ l
. ℓ_2 = at $\llbracket S_2 \rrbracket$ = after $\llbracket S_1 \rrbracket$ ℓ_3 = at $\llbracket S_3 \rrbracket$ ll
T $\ell_5 = \text{at}[\![S_5]\!] = \text{break-to}[\![S_b]\!] = \text{after}[\![S]\!]$ $\begin{array}{rclcl} \mathsf{escape} & \mathbb{S}_b \mathbb{J} & = & \mathsf{tt} & \mathsf{breaks\text{-}of} \llbracket \mathsf{S}_b \mathbb{J} & = & \{\mathsf{\ell}_2,\mathsf{\ell}_3\}, \end{array}$ $\mathsf{escape}[\![\mathsf{S}]\!] \hspace{10pt} = \hspace{10pt} \mathsf{ff},$ $\inf_{\xi} S_{b} = \{ \ell_{1}, \ldots, \ell_{2}, \ldots, \ell_{3}, \ldots \}$ $\inf_{\llbracket S \rrbracket} = \text{labx} \llbracket S_b \rrbracket = \{ \ell_0, \ell_1, \ldots, \ell_2, \ldots, \ell_3, \ldots \},$ $\text{labx}[\S] = \{\ell_0, \ell_1, \ldots, \ell_2, \ldots, \ell_3, \ldots, \ell_5\}$

Prefix traces

- Program label: $\ell \in \mathbb{Z}$ (locates next step to be executed in the program)
- Environment: $\rho \in \mathbb{E}_{\mathbb{V}_{\mathbb{V}}} \triangleq \mathbb{V} \to \mathbb{V}$ assigns values $\rho(x) \in \mathbb{V}$ to variables $x \in \mathbb{V}$.
- State: $\langle \ell, \rho \rangle \in \mathbb{S}_{\mathbb{V}} \triangleq (\mathbb{Z} \times \mathbb{E}_{\mathbb{V}_{\mathbb{V}}})$
- Trace: finite or infinite sequence $\pi \in \mathbb{S}_\mathbb{V}^{+\infty}$ of states
- Example: $\langle \ell_1, \{x \rightarrow 1\} \rangle \langle \ell_2, \{x \rightarrow 2\} \rangle \langle \ell_4, \{x \rightarrow 2\} \rangle$
- Trace concatenation: ⌢⋅

 $\pi_1 \sigma_1 \cdot \sigma_2 \pi_2$ undefined if $\sigma_1 \neq \sigma_2$ $\pi_1 \circ \sigma_2 \pi_2$ $\triangleq \pi_1$ if $\pi_1 \in \mathbb{S}_{\mathbb{V}}^+$ is infinite $\pi_1 \sigma_1 \circ \sigma_1 \pi_2$ $\stackrel{\triangle}{=} \pi_1 \sigma_1 \pi_2$ if $\pi_1 \in \mathbb{T}^+$ is finite

• In pattern matching, we sometimes need the empty trace ∋. For example if $\sigma \pi \sigma' = \sigma$ then $\pi = \exists$ and $\sigma = \sigma'$.

Evaluation of expressions

• Evaluation of an arithmetic expression (parameterized by $\mathbb{V} = \mathbb{R}$ or $\mathbb{V} = \mathbb{F}$, later intervals)

$$
\mathcal{A}_{\mathbb{V}}[\![0.1]\!] \rho \triangleq 0.1_{\mathbb{V}}
$$
\n
$$
\mathcal{A}_{\mathbb{V}}[\![x]\!] \rho \triangleq \rho(x)
$$
\n
$$
\mathcal{A}_{\mathbb{V}}[\![A_{1} - A_{2}]\!] \rho \triangleq \mathcal{A}_{\mathbb{V}}[\![A_{1}]\!] \rho -_{\mathbb{V}} \mathcal{A}_{\mathbb{V}}[\![A_{2}]\!] \rho
$$
\n(1)

• For example $-$ _F is the difference found on IEEE-754 machines and must take rounding mode (and the machine specificities [Monniaux, 2008]) into account.

Evaluation of expressions

• Evaluation of an arithmetic expression (parameterized by $\mathbb{V} = \mathbb{R}$ or $\mathbb{V} = \mathbb{F}$, later intervals)

$$
\mathcal{A}_{\mathbb{V}}\left[0.1\right]\rho \triangleq 0.1_{\mathbb{V}}
$$
\n
$$
\mathcal{A}_{\mathbb{V}}\left[\mathbb{X}\right]\rho \triangleq \rho(\mathbb{X})
$$
\n
$$
\mathcal{A}_{\mathbb{V}}\left[\mathbb{A}_{1} - \mathbb{A}_{2}\right]\rho \triangleq \mathcal{A}_{\mathbb{V}}\left[\mathbb{A}_{1}\right]\rho - \mathbb{V} \mathcal{A}_{\mathbb{V}}\left[\mathbb{A}_{2}\right]\rho
$$
\n(1)

- For example $-$ _F is the difference found on IEEE-754 machines and must take rounding mode (and the machine specificities [Monniaux, 2008]) into account.
- Evaluation of a Boolean expression ($\mathbb{B} \triangleq \{ \text{tt}, \text{ft} \}$):

$$
\mathcal{B}_{\mathbb{V}}[\![A_1 \times A_2]\!] \rho \triangleq \mathcal{A}_{\mathbb{V}}[\![A_1]\!] \rho \langle \mathcal{A}_{\mathbb{V}}[\![A_2]\!] \rho
$$
\n
$$
\mathcal{B}_{\mathbb{V}}[\![B_1 \text{ nand } B_2]\!] \rho \triangleq \mathcal{B}_{\mathbb{V}}[\![B_1]\!] \rho \uparrow \mathcal{B}_{\mathbb{V}}[\![B_2]\!] \rho
$$
\n(4)

where < is strictly less than on reals and floats while $↑$ is the "not and" boolean operator.

Prefix trace semantics

- A prefix trace describes the beginning of a computation
- Assignment S ::= ℓ x = A ; (where at $[[S]] = \ell$)

$$
\mathcal{S}_{\mathbb{V}}^*[\![S]\!] = \{ \langle \ell, \rho \rangle \mid \rho \in \mathbb{E}_{\mathbb{V}} \} \cup \{ \langle \ell, \rho \rangle \langle \text{after}[\![S]\!], \rho[x \leftarrow \mathcal{A}_{\mathbb{V}}[\![A]\!] \rho] \rangle \mid \rho \in \mathbb{E}_{\mathbb{V}} \}
$$
(2)

• Break statement S ::= ℓ **break** ; (where $at[[S]] = \ell$)

$$
\mathbf{S}_{\vee}^* \llbracket \mathbf{S} \rrbracket \triangleq \{ \langle \ell, \rho \rangle \mid \rho \in \mathbb{E} \mathbf{v} \} \cup \{ \langle \ell, \rho \rangle \langle \text{break-to} \llbracket \mathbf{S} \rrbracket, \rho \rangle \mid \rho \in \mathbb{E} \mathbf{v} \}
$$
\n(3)

• Conditional statement S $::= \mathbf{if} \ell \ (B) \ S_t$ (where $\text{at} \llbracket \mathsf{S} \rrbracket = \ell$)

 S_{\vee}^* [S] \triangleq { $\langle \ell, \rho \rangle$ | $\rho \in \mathbb{E}$ y} (5) $∪$ { \langle ^ε, ρ \rangle {after [S]], ρ | $\mathscr{B}_{\mathbb{V}}$ [B]] ρ = ff} U { $\langle \ell, \rho \rangle \langle \mathrm{at} [\! [S_t] \!], \rho \rangle \pi \mid \mathcal{B}_{\mathbb{V}} [\! [B] \!] \rho = \mathrm{tt} \wedge \langle \mathrm{at} [\! [S_t] \!], \rho \rangle \pi \in \mathcal{S}_{\mathbb{V}}^* [\! [S_t] \!] \}$

• If the conditional statement S is inside an iteration statement, and S_t has a break, the execution goes on at the break-to $\llbracket S \rrbracket$ after the iteration.

