Festschrift on the occasion of Klaus Havelund'’s 65th birthday

Dynamic interval analysis
by abstract interpretation

Patrick Cousot

NYU, New York

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

% “Dynamic interval analysis by abstract interpretation” -1/29- © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

http://cs.nyu.edu/~pcousot
https://cs.nyu.edu/~pcousot/

Interval arithmetics

+ In scientific computing a real number is represented by a float (floating point number) [IEEE,
1985].

« Because of rounding errors, the floating point computation represents an uncertain real
computation.

» Ramon E. Moore [Moore, 1966; Moore, Kearfott, and Cloud, 2009] invented “interval
arithmetic” to put bounds on rounding errors in floating point computations.

« This guarantees that the uncertain real computation is between floating point bounds

« We show that “interval arithmetic” is a sound abstract interpretation of the program
semantics (on reals).

« Interval arithmetic is maybe the first dynamic analysis of programs.

en.wikipedia.org/wiki/Interval_arithmetic

% “Dynamic interval analysis by abstract interpretation” -2/29- © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://en.wikipedia.org/wiki/Interval_arithmetic
https://cs.nyu.edu/~pcousot/

Prefix trace semantics

% “Dynamic interval analysis by abstract interpretation” -3/29- © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Syntax

« We consider a subset of C with variables x € V, arithmetic expressions A € A, boolean
expressions B € B, statements S € 3, statement lists S1 € $7, and programs P € P

« By program component S € Pc, we mean a statement, statement list, or program

« We axiomatize a labeling of programs to designate program points ¢ € £: at[[S] after[S]
escape[[S] (loop escape via break ; statement), break-to[S], breaks-of [S]

% “Dynamic interval analysis by abstract interpretation” -4/29 - © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Trace semantics

« The prefix trace semantics 83 [S] of a program component S is a set of traces describing the
beginning of a computation

+ The maximal trace semantics are terminated (finite) or nonterminating (infinite) traces Sy

+ Atrace 7t is a finite or infinite sequences of states

+ Example: (&, {x — 1})(&, {x — 2}){t, {x = 2})

« Thestates (¢, p) € Sy = (L x Evy) are pairs of a label (program point ¢) and an environment
p

« Environments p € Evy, £ V — V assign values p(x) € V to variables x € ¥

+ Values V can be the set of

+ R of reals.
. F of floats '
- later, [of float intervals

For simplicity, we assume that execution stops in case of error (e.g. when dividing by zero or returning NaN).

TWe include +infinity but exclude NaN, -0, +0 for simplicity of the presentation, not hard to handle.

% “Dynamic interval analysis by abstract interpretation” -5/29 - © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Structural fixpoint definition of the prefix trace semantics

« Iteration statement S ::= while ¢ (B) S, (where at[S] = ¢)

si[whilet(8)S,] = Ifp" F:[whilet (B)S,] ®)
Fylwhilet (B)S,] X = {(, p)|peb} (@)
U {m, (Y, p){after[S], p) | m, (¥, p) €e XNBy[B] p=fFnt =t} (b)
U{my (¥, p)at[Sp], p) - 73 [my (¥, p) € XA By [B] p=tt A (c)

(at[Sy], p) - 715 € SY[S] AY = ¢}

(a) either the execution observation stop at[while ¢ (B) S,] = ¢, or

(b) after a number of iterations, control is back to ¢, the test is false, and the loop is exited, or

(c) after a number of iterations, control is back to ¢, the test is true, and the loop body is executed
(This includes the termination of the loop body after[[S,]| = at[while ¢ (B) S,] = ¢)

% “Dynamic interval analysis by abstract interpretation” -6/29 - © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Maximal trace semantics

« Maximal trace semantics

$v[s]

>

{re(t, py € 8[S] | (¢ = after[S]) V (escape[S] A ¢ = break-to[[S])}

II>

$°[s] = lim(s;[s])
.« Limit

ImJ 2 {meT®|VneN.n[0.n] € T}

% “Dynamic interval analysis by abstract interpretation” -7/29 - © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float interval abstraction

