Festschrift on the occasion of Klaus Havelund's 65th birthday

Dynamic interval analysis by abstract interpretation

Patrick Cousot

NYU, New York pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

Interval arithmetics

- In scientific computing a real number is represented by a float (floating point number) [IEEE, 1985].
- Because of rounding errors, the floating point computation represents an *uncertain* real computation.
- Ramon E. Moore [Moore, 1966; Moore, Kearfott, and Cloud, 2009] invented "interval arithmetic" to put bounds on rounding errors in floating point computations.
- This guarantees that the *uncertain* real computation is between floating point bounds
- We show that "interval arithmetic" is a sound abstract interpretation of the program semantics (on reals).
- Interval arithmetic is maybe the first dynamic analysis of programs.

en.wikipedia.org/wiki/Interval_arithmetic

Prefix trace semantics

Syntax

- By program component $S \in \mathbb{P}_{\mathcal{C}}$, we mean a statement, statement list, or program
- We axiomatize a labeling of programs to designate program points $\ell \in \mathbb{Z}$: at $\llbracket S \rrbracket$ after $\llbracket S \rrbracket$ escape $\llbracket S \rrbracket$ (loop escape via **break** ; statement), break-to $\llbracket S \rrbracket$, breaks-of $\llbracket S \rrbracket$

Trace semantics

- The prefix trace semantics $S^*_{\mathbb{V}}[\mathsf{S}]\!$ of a program component S is a set of traces describing the beginning of a computation
- The maximal trace semantics are terminated (finite) or nonterminating (infinite) traces S $_V^{+\infty}$
- A trace π is a finite or infinite sequences of states
- Example: $\langle \ell_1, \{x \rightarrow 1\} \rangle \langle \ell_2, \{x \rightarrow 2\} \rangle \langle \ell_4, \{x \rightarrow 2\} \rangle$
- The states \langle ℓ, $\rho\rangle$ ∈ $\mathbb{S}_{\mathbb{V}} \triangleq$ ($\mathbb{L} \times \mathbb{E}_{\mathbb{V}_{\mathbb{V}}}$) are pairs of a label (program point ℓ) and an environment ρ
- Environments $\rho \in \mathbb{E}_{\mathbb{V}_{\mathbb{V}}} \triangleq V \to \mathbb{V}$ assign values $\rho(x) \in \mathbb{V}$ to variables $x \in V$
- Values **V** can be the set of
	- **R** of reals.
	- **F** of floats ¹
	- later, **I** of float intervals

For simplicity, we assume that execution stops in case of error (e.g. when dividing by zero or returning NaN).

Structural fixpoint definition of the prefix trace semantics

• Iteration statement S $::=$ while ℓ (B) S_b (where $\text{at} \llbracket \mathsf{S} \rrbracket = \ell$)

$$
\mathbf{S}_{\vee}^*[\![\mathbf{while} \ell \;(\mathsf{B}) \; \mathsf{S}_b]\!] = \! \mathsf{If} \mathsf{p}^{\mathsf{c}} \; \mathcal{F}_{\vee}^*[\![\mathbf{while} \; \ell \;(\mathsf{B}) \; \mathsf{S}_b]\!]
$$
\n
$$
\tag{8}
$$

$$
\mathcal{F}_{\mathbb{V}}^*[\![\mathsf{while}\; \ell\;(\mathsf{B})\; \mathsf{S}_b]\!] \; X \;\; \triangleq \;\; \left\{ \langle \ell, \, \rho \rangle \; | \; \rho \in \mathbb{E}_{\mathbb{V}} \right\} \tag{a}
$$

$$
\bigcup \{\pi_2\langle \ell', \rho \rangle \langle \text{after}[[S], \rho \rangle \mid \pi_2\langle \ell', \rho \rangle \in X \land \mathcal{B}_{\mathbb{V}}[[B]] \rho = \text{ff} \land \ell' = \ell\}
$$
 (b)

$$
\bigcup \{\pi_2\langle \ell', \rho \rangle \langle \operatorname{at}[\![S_b]\!], \rho \rangle \cdot \pi_3 \mid \pi_2\langle \ell', \rho \rangle \in X \wedge \mathcal{B}_{\mathbb{V}}[\![B]\!] \rho = \operatorname{tt} \wedge
$$
\n
$$
\langle \operatorname{at}[\![S_b]\!], \rho \rangle \cdot \pi_3 \in \mathcal{S}_{\mathbb{V}}^*[\![S_b]\!] \wedge \ell' = \ell \}
$$
\n(c)

- (a) $\;$ either the execution observation stop at $[\![$ while ℓ (B) $\mathsf{S}_b]\!] = \ell$, or
- (b) after a number of iterations, control is back to ℓ , the test is false, and the loop is exited, or
- (c) after a number of iterations, control is back to ℓ , the test is true, and the loop body is executed (This includes the termination of the loop body after $[\![S_b]\!]=\mathsf{at} [\![\mathsf{while}\; \ell\; (\mathsf{B})\; S_b]\!]=\ell)$

Maximal trace semantics

• Maximal trace semantics

$$
\mathbf{S}_{\mathbb{V}}^+[\![S]\!] \triangleq \{ \pi \langle \ell, \rho \rangle \in \mathbf{S}_{\mathbb{V}}^*[\![S]\!] \mid (\ell = \text{after}[\![S]\!]) \vee (\text{escape}[\![S]\!] \wedge \ell = \text{break-to}[\![S]\!]) \}
$$

$$
\mathbf{S}_{\mathbb{V}}^{\infty}[\![S]\!] \triangleq \lim(\mathbf{S}_{\mathbb{V}}^*[\![S]\!])
$$

• Limit

$$
\lim \mathcal{T} \triangleq \{ \pi \in \mathbb{T}^\infty \mid \forall n \in \mathbb{N} \; . \; \pi[0..n] \in \mathcal{T} \}.
$$

Float interval abstraction

Float interval domain

• The abstract domain of float intervals is

I ≜
 \downarrow {∅} ∪ {[<u>x</u>, \overline{x}] | <u>x</u>, \overline{x} ∈ **F** \ {−∞, ∞} ∧ <u>x</u> ≤ \overline{x} }

{[-∞, \overline{x}] | \overline{x} ∈ **F** \ {−∞}} ∪ {[<u>x</u>, ∞] | <u>x</u> ∈ **F** \ {∞}}

(The intervals [−∞, −∞] ∉ **^I** and [∞,∞] ∉ **^I** are excluded.)

• The partial order ⊑ⁱ on II is interval inclusion $\bot^i \triangleq \varnothing \sqsubseteq^i \bot^i \sqsubseteq^i [\underline{x}, \overline{x}] \sqsubseteq^i [y, \overline{y}]$ if and only if $\underline{y} \leq \underline{x} \leq \overline{x} \leq \overline{y}.$

Float notations

- Rounding of real to float:
	- $\frac{\ln x}{x}$ (which can be $-\infty$) is the largest float smaller than or equal to $x \in \mathbb{R}$ (or $\frac{\ln x}{x} = x$ for $x \in \mathbb{F}$
	- $x \rVert^2$ (which can be ∞) is the smallest float greater than or equal to $x \in \mathbb{R}$ (or $x \rVert^2 = x$ for $x \in \mathbb{F}$).
- Previous and next float:
	- **[↑]***x* is the largest floating-point number strictly less than $x \in \mathbb{F}$ (which can be $-\infty$)
	- $x \rvert^2$ is the smallest floating-point number strictly larger than $x \in \mathbb{F}$ (which can be ∞).
- See the paper for (machine-dependent) soundness conditions for these operations

Float interval abstraction

Because the floats are a subset of the reals, we can use $\alpha^{\mathbb{I}}$ to abstract both real and float traces (i.e. **V** be **R** or **F**).

$$
\langle \wp(\mathbb{S}_{V}^{+\infty}), \subseteq \rangle \xrightarrow[\frac{\hat{\delta}^{i}}{\hat{\alpha}^{i}}]{} \langle \wp(\mathbb{S}_{\mathbb{I}}^{+\infty}), \subseteq \rangle
$$
\n(15)

Float interval arithmetics

Float interval abstraction

- We derive sound abstract operations on float intervals by calculational design (float constants (like 0.1) with rounding, addition \oplus^i , subtraction \ominus^i , multiplication \otimes^i , etc., Boolean comparisons \otimes^i , \otimes^i , etc.
- Subdistributivity $x\otimes^i(y\oplus^iz)\sqsubseteq^i(x\otimes^iy)\oplus^i(x\otimes^iz)$ holds but not distributivity
- Handling tests:
	- real computation: only one branch taken
	- float computation: only one branch taken, but could be the wrong one
	- interval computation: one or both alternatives taken (hence one real trace can be abstracted into interval several traces).
- In most interval arithmetic libraries, this case raises an exception that stops execution, which is a further coarse abstraction of the abstract semantics presented here.

The abstract approximation order

Comparing abstract overapproximations in the concrete

- Program: ℓ_1 $x = x x$; ℓ_2
- Concrete (with precondition $x \in \{-0.1_{\mathbb{R}}, 0.1_{\mathbb{R}}\}$):

$$
\Pi = \{ \langle \ell_1, \ x = 0.1_\mathbb{R} \rangle \langle \ell_2, \ x = 0.0_\mathbb{R} \rangle, \quad \langle \ell_1, \ x = -0.1_\mathbb{R} \rangle \langle \ell_2, \ x = 0.0_\mathbb{R} \rangle \}
$$

• Sound abstract semantics on floats:

$$
\overline{\Pi}_1 = \{ \langle \ell_1, x = [0.09, 0.11] \rangle \langle \ell_2, x = [0.00, 0.00] \rangle, \qquad \Pi \subseteq \mathring{\gamma}^{\mathbb{I}}(\overline{\Pi}_1)
$$

$$
\langle \ell_1, x = [-0.11, -0.09] \rangle \langle \ell_2, x = [0.00, 0.00]) \}
$$

$$
\overline{\Pi}_2 = \{ \langle \ell_1, x = [-0.11, 0.11] \rangle \langle \ell_2, x = [-0.02, 0.20] \rangle \}
$$

input interval
interval arithmetic

- Both abstractions are sound, in the concrete, $\Pi\subseteq \mathring{\gamma}^\mathbb{I}(\overline{\Pi}_2)$ and $\Pi\subseteq \mathring{\gamma}^\mathbb{I}(\overline{\Pi}_2)$
- $\cdot \;\, \mathring{\gamma}^{\mathbb{I}}(\overline{\varPi}_1)$ is more precise that $\mathring{\gamma}^{\mathbb{I}}(\overline{\varPi}_2)$ since, in the concrete,

$\mathring{\gamma}^{\mathbb{I}}(\overline{\Pi}_1) \subseteq \mathring{\gamma}^{\mathbb{I}}(\overline{\Pi}_2)$

- \cdot $\overline{\varPi}_1$ and $\overline{\varPi}_2$ are <u>not</u> ⊆-comparable as abstract elements of $\langle \wp(\mathbb{S}_0^{+\infty}),\subseteq \rangle$
- So ⊆ does <u>not</u> allow over approximating $\overline{\Pi}_1$ by $\overline{\Pi}_2!$

Sound over-approximation in the concrete

• Define $\overline{\Pi}_1 \stackrel{\scriptscriptstyle \varepsilon}{\scriptscriptstyle \equiv}^i \overline{\Pi}_2$

$$
\overline{\Pi}_1 \stackrel{\sim}{=} \overline{\Pi}_2 \stackrel{\cong}{=} \gamma^{\parallel}(\overline{\Pi}_1) \subseteq \gamma^{\parallel}(\overline{\Pi}_2)
$$
\n
$$
= \forall \overline{\pi}_1 \in \overline{\Pi}_1. \forall \pi \in \overline{\gamma}^{\parallel}(\overline{\pi}_1). \exists \overline{\pi}_2 \in \overline{\Pi}_2. \pi \in \overline{\gamma}^{\parallel}(\overline{\pi}_2)
$$
\n(16)

to mean that Π_1 is more precise than Π_2 , by comparison in the concrete.

