
Contract Precondition
Inference from

Intermittent Assertions
on Collections

Patrick Cousot Radhia Cousot Francesco Logozzo

(*)

(*) Tech. Rept. no. MSR-TR-2010-117, Sep. 2010, submitted.

Motivation

!"#$%&'()#*$'+$,'-.&/,.$%&#,'-012'-$1-+#&#-,#

! 3-+#&$/$,'-.&/,.$%&#,'-012'- $+&'*$."#$)/-45/4#$/-0$
%&'4&/**#&$/66#&2'-6

! 7#-#&/.#$,'0# $.'$,"#,8$."/.$%&#,'-012'-

96#+5))-#66

! :-2,1%/.#$#&&'&6$;#<4<$,"/-4#$.'$.&/,#$#=#,52'-$
*'0#$(#+'&#$/,.5/)$#&&'&$0'#6$',,5&>

! 96#$,'-.&/,.$+'&$6#%/&/.#$6./2,$/-/)?616$'+$*'05)#6

Example

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

void AllNotNull(Ptr[] A) {
/* 1: */ int i = 0;
/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {
/* 4: */ assert((A != null) && (A[i] != null));
/* 5: */ A[i].f = new Object();
/* 6: */ i++;
/* 7: */ }
/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modiÞed
at program point 5: . !"

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposede.g.
in [9, Sect. 10-4.6]) or [8, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that e! cient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the codex = random(); assert(x
==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side e" ect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;
while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))
{ return false };

i++ }
return true }

ModiÞcations of i have no visible side e" ects while those of elements ofA do have,
so the assignmentA[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. !"

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and e! cient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantiÞers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. !"

The semantics of code is formalized in Sect.2 and that of speciÞcations by runtime
assertions in Sect.3. The contract precondition inference problem is deÞned in Sect.4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect.5 and used in Sect.6 to provide a Þxpoint solution to
the contract precondition inference problem. Several e" ective contract precondition
inference are then proposed, by data ßow analysis in Sect.7, for scalar variables both
by forward symbolic analysis in Sect.8 and by backward symbolic analysis in Sect.9,
for collections by forward analysis in Sect.10. Sect.11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [8], the small-step operational se-
mantics of code is assumed to be given by atransition system #Σ, τ, I$whereΣ is a

2

@&'*

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Contract Precondition Inference from Intermittent
Assertions on Collections

Patrick Cousot 2,3, Radhia Cousot 1,3,4, and Francesco Logozzo 4

1 Centre National de la Recherche ScientiÞque, Paris
2 Courant Institute of Mathematical Sciences, New York University

3 «Ecole Normale Sup«erieure, Paris
4 MSR, Redmond

Abstract. In the context of design by contracts, programmers often insert asser-
tions in their code to be optionally checked at runtime, at least during the debugging
phase. These assertions would better be given as a precondition of the method-
/procedure (e.g. for separate static analysis). We deÞne precisely and formally the
contract inference problem from intermittent assertions inserted in the code by the
programmer. Our deÞnition excludes no good run even when a non-deterministic
choice (e.g. an interactive input) could lead to a bad one. We then introduce new
abstract interpretation-based methods to automatically infer both the static contract
precondition of a method/procedure and the code to check it at runtime on scalar
and collection variables.

1 Introduction

In the context of static program analysis for design by contract [20,21], it is quite
frequent that preconditions for the code (i.e. a program/module/method/procedure/-
function/assembly/etc) have been only partially specified by the programmer (or even
not at all for legacy code) and need to be automatically strengthened or inferred by
taking into account the implicit language assertions(e.g. runtime errors) and the
explicit programmer assertions(e.g. assertions and contracts of called methods/pro-
cedures). Besides the methodological advantage of anticipating future inevitable re-
quirements when running a code, precise contracts are necessary in the context of a
separate program analysis as e.g. in Clousot , an abstract interpretation-based static
contract checker for .NET [16]. We work in the context of contracts embedded in
the code [4] so that specification conditions are expressed in the programming lan-
guage itself (and extracted by the compiler for use in contract related tools). The
precondition inference problem for a code is twofold [4]

Ð Static analysis problem: infer the entry semantic precondition from control flow
dependent language and programmer assertions embedded in the code to guard,
whenever possible, against inevitable errors;

Ð Code synthesis problem:generate pure code checking for that precondition. This
checking code must be separable from the checked code and should only involve
elements visible to all callers of the checked code.

Example 1 The problem is illustrated by the following AllNotNull procedure where
the precondition that the array A and all array elements should not be null A !=
null " # i $ [0, A.length) : A[i] != null is checked by the implicit language assertions
while iterating over the array.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Contract Precondition Inference from Intermittent
Assertions on Collections

Patrick Cousot 2,3, Radhia Cousot 1,3,4, and Francesco Logozzo 4

1 Centre National de la Recherche ScientiÞque, Paris
2 Courant Institute of Mathematical Sciences, New York University

3 «Ecole Normale Sup«erieure, Paris
4 MSR, Redmond

Abstract. In the context of design by contracts, programmers often insert asser-
tions in their code to be optionally checked at runtime, at least during the debugging
phase. These assertions would better be given as a precondition of the method-
/procedure (e.g. for separate static analysis). We deÞne precisely and formally the
contract inference problem from intermittent assertions inserted in the code by the
programmer. Our deÞnition excludes no good run even when a non-deterministic
choice (e.g. an interactive input) could lead to a bad one. We then introduce new
abstract interpretation-based methods to automatically infer both the static contract
precondition of a method/procedure and the code to check it at runtime on scalar
and collection variables.

1 Introduction

In the context of static program analysis for design by contract [20,21], it is quite
frequent that preconditions for the code (i.e. a program/module/method/procedure/-
function/assembly/etc) have been only partially specified by the programmer (or even
not at all for legacy code) and need to be automatically strengthened or inferred by
taking into account the implicit language assertions(e.g. runtime errors) and the
explicit programmer assertions(e.g. assertions and contracts of called methods/pro-
cedures). Besides the methodological advantage of anticipating future inevitable re-
quirements when running a code, precise contracts are necessary in the context of a
separate program analysis as e.g. in Clousot , an abstract interpretation-based static
contract checker for .NET [16]. We work in the context of contracts embedded in
the code [4] so that specification conditions are expressed in the programming lan-
guage itself (and extracted by the compiler for use in contract related tools). The
precondition inference problem for a code is twofold [4]

Ð Static analysis problem: infer the entry semantic precondition from control flow
dependent language and programmer assertions embedded in the code to guard,
whenever possible, against inevitable errors;

Ð Code synthesis problem:generate pure code checking for that precondition. This
checking code must be separable from the checked code and should only involve
elements visible to all callers of the checked code.

Example 1 The problem is illustrated by the following AllNotNull procedure where
the precondition that the array A and all array elements should not be null A !=
null " # i $ [0, A.length) : A[i] != null is checked by the implicit language assertions
while iterating over the array.

1-+#&$."#$%&#,'-012'-

Problem speciÞcation

First alternative: eliminating potential errors

! !"#$%&#,'-012'-$6"'5)0$#)1*1-/.#$/-?$1-12/)$
6./.#$+&'*$A"1,"$/$-'-0#.#&*1-162,$#=#,52'-$
*/?$)#/0$.'$/$(/0$6./.#$$;B1')/2-4$/-$/66#&2'->

bad state

bad run

good run

bad state

bad run

bad run

bad state

Defects of potential error elimination

! :$%&1'&1$,'&&#,.-#66$%'1-.$'+$B1#A

! C#$6"'5)0$-'.$*/8#$/-?$"?%'."#616$'-$."#$
%&'4&/**#&D6$1-.#-2'-

KO

OK

Second alternative: eliminating deÞnite errors

! !"#$%&#,'-012'-$6"'5)0$#)1*1-/.#$/-?$1-12/)$
6./.#$+&'*$A"1,"$/))$-'-0#.#&*1-162,$#=#,52'-6$
*56.$)#/0$.'$/$(/0$6./.#$$;B1')/2-4$/-$/66#&2'->

bad state

bad run

bad run

bad state

bad state

bad run

good run
OK

Advantage of eliminating only deÞnite errors

¥ C#$,"#,8$6./.#6$+&'*$A"1,"$/))$#=#,52'-6$,/-$
'-)?$4'$A&'-4$/6$6%#,1E#0$(?$."#$asserts

bad state

bad run

good run

bad state

bad run

bad run

bad state

OK

On non-termination (contÕd)

! 9%$.'$-'AF$-'$"5*/-$'&$*/,"1-#$,'5)0$%&'B#$
;'&$016%&'B#>$."#$,'-G#,.5&#$."/.$."#$+'))'A1-4$
%&'4&/*$/)A/?6$.#&*1-/.#6

void Collatz(int n) {
 requires (n >= 1);
 while (n != 1) {
 if (odd (n)) {
 n = 3*n+1
 } else {
 n = n / 2
 }
 }
}

On non-termination (contÕd)

! H'-610#&
Collatz(p);
assert(false);

¥ assert(false) if Collatz always terminates

¥ assert(p >= 1) if Collatz may not terminate

¥ or even better

 assert(NecessaryConditionForCollatzNotToTerminate(p))

! !"#$%&#,'-012'-$16

A compromise on non-termination

! C#$0'$-'.$A/-.$.'$"/B#$.'$6')B#$."#$%&'4&/*$
.#&*1-/2'-$%&'()#*

! C#$14-'&#$-'-I.#&*1-/2-4$#=#,52'-6 F$1+$/-?

bad state

bad run

bad run

bad state

bad state

bad run

bad run

bad state

InÞnite good run

Problem formalization

Program small-step operational semantics

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

void AllNotNull(Ptr[] A) {
/* 1: */ int i = 0;
/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {
/* 4: */ assert((A != null) && (A[i] != null));
/* 5: */ A[i].f = new Object();
/* 6: */ i++;
/* 7: */ }
/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modiÞed
at program point 5: . !"

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposede.g.
in [9, Sect. 10-4.6]) or [8, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that e! cient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the codex = random(); assert(x
==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side e" ect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;
while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))
{ return false };

i++ }
return true }

ModiÞcations of i have no visible side e" ects while those of elements ofA do have,
so the assignmentA[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. !"

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and e! cient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantiÞers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. !"

The semantics of code is formalized in Sect.2 and that of speciÞcations by runtime
assertions in Sect.3. The contract precondition inference problem is deÞned in Sect.4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect.5 and used in Sect.6 to provide a Þxpoint solution to
the contract precondition inference problem. Several e" ective contract precondition
inference are then proposed, by data ßow analysis in Sect.7, for scalar variables both
by forward symbolic analysis in Sect.8 and by backward symbolic analysis in Sect.9,
for collections by forward analysis in Sect.10. Sect.11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [8], the small-step operational se-
mantics of code is assumed to be given by atransition system #! , " , I $where ! is a

2
Set of states Transition relation Initial states

! !&/-612'-$6?6.#*

! J)',81-4$6./.#6

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, and I ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for #s, s!$! ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) are B ! { s ! # | %s! : Â! (s, s!)} . If
the code must satisfy a global invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the definition of the transition relation ! (e.g.
! & G " G). We use a map ! ! # ' $ of states of # into control points in $
which is assumed to be of finite cardinality. The program has scalar variablesx ! x ,
collection variables X ! X and visible side e! ect free expressions e ! E , including
Boolean expressionsb ! B & E . Collection variables X have elements X[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is !e"s ! V. The valuesV include the Booleans B ! { true, false} where the complete
Boolean algebra #B,)$ is ordered by false) true . The value !X"s of a collection X
in a state s ! # is a pair !X"s = #n, X $ where n = !X.count "s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the value X (i) of i -th element, i ! [0, n), in the
collection. When i ! [0, n), we define !X"s[i] ! X (i) (= !X[e]"s where !e"s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in # . %# n is the set of non-empty Þnite
traces %s = %s0 . . .%sn" 1 of length |%s| ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

!
n! 1

%# n is the set of non-empty Þnite tracesand %# # ! %# + * {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is %ss#s%s ! ! %ss%s ! when %s,%s ! ! %# # and
s ! # , and is otherwise undefined. %S #%S ! ! {%ss%s ! | %ss ! %S + %# + , s%s ! ! %S !} . The
partial execution traces or runs of ## , ! , I $are prefix traces generated by transitions,
as follows

%́!n ! {%s ! %# n | %i ! [0, n (1) : ! (%si,%si+1)} partial runs of length n " 0
%́!+ !

"

n! 1

%́!n non-empty Þnite partial runs

%!n ! {%s ! %́!n | %sn" 1 ! B } complete runs of lengthn " 0
%!+ !

"

n! 1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are %́!+I !
{%s ! %́!+ | %s0 ! I } (resp. %!+I ! {%s ! %!+ | %s0 ! I }). Given S & # , we let %S n ! {%s !
n | %s0 ! S } , n " 1. Partial and maximal finite runs have the following fixpoint
characterization [10]

%́!+I = lfp
$
%

" %T .%I 1 * %T #%!2

%!+ = lfp
$
%

" %T . %B 1 * %!2 #%T = gfp
$
�Σ+ " %T . %B 1 * %!2 #%T . (1-a,1-b)

3 SpeciÞcation semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj$| j ! ' }

whenever a runtime check assert(b j) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressions bj are
assumed to be both visible side e! ect free and always well-defined when evaluated,

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, and I ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for #s, s!$! ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) are B ! { s ! # | %s! : Â! (s, s!)} . If
the code must satisfy a global invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the definition of the transition relation ! (e.g.
! & G " G). We use a map ! ! # ' $ of states of # into control points in $
which is assumed to be of finite cardinality. The program has scalar variablesx ! x ,
collection variables X ! X and visible side e! ect free expressions e ! E , including
Boolean expressionsb ! B & E . Collection variables X have elements X[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is !e"s ! V. The valuesV include the Booleans B ! { true, false} where the complete
Boolean algebra #B,)$ is ordered by false) true . The value !X"s of a collection X
in a state s ! # is a pair !X"s = #n, X $ where n = !X.count "s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the value X (i) of i -th element, i ! [0, n), in the
collection. When i ! [0, n), we define !X"s[i] ! X (i) (= !X[e]"s where !e"s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in # . %# n is the set of non-empty Þnite
traces %s = %s0 . . .%sn " 1 of length |%s| ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

!
n ! 1

%# n is the set of non-empty Þnite tracesand %# # ! %# + * {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is %ss#s%s ! ! %ss%s ! when %s,%s ! ! %# # and
s ! # , and is otherwise undefined. %S #%S ! ! {%ss%s ! | %ss ! %S + %# + , s%s ! ! %S !} . The
partial execution traces or runs of ## , ! , I $are prefix traces generated by transitions,
as follows

%́!n ! {%s ! %# n | %i ! [0, n (1) : ! (%si ,%si +1)} partial runs of length n " 0
%́!+ !

"

n ! 1

%́!n non-empty Þnite partial runs

%!n ! {%s ! %́!n | %sn " 1 ! B } complete runs of lengthn " 0
%!+ !

"

n ! 1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are %́!+I !
{%s ! %́!+ | %s0 ! I } (resp. %!+I ! {%s ! %!+ | %s0 ! I }). Given S & # , we let %S n ! {%s !
n | %s0 ! S } , n " 1. Partial and maximal finite runs have the following fixpoint
characterization [10]

%́!+I = lfp
$
%

" %T .%I 1 * %T #%!2

%!+ = lfp
$
%

" %T . %B 1 * %!2 #%T = gfp
$
!" + " %T . %B 1 * %!2 #%T . (1-a,1-b)

3 Specification semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj $ | j ! ' }

whenever a runtime check assert(b j) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressions bj are
assumed to be both visible side e! ect free and always well-defined when evaluated,

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, andI ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for #s, s!$! ! . The final
or blocking states without any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB ! { s ! # | %s! : Â! (s, s!)} . If
the code must satisfy aglobal invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation ! (e.g.
! & G " G). We use a map ! ! # ' $ of states of # into control points in $
which is assumed to be of Þnite cardinality. The program hasscalar variables x ! x ,
collection variables X ! X and visible side e! ect free expressionse ! E, including
Boolean expressions b ! B & E. Collection variables X have elementsX[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is !e"s ! V. The values V include the BooleansB ! { true, false} where the complete
Boolean algebra#B,)$ is ordered by false) true. The value !X"s of a collection X
in a state s ! # is a pair !X"s = #n, X $ where n = !X.count "s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the valueX (i) of i -th element, i ! [0, n), in the
collection. When i ! [0, n), we deÞne!X"s[i] ! X (i) (= !X[e]"s where !e"s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in# . %# n is the set of non-emptyfinite
traces %s = %s0 . . .%sn " 1 of length |%s| ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

!
n ! 1

%# n is the set of non-empty finite traces and %# # ! %# + * {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential composition of traces is%ss#s%s ! ! %ss%s ! when%s,%s ! ! %# # and
s ! # , and is otherwise undeÞned.%S #%S ! ! {%ss%s ! | %ss ! %S + %# + , s%s ! ! %S !} . The
partial execution traces or runs of ## , ! , I $are preÞx traces generated by transitions,
as follows

«%!n ! {%s ! %# n | %i ! [0, n (1) : ! (%si ,%si +1)} partial runs of length n " 0

«%!+ !
"

n ! 1

«%!n non-empty finite partial runs

%!n ! {%s ! «%!n | %sn " 1 ! B } complete runs of length n " 0

%!+ !
"

n ! 1

%!n non-empty finite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «%!+I !
{%s ! «%!+ | %s0 ! I } (resp. %!+I ! {%s ! %!+ | %s0 ! I }). Given S & # , we let %S n ! {%s !
n | %s0 ! S } , n " 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«%!+I = lfp
$
%

" %T .%I 1 * %T #%!2

%!+ = lfp
$
%

" %T . %B 1 * %!2 #%T = gfp
$
!" + " %T . %B 1 * %!2 #%T . (1-a,1-b)

3 Specification semantics
The specification includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj $ | j ! ' }

whenever a runtime checkassert(b j) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

Traces

¥ .&/,#6$'+$)#-4." n

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, andI ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for #s, s!$! ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB ! { s ! # | %s! : Â! (s, s!)} . If
the code must satisfy aglobal invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation ! (e.g.
! & G " G). We use a map ! ! # ' $ of states of # into control points in $
which is assumed to be of Þnite cardinality. The program hasscalar variablesx ! x ,
collection variables X ! X and visible side e! ect free expressionse ! E, including
Boolean expressionsb ! B & E. Collection variables X have elementsX[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is �e�s ! V. The valuesV include the BooleansB ! { true, false} where the complete
Boolean algebra#B,)$ is ordered by false) true. The value �X�s of a collection X
in a state s ! # is a pair �X�s = #n, X $ where n = �X.count �s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the valueX (i) of i -th element, i ! [0, n), in the
collection. When i ! [0, n), we deÞne�X�s[i] ! X (i) (= �X[e]�s where �e�s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in# . %# n is the set of non-emptyÞnite
traces %s = %s0 . . .%sn " 1 of length |%s| ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

�
n�1

%# n is the set of non-empty Þnite traces and %# # ! %# + * {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is%ss�s%s ! ! %ss%s ! when%s,%s ! ! %# # and
s ! # , and is otherwise undeÞned.%S � %S ! ! {%ss%s ! | %ss ! %S + %# + , s%s ! ! %S !} . The
partial execution traces or runs of ## , ! , I $are preÞx traces generated by transitions,
as follows

«%!n ! {%s ! %# n | %i ! [0, n (1) : ! (%si ,%si +1)} partial runs of length n " 0

«%!+ !
�

n�1

«%!n non-empty Þnite partial runs

%!n ! {%s ! «%!n | %sn " 1 ! B } complete runs of lengthn " 0

%!+ !
�

n�1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «%!+I !
{%s ! «%!+ | %s0 ! I } (resp. %!+I ! {%s ! %!+ | %s0 ! I }). Given S & # , we let %S n ! {%s !
n | %s0 ! S } , n " 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«%!+I = lfp
$
%

" %T .%I 1 * %T � %!2

%!+ = lfp
$
%

" %T . %B 1 * %!2 � %T = gfp
$
!" + " %T . %B 1 * %!2 � %T . (1-a,1-b)

3 SpeciÞcation semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj $ | j ! ' }

whenever a runtime checkassert(b j) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ∈ " (# × #) is a non-deterministic transition relation between a state
and its possible successors, andI ∈ " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for �s, s!� ∈ ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB ! { s ∈ # | ∀s! : Â! (s, s!)} . If
the code must satisfy aglobal invariant G ∈ " (#) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation ! (e.g.
! ⊆ G × G). We use a map ! ∈ # → $ of states of # into control points in $
which is assumed to be of Þnite cardinality. The program hasscalar variablesx ∈ x,
collection variables X ∈ X and visible side e! ect free expressionse ∈ E, including
Boolean expressionsb ∈ B ⊆ E. Collection variables X have elementsX[i] ranging
from 0 to X.count − 1 (A.length − 1 for arrays A). The value of e ∈ E in state s ∈ #
is !e"s ∈ V. The valuesV include the BooleansB ! { true, false} where the complete
Boolean algebra�B, ⇒� is ordered by false⇒ true. The value !X"s of a collection X
in a state s ∈ # is a pair !X"s = �n, X � where n = !X.count "s " 0 is a non-negative
integer and X ∈ [0, n) → V denotes the valueX (i) of i -th element, i ∈ [0, n), in the
collection. When i ∈ [0, n), we deÞne!X"s[i] ! X (i) (= !X[e]"s where !e"s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in# . %# n is the set of non-emptyÞnite
traces %s = %s0 . . .%sn " 1 of length |%s| ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

!
n ! 1

%# n is the set of non-empty Þnite traces and %# # ! %# + ∪ {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is%ss#s%s ! ! %ss%s ! when%s,%s ! ∈ %# # and
s ∈ # , and is otherwise undeÞned.%S #%S ! ! {%ss%s ! | %ss ∈ %S ∩ %# + ∧ s%s ! ∈ %S !} . The
partial execution traces or runs of �# , ! , I � are preÞx traces generated by transitions,
as follows

«%!n ! {%s ∈ %# n | ∀i ∈ [0, n − 1) : ! (%si ,%si +1)} partial runs of length n " 0

«%!+ !
"

n ! 1

«%!n non-empty Þnite partial runs

%!n ! {%s ∈ «%!n | %sn " 1 ∈ B } complete runs of lengthn " 0

%!+ !
"

n ! 1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «%!+I !
{%s ∈ «%!+ | %s0 ∈ I } (resp. %!+I ! {%s ∈ %!+ | %s0 ∈ I }). Given S ⊆ # , we let %S n ! {%s ∈
n | %s0 ∈ S } , n " 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«%!+I = lfp
$
%

" %T .%I 1 ∪ %T #%!2

%!+ = lfp
$
%

" %T . %B 1 ∪%!2 #%T = gfp
$
!" + " %T . %B 1 ∪%!2 #%T . (1-a,1-b)

3 Specification semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { �cj , bj � | j ∈ ' }

whenever a runtime checkassert(b j) is attached to a control point cj ∈ $, j ∈ ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, and I ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for #s, s!$! ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) are B ! { s ! # | %s! : Â! (s, s!)} . If
the code must satisfy a global invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the definition of the transition relation ! (e.g.
! & G " G). We use a map ! ! # ' $ of states of # into control points in $
which is assumed to be of finite cardinality. The program has scalar variablesx ! x ,
collection variables X ! X and visible side e! ect free expressions e ! E , including
Boolean expressionsb ! B & E . Collection variables X have elements X[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is !e"s ! V. The valuesV include the Booleans B ! { true, false} where the complete
Boolean algebra #B,)$ is ordered by false) true . The value !X"s of a collection X
in a state s ! # is a pair !X"s = #n, X $ where n = !X.count "s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the value X (i) of i -th element, i ! [0, n), in the
collection. When i ! [0, n), we define !X"s[i] ! X (i) (= !X[e]"s where !e"s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in # . %# n is the set of non-empty Þnite
traces %s = %s0 . . .%sn " 1 of length |%s| ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

!
n ! 1

%# n is the set of non-empty Þnite tracesand %# # ! %# + * {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is %ss#s%s ! ! %ss%s ! when %s,%s ! ! %# # and
s ! # , and is otherwise undefined. %S #%S ! ! {%ss%s ! | %ss ! %S + %# + , s%s ! ! %S !} . The
partial execution traces or runs of ## , ! , I $are prefix traces generated by transitions,
as follows

%́!n ! {%s ! %# n | %i ! [0, n (1) : ! (%si ,%si +1)} partial runs of length n " 0
%́!+ !

"

n ! 1

%́!n non-empty Þnite partial runs

%!n ! {%s ! %́!n | %sn " 1 ! B } complete runs of lengthn " 0
%!+ !

"

n ! 1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are %́!+I !
{%s ! %́!+ | %s0 ! I } (resp. %!+I ! {%s ! %!+ | %s0 ! I }). Given S & # , we let %S n ! {%s !
n | %s0 ! S } , n " 1. Partial and maximal finite runs have the following fixpoint
characterization [10]

%́!+I = lfp
$
%

" %T .%I 1 * %T #%!2

%!+ = lfp
$
%

" %T . %B 1 * %!2 #%T = gfp
$
!" + " %T . %B 1 * %!2 #%T . (1-a,1-b)

3 SpeciÞcation semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj $ | j ! ' }

whenever a runtime check assert(b j) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressions bj are
assumed to be both visible side e! ect free and always well-defined when evaluated,

3

¥ -'-I#*%.?$E-1.#$.&/,#6

! $$$-'-I#*%.?$E-1.#$.&/,#6

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, andI ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for #s, s!$! ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB ! { s ! # | %s! : Â! (s, s!)} . If
the code must satisfy aglobal invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation ! (e.g.
! & G " G). We use a map ! ! # ' $ of states of # into control points in $
which is assumed to be of Þnite cardinality. The program hasscalar variablesx ! x ,
collection variables X ! X and visible side e! ect free expressionse ! E, including
Boolean expressionsb ! B & E. Collection variables X have elementsX[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is !e"s ! V. The valuesV include the BooleansB ! { true, false} where the complete
Boolean algebra#B,)$ is ordered by false) true. The value !X"s of a collection X
in a state s ! # is a pair !X"s = #n, X $ where n = !X.count "s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the valueX (i) of i -th element, i ! [0, n), in the
collection. When i ! [0, n), we deÞne!X"s[i] ! X (i) (= !X[e]"s where !e"s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in# . %# n is the set of non-emptyÞnite
traces %s = %s0 . . .%sn" 1 of length |%s| ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

!
n! 1

%# n is the set of non-empty Þnite traces and %# # ! %# + * {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is%ss#s%s ! ! %ss%s ! when%s,%s ! ! %# # and
s ! # , and is otherwise undeÞned.%S #%S ! ! {%ss%s ! | %ss ! %S + %# + , s%s ! ! %S !} . The
partial execution traces or runs of ## , ! , I $are preÞx traces generated by transitions,
as follows

«%!n ! {%s ! %# n | %i ! [0, n (1) : ! (%si,%si+1)} partial runs of length n " 0

«%!+ !
"

n! 1

«%!n non-empty Þnite partial runs

%!n ! {%s ! «%!n | %sn" 1 ! B } complete runs of lengthn " 0

%!+ !
"

n! 1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «%!+I !
{%s ! «%!+ | %s0 ! I } (resp. %!+I ! {%s ! %!+ | %s0 ! I }). Given S & # , we let %S n ! {%s !
n | %s0 ! S } , n " 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«%!+I = lfp
$
%

" %T .%I 1 * %T #%!2

%!+ = lfp
$
%

" %T . %B 1 * %!2 #%T = gfp
$
�Σ + " %T . %B 1 * %!2 #%T . (1-a,1-b)

3 SpeciÞcation semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj$| j ! ' }

whenever a runtime checkassert(b j) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

Program partial trace semantics

! K/&2/)$&5-6$'+$)#-4."$

! L'-I#*%.?$E-1.#$%/&2/)$&5-6

Program complete/maximal trace semantics

! H'*%)#.#$&5-6$'+$)#-4."

! L'-I#*%.?$E-1.#$,'*%)#.#$&5-6

! $L'-I#*%.?$E-1.#$,'*%)#.#$&5-6$+&'*$1-12/)$6./.#6

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, andI ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for #s, s!$! ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB ! { s ! # | %s! : Â! (s, s!)} . If
the code must satisfy aglobal invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation ! (e.g.
! & G " G). We use a map ! ! # ' $ of states of # into control points in $
which is assumed to be of Þnite cardinality. The program hasscalar variablesx ! x ,
collection variables X ! X and visible side e! ect free expressionse ! E, including
Boolean expressionsb ! B & E. Collection variables X have elementsX[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is �e�s ! V. The valuesV include the BooleansB ! { true, false} where the complete
Boolean algebra#B,)$ is ordered by false) true. The value �X�s of a collection X
in a state s ! # is a pair �X�s = #n, X $ where n = �X.count �s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the valueX (i) of i -th element, i ! [0, n), in the
collection. When i ! [0, n), we deÞne�X�s[i] ! X (i) (= �X[e]�s where �e�s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in# . %# n is the set of non-emptyÞnite
traces %s = %s0 . . .%sn " 1 of length |%s| ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

�
n�1

%# n is the set of non-empty Þnite traces and %# # ! %# + * {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is%ss�s%s ! ! %ss%s ! when%s,%s ! ! %# # and
s ! # , and is otherwise undeÞned.%S � %S ! ! {%ss%s ! | %ss ! %S + %# + , s%s ! ! %S !} . The
partial execution traces or runs of ## , ! , I $are preÞx traces generated by transitions,
as follows

«%!n ! {%s ! %# n | %i ! [0, n (1) : ! (%si ,%si +1)} partial runs of length n " 0

«%!+ !
�

n�1

«%!n non-empty Þnite partial runs

%!n ! {%s ! «%!n | %sn " 1 ! B } complete runs of lengthn " 0

%!+ !
�

n�1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «%!+I !
{%s ! «%!+ | %s0 ! I } (resp. %!+I ! {%s ! %!+ | %s0 ! I }). Given S & # , we let %S n ! {%s !
%# n | %s0 ! S } , n " 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«%!+I = lfp
$
%

" %T .%I 1 * %T � %!2

%!+ = lfp
$
%

" %T . %B 1 * %!2 � %T = gfp
$
!" + " %T . %B 1 * %!2 � %T . (1-a,1-b)

3 SpeciÞcation semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj $ | j ! ' }

whenever a runtime checkassert(b j) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

Fixpoint program trace semantics

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, andI ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for #s, s!$! ! . The final
or blocking states without any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB ! { s ! # | %s! : Â! (s, s!)} . If
the code must satisfy aglobal invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation ! (e.g.
! & G " G). We use a map ! ! # ' $ of states of # into control points in $
which is assumed to be of Þnite cardinality. The program hasscalar variables x ! x ,
collection variables X ! X and visible side e! ect free expressionse ! E , including
Boolean expressions b ! B & E. Collection variables X have elementsX[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is �e�s ! V. The values V include the BooleansB ! { true, false} where the complete
Boolean algebra#B,)$ is ordered by false) true. The value �X�s of a collection X
in a state s ! # is a pair �X�s = #n, X $ where n = �X.count�s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the valueX (i) of i -th element, i ! [0, n), in the
collection. When i ! [0, n), we deÞne�X�s[i] ! X (i) (= �X[e]�s where �e�s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in# . %# n is the set of non-emptyfinite
traces %s = %s0 . . .%sn " 1 of length |%s| ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

!
n�1

%# n is the set of non-empty finite traces and %# # ! %# + * {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential composition of traces is%ss�s%s ! ! %ss%s ! when%s,%s ! ! %# # and
s ! # , and is otherwise undeÞned.%S � %S ! ! {%ss%s ! | %ss ! %S + %# + , s%s ! ! %S !} . The
partial execution traces or runs of ## , ! , I $are preÞx traces generated by transitions,
as follows

«%!n ! {%s ! %# n | %i ! [0, n (1) : ! (%si ,%si +1)} partial runs of length n " 0

«%!+ !
"

n�1

«%!n non-empty finite partial runs

%!n ! {%s ! «%!n | %sn " 1 ! B } complete runs of length n " 0

%!+ !
"

n�1

%!n non-empty finite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «%!+I !
{%s ! «%!+ | %s0 ! I } (resp. %!+I ! {%s ! %!+ | %s0 ! I }). Given S & # , we let %S n ! {%s !
n | %s0 ! S } , n " 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«%!+I = lfp
$
%

" %T .%I 1 * %T � %!2

%!+ = lfp
$
%

" %T . %B 1 * %!2 � %T = gfp
$
!" + " %T . %B 1 * %!2 � %T . (1-a,1-b)

3 SpeciÞcation semantics
The specification includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj $ | j ! ' }

whenever a runtime checkassert(bj) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, andI ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s�) for #s, s�$! ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB ! {s ! # | %s� : ¬! (s, s�)}. If
the code must satisfy aglobal invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation ! (e.g.
! & G " G). We use a map ! ! # ' $ of states of # into control points in $
which is assumed to be of Þnite cardinality. The program hasscalar variablesx ! x,
collection variables X ! X and visible side e! ect free expressionse ! E, including
Boolean expressionsb ! B & E. Collection variables X have elementsX[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is !e"s ! V. The valuesV include the BooleansB ! {true, false} where the complete
Boolean algebra#B,)$ is ordered by false) true. The value !X"s of a collection X
in a state s ! # is a pair !X"s = #n, X $ where n = !X.count"s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the valueX (i) of i -th element, i ! [0, n), in the
collection. When i ! [0, n), we deÞne!X"s[i] ! X (i) (= !X[e]"s where !e"s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in# . %# n is the set of non-emptyÞnite
traces %s = %s0 . . .%sn−1 of length |%s | ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

!
n ! 1

%# n is the set of non-empty Þnite traces and %# ∗ ! %# + * {%&}.
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is%ss#s%s � ! %ss%s � when%s,%s � ! %# ∗ and
s ! # , and is otherwise undeÞned.%S #%S � ! {%ss%s � | %ss ! %S + %# + , s%s � ! %S �}. The
partial execution traces or runs of ## , ! , I $are preÞx traces generated by transitions,
as follows

«%!n ! {%s ! %# n | %i ! [0, n (1) : ! (%si ,%si +1)} partial runs of length n " 0

«%!+ !
"

n ! 1

«%!n non-empty Þnite partial runs

%!n ! {%s ! «%!n | %sn−1 ! B } complete runs of lengthn " 0

%!+ !
"

n ! 1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «%!+I !
{%s ! «%!+ | %s0 ! I } (resp. %!+I ! {%s ! %!+ | %s0 ! I }). Given S & # , we let %S n ! {%s !
n | %s0 ! S }, n " 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«%!+I = lfp
⊆
∅ " %T .%I 1 * %T #%!2

%!+ = lfp
⊆
∅ " %T . %B 1 * %!2 #%T = gfp

⊆
!" + " %T . %B 1 * %!2 #%T . (1-a,1-b)

3 Specification semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = {#cj , bj $ | j ! ' }
whenever a runtime checkassert(bj) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

the consideration of inÞnite behaviors and the use of more expressive abstract do-
mains than segmentation to express relations between values of components of data
structures in assert s and on code entry while preserving scalability.

References
[1] Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. IEEE Com-

puter 36(11), 48Ð55 (2003)
[2] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
[3] Barnett, M., F¬ahndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)

precise points-to analysis. In: IWACO Õ07. DSV Report series No. 07-010, Stockholm
University and KTH (2007)

[4] Barnett, M., F¬ahndrich, M., Logozzo, F.: Embedded contract languages. In: SACÕ10.
pp. 2103Ð2110. ACM Press (2010)

[5] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 118Ð149 (2003)

[6] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI Õ93.
pp. 46Ð55. ACM Press (1993)

[7] Calcagno, C., Distefano, D., OÕHearn, P., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: 36th POPL. pp. 289Ð300. ACM Press (2009)

[8] Cousot, P.: M«ethodes it«eratives de construction et dÕapproximation de points Þxes dÕop«e-
rateurs monotones sur un treillis, analyse s«emantique de programmes (in French). Thèse
dÕ«Etatès sciences math«ematiques, Universit«e scientiÞque et m«edicale de Grenoble (1978)

[9] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.)
Program Flow Analysis: Theory and Applications, chap. 10, pp. 303Ð342. Prentice-Hall
(1981)

[10] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1Ñ2), 47Ð103 (2002)

[11] Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive proce-
dures. In: Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Con-
cepts. pp. 237Ð277. North-Holland (1977)

[12] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL. pp. 269Ð282. ACM Press (1979)
[13] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.

Journal of Logic Programming 13(2Ð3), 103Ð179 (1992),
[14] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully au-

tomatic and scalable array content analysis. Tech. rep., MSR-TR-2009-194, MSR Red-
mond (Sep 2009)

[15] Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of programs.
CACM 18(8), 453Ð457 (1975)

[16] F¬ahndrich, M., Logozzo, F.: Clousot: Static contract checking with abstract interpre-
tation. In: FoVeOOS: Conference on Formal VeriÞcation of Object-Oriented software.
Springer-Verlag (2010)

[17] Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis.
In: ESOP Õ07, pp. 253Ð267. LNCS 4421, Springer (2007)

[18] Hecht, M.: Flow Analysis of Computer Programs. Elsevier North-Holland (1977)
[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385Ð394 (1976)
[20] Meyer, B.: Ei ! el: The Language. Prentice Hall (1991)
[21] Meyer, B.: Applying ÒDesign by ContractÓ. IEEE Computer 25(10), 40Ð51 (1992)
[22] Moy, Y.: Su " cient preconditions for modular assertion checking. In: VMCAI 08. pp.

188Ð202. LNCS 4905, Springer (2008)
[23] Rival, X.: Understanding the origin of alarms in Astr «ee. In: SAS Õ05, pp. 303Ð319.

LNCS 3672, Springer (2005)
[24] T.Lev-Ami, Sagiv, M., Reps, T., Gulwani, S.: Backward analysis for inferring quantiÞed

preconditions. Tr-2007-12-01, Tel Aviv University (2007)

15

A"#&#

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ∈ " (# × #) is a non-deterministic transition relation between a state
and its possible successors, andI ∈ " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for �s, s!� ∈ ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB ! { s ∈ # | ∀s! : Â! (s, s!)} . If
the code must satisfy aglobal invariant G ∈ " (#) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation ! (e.g.
! ⊆ G × G). We use a map ! ∈ # → $ of states of # into control points in $
which is assumed to be of Þnite cardinality. The program hasscalