
Festschrift on the occasion of Klaus Havelund’s 65th birthday

Dynamic interval analysis
by abstract interpretation

Patrick Cousot

NYU, New York
pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

“Dynamic interval analysis by abstract interpretation” – 1/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

http://cs.nyu.edu/~pcousot
https://cs.nyu.edu/~pcousot/

Interval arithmetics

• In scientific computing a real number is represented by a float (floating point number) [IEEE,
1985].

• Because of rounding errors, the floating point computation represents an uncertain real
computation.

• Ramon E. Moore [Moore, 1966; Moore, Kearfott, and Cloud, 2009] invented “interval
arithmetic” to put bounds on rounding errors in floating point computations.

• This guarantees that the uncertain real computation is between floating point bounds

• We show that “interval arithmetic” is a sound abstract interpretation of the program
semantics (on reals).

• Interval arithmetic is maybe the first dynamic analysis of programs.

en.wikipedia.org/wiki/Interval_arithmetic

“Dynamic interval analysis by abstract interpretation” – 2/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://en.wikipedia.org/wiki/Interval_arithmetic
https://cs.nyu.edu/~pcousot/

Prefix trace semantics

“Dynamic interval analysis by abstract interpretation” – 3/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Syntax

• We consider a subset of Cwith variables x ∈ V , arithmetic expressions A ∈ A, boolean
expressions B ∈ B, statements S ∈ S, statement lists Sl ∈ Sl, and programs P ∈ P

• By program component S ∈ Pc, we mean a statement, statement list , or program

• We axiomatize a labeling of programs to designate program points ℓ ∈ L: atJSK afterJSK
escapeJSK (loop escape via break ; statement), break-toJSK, breaks-ofJSK

“Dynamic interval analysis by abstract interpretation” – 4/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Trace semantics

• The prefix trace semantics 𝓢∗VJSK of a program component S is a set of traces describing the
beginning of a computation

• The maximal trace semantics are terminated (finite) or nonterminating (infinite) traces S+∞V
• A trace 𝜋 is a finite or infinite sequences of states
• Example: ⟨ℓ1, {x→ 1}⟩⟨ℓ2, {x→ 2}⟩⟨ℓ4, {x→ 2}⟩
• The states ⟨ℓ, 𝜌⟩ ∈ SV ≜ (L × EvV) are pairs of a label (program point ℓ) and an environment
𝜌

• Environments 𝜌 ∈ EvV ≜ V → V assign values 𝜌(x) ∈ V to variables x ∈ V

• Values V can be the set of

• R of reals.
• F of floats 1

• later, I of float intervals
For simplicity, we assume that execution stops in case of error (e.g. when dividing by zero or returning NaN).

1We include ±infinity but exclude NaN, −0, +0 for simplicity of the presentation, not hard to handle.

“Dynamic interval analysis by abstract interpretation” – 5/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Structural fixpoint definition of the prefix trace semantics

• Iteration statement S ∶∶= while ℓ (B) S𝑏 (where atJSK = ℓ)
𝓢∗VJwhile ℓ (B) S𝑏K = lfp⊆𝓕∗VJwhile ℓ (B) S𝑏K (8)

𝓕∗VJwhile ℓ (B) S𝑏K𝑋 ≜ {⟨ℓ, 𝜌⟩ | 𝜌 ∈ Ev} (a)

∪ {𝜋2⟨ℓ′, 𝜌⟩⟨afterJSK, 𝜌⟩ | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑VJBK 𝜌 = ff ∧ ℓ′ = ℓ} (b)

∪ {𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌⟩ ⋅ 𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧𝓑VJBK 𝜌 = tt ∧
⟨atJS𝑏K, 𝜌⟩ ⋅ 𝜋3 ∈ 𝓢∗VJS𝑏K ∧ ℓ′ = ℓ}

(c)

(a) either the execution observation stop atJwhile ℓ (B) S𝑏K = ℓ, or
(b) after a number of iterations, control is back to ℓ, the test is false, and the loop is exited, or

(c) after a number of iterations, control is back to ℓ, the test is true, and the loop body is executed

(This includes the termination of the loop body afterJS𝑏K = atJwhile ℓ (B) S𝑏K = ℓ)
“Dynamic interval analysis by abstract interpretation” – 6/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Maximal trace semantics

• Maximal trace semantics

𝓢+VJSK ≜ {𝜋⟨ℓ, 𝜌⟩ ∈ 𝓢∗VJSK ∣ (ℓ = afterJSK) ∨ (escapeJSK ∧ ℓ = break-toJSK)}
𝓢∞V JSK ≜ lim(𝓢∗VJSK)

• Limit

lim𝒯 ≜ {𝜋 ∈ T∞ ∣ ∀𝑛 ∈ N . 𝜋[0..𝑛] ∈ 𝒯 }.

“Dynamic interval analysis by abstract interpretation” – 7/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float interval abstraction

“Dynamic interval analysis by abstract interpretation” – 8/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float interval domain

• The abstract domain of float intervals is

I ≜ {∅} ∪ {[𝑥, 𝑥] ∣ 𝑥, 𝑥 ∈ F ⧵ {−∞,∞} ∧ 𝑥 ⩽ 𝑥}∪ {[−∞, 𝑥] ∣ 𝑥 ∈ F ⧵ {−∞}} ∪ {[𝑥,∞] ∣ 𝑥 ∈ F ⧵ {∞}}

(The intervals [−∞, −∞] ∉ I and [∞,∞] ∉ I are excluded.)
• The partial order ⊑𝑖 on I is interval inclusion ⊥𝑖 ≜ ∅ ⊑𝑖 ⊥𝑖 ⊑𝑖 [𝑥, 𝑥] ⊑𝑖 [𝑦, 𝑦] if and only if
𝑦 ⩽ 𝑥 ⩽ 𝑥 ⩽ 𝑦.

“Dynamic interval analysis by abstract interpretation” – 9/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float notations

• Rounding of real to float:

• ↰⌉⌉𝑥 (which can be −∞) is the largest float smaller than or equal to 𝑥 ∈ R (or ↰⌉⌉𝑥 = 𝑥 for
𝑥 ∈ F)

• 𝑥⌈⌈↱ (which can be∞) is the smallest float greater than or equal to 𝑥 ∈ R (or 𝑥⌈⌈↱ = 𝑥 for
𝑥 ∈ F).

• Previous and next float:

• ↰⌉𝑥 is the largest floating-point number strictly less than 𝑥 ∈ F (which can be −∞)
• 𝑥⌈↱ is the smallest floating-point number strictly larger than 𝑥 ∈ F (which can be∞).

• See the paper for (machine-dependent) soundness conditions for these operations

“Dynamic interval analysis by abstract interpretation” – 10/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float interval abstraction

𝛼I(𝑥) ≜ [↰⌉⌉𝑥, 𝑥⌈⌈↱] real abstraction by float interval (14)
𝛾I([𝑥, 𝑥]) ≜ {𝑥 ∈ R ∣ 𝑥 ⩽ 𝑥 ⩽ 𝑥}
�̇�I(𝜌) ≜ x ∈ V ↦ 𝛼I(𝜌(x)) environment abstraction
̇𝛾I(𝜌) ≜ {𝜌 ∈ V → R ∣ ∀x ∈ V . 𝜌(x) ∈ 𝛾I(𝜌(x))}

�̈�I(⟨ℓ, 𝜌⟩) ≜ ⟨ℓ, �̇�I(𝜌)⟩ state abstraction
̈𝛾I(⟨ℓ, 𝜌⟩) ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ ̇𝛾I(𝜌)}

�⃗�I(𝜋1…𝜋𝑛…) ≜ �̈�I(𝜋1)… �̈�I(𝜋𝑛)… [in]finite trace abstraction
𝛾I(𝜋1…𝜋𝑛…) ≜ {𝜋1…𝜋𝑛… ∣ |𝜋| = |𝜋| ∧ ∀𝑖 = 1,… , 𝑛,… . 𝜋𝑖 ∈ ̈𝛾I(𝜋𝑖)}

�̊�I(𝛱) ≜ {�⃗�I(𝜋) ∣ 𝜋 ∈ 𝛱} set of traces abstraction

̊𝛾I(𝛱) ≜ {𝜋 ∣ �⃗�I(𝜋) ∈ 𝛱} = ⋃{𝛾I(𝜋) ∣ 𝜋 ∈ 𝛱}
Because the floats are a subset of the reals, we can use 𝛼I to abstract both real and float traces
(i.e. V be R or F).

⟨℘(S+∞V), ⊆⟩ −−−−→←−−−−
�̊�I

̊𝛾I
⟨℘(S+∞I), ⊆⟩ (15)

“Dynamic interval analysis by abstract interpretation” – 11/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float interval arithmetics

“Dynamic interval analysis by abstract interpretation” – 12/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float interval abstraction

• We derive sound abstract operations on float intervals by calculational design (float constants
(like 0.1) with rounding, addition ⊕𝑖, subtraction ⊖𝑖, multiplication ⊗𝑖, etc., Boolean
comparisons ⧀𝑖, ⧀𝑖, etc.

• Subdistributivity 𝑥 ⊗𝑖 (𝑦 ⊕𝑖 𝑧) ⊑𝑖 (𝑥 ⊗𝑖 𝑦) ⊕𝑖 (𝑥 ⊗𝑖 𝑧) holds but not distributivity
• Handling tests:

• real computation: only one branch taken
• float computation: only one branch taken, but could be the wrong one
• interval computation: one or both alternatives taken (hence one real trace can be
abstracted into interval several traces).

• In most interval arithmetic libraries, this case raises an exception that stops execution, which
is a further coarse abstraction of the abstract semantics presented here.

“Dynamic interval analysis by abstract interpretation” – 13/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

The abstract approximation order

“Dynamic interval analysis by abstract interpretation” – 14/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Comparing abstract overapproximations in the concrete

• Program: ℓ1 x = x − x ; ℓ2
• Concrete (with precondition x ∈ {−0.1R, 0.1R}):

𝛱 = {⟨ℓ1, x = 0.1R⟩⟨ℓ2, x = 0.0R⟩, ⟨ℓ1, x = −0.1R⟩⟨ℓ2, x = 0.0R⟩}
• Sound abstract semantics on floats:

𝛱1 = {⟨ℓ1, x = [0.09, 0.11]⟩⟨ℓ2, x = [0.00, 0.00]⟩, 𝛱 ⊆ ̊𝛾I(𝛱1)
⟨ℓ1, x = [−0.11, −0.09]⟩⟨ℓ2, x = [0.00, 0.00]⟩}

𝛱2 = {⟨ℓ1, x = [−0.11, 0.11]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
input interval

⟩⟨ℓ2, x = [−0.02, 0.20]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
interval arithmetic

⟩} 𝛱 ⊆ ̊𝛾I(𝛱2)

• Both abstractions are sound, in the concrete,𝛱 ⊆ ̊𝛾I(𝛱2) and𝛱 ⊆ ̊𝛾I(𝛱2)
• ̊𝛾I(𝛱1) is more precise that ̊𝛾I(𝛱2) since, in the concrete,

̊𝛾I(𝛱1) ⊆ ̊𝛾I(𝛱2)
• 𝛱1 and𝛱2 are not ⊆-comparable as abstract elements of ⟨℘(S+∞I), ⊆⟩
• So ⊆ does not allow over approximating𝛱1 by𝛱2!

“Dynamic interval analysis by abstract interpretation” – 15/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Sound over-approximation in the concrete

• Define𝛱1 ⊑̊
𝑖 𝛱2

𝛱1 ⊑̊
𝑖 𝛱2 ≜ ̊𝛾I(𝛱1) ⊆ ̊𝛾I(𝛱2) (16)
= ∀𝜋1 ∈ 𝛱1 . ∀𝜋 ∈ 𝛾I(𝜋1) . ∃𝜋2 ∈ 𝛱2 . 𝜋 ∈ 𝛾I(𝜋2)

to mean that𝛱1 is more precise than𝛱2, by comparison in the concrete.

• 𝛱1 ⊆ 𝛱2 implies𝛱1 ⊑̊
𝑖 𝛱2 so ⊆ is correct but inadequate for approximation in the abstract

(as shown by the previous example)

“Dynamic interval analysis by abstract interpretation” – 16/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Sound over-approximation in the abstract (cont’d)

• We express ⊑̊𝑖 in the abstract, without referring to the concretization 𝛾I

• We define𝛱 Ť̊𝑖 𝛱′ so that the traces of𝛱′ have the same control as the traces of𝛱 but
intervals are larger (and𝛱′ may contain extra traces due to the imprecision of interval tests).

• Ť̊𝑖 is Hoare preorder [Winskel, 1983] on sets of traces.

[𝑥, 𝑥] ⊑𝑖 [𝑦, 𝑦] ≜ 𝑦 ⩽ 𝑥 ⩽ 𝑥 ⩽ 𝑦 (18)

𝜌 ⊑̇𝑖 𝜌′ ≜ ∀x ∈ V . 𝜌(x) ⊑𝑖 𝜌′(x)

⟨ℓ, 𝜌⟩ ⊑̈𝑖 ⟨ℓ′, 𝜌′⟩ ≜ (ℓ = ℓ′) ∧ (𝜌 ⊑̇𝑖 𝜌′)

𝜋 ⊑⃗𝑖 𝜋′ ≜ (|𝜋| = |𝜋′|) ∧ (∀𝑖 ∈ [0, |𝜋|[. 𝜋𝑖 ⊑̈
𝑖 𝜋′𝑖)

𝛱 Ť̊𝑖 𝛱′ ≜ ∀𝜋 ∈ 𝛱 . ∃𝜋′ ∈ 𝛱′ . 𝜋 ⊑⃗𝑖 𝜋′

Lemma 2 (𝛱 Ť̊𝑖 𝛱′) ⇒ (𝛱 ⊑̊𝑖 𝛱′). �
“Dynamic interval analysis by abstract interpretation” – 17/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Sound over-approximation in the abstract (cont’d)

• Strictly weaker

• Example:

𝛱1 = {⟨ℓ1, x = [0.0, 1.0]⟩,
⟨ℓ1, x = [1.0, 2.0]⟩}

𝛱2 = {⟨ℓ1, x = [0.0, 0.5]⟩,
⟨ℓ1, x = [0.5, 2.0]⟩}

• 𝛱1 ⊑̊
𝑖 𝛱2 (same concrete traces)

• 𝛱1 /̊Ť𝑖 𝛱2 (no inclusion of abstract traces)

• 𝛱2 /̊Ť𝑖 𝛱1

“Dynamic interval analysis by abstract interpretation” – 18/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Soundness and calculational design

• Value (real/float) concrete semantics: 𝓢∗VJSK
• Interval abstract semantics: 𝓢∗I JSK
• Soundness: all value (real/float) traces are included in the interval traces:

�̊�I(𝓢∗VJSK) Ť̊𝑖 𝓢∗I JSK
⇒ �̊�I(𝓢∗VJSK) ⊑̊𝑖 𝓢∗I JSK Hlemma 2I
⇒ ̊𝛾I(�̊�I(𝓢∗VJSK)) ⊆ ̊𝛾I(𝓢∗I JSK) Hdef. ⊑̊𝑖I
⇒ 𝓢∗VJSK ⊆ ̊𝛾I(𝓢∗I JSK) HGalois connection ⟨℘(S+∞V), ⊆⟩ −−−−→←−−−−

�̊�I

̊𝛾I
⟨℘(S+∞I), ⊆⟩, (15)I

• Calculational design:

• Calculate �̊�I(𝓢∗VJSK)
• Over approximate by Ť̊𝑖 to eliminate all concrete operations

“Dynamic interval analysis by abstract interpretation” – 19/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Calculational design of the
float interval trace semantics

“Dynamic interval analysis by abstract interpretation” – 20/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float interval abstraction of an assignment semantics

• S ∶∶= ℓ x = A ;
• Concrete semantics on reals (V = R) or float (V = F):

𝓢∗VJSK = {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvV} ∪ (2)
{⟨ℓ, 𝜌⟩⟨afterJSK, 𝜌[x←𝓐VJAK𝜌]⟩ ∣ 𝜌 ∈ EvV}

• Abstract semantics on intervals (V = I)

𝓢∗I JSK ≜ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvI} ∪
{⟨ℓ, 𝜌⟩⟨afterJSK, 𝜌[x←𝓐IJAK𝜌]⟩ ∣ 𝜌 ∈ EvI}

• Same traces except for computing on intervals rather than values

“Dynamic interval analysis by abstract interpretation” – 21/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Proof
We can now abstract the semantics of real (V=R) or float (V=F) assignments by float intervals.
𝛼I([ℓ x = A ;])

= {𝛼I(𝜋) ∣ 𝜋 ∈ [ℓ x = A ;]} Hset of traces abstraction (14)I
= {𝛼I(𝜋) ∣ 𝜋 ∈ {⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvV} ∪ {⟨ℓ, 𝜌⟩⟨afterJSK, 𝜌[x←𝓐VJAK𝜌]⟩ ∣ 𝜌 ∈ EvV}} Hdef. [ℓ x = A ;] in (2)I
= {⟨ℓ, 𝛼I(𝜌)⟩ ∣ 𝜌 ∈ EvV} ∪ {⟨ℓ, 𝛼I(𝜌)⟩⟨afterJSK, 𝛼I(𝜌[x←𝓐VJAK𝜌])⟩ ∣ 𝜌 ∈ EvV} Hdef. (14) of trace abstractionI
= {⟨ℓ, 𝛼I(𝜌)⟩ ∣ 𝜌 ∈ EvV} ∪ {⟨ℓ, 𝛼I(𝜌)⟩⟨afterJSK, 𝛼I(𝜌)[x← 𝛼I(𝓐VJAK𝜌])⟩ ∣ 𝜌 ∈ EvV} Hdef. (14) of environment abstractionI
Ť̊𝑖{⟨ℓ, 𝛼I(𝜌)⟩ ∣ 𝜌 ∈ EvV} ∪ {⟨ℓ, 𝛼I(𝜌)⟩⟨afterJSK, 𝛼I(𝜌)[x←𝓐IJAK𝛼I(𝜌)]⟩ ∣ 𝜌 ∈ EvV} Hdef. (18) of Ť̊𝑖 and (21)I
Ť̊𝑖{⟨ℓ, 𝜌⟩ ∣ 𝜌 ∈ EvI} ∪ {⟨ℓ, 𝜌⟩⟨afterJSK, 𝜌[x←𝓐IJAK𝜌]⟩ ∣ 𝜌 ∈ EvI} H{𝛼I(𝜌) ∣ 𝜌 ∈ EvV} ⊆ EvI by (14) for environment abstractionI
≜ 𝓢∗I Jℓ x = A ;K Hby defining 𝓢∗I Jℓ x = A ;K as in (2) for V=II
Approximation Ť̊𝑖:

• value 𝓐V to interval arithmetic 𝓐I

• value to interval environments

“Dynamic interval analysis by abstract interpretation” – 22/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Float interval abstraction of an iteration

• Iteration statement S ∶∶= while ℓ (B) S𝑏 (where atJSK = ℓ)
𝓢∗I Jwhile ℓ (B) S𝑏K = lfp

Calculational order
↓
⊆𝓕∗I Jwhile ℓ (B) S𝑏K (8bis)

𝓕∗I Jwhile ℓ (B) S𝑏K𝑋 ≜ {⟨ℓ, 𝜌⟩ | 𝜌 ∈ EvI}
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨afterJSK, 𝜌ff⟩ | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧

∃𝜌tt .𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌ff ≠ ∅̇ ∧ ℓ′ = ℓ}
∪ {𝜋2⟨ℓ′, 𝜌⟩⟨atJS𝑏K, 𝜌tt⟩𝜋3 | 𝜋2⟨ℓ′, 𝜌⟩ ∈ 𝑋 ∧

∃𝜌ff .𝓑IJBK𝜌 = ⟨𝜌tt , 𝜌ff⟩ ∧ 𝜌tt ≠ ∅̇ ∧
⟨atJS𝑏K, 𝜌tt⟩𝜋3 ∈ 𝓢∗I JS𝑏K ∧ ℓ′ = ℓ}

• Soundness �̊�I(𝓢∗VJSK)
Approximation order

↓
Ť̊𝑖 𝓢∗I JSK

• Only other example is Mycroft’s strictness analysis (computational order ⊑ and approximation
order ⊆))

“Dynamic interval analysis by abstract interpretation” – 23/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Specification of an implementation

• The abstraction to a transition system provides a small-step operational semantics of the
program (specifying an implementation)

• We used trace abstractions so there is no need for [bi-]simulations, etc. in the proof of
correctness of the implementation

“Dynamic interval analysis by abstract interpretation” – 24/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Summary

“Dynamic interval analysis by abstract interpretation” – 25/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Summary

• We have defined the value semantics 𝓢∗V of the language for reals and floats (executions on
reals are not implementable/too costly to implement2)

• Next, we define the interval abstraction �̊�I of a value semantics (replacing reals by float
intervals)

• The best float interval semantics of the value semantics is �̊�I(𝓢∗V) (execute on reals and then
abstract to float intervals, not implementable)

• We define a sound over-approximation partial order Ť̊𝑖 of interval semantics (with larger
intervals)

• Next, we calculate the interval semantics 𝓢∗I of the language (executions on float intervals)

• By calculational design �̊�I(𝓢∗V) Ť̊
𝑖 𝓢∗I , so the interval semantics is a sound abstraction of the

value semantics

• Abstraction to a transition system formalizes the soundness of the implementation
2e.g. using Bill Gosper’s exact algorithms for continued fraction arithmetic.

“Dynamic interval analysis by abstract interpretation” – 26/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Conclusion

“Dynamic interval analysis by abstract interpretation” – 27/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

Conclusion

• Interval arithmetics in scientific computing put bounds on rounding errors in floating point
arithmetic [Moore, 1966].

• It is an abstract interpretation of the trace semantics and can be computed at runtime for one
trace at a time.

• Tests may have to consider many executions, which can be quite inefficient (and often
considered an error in practice).

• A further abstract yields the static interval analysis (by joining states on paths at each
program point to get invariants).

• More generally, this provides a framework for dynamic analysis (their static over
approximation, and the combination of the two).

• This general abstract interpretation framework for dynamic analysis is described in the paper
(interval arithmetic is an instance)

• Soundness guarantee!

“Dynamic interval analysis by abstract interpretation” – 28/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

The End, Thank you

“Dynamic interval analysis by abstract interpretation” – 29/29 – © P. Cousot, NYU, CIMS, CS, ISoLA 2021, 24 Oct 2021 / Rhodes, Greece

https://cs.nyu.edu/~pcousot/