% “Dynamic interval analysis by abstract interpretation” -8/29 - © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float interval domain

« The abstract domain of float intervals is

1= {Bullx,x] | x,x € F\ {~00,00} A x < X}
{[~00,x] | x € [\ {~co}} U {[x,00] | x € [\ {oo}}

(The intervals [-00, —00] ¢ [and [00, 00] ¢ [are excluded.)

a

« The partial order ¥ on [is interval inclusion L' 2 @ i 17 C' [x, %] C* [y, y]ifand only if
y<x<X<T.

% “Dynamic interval analysis by abstract interpretation” -9/29- © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float notations

» Rounding of real to float:

. ('ﬂx (which can be —00) is the largest float smaller than or equal to x € R (or <'I]x = x for
x €)

. xﬂ" (which can be 00) is the smallest float greater than or equal to x € R (or xﬂ" = x for
x €F).

 Previous and next float:

« 9xis the largest floating-point number strictly less than x € F (which can be —co)
« x[is the smallest floating-point number strictly larger than x € F (which can be co).

+ See the paper for (machine-dependent) soundness conditions for these operations

% “Dynamic interval analysis by abstract interpretation” -10/29 - © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

ol (x)
Y([x.%])
& (p)

7' (P)
a'((, p))
y((e [2))
Ty e)
o)

)

)

cx(H
YT

(1L | 1 1 L | L | L T L L 114

>

Float interval abstraction

[Tx, <]

{xeR|x<x<x}

real abstraction by float interval (14)

XeEVia (p(x)) environment abstraction

{peV—-R|VxeV.p(x) ey (px)}

(¢, &' (p)) state abstraction
{(&, p) | p €Y' (p)}

o'Z”(rrl) d"(nn) [in]finite trace abstraction
{my .., ... |Iml = mlAVi=1,...,n, .ﬂie)')”(ﬁi)}

(@ () | e IT} set of traces abstraction

fmldmet = |J§'@ | 7el

Because the floats are a subset of the reals, we can use & to abstract both real and float traces

(i.e.V beRor[).

“Dynamic interval analysis by abstract interpretation”

(O(ST), € == (S, ©)

o

(15)

-11/29 -

© P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float interval arithmetics

% “Dynamic interval analysis by abstract interpretation” -12/29- © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float interval abstraction

+ We derive sound abstract operations on float intervals by calculational design (float constants
(like 0.1) with rounding, addition &', subtraction &', multiplication &, etc., Boolean
comparisons ', @', etc.

« Subdistributivity x ®' (y o z)c (x® y) @' (x ® z) holds but not distributivity

« Handling tests:

- real computation: only one branch taken

- float computation: only one branch taken, but could be the wrong one

- interval computation: one or both alternatives taken (hence one real trace can be
abstracted into interval several traces).

« In most interval arithmetic libraries, this case raises an exception that stops execution, which
is a further coarse abstraction of the abstract semantics presented here.

% “Dynamic interval analysis by abstract interpretation” -13/29- © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

The abstract approximation order

% “Dynamic interval analysis by abstract interpretation” —-14/29 - © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Comparing abstract overapproximations in the concrete

e Program:t x = x — x ;&
« Concrete (with precondition x € {-0.1y,0.1x}):

H = {(el, X = 0'1[R><EZ’ X = 0'0|R>’ <el, X = _0‘1[R><ez’ X = 00|R>}
« Sound abstract semantics on floats:

II, = {{&, x =1[0.09,0.11])(&, x = [0.00,0.00]), IT < y/(IT,)
(&, x = [-0.11,-0.09]) (&, x = [0.00,0.00])}
II, = {{&, x =[-0.11,0.11]){&, x = [-0.02,0.20])} 1 < $'(11,)
input interval interval arithmetic

- Both abstractions are sound, in the concrete, IT < '(IT,) and IT < }'(IT,)
- y!(IT,) is more precise that '(I1,) since, in the concrete,

Y'(IT)) < y'(IT,)
« I1, and IT, are not C-comparable as abstract elements of (p(57), ©

+ So C does not allow over approximating I1, by IT,!