• Statement list $SL ::= SL' S$ (where at $[[S]] =$ after $[[SL']]$)

$$
\mathbf{S}_{\vee}^* \llbracket \mathsf{S} \mathsf{U} \rrbracket \triangleq \mathbf{S}_{\vee}^* \llbracket \mathsf{S} \mathsf{U}' \rrbracket \cup \n\mathbf{S}_{\vee}^* \llbracket \mathsf{S} \mathsf{U}' \rrbracket \sim \mathbf{S}_{\vee}^* \llbracket \mathsf{S} \rrbracket
$$
\n(7)

 $\mathbf{S} \cdot \mathbf{S}' \triangleq {\pi \cdot \pi' \mid \pi \in \mathbf{S} \land \pi' \in \mathbf{S}' \land \pi \cdot \pi' \text{ is well-defined}}$

• $\pi' \in \mathcal{S}_{\mathbb{V}}^*[\![\mathsf{S}]\!]$ starts at $[\![\mathsf{S}]\!] =$ after $[\![\mathsf{S} \mathsf{U}']\!]$ so, by def. τ , the trace $\pi \in \mathcal{S}_{\mathbb{V}}^*[\![\mathsf{S} \mathsf{U}']\!]$ must terminate to be able to go on with S.

• Empty statement list $SL ::= \epsilon$ (where at $[[SL]] \triangleq$ after $[[SL]]$)

 \mathbf{S}_{\vee}^* $\llbracket \mathsf{SI} \rrbracket \triangleq \{ \langle \mathsf{at} \llbracket \mathsf{SI} \rrbracket, \rho \rangle \mid \rho \in \mathbb{E} \mathsf{v} \}$

• Iteration statement S ::= **while**
$$
\ell
$$
 (B) S_b (where at $\llbracket S \rrbracket = \ell$)

$$
\mathbf{S}_{\mathbb{V}}^*[\![\mathbf{while}\; \ell\;(\mathsf{B})\; \mathsf{S}_b]\!]= \mathsf{Ifp}^{\mathsf{S}} \mathcal{F}_{\mathbb{V}}^*[\![\mathbf{while}\; \ell\;(\mathsf{B})\; \mathsf{S}_b]\!]
$$
\n(8)

$$
\mathcal{F}_{\mathbb{V}}^*[\![\mathsf{while}\; \ell\;(\mathsf{B})\; \mathsf{S}_b]\!] \; X \;\; \triangleq \;\; \left\{ \langle \ell, \, \rho \rangle \; | \; \rho \in \mathbb{E}_{\mathbb{V}} \right\} \tag{a}
$$

$$
\bigcup \{\pi_2\langle \ell', \rho \rangle \langle \text{after}[[S]], \rho \rangle \mid \pi_2\langle \ell', \rho \rangle \in X \land \mathcal{B}_{\mathbb{V}}[[B]] \rho = \text{ff} \land \ell' = \ell\}
$$
 (b)

$$
\bigcup \{\pi_2\langle \ell', \rho \rangle \langle \operatorname{at}[\![S_b]\!], \rho \rangle \cdot \pi_3 \mid \pi_2\langle \ell', \rho \rangle \in X \wedge \mathcal{B}_{\mathbb{V}}[\![B]\!] \rho = \operatorname{tt} \wedge
$$
\n
$$
\langle \operatorname{at}[\![S_b]\!], \rho \rangle \cdot \pi_3 \in \mathcal{S}_{\mathbb{V}}^*[\![S_b]\!] \wedge \ell' = \ell \}
$$
\n(c)

- (a) $\;$ either the execution observation stop at $[\![$ while ℓ (B) $\mathsf{S}_b]\!] = \ell$, or
- (b) after a number of iterations, control is back to ℓ , the test is false, and the loop is exited, or
- (c) after a number of iterations, control is back to ℓ , the test is true, and the loop body is executed (This includes the termination of the loop body after $[\![S_b]\!]=\mathsf{at} [\![\mathsf{while}\; \ell\; (\mathsf{B})\; S_b]\!]=\ell)$

Maximal trace semantics

• Maximal trace semantics

$$
\mathbf{S}_{\mathbb{V}}^+[\![S]\!] \triangleq \{ \pi \langle \ell, \rho \rangle \in \mathbf{S}_{\mathbb{V}}^*[\![S]\!] \mid (\ell = \text{after}[\![S]\!]) \vee (\text{escape}[\![S]\!] \wedge \ell = \text{break-to}[\![S]\!]) \}
$$

$$
\mathbf{S}_{\mathbb{V}}^{\infty}[\![S]\!] \triangleq \lim(\mathbf{S}_{\mathbb{V}}^*[\![S]\!])
$$

• Limit

$$
\lim \mathcal{T} \triangleq \{ \pi \in \mathbb{T}^\infty \mid \forall n \in \mathbb{N} \; . \; \pi[0..n] \in \mathcal{T} \}.
$$

• We have defined the value semantics $\boldsymbol{s}_{\rm V}^*$ of the language (its executions on reals are not implementable/too costly to implement²)

²e.g. using Bill Gosper's exact algorithms for continued fraction arithmetic.

- We have defined the value semantics $\boldsymbol{s}_{\rm V}^*$ of the language (its executions on reals are not implementable/too costly to implement²)
- Next, we define the interval abstraction $\mathring{\alpha}^{\mathbb{P}^i}$ of a value semantics (replacing reals by float intervals)

²e.g. using Bill Gosper's exact algorithms for continued fraction arithmetic.

- We have defined the value semantics $\boldsymbol{s}_{\rm V}^*$ of the language (its executions on reals are not implementable/too costly to implement²)
- Next, we define the interval abstraction $\mathring{\alpha}^{\mathbb{P}^i}$ of a value semantics (replacing reals by float intervals)
- The best float interval semantics of the value semantics is $\mathring{\alpha}^{\mathbb{P}^i}(\mathcal{S}_\mathbb{V}^*)$ (its executions on interval float abstractions of reals are not implementable)

²e.g. using Bill Gosper's exact algorithms for continued fraction arithmetic.

- We have defined the value semantics $\boldsymbol{s}_{\rm V}^*$ of the language (its executions on reals are not implementable/too costly to implement²)
- Next, we define the interval abstraction $\mathring{\alpha}^{\mathbb{P}^i}$ of a value semantics (replacing reals by float intervals)
- The best float interval semantics of the value semantics is $\mathring{\alpha}^{\mathbb{P}^i}(\mathcal{S}_\mathbb{V}^*)$ (its executions on interval float abstractions of reals are not implementable)
- We define a sound over-approximation partial order $\mathring{\sqsubseteq}^i$ of interval semantics (with larger intervals)

 $*$ "Dynamic abstract interpretation" – 26/64 – 26/64 – Cousot, NYU, CIMS, CS, Tuesday, June 22th, 2021

²e.g. using Bill Gosper's exact algorithms for continued fraction arithmetic.

- We have defined the value semantics $\boldsymbol{s}_{\rm V}^*$ of the language (its executions on reals are not implementable/too costly to implement²)
- Next, we define the interval abstraction $\mathring{\alpha}^{\mathbb{P}^i}$ of a value semantics (replacing reals by float intervals)
- The best float interval semantics of the value semantics is $\mathring{\alpha}^{\mathbb{P}^i}(\mathcal{S}_\mathbb{V}^*)$ (its executions on interval float abstractions of reals are not implementable)
- We define a sound over-approximation partial order $\mathring{\sqsubseteq}^i$ of interval semantics (with larger intervals)
- Next, we calculate the interval semantics $\mathcal{S}^*_{\mathbb{P}^i}$ of the language (executions on float intervals)

²e.g. using Bill Gosper's exact algorithms for continued fraction arithmetic.

- We have defined the value semantics $\boldsymbol{s}_{\rm V}^*$ of the language (its executions on reals are not implementable/too costly to implement²)
- Next, we define the interval abstraction $\mathring{\alpha}^{\mathbb{P}^i}$ of a value semantics (replacing reals by float intervals)
- The best float interval semantics of the value semantics is $\mathring{\alpha}^{\mathbb{P}^i}(\mathcal{S}_\mathbb{V}^*)$ (its executions on interval float abstractions of reals are not implementable)
- We define a sound over-approximation partial order $\mathring{\sqsubseteq}^i$ of interval semantics (with larger intervals)
- Next, we calculate the interval semantics $\mathcal{S}^*_{\mathbb{P}^i}$ of the language (executions on float intervals)
- By construction $\mathring{\alpha}^{\mathbb{P}^i}(\mathcal{S}_\mathbb{V}^*)\stackrel{\circ}{\equiv}{}^iS_{\mathbb{P}^i}^*$, so the interval semantics is a sound abstraction of the value semantics

²e.g. using Bill Gosper's exact algorithms for continued fraction arithmetic.

[&]quot;Dynamic abstract interpretation" – 26/64 – © P. Cousot, NYU, CIMS, CS, Tuesday, June 22th, 2021
Interval arithmetics

How real computations are performed?

• Floating point arithmetics: floating point number representing an uncertain real x

How real computations are performed?

- Floating point arithmetics: floating point number representing an uncertain real x
- Interval arithmetics: the computation is performed with the two ends of a float interval $[\underline{x}, \overline{x}]$ with $x \in [\underline{x}, \overline{x}].$
- This is an abstraction of a trace semantics on reals

How real computations are performed?

- Floating point arithmetics: floating point number representing an uncertain real x
- Interval arithmetics: the computation is performed with the two ends of a float interval $[\underline{x}, \overline{x}]$ with $x \in [\underline{x}, \overline{x}].$
- This is an abstraction of a trace semantics on reals
- Handling tests:
	- real computation: only one branch taken
	- float computation: only one branch taken, but could be the wrong one
	- interval computation: one or both alternatives taken (hence one real trace can be abstracted into interval several traces).

Constants

- If the program contains a constant c , its interval is $[c, c]$.
- However, the compilation may introduce an error i.e. rounding error for a float that must be taken into account.
- For example, the decimal 0.1 is $0.000(1100)^\infty$ in binary so has no exact binary representation on finitely many bits.

Addition and substraction

 $[\underline{x}, \overline{x}] \oplus^i \emptyset = \emptyset \oplus^i [\underline{x}, \overline{x}] = [\underline{x}, \overline{x}] \oplus^i \emptyset = \emptyset \oplus^i [\underline{x}, \overline{x}] = \emptyset$ $[\underline{x}, \overline{x}] \oplus^i [\underline{y}, \overline{y}] = [\underline{x} + \underline{y}, \overline{x} + \overline{y}]$ $[\underline{x}, \overline{x}] \ominus^i [\underline{y}, \overline{y}] = [\underline{x} - \overline{y}, \overline{x} - y]$ $\Theta^i[\underline{x}, \overline{x}] = [-\overline{x}, -\underline{x}]$

- We assume that $-\infty + \infty = -\infty$, $-\infty + z = -\infty$, $\infty + z = \infty$, and $\infty + \infty = \infty$ for any $z \in \mathbb{I}$.
- For example, $[10, \infty] \Theta^{i} [-\infty, 5] = [10 5, \infty (-\infty)] = [5, \infty]$.
- For floating point numbers, the lower bound is rounded towards –∞ and the upper bound towards ∞.
- This implies that the computed value is always included in the concretization of the interval value.
- Interval arithmetic is imprecise does not identify different occurrences of the same variable.

Multiplication

 $[\underline{x}, \overline{x}] \otimes^i \varnothing = \varnothing \otimes^i [\underline{x}, \overline{x}] = \varnothing$ $[\underline{x}, \overline{x}] \otimes^{i} [y, \overline{y}] = [\min(\underline{x}y, \underline{x}\overline{y}, \overline{x}y, \overline{x}\overline{y}), \max(\underline{x}y, \underline{x}\overline{y}, \overline{x}y, \overline{x}\overline{y})]$

which reduces to $[\underline{xy}, \overline{x} \overline{y}]$ when the lower bounds <u>x</u> and y are greater that zero.

Algebraic properties

• The interval operations have some of the usual algebraic properties of arithmetic operations

• However distributivity does not hold. We have

 $x \otimes^i (y \oplus^i z) \quad \sqsubseteq^i \quad (x \otimes^i y) \oplus^i (x \otimes^i z) \qquad \qquad \qquad \text{subdistributivity}$

Conditions

- Although when computing with **I** only one branch of a conditional will be taken, interval computation with \mathbb{P}^i may have to take both.
- This gives, in the worst-case, an exponential number of cases to consider.

Conditions

- Although when computing with **I** only one branch of a conditional will be taken, interval computation with \mathbb{P}^i may have to take both.
- This gives, in the worst-case, an exponential number of cases to consider.
- In most interval arithmetic libraries, this case raises an exception that stops execution, which is a further coarse abstraction of the abstract semantics presented here.
- See e.g. www.boost.org/doc/libs/1_74_0/libs/numeric/interval/doc/interval.htm and www.boost.org/doc/libs/1_74_0/libs/numeric/interval/doc/comparisons.htm.

Conditions (cont'd)

• The boolean comparison operators $x \odot y$ take two intervals for x and y and return two intervals for x and y such that the comparison may hold (and cannot hold outside these intervals).

Float interval abstraction

Float notations

- $\exists x$ (which can be $-\infty$) is the largest float smaller than or equal to $x \in \mathbb{R}$ (or $\exists |x = x$ for $x \in \mathbb{F}$)
- $x \rVert^3$ (which can be ∞) is the smallest float greater than or equal to $x \in \mathbb{R}$ (or $x \rVert^3 = x$ for $x \in \mathbb{F}$).
- ^ነ/_{*x*} is the largest floating-point number strictly less than $x \in \mathbb{F}$ (which can be –∞)
- $x \rvert^2$ is the smallest floating-point number strictly larger than $x \in \mathbb{F}$ (which can be ∞).
- We assume

$$
\begin{array}{rcl}\n\mathbb{T}[x -_{\mathbb{F}} y] & \leqslant & \mathbb{T}[(x -_{\mathbb{V}} y)] & \text{(V is R or F)} \\
& x \mathbb{T} -_{\mathbb{F}} \mathbb{T}[y] & \geqslant & (x -_{\mathbb{V}} y) \mathbb{T} \\
(x \in [x, \overline{x}] \land y \in [y, \overline{y}] \land x < y) & \Rightarrow & (x \in [x, \min(\overline{x}, \overline{y})] \land y \in [\max(\underline{x}, y), \overline{y}])\n\end{array} \tag{12}
$$

Incorrect machine implementations

- Some machine implementations of IEEE-754 floating point arithmetics [IEEE, 1985] are incorrect [Goldberg, 1991; Monniaux, 2008].
- For example [Monniaux, 2008, Sect. 6.1.2], we could have

 $(x \in [\underline{x}, \overline{x}] \land y \in [\underline{y}, \overline{y}] \land x < y) \Rightarrow (x \in [\underline{x}, \min(\overline{x}, \overline{y}]^*)] \land y \in [\max(\overline{y}, \underline{y}), \overline{y}])$ (13.bis)

en.wikipedia.org/wiki/Pentium_FDIV_bug

Float interval abstraction

Because the floats are a subset of the reals, we can use $\alpha^{\mathbb{P}^i}$ to abstract both real and float traces (i.e. **V** be **R** or **F**).

⟨℘(**S** +∞ **V**), ⊆⟩ −−−−−→ ←−−−−− $\mathring{\gamma}^{\mathbb{P}^i}$ "Dynamic abstract interpretation" $\langle \wp({\mathbb{S}}_{{\mathbb{V}}}^{+\infty}),\subseteq\rangle$ ³⁸⁶⁴ \longrightarrow $\langle \wp({\mathbb{S}}_{{\mathbb{P}}^i}^{+\infty}),\subseteq\rangle$ \otimes P. Cousot, NYU, CIMS, CS, Tuesday, $\{\phi {\mathbb{S}}_{{\mathbb{P}}}^{\text{th}}$, 2021

⊆ is correct by inadequate for approximation in the abstract

- Program: ℓ_1 $x = x x$; ℓ_2
- Concrete semantics:

$$
\Pi = \{ \langle \ell_1, x = 0.1_{\mathbb{R}} \rangle \langle \ell_2, x = 0.0_{\mathbb{R}} \rangle, \quad \langle \ell_1, x = -0.1_{\mathbb{R}} \rangle \langle \ell_2, x = 0.0_{\mathbb{R}} \rangle \}
$$

• Sound abstract semantics on floats:

$$
\overline{\Pi}_{1} = \{ \langle \ell_{1}, x = [0.09, 0.11] \rangle \langle \ell_{2}, x = [0.00, 0.00] \rangle, \qquad \qquad \Pi \subseteq \mathring{\gamma}^{\mathbb{P}^{i}}(\overline{\Pi}_{1})
$$
\n
$$
\langle \ell_{1}, x = [-0.11, -0.09] \rangle \langle \ell_{2}, x = [0.00, 0.00] \rangle \}
$$
\n
$$
\overline{\Pi}_{2} = \{ \langle \ell_{1}, x = [-0.11, 0.11] \rangle \langle \ell_{2}, x = [-0.02, 0.20] \rangle \}
$$
\n
$$
\Pi \subseteq \mathring{\gamma}^{\mathbb{P}^{i}}(\overline{\Pi}_{2})
$$
\ninput interval

- \cdot $\overline{\varPi}_1$ and $\overline{\varPi}_2$ are <u>not</u> comparable as abstract elements of $\langle \wp(\mathbb{S}_{\mathbb{P}^i}^{\scriptscriptstyle +\infty}),\subseteq\rangle$
- So ⊆ does not allow over approximating $\overline{\Pi}_1$ by $\overline{\Pi}_2!$

Sound over-approximation in the concrete

• Concrete semantics:

$$
\Pi = \{ \langle \ell_1, x = 0.1_{\mathbb{R}} \rangle \langle \ell_2, x = 0.0_{\mathbb{R}} \rangle, \quad \langle \ell_1, x = -0.1_{\mathbb{R}} \rangle \langle \ell_2, x = 0.0_{\mathbb{R}} \rangle \}
$$

• Sound abstract semantics on floats:

$$
\overline{\Pi}_{1} = \{ \langle \ell_{1}, x = [0.09, 0.11] \rangle \langle \ell_{2}, x = [0.00, 0.00] \rangle, \qquad \qquad \Pi \subseteq \hat{\gamma}^{\mathbb{P}^{i}}(\overline{\Pi}_{1})
$$
\n
$$
\langle \ell_{1}, x = [-0.11, -0.09] \rangle \langle \ell_{2}, x = [0.00, 0.00] \rangle \}
$$
\n
$$
\overline{\Pi}_{2} = \{ \langle \ell_{1}, x = [-0.11, 0.11] \rangle \langle \ell_{2}, x = [-0.02, 0.20] \rangle \}
$$
\n
$$
\Pi \subseteq \hat{\gamma}^{\mathbb{P}^{i}}(\overline{\Pi}_{2})
$$
\ninput interval

\ninterval arithmetic

• By comparison in the concrete, $\overline\Pi_1$ is more precise than $\overline\Pi_2$, written $\overline\Pi_1\stackrel{e}{\sqsubset}^i\overline\Pi_2$

$$
\overline{\Pi}_{1} \stackrel{\sim}{=} \overline{\Pi}_{2} \stackrel{\cong}{=} \gamma^{\mathbb{P}^{i}} (\overline{\Pi}_{1}) \subseteq \gamma^{\mathbb{P}^{i}} (\overline{\Pi}_{2})
$$
\n
$$
= \forall \overline{\pi}_{1} \in \overline{\Pi}_{1} \cdot \forall \pi \in \overline{\gamma}^{\mathbb{P}^{i}} (\overline{\pi}_{1}) \cdot \exists \overline{\pi}_{2} \in \overline{\Pi}_{2} \cdot \pi \in \overline{\gamma}^{\mathbb{P}^{i}} (\overline{\pi}_{2})
$$
\n(16)

Sound over-approximation in the abstract

- ∙ We express $\mathring{\sqsubseteq}^i$ in the abstract, without referring to te concretization $\vec{\gamma}^{\mathbb{P}^i}$
- $\bullet\;$ We define $\overline{\Pi}\hskip 2pt\stackrel{e}{=}\hskip -10pt\overline{\Pi}'$ so that the traces of $\overline{\Pi}'$ have the same control as the traces of $\overline{\Pi}$ but intervals are larger (and $\overline{\varPi}'$ may contain extra traces due to the imprecision of interval tests).
- $\mathbb{\dot{E}}^i$ is Hoare preorder [Winskel, 1983] on sets of traces.

$$
[\underline{x}, \overline{x}] \sqsubseteq^{i} [\underline{y}, \overline{y}] \triangleq \underline{y} \leq \underline{x} \leq \overline{x} \leq \overline{y}
$$
\n
$$
\rho \sqsubseteq^{i} \rho' \triangleq \forall x \in \mathbb{V} \cdot \rho(x) \sqsubseteq^{i} \rho'(x)
$$
\n
$$
\langle \ell, \rho \rangle \sqsubseteq^{i} \langle \ell', \rho' \rangle \triangleq (\ell = \ell') \wedge (\rho \sqsubseteq^{i} \rho')
$$
\n
$$
\overline{\pi} \sqsubseteq^{i} \overline{\pi}' \triangleq (|\overline{\pi}| = |\overline{\pi}'|) \wedge (\forall i \in [0, |\overline{\pi}| [\cdot, \overline{\pi}_{i} \sqsubseteq^{i} \overline{\pi}'_{i})
$$
\n
$$
\overline{\Pi} \sqsubseteq^{i} \overline{\Pi}' \triangleq \forall \overline{\pi} \in \overline{\Pi} \cdot \exists \overline{\pi}' \in \overline{\Pi}' \cdot \overline{\pi} \sqsubseteq^{i} \overline{\pi}'
$$
\n
$$
(18)
$$

Sound over-approximation in the abstract

- ∙ We express $\mathring{\sqsubseteq}^i$ in the abstract, without referring to te concretization $\vec{\gamma}^{\mathbb{P}^i}$
- $\bullet\;$ We define $\overline{\Pi}\hskip 2pt\stackrel{e}{=}\hskip -10pt\overline{\Pi}'$ so that the traces of $\overline{\Pi}'$ have the same control as the traces of $\overline{\Pi}$ but intervals are larger (and $\overline{\varPi}'$ may contain extra traces due to the imprecision of interval tests).
- $\mathbb{\dot{E}}^i$ is Hoare preorder [Winskel, 1983] on sets of traces.

$$
[\underline{x}, \overline{x}] \sqsubseteq^{i} [\underline{y}, \overline{y}] \triangleq \underline{y} \leq \underline{x} \leq \overline{x} \leq \overline{y}
$$
\n
$$
\rho \sqsubseteq^{i} \rho' \triangleq \forall x \in \mathbb{V} \cdot \rho(x) \sqsubseteq^{i} \rho'(x)
$$
\n
$$
\langle \ell, \rho \rangle \sqsubseteq^{i} \langle \ell', \rho' \rangle \triangleq (\ell = \ell') \wedge (\rho \sqsubseteq^{i} \rho')
$$
\n
$$
\overline{\pi} \sqsubseteq^{i} \overline{\pi}' \triangleq (|\overline{\pi}| = |\overline{\pi}'|) \wedge (\forall i \in [0, |\overline{\pi}| [\cdot, \overline{\pi}_{i} \sqsubseteq^{i} \overline{\pi}'_{i})
$$
\n
$$
\overline{\Pi} \sqsubseteq^{i} \overline{\Pi}' \triangleq \forall \overline{\pi} \in \overline{\Pi} \cdot \exists \overline{\pi}' \in \overline{\Pi}' \cdot \overline{\pi} \sqsubseteq^{i} \overline{\pi}'
$$
\n
$$
(18)
$$

Lemma 6 $(\overline{\Pi} \stackrel{\circ}{\sqsubseteq}^i \overline{\Pi}') \Rightarrow (\overline{\Pi} \stackrel{\circ}{\sqsubseteq}^i \overline{\Pi}'$

Sound over-approximation in the abstract (cont'd)

- Strictly weaker
- Example:

$$
\overline{\Pi}_1 = \{ \langle \ell_1, x = [0.0, 1.0] \rangle, \\ \langle \ell_1, x = [1.0, 2.0] \rangle \}
$$

$$
\overline{\Pi}_2 = \{ \langle \ell_1, x = [0.0, 0.5] \rangle, \\ \langle \ell_1, x = [0.5, 2.0] \rangle \}
$$

• $\overline{\Pi}_1 \stackrel{e}{\sqsubseteq}^i \overline{\Pi}_2$ (same concrete traces) $\bm{\cdot}\ \overline{\varPi}_{1}$ $\bm{\not\equiv}^{i}\ \overline{\varPi}_{2}$ (no inclusion of abstract traces) \cdot $\overline{\Pi}_2$ $\not\equiv$ i $\overline{\Pi}_1$

Soundness and calculational design

- Value (real/float) concrete semantics: $\mathcal{S}_{\mathbb{V}}^*[\![\mathsf{S}]\!]$
- Interval abstract semantics: S^{*}_『S¹
- Soundness: all value (real/float) traces are included in the interval traces:
- $\mathring{\alpha}^{\mathbb{P}^i}(\mathcal{S}_{\mathbb{V}}^*[\![\mathsf{S}]\!]) \stackrel{\scriptscriptstyle\mathsf{\scriptscriptstyle\$}}{=}^i \mathcal{S}_{\mathbb{P}^i}^*[\![\mathsf{S}]\!]$ $\Rightarrow \hat{\alpha}^{\mathbb{P}^i}(\mathcal{S}_{\mathbb{V}}^*[\![S]\!]) \stackrel{\circ}{\sqsubseteq}^i \mathcal{S}_{\mathbb{P}}^*$ \mathbb{P}^i [S] $\Rightarrow \quad \hat{\gamma}^{\mathbb{P}^i}(\mathring{\alpha}^{\mathbb{P}^i}(S^*_{\mathbb{V}}[\![S]\!]) \subseteq \hat{\gamma}^{\mathbb{P}^i}(S^*_{\mathbb{P}^i}[\![S]\!])$ (def. $\stackrel{\circ}{=}\n\qquad \qquad$ $\overline{}$ \Rightarrow $\mathcal{S}_{\mathbb{V}}^*[\![S]\!] \subseteq \mathring{\gamma}^{\mathbb{P}^i}(\mathcal{S}_{\mathbb{P}^i}^*[\![S]\!])$ (Galois connection $\langle \wp(\mathbb{S}_{\mathbb{V}}^{+\infty}), \subseteq \rangle \xrightarrow[\hat{\alpha}^{\mathbb{P}^i}]{\hat{\gamma}^{\mathbb{P}^i}}$ $\mathring{\gamma}^{\mathbb{P}^i}$ ⟨℘(**S** +∞ **P**), ⊆⟩, (15)^I

Soundness and calculational design

- Value (real/float) concrete semantics: $\mathcal{S}_{\mathbb{V}}^*[\![\mathsf{S}]\!]$
- Interval abstract semantics: S^{*}_『S¹
- Soundness: all value (real/float) traces are included in the interval traces:
- $\mathring{\alpha}^{\mathbb{P}^i}(\mathcal{S}_{\mathbb{V}}^*[\![\mathsf{S}]\!]) \stackrel{\scriptscriptstyle\mathsf{\scriptscriptstyle\$}}{=}^i \mathcal{S}_{\mathbb{P}^i}^*[\![\mathsf{S}]\!]$ $\Rightarrow \hat{\alpha}^{\mathbb{P}^i}(\mathcal{S}_{\mathbb{V}}^*[\![S]\!]) \stackrel{\circ}{\sqsubseteq}^i \mathcal{S}_{\mathbb{P}}^*$ \mathbb{S} SI $\Rightarrow \gamma^{\mathbb{P}^i}(\mathring{\alpha}^{\mathbb{P}^i}(\mathcal{S}_{\mathbb{V}}^*[\![S]\!])) \subseteq \mathring{\gamma}^{\mathbb{P}^i}(\mathcal{S}_{\mathbb{P}^i}^*)$ $\mathcal{E}[\mathsf{S}]\}$) (def. E') $\operatorname{\widehat{\mathcal{C}}}$ def. $\mathring{\sqsubseteq}^i \S$ \Rightarrow $\mathcal{S}_{\mathbb{V}}^*[\![S]\!] \subseteq \mathring{\gamma}^{\mathbb{P}^i}(\mathcal{S}_{\mathbb{P}^i}^*[\![S]\!])$ (Galois connection $\langle \wp(\mathbb{S}_{\mathbb{V}}^{+\infty}), \subseteq \rangle \xrightarrow[\hat{\alpha}^{\mathbb{P}^i}]{\hat{\gamma}^{\mathbb{P}^i}}$ $\mathring{\gamma}^{\mathbb{P}^i}$ ⟨℘(**S** +∞ **P**), ⊆⟩, (15)^I
- Calculational design:
	- Calculate $\mathring{\alpha}^{\mathbb{P}^i}(\mathcal{S}_{\mathbb{V}}^*[\![\mathsf{S}]\!])$
	- Over approximate by $\mathbb{\dot{E}}^i$ to eliminate all concrete operations

Calculational design of the float interval trace semantics

Float interval abstraction of an arithmetic expression semantics

• Let **V** be **R** or **F**.

 $\mathscr{A}_{\mathbb{P}^i}[\![1]\!] \rho \triangleq 1_{\mathbb{P}^i}$ \mathbf{w} **where** $\mathbf{1}_{\mathbb{P}^i} = [1.0, 1.0]$ and $1.0 \in \mathbb{F}$ $\mathscr{A}_{\mathbb{P}^i}[\hspace{-0.04cm}[0,1] \hspace{-0.04cm}]\rho \hspace{2.2cm} \triangleq \hspace{2.2cm} 0.1_{\mathbb{P}^i}$ \mathbf{w} **here** $0.1_{\mathbb{P}^i} \triangleq [\mathbb{Y}] 0.1_{\mathbb{V}}, 0.1_{\mathbb{V}}[\mathbb{Y}]$ $\mathscr{A}_{\mathbb{P}^i}[\![x]\!] \rho \triangleq \rho(x)$ $\mathscr{A}_{\mathbb{P}^i}[\mathbb{A}_1 - \mathbb{A}_2] \rho \triangleq \mathscr{A}_{\mathbb{P}^i}[\mathbb{A}_1] \rho \oplus_{\mathbb{P}^i} \mathscr{A}_{\mathbb{P}^i}[\mathbb{A}_2] \rho$ where $[\underline{x}, \overline{x}] \oplus_{\mathbb{P}^i} [\underline{y}, \overline{y}] \triangleq [\underline{x} -_{\mathbb{P}} \overline{y}, \overline{x} -_{\mathbb{P}} \underline{y}]$

(with rounding towards −∞/∞) is such that

$$
\alpha^{\mathbb{P}^i}(\mathcal{A}_{\mathbb{V}}[\![A]\!]) \quad \sqsubseteq^i \quad \mathcal{A}_{\mathbb{P}^i}[\![A]\!]\alpha^{\mathbb{P}^i}(\rho). \tag{21}
$$

• « *P*_{IP} is ≟^{*i*}-increasing (but does not preserves least upper bounds).

Proof

- $\alpha^{\parallel}(\mathscr{A}_{\mathbb{V}}\left[\hspace{-0.04cm}[0,1]\hspace{-0.04cm}] \rho)$
- $= \alpha^{\parallel}(0.1)$
- $=$ [$\ln 0.1_V$, 0.1_V \triangleq **I** \mathcal{A}_\parallel [0.1] $(\alpha^{\parallel}$
-
- $\alpha^{\parallel}(\mathscr{A}_{\mathbb{V}}[\![\mathsf{x}]\!])\rho$ $=$ α^{\parallel}
- $=$ α^{\parallel}
- \triangleq \mathscr{A}_\parallel $\llbracket \times \rrbracket (\alpha^{\parallel}$
-
- $\alpha^{\parallel}(\mathcal{A}_{\vee}[\mathbb{A}_{1} \mathbb{A}_{2}]\rho)$
- $=$ α^{\parallel}
-
- \mathbf{E}^i let $[\underline{x}, \overline{x}] = \mathcal{A}_{\parallel} [\mathbb{A}_1] \alpha^{\parallel}(\rho)$ and $[\underline{y}, \overline{y}] = \mathcal{A}_{\parallel} [\mathbb{A}_2] \alpha^{\parallel}(\rho)$ in $[\underline{x} -_{\mathbb{F}} \overline{y}, \overline{x} -_{\mathbb{F}} \underline{y}]$
- $= \mathcal{A}_{\parallel} [\![A_{1}]\!] \alpha^{\parallel}(\rho) \alpha \mathcal{A}_{\parallel} [\![A_{2}]\!] \alpha^{\parallel}$
- \triangleq **I** \mathscr{A}_1 [$A_1 A_2$] α^{\parallel}

Approximation:

$\alpha^{\parallel}(\{\rho(\mathsf{x}) - \rho(\mathsf{y}) \mid \rho \in \gamma^{\parallel}(\overline{\rho})\}) \sqsubseteq^{i} \overline{\rho}(\mathsf{x}) - \overline{\rho}(\mathsf{y})$

) $\det A_V$ $\text{det.} \mathscr{A}_{\mathbb{V}}$ in (1) S \int real abstraction by float interval in (14) \int $\partial(x)$ (p)) $\partial(x) = \frac{1}{\sqrt{2}} \left[\partial_x \ln \left[\frac{1}{\sqrt{2}} \right] \right] \left[\frac{1}{\sqrt{2}} \right]$

 $(\rho(x))$ def. \mathscr{A}_V $\text{def. } \mathscr{A}_{\mathbb{V}}$ in (1) S $\partial \phi$ def. environment abstraction in (14) \int $\partial\big\{$ by defining $\mathscr{A}_\parallel\llbracket \times \rrbracket \overline{\rho} \triangleq \overline{\rho}(x)\big\}$

(*G*_V $\left[\mathbb{A}_1\right]$ *p* −*γ G*_V $\left[\mathbb{A}_2\right]$ *p*) (def. *G*¹_V $\left[\mathbb{A}_3\right]$ $\text{def. } \mathscr{A}_{\mathbb{V}}$ in (1) $\text{Value abstraction by float interval in (14)} \text{?}$ = [՟¶ (*&*[v [[A₁]] ρ → *Q* v [[A₂]] ρ), (*Q*[V [[A₁]] ρ → *Q* v [[A₂]] ρ)|| ^{*}]
⊑' [՟『| (*Q*[v [[A₁]] ρ) = r (α/ v [[A₂]] ρ)|| *), (α/ v [[A₂]] ρ)|| *] = ["|| (α/ v [[A₂]] ρ)] (18) and hyp. (12) \int

> $\left(\text{By ind. hyp. } [\mathbf{\hat{y}}] \otimes \mathbf{\hat{y}} \setminus [\![A_i]\!] \rho, \mathbf{\hat{y}} \vee \mathbf{\hat{y}} \mathbf{\hat{z}}] \rho \mathbf{\hat{y}} \right] = \alpha^{\mathbb{I}}(\mathbf{\hat{z}} \otimes \mathbf{\hat{y}} \setminus [\![A_i]\!] \rho) \sqsubseteq^i \mathbf{\hat{z}} \setminus [\![A_i]\!] \alpha^{\mathbb{I}}(\rho), i = 1, 2, \mathbf{\hat{y}}$ (ρ) $\qquad \qquad$ {by defining $[\underline{x}, \overline{x}] -$ _I $[\underline{y}, \overline{y}] \triangleq [\underline{x} \overline{y}, \overline{x} \overline{y} \underline{y}]$ } $\left\{\begin{bmatrix} \mathsf{by}\end{bmatrix}$ defining $\mathscr{A}_{\parallel}\left[\!\left[\mathsf{A}_{1}-\mathsf{A}_{2}\right]\!\right]\overline{\rho}\triangleq \mathscr{A}_{\parallel}\left[\!\left[\mathsf{A}_{1}\right]\!\right]\overline{\rho}-_{\parallel}\mathscr{A}_{\parallel}\left[\!\left[\mathsf{A}_{2}\right]\!\right]\overline{\rho}\right\}$

Float interval abstraction of an assignment semantics

- $S ::= \ell x = A;$
- Concrete semantics on reals ($\mathbb{V} = \mathbb{R}$) or float ($\mathbb{V} = \mathbb{F}$):

$$
\mathcal{S}_{\mathbb{V}}^*[\![S]\!] = \{ \langle \ell, \rho \rangle \mid \rho \in \mathbb{E}_{\mathbb{V}_{\mathbb{V}}} \} \cup \{ \langle \ell, \rho \rangle \langle \text{after}[\![S]\!], \rho[x \leftarrow \mathcal{A}_{\mathbb{V}}[\![A]\!] \rho] \rangle \mid \rho \in \mathbb{E}_{\mathbb{V}_{\mathbb{V}}} \}
$$
(2)

• Abstract semantics on intervals ($\mathbb{V} = \mathbb{P}^i$)

$$
\begin{array}{rcl}\mathbf{S}_{\mathbb{P}^i}^*[\![\mathsf{S}]\!] & \triangleq & \{ \langle \ell, \overline{\rho} \rangle \mid \overline{\rho} \in \mathbb{E} \mathbb{v}_{\mathbb{P}^i} \} \cup \\
& & \{ \langle \ell, \overline{\rho} \rangle \langle \text{after}[\![\mathsf{S}]\!], \overline{\rho}[\mathsf{x} \leftarrow \mathcal{A}_{\mathbb{P}^i}[\![\mathsf{A}]\!] \overline{\rho} \rbrace \rangle \mid \overline{\rho} \in \mathbb{E} \mathbb{v}_{\mathbb{P}^i} \} \end{array}
$$

• Same traces except for computing on intervals rather than values

Proof

We can now abstract the semantics of real (**V**=**R**) or float (**V**=**F**) assignments by float intervals.

```
\alpha^{\parallel}([\ell \times = A ;])
```


Approximation $\mathring{\sqsubseteq}^i$:

- $\bullet\,$ value $\mathscr{A}_{\scriptscriptstyle\rm V}$ to interval arithmetic $\mathscr{A}_{\scriptscriptstyle\rm I}$
- value to interval environments

Float interval abstraction of an arithmetic expression semantics

- A test is true or false for $V = \mathbb{R}$ and $V = \mathbb{F}$
- For intervals a test is imprecise (e.g. $<$ is handled as \leq), may yield a split, and overlap.
- The abstract interpretation $\mathcal{B}_{\mathbb{P}^i}[\![\mathbb{B}]\!]$ of a boolean expression B is defined such that

let
$$
\langle \overline{\rho}_{\mathfrak{t}}, \overline{\rho}_{\mathfrak{f}} \rangle = \mathcal{B}_{\mathbb{P}^i}[\mathbb{B}]\vec{\alpha}^{\mathbb{P}^i}(\rho)
$$
 in
\n
$$
\dot{\alpha}^{\mathbb{P}^i}(\rho) \stackrel{\dot{\mathbb{E}}^i}{=} \overline{\rho}_{\mathfrak{t}} \qquad \text{if } \mathcal{B}_{\mathbb{V}}[\mathbb{B}]\rho = \mathfrak{t}
$$
\n
$$
\dot{\alpha}^{\mathbb{P}^i}(\rho) \stackrel{\dot{\mathbb{E}}^i}{=} \overline{\rho}_{\mathfrak{f}} \qquad \text{if } \mathcal{B}_{\mathbb{V}}[\mathbb{B}]\rho = \mathfrak{f}
$$
\nand $(\langle \overline{\rho}_{\mathfrak{t}}, \overline{\rho}_{\mathfrak{f}} \rangle = \mathcal{B}_{\mathbb{P}^i}[\mathbb{B}]\overline{\rho}) \Rightarrow (\overline{\rho}_{\mathfrak{t}} \stackrel{\dot{\mathbb{E}}^i}{=} \overline{\rho} \wedge \overline{\rho}_{\mathfrak{f}} \stackrel{\dot{\mathbb{E}}^i}{=} \overline{\rho})$

- No concrete state passing the test is omitted in the abstract, and
- The postcondition $\overline{\rho}_{\text{t}}$ or $\overline{\rho}_{\text{f}}$ is stronger than the precondition $\overline{\rho}$ (no side effects)

Float interval abstraction of a conditional

• Conditional statement S ::= **if** ℓ (B) S_t (where $at \llbracket S \rrbracket = \ell$ ³

$$
\mathbf{S}_{\mathbb{P}^{i}}^{*}[\![S]\!] \triangleq \{ \langle \ell, \overline{\rho} \rangle \mid \overline{\rho} \in \mathbb{E}_{\mathbb{V}_{\mathbb{P}^{i}}} \} \tag{5bis}
$$
\n
$$
\cup \{ \langle \ell, \overline{\rho} \rangle \langle \text{after}[\![S]\!], \overline{\rho}_{\mathfrak{f}} \rangle \mid \exists \overline{\rho}_{\mathfrak{t}} \cdot \mathcal{B}_{\mathbb{P}^{i}}[\![B]\!] \overline{\rho} = \langle \overline{\rho}_{\mathfrak{t}} \cdot \overline{\rho}_{\mathfrak{f}} \rangle \wedge \rho_{\mathfrak{f}} \neq \dot{\emptyset} \} \tag{5bis}
$$
\n
$$
\cup \{ \langle \ell, \overline{\rho} \rangle \langle \text{at}[\![S_{t}]\!], \overline{\rho}_{\mathfrak{t}} \rangle \pi \mid \exists \overline{\rho}_{\mathfrak{f}} \cdot \mathcal{B}_{\mathbb{P}^{i}}[\![B]\!] \overline{\rho} = \langle \overline{\rho}_{\mathfrak{t}} \cdot \overline{\rho}_{\mathfrak{f}} \rangle \wedge \rho_{\mathfrak{t}} \neq \dot{\emptyset} \wedge \langle \text{at}[\![S_{t}]\!], \overline{\rho}_{\mathfrak{t}} \rangle \pi \in \mathcal{S}_{\mathbb{P}^{i}}^{*}[\![S_{t}]\!]\} \tag{5bis}
$$

• Most libraries raise an error exception in case of split (or chose only one branch).

 $S_{\mathbb{P}^i}^*$ [S] \triangleq … $\cup \; \{ \langle \ell, \overline{\rho} \rangle \pi \mid \exists \overline{\rho}_{\mathfrak{t}}, \overline{\rho}_{\mathfrak{f}} \; . \; \mathcal{B}_{\mathbb{P}^i}[\![\mathsf{B}]\!] \overline{\rho} = \langle \overline{\rho}_{\mathfrak{t}}, \; \overline{\rho}_{\mathfrak{f}} \rangle \wedge \rho_{\mathfrak{t}} \; \overline{\cap}^i \; \rho_{\mathfrak{f}} \neq \dot{\varnothing} \wedge \pi \in \mathbb{S}_{\mathbb{P}^i}^{+ \infty} \}$

Float interval abstraction of an iteration

• Iteration statement S $::=$ while ℓ (B) S_b (where $\text{at} \llbracket \mathsf{S} \rrbracket = \ell$)

$$
\mathcal{S}_{\mathbb{P}^i}^*[\![\text{while } \ell \text{ (B) } S_b]\!] = \text{ If } p^c \mathcal{F}_{\mathbb{P}^i}^*[\![\text{while } \ell \text{ (B) } S_b]\!] \tag{8bis}
$$
\n
$$
\mathcal{F}_{\mathbb{P}^i}^*[\![\text{while } \ell \text{ (B) } S_b]\!] \times \triangleq \{ \langle \ell, \rho \rangle \mid \rho \in \mathbb{E}_{\mathbb{V}_{\mathbb{P}^i}} \}
$$
\n
$$
\cup \{ \pi_2 \langle \ell', \rho \rangle \langle \text{after} [\![S]\!], \rho_{\mathbb{f}} \rangle \mid \pi_2 \langle \ell', \rho \rangle \in X \land \exists \overline{\rho}_{\mathbb{t}} \cdot \mathcal{B}_{\mathbb{P}^i}[\![B]\!] \overline{\rho} = \langle \overline{\rho}_{\mathbb{t}} \cdot \overline{\rho}_{\mathbb{f}} \rangle \land \rho_{\mathbb{f}} \neq \emptyset \land \ell' = \ell \}
$$
\n
$$
\cup \{ \pi_2 \langle \ell', \rho \rangle \langle \text{at} [\![S_b]\!], \rho_{\mathbb{t}} \rangle \pi_3 \mid \pi_2 \langle \ell', \rho \rangle \in X \land \exists \overline{\rho}_{\mathbb{f}} \cdot \mathcal{B}_{\mathbb{P}^i}[\![B]\!] \overline{\rho} = \langle \overline{\rho}_{\mathbb{t}} \cdot \overline{\rho}_{\mathbb{f}} \rangle \land \rho_{\mathbb{t}} \neq \emptyset \land \forall \mathbb{t} \in \ell \}
$$
\n
$$
\exists \overline{\rho}_{\mathbb{f}} \cdot \mathcal{B}_{\mathbb{P}^i}[\![B]\!] \overline{\rho} = \langle \overline{\rho}_{\mathbb{t}} \cdot \overline{\rho}_{\mathbb{f}} \rangle \land \rho_{\mathbb{t}} \neq \emptyset \land \forall \mathbb{t} \in \ell \}
$$
\n
$$
\exists \overline{\rho}_{\mathbb{f}} \cdot \mathcal{B}_{\mathbb{P}^i}[\![S_b]\!], \rho_{\mathbb{t}} \rangle \pi_3 \in \mathcal{S}_{\mathbb{P}^i}^*[\![S_b]\!], \lambda \ell' = \ell \}
$$

Abstraction to a transition system

Abstraction to a transition system

• Abstraction to a transition system

$$
\alpha_t(\pi) \triangleq \{ \langle \sigma_1, \sigma_2 \rangle \mid \exists \pi_1, \pi_2 \cdot \pi = \pi_1 \sigma_1 \sigma_2 \pi_2 \}
$$

$$
\alpha_T(\Pi) \triangleq \bigcup_{\pi \in \Pi} \alpha_t(\pi)
$$

- Provides a small-step operational semantics of the program (specifying an implementation)
- We used trace abstractions so there is no need for [bi-]simulations, etc. in the proof of correctness of the implementation

Improving precision

Affine arithmetic

- Interval arithmetic is imprecise.
- For example, if $x \in [1, 4]$ then $x x \in [1 4, 4 1] = [-3, 3]$ instead of $[0, 0]$.
- The problem as that the arguments of functions cannot be correlated by a cartesian abstraction.
- So we have to independently take into consideration all possible values of variables within their interval of variation.
- And the problem cumulates over time along traces.

Affine arithmetic

- Interval arithmetic is imprecise.
- For example, if $x \in [1, 4]$ then $x x \in [1 4, 4 1] = [-3, 3]$ instead of $[0, 0]$.
- The problem as that the arguments of functions cannot be correlated by a cartesian abstraction.
- So we have to independently take into consideration all possible values of variables within their interval of variation.
- And the problem cumulates over time along traces.
- Several solutions have been proposed to solves this imprecision problem [Nedialkov, Kreinovich, and Starks, 2004].

Affine arithmetic (cont'd)

• One of them, *affine arithmetics* [Comba and Stolfi, 1993; Stolfi and Figueiredo, 2003],
Managents on interval we fee Fil by represents an interval $x \in [\underline{x}, \overline{x}]$ by \mathbb{R}^m . The unit of \mathbb{R}^m unit of \mathbb{R}^m $\frac{1}{\sqrt{M}}$

 $x = a_0 + a_1 \epsilon_x$ where $a_0 = \frac{\overline{x} + \underline{x}}{2}$ $\frac{+x}{2}$, $a_1 = \frac{\overline{x}-x}{2}$ $\frac{-x}{2}$, and $\epsilon_x \in [-1,1]$ is a fresh auxiliary variable. k y $\frac{1}{2}$ is a nest daxmary variable. $[-1, 1]$ is a fresh auxiliary variable. $\frac{1}{2}$ i.e. $\frac{1}{2}$ i.e. $\frac{1}{2}$ m. $\chi = a_0 + a_1 \epsilon_x$ where $a_0 = \frac{1}{2\pi}$, $a_1 = \frac{1}{2\pi}$, and $\epsilon_x \in [-1, 1]$ is a fresh auxiliary variable.

Affine arithmetic (cont'd)

• One of them, *affine arithmetics* [Comba and Stolfi, 1993; Stolfi and Figueiredo, 2003],
Managents on interval we fee Fil by represents an interval $x \in [\underline{x}, \overline{x}]$ by \mathbb{R}^m . The unit of \mathbb{R}^m unit of \mathbb{R}^m $\frac{1}{\sqrt{M}}$

 $x = a_0 + a_1 \epsilon_x$ where $a_0 = \frac{\overline{x} + \underline{x}}{2}$ $\frac{+x}{2}$, $a_1 = \frac{\overline{x}-x}{2}$ $\frac{-x}{2}$, and $\epsilon_x \in [-1,1]$ is a fresh auxiliary variable. k y $\frac{1}{2}$ is a nest daxmary variable. $[-1, 1]$ is a fresh auxiliary variable. $\frac{1}{2}$ i.e. $\frac{1}{2}$ i.e. $\frac{1}{2}$ m. $\chi = a_0 + a_1 \epsilon_x$ where $a_0 = \frac{1}{2\pi}$, $a_1 = \frac{1}{2\pi}$, and $\epsilon_x \in [-1, 1]$ is a fresh auxiliary variable.

• Then $x - x = (a_0 + a_1 \epsilon_x) - (a_0 + a_1 \epsilon_x) = 0 + 0 \epsilon_x$, as required.

Affine arithmetic (cont'd)

- In general a program involves several variables so we have an affine form
- $x = a_0 + a_1 \epsilon_1 + a_2 \epsilon_2 + \cdots + a_n \epsilon_n$
- This implies $x \in [a_0 d, a_0 + d]$ where $d = \sum_{i=1}^{n} |a_i|$ is the total deviation of x .
- This is, by interval arithmetic, the smallest interval that contains all possible values of x , assuming that each ϵ_i ranges independently over the interval $[-1, +1].$

Affine arithmetic (cont'd)

- In general a program involves several variables so we have an affine form
- $x = a_0 + a_1 \epsilon_1 + a_2 \epsilon_2 + \cdots + a_n \epsilon_n$
- This implies $x \in [a_0 d, a_0 + d]$ where $d = \sum_{i=1}^{n} |a_i|$ is the total deviation of x .
- This is, by interval arithmetic, the smallest interval that contains all possible values of x , assuming that each ϵ_i ranges independently over the interval $[-1, +1].$
- For *m* variables, the affine constraints determine a **zonotope** [McMullen, 1971], a center-symmetric convex polytope in **R** , whose faces are themselves center-symmetric [Beck and Robins, 2015, Ch. 9].

Example of zonotope: octagonal zonogon

• As was the case for interval arithmetic, zonotope arithmetic is an abstract interpretation of the real/float semantics (used in Fluctuat). en.wikipedia.org/wiki/Zonohedron#Zonotopes

Conclusion

Conclusion

- Interval arithmetics in scientific computing put bounds on rounding errors in floating point arithmetic [Moore, 1966].
- It is an abstract interpretation of the trace semantics and can be computed at runtime for one trace at a time.
- Tests may have to consider many executions, which can be quite inefficient (and often considered an error in practice).
- A further abstract yields the static interval analysis (by joining states on paths at each program point to get invariants).
- More generally, this provides a framework for dynamic analysis (their static over approximation, and the combination of the two).
- Soundness guarantee!

Bibliography

Bibliography I

Bibliography II

The End, Thank you

The slides are available at:

http://cs.nyu.edu/ pcousot/publications.www/slidesPCousot-SOAP-2021.pdf