• $\overline\Pi_1\subseteq\overline\Pi_2$ implies $\overline\Pi_1\stackrel{e}{=}^i\overline\Pi_2$ so ⊆ is correct but inadequate for approximation in the abstract (as shown by the previous example)

Sound over-approximation in the abstract

- ∙ We express $\mathring{\sqsubseteq}^i$ in the abstract, without referring to the concretization $\vec{\jmath}^\sharp$
- $\bullet\;$ We define $\overline{\Pi}\hskip 2pt\stackrel{e}{=}\hskip -10pt\overline{\Pi}'$ so that the traces of $\overline{\Pi}'$ have the same control as the traces of $\overline{\Pi}$ but intervals are larger (and $\overline{\varPi}'$ may contain extra traces due to the imprecision of interval tests).
- $\mathbb{\dot{E}}^i$ is Hoare preorder [Winskel, 1983] on sets of traces.

$$
[\underline{x}, \overline{x}] \sqsubseteq^{i} [\underline{y}, \overline{y}] \triangleq \underline{y} \leq \underline{x} \leq \overline{x} \leq \overline{y}
$$
\n
$$
\rho \sqsubseteq^{i} \rho' \triangleq \forall x \in \mathbb{V} \cdot \rho(x) \sqsubseteq^{i} \rho'(x)
$$
\n
$$
\langle \ell, \rho \rangle \sqsubseteq^{i} \langle \ell', \rho' \rangle \triangleq (\ell = \ell') \wedge (\rho \sqsubseteq^{i} \rho')
$$
\n
$$
\overline{\pi} \sqsubseteq^{i} \overline{\pi}' \triangleq (|\overline{\pi}| = |\overline{\pi}'|) \wedge (\forall i \in [0, |\overline{\pi}| [\cdot, \overline{\pi}_{i} \sqsubseteq^{i} \overline{\pi}_{i}'])
$$
\n
$$
\overline{\Pi} \sqsubseteq^{i} \overline{\Pi}' \triangleq \forall \overline{\pi} \in \overline{\Pi} \cdot \exists \overline{\pi}' \in \overline{\Pi}' \cdot \overline{\pi} \sqsubseteq^{i} \overline{\pi}'
$$
\n
$$
(18)
$$

Lemma 2 $(\overline{\Pi} \stackrel{\circ}{\sqsubseteq}^i \overline{\Pi}') \Rightarrow (\overline{\Pi} \stackrel{\circ}{\sqsubseteq}^i \overline{\Pi}'$

). The contract of the contract of \Box

Sound over-approximation in the abstract (cont'd)

- Strictly weaker
- Example:

$$
\overline{\Pi}_1 = \{ \langle \ell_1, x = [0.0, 1.0] \rangle, \\ \langle \ell_1, x = [1.0, 2.0] \rangle \}
$$

$$
\overline{\Pi}_2 = \{ \langle \ell_1, x = [0.0, 0.5] \rangle, \\ \langle \ell_1, x = [0.5, 2.0] \rangle \}
$$