% “Dynamic interval analysis by abstract interpretation” -15/29 - © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Sound over-approximation in the concrete

- Define IT, &' 1,

112

m, e 1, P, < §'(IT,) (16)

Vi, €I, .Vn € (7)) . 37, € I, . € Y'(7,)

to mean that I1, is more precise than I1,, by comparison in the concrete.

- II, < I, implies TT, &' TI, so C is correct but inadequate for approximation in the abstract
(as shown by the previous example)

% “Dynamic interval analysis by abstract interpretation” -16/29 - © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Sound over-approximation in the abstract

« We express ' in the abstract, without referring to the concretization)7"

— o= — -
« WedefineIT &' I so thatthe traces of IT have the same control as the traces of IT but
. — . . w .
intervals are larger (and II may contain extra traces due to the imprecision of interval tests).

. &' is Hoare preorder [Winskel, 1983] on sets of traces.

a

[x,%] ' [y, 7]

i ! o

>

(& py &' (¥, p'

>

iy
T

I

T

!

>

TE T
Lemma2 (T &' IT)= (I¢ IT).

“Dynamic interval analysis by abstract interpretation”

Xs;sxsy (18)
Vx e V. p(x)C' p'(x)
t=¢)A(pL p)
(7l = 17 A (Vi e [0,)7l . 7 &)
Viell .37 eIl .7C 7

[}

-17/29 - © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Sound over-approximation in the abstract (cont'd)

« Strictly weaker

« Example:

o, = {(x=1[00,10]),

(t, x = [1.0,2.0)}
I, = {{& x=1[0.0,05]),

(&, x =[0.5,2.0])}
. T, &' 1, (same concrete traces)
. 1, # 10, (no inclusion of abstract traces)
‘ ﬁz f ﬁ1

% “Dynamic interval analysis by abstract interpretation” -18/29 - © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Soundness and calculational design

Value (real/float) concrete semantics: 85 [S]

Interval abstract semantics: 8; [S]
« Soundness: all value (real/float) traces are included in the interval traces:

&(83[s] & 8t[s]

= &(s;[s]h e’ s3] {lemma 2§
= FESIS]) < 7S [S]) {def.2'§
= 8:[s] < 78 [S]) {Galois connection (@(51%), €) == (p(SI®), <), (15)§

dl]

« Calculational design:
- Calculate &' (83 [S])
- Over approximate by =’ to eliminate all concrete operations

% “Dynamic interval analysis by abstract interpretation” -19/29 - © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Calculational design of the
float interval trace semantics

% “Dynamic interval analysis by abstract interpretation” -20/29 - © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float interval abstraction of an assignment semantics

e Siui=tx=A;

« Concrete semantics on reals (V = R) or float (V = [):

87[s] = & py I peEvy}u (2)
{(t, p)(after[S], p[x — Ly [A]p]) | p € Evy}

« Abstract semantics on intervals (V = [)

S/[S] & & p)lpelky}iu
{(t, p)(after[S], p[x — L [A]p]) | p € Ev;}

« Same traces except for computing on intervals rather than values

% “Dynamic interval analysis by abstract interpretation” -21/29- © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Proof

We can now abstract the semantics of real (v=r) or float (v=F) assignments by float intervals.

al([ex=A3)
= {d(m) [meltx=As]} { set of traces abstraction (14) §
= {a'(m) | e ({8, p) | p € Bvy}U{(L, p)(after[S], plx «— &y [A]p]) | p € Evy}} {def. [t x = A5]in(2)§
= {(¢, d(p)) | p € Bvy } U {(¢, &' (p))(after[S], a'(plx «— Ly [AlpD)) | p € Evy} { def. (14) of trace abstraction §
= {(t, d(p)) | p € By} U {(t, &l(p))(after[S], a!(p)[x «— ol(y[A]p])) | p € Evy} { def. (14) of environment abstraction §
E'E o' (p) | p e B} U{(E, ol (p)after[S], &' (p)[x — o [Aa’ (p)]) | p € Evy} {def.(18) of =" and (21)§
E{(L, py | p e By} U {(t, p)(after[S], plx «— &, [A]p)) | p € B} Ua'(p) | p € Evy} € Ey, by (14) for environment abstraction §
2 8/t x=A5] { by defining 8} [[¢ x = A ;] asin (2) for v=i§

Approximation [£':
« value &, to interval arithmetic &,

« value to interval environments

¥ “Dynamic interval analysis by abstract interpretation” -22/29- © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float interval abstraction of an iteration

« Iteration statement S ::= while ¢ (B) S, (where at[S] = ¢)
Calculational order

Si[whilet(B)S,] = Ifp-F:[whilet (B)S,] (8bis)

{6 p) | peby
U {m, (¥, p)(after[S], pg) | m, (¥, p) € X A |
EIﬁtl: . '%[l[[B]]p = <pu’ pﬂf> /\Pﬂ‘ +J AU = ‘Z}
U{my (¥, p)(at[Sy]s pedms | (Y, p) € XA

o 3pg - Bi[BlP = (Py> P} Apy DN
Approxmatlonlorder (atﬂsh]], Pu>7T3 € 8[?‘ [[Sbﬂ AU = e}

>

F:[whilet (B) S,] X

- Soundness &'(S:[S]) = 8;[9]
+ Only other example is Mycroft's strictness analysis (computational order C and approximation
order <))

% “Dynamic interval analysis by abstract interpretation” -23/29- © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Specification of an implementation

 The abstraction to a transition system provides a small-step operational semantics of the
program (specifying an implementation)

« We used trace abstractions so there is no need for [bi-]simulations, etc. in the proof of
correctness of the implementation

% “Dynamic interval analysis by abstract interpretation” —24/29 - © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Summary

% “Dynamic interval analysis by abstract interpretation”

-25/29 -

© P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Summary

We have defined the value semantics Sy, of the language for reals and floats (executions on
reals are not implementable/too costly to implement?)

Next, we define the interval abstraction &' of a value semantics (replacing reals by float
intervals)

The best float interval semantics of the value semantics is &[(S@) (execute on reals and then
abstract to float intervals, not implementable)

We define a sound over-approximation partial order = of interval semantics (with larger
intervals)

Next, we calculate the interval semantics S| of the language (executions on float intervals)

By calculational design &'(8;) &’ 8/, so the interval semantics is a sound abstraction of the
value semantics

Abstraction to a transition system formalizes the soundness of the implementation

2e.g. using Bill Gosper’s exact algorithms for continued fraction arithmetic.

% “Dynamic interval analysis by abstract interpretation” -26/29 - © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Conclusion

% “Dynamic interval analysis by abstract interpretation”

-27/29 -

© P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Conclusion

« Interval arithmetics in scientific computing put bounds on rounding errors in floating point
arithmetic [Moore, 1966].

« Itis an abstract interpretation of the trace semantics and can be computed at runtime for one
trace at a time.

+ Tests may have to consider many executions, which can be quite inefficient (and often
considered an error in practice).

« A further abstract yields the static interval analysis (by joining states on paths at each
program point to get invariants).

« More generally, this provides a framework for dynamic analysis (their static over
approximation, and the combination of the two).

« This general abstract interpretation framework for dynamic analysis is described in the paper
(interval arithmetic is an instance)

+ Soundness guarantee!

% “Dynamic interval analysis by abstract interpretation” -28/29 - © P.Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

The End, Thank you

¥ “Dynamic interval analysis by abstract interpretation” -29/29 - © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