Soundness and calculational design

- Value (real/float) concrete semantics: $\mathcal{S}_{\mathbb{V}}^*[\![\mathsf{S}]\!]$
- Interval abstract semantics: S^{*} [S]
- Soundness: all value (real/float) traces are included in the interval traces:
	- $\mathring{\alpha}^{\mathbb{I}}(\mathcal{S}_{\mathbb{V}}^*[\![\mathsf{S}]\!]) \stackrel{\scriptscriptstyle\mathsf{\scriptscriptstyle\$}}{=}^i \mathcal{S}_{\mathbb{I}}^*[\![\mathsf{S}]\!]$
	- $\Rightarrow \hat{\alpha}^{\parallel}(\mathcal{S}_{\vee}^{*}\llbracket \mathsf{S} \rrbracket) \stackrel{\scriptscriptstyle{\circ}}{=}^i \mathcal{S}_{\parallel}^{*}$ ℓ lemma 2 ζ
	- $\Rightarrow \gamma^{\mathbb{I}}(\mathring{\alpha}^{\mathbb{I}}(\mathcal{S}_{\mathbb{V}}^*[\![S]\!])) \subseteq \mathring{\gamma}^{\mathbb{I}}(\mathcal{S}_{\mathbb{I}}^*)$ $\lbrack\lbrack S\rbrack\rbrack$) (def. $\dot{\sqsubseteq}^{I}$ $\operatorname{\widehat{\mathcal{C}}}$ def. $\mathring{\sqsubseteq}^i \mathring{\mathcal{S}}$
	- \Rightarrow S_{\vee}^* [S] $\subseteq \mathring{\gamma}^{\mathbb{I}}(S_{\mathbb{I}}^*)$ $\begin{bmatrix} [\mathsf{S}]] \end{bmatrix}$ (Galois connection $\langle \wp(\mathbb{S}_{\mathbb{V}}^{+\infty}), \subseteq \rangle \frac{\langle \mathbb{S}_{\mathbb{V}}^{+\infty}, \mathbb{S}_{\mathbb{V}}^{+\infty} \rangle}{\langle \mathbb{S}_{\mathbb{V}}^{+\infty}, \mathbb{S}_{\mathbb{V}}^{+\infty} \rangle}$ $\mathring{\gamma}^\mathbb{I}$ ⟨℘(**S** +∞ **I**), ⊆⟩, (15)^I
- Calculational design:
	- Calculate $\alpha^{\mathbb{I}}(\mathcal{S}_{\mathbb{V}}^*[\![S]\!])$
	- Over approximate by $\mathbb{\dot{E}}^i$ to eliminate all concrete operations

"Dynamic interval analysis by abstract interpretation" – 19/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

Calculational design of the float interval trace semantics

Float interval abstraction of an assignment semantics

- $S ::= \ell x = A;$
- Concrete semantics on reals ($\mathbb{V} = \mathbb{R}$) or float ($\mathbb{V} = \mathbb{F}$):

$$
\mathcal{S}_{\mathbb{V}}^*[\![S]\!] = \{ \langle \ell, \rho \rangle \mid \rho \in \mathbb{E}_{\mathbb{V}_{\mathbb{V}}} \} \cup \{ \langle \ell, \rho \rangle \langle \text{after}[\![S]\!], \rho[x \leftarrow \mathcal{A}_{\mathbb{V}}[\![A]\!] \rho] \rangle \mid \rho \in \mathbb{E}_{\mathbb{V}_{\mathbb{V}}} \}
$$
(2)

• Abstract semantics on intervals (**V** = **I**)

 S_{\parallel}^* $\left[\begin{array}{cc} S \end{array}\right] = \left\{ \left\langle \ell, \overline{\rho} \right\rangle \mid \overline{\rho} \in \mathbb{E} \mathbb{V}_{\parallel} \right\} \cup$ $\{\langle \ell, \overline{\rho} \rangle \langle \text{after} [\llbracket \mathsf{S} \rrbracket, \overline{\rho}[\times \leftarrow \mathscr{A}_{\parallel}[\llbracket \mathsf{A} \rrbracket \overline{\rho}] \rangle \mid \overline{\rho} \in \mathbb{E} \mathbb{V}_{\parallel} \}$

• Same traces except for computing on intervals rather than values

Proof

We can now abstract the semantics of real (**V**=**R**) or float (**V**=**F**) assignments by float intervals.

```
\alpha^{\parallel}([\ell \times = A ;])
```


Approximation $\mathring{\sqsubseteq}^i$:

- $\bullet\,$ value $\mathscr{A}_{\scriptscriptstyle\rm V}$ to interval arithmetic $\mathscr{A}_{\scriptscriptstyle\rm I}$
- value to interval environments

Float interval abstraction of an iteration

\n- \n Iteration statement S ::= **while**
$$
\ell
$$
 (B) S_b (where at $[\mathbb{S}] = \ell$)\n $\mathcal{S}_1^* [\text{while } \ell \text{ (B) } S_b] = \text{If } \mathbf{p} \in \mathcal{F}_1^* [\text{while } \ell \text{ (B) } S_b] \text{ (8bis)}$ \n
\n- \n $\mathcal{F}_1^* [\text{while } \ell \text{ (B) } S_b] \times \triangleq \{ \langle \ell, \rho \rangle \mid \rho \in \mathbb{E} \mathbf{v}_1 \}$ \n $\cup \{ \pi_2 \langle \ell', \rho \rangle \langle \text{after} [\mathbb{S}], \rho_{\mathbb{H}} \rangle \mid \pi_2 \langle \ell', \rho \rangle \in X \land \exists \overline{\rho}_{\mathbb{t}} \cdot \mathcal{B}_1 [\mathbb{B}] \overline{\rho} = \langle \overline{\rho}_{\mathbb{t}}, \overline{\rho}_{\mathbb{f}} \rangle \land \rho_{\mathbb{f}} \neq \emptyset \land \ell' = \ell \}$ \n $\cup \{ \pi_2 \langle \ell', \rho \rangle \langle \text{at} [\mathbb{S}_b], \rho_{\mathbb{t}} \rangle \pi_3 \mid \pi_2 \langle \ell', \rho \rangle \in X \land \exists \overline{\rho}_{\mathbb{f}} \cdot \mathcal{B}_1 [\mathbb{B}] \overline{\rho} = \langle \overline{\rho}_{\mathbb{t}}, \overline{\rho}_{\mathbb{f}} \rangle \land \rho_{\mathbb{t}} \neq \emptyset \land \forall \ell \in \ell \}$ \nApproximation order

\n $\langle \text{at} [\mathbb{S}_b], \rho_{\mathbb{t}} \rangle \pi_3 \in \mathcal{S}_1^* [\mathbb{S}_b] \land \ell' = \ell \}$ \n
\n

- Soundness $\mathring{\alpha}^{\mathbb{I}}(\mathcal{S}_{\mathbb{V}}^*[\![S]\!])$ $\mathbb{\dot{E}}^i$ **S**_{\mathbb{I} [[]S]}
- Only other example is Mycroft's strictness analysis (computational order ⊑ and approximation order ⊆))

Specification of an implementation

- The abstraction to a transition system provides a small-step operational semantics of the program (specifying an implementation)
- We used trace abstractions so there is no need for [bi-]simulations, etc. in the proof of correctness of the implementation

Summary

Summary

- We have defined the value semantics $\mathbf{\mathcal{S}}_{\mathbb{V}}^{*}$ of the language for reals and floats (executions on reals are not implementable/too costly to implement²)
- Next, we define the interval abstraction $\mathring{\alpha}^{\mathbb{I}}$ of a value semantics (replacing reals by float intervals)
- The best float interval semantics of the value semantics is $\mathring{\alpha}^{\mathbb{I}}(\mathcal{S}_{\mathbb{V}}^*)$ (execute on reals and then abstract to float intervals, not implementable)
- We define a sound over-approximation partial order $\mathring{\sqsubseteq}^i$ of interval semantics (with larger intervals)
- Next, we calculate the interval semantics \mathcal{S}_\parallel^* of the language (executions on float intervals)
- By calculational design $\mathring{\alpha}^{\mathbb{I}}(\mathcal{S}_\mathbb{V}^*)\stackrel{\circ}{\sqsubseteq}^i\mathcal{S}_\mathbb{I}^*$, so the interval semantics is a sound abstraction of the value semantics
- Abstraction to a transition system formalizes the soundness of the implementation

Conclusion

Conclusion

- Interval arithmetics in scientific computing put bounds on rounding errors in floating point arithmetic [Moore, 1966].
- It is an abstract interpretation of the trace semantics and can be computed at runtime for one trace at a time.
- Tests may have to consider many executions, which can be quite inefficient (and often considered an error in practice).
- A further abstract yields the static interval analysis (by joining states on paths at each program point to get invariants).
- More generally, this provides a framework for dynamic analysis (their static over approximation, and the combination of the two).
- This general abstract interpretation framework for dynamic analysis is described in the paper (interval arithmetic is an instance)
- Soundness guarantee!

The End, Thank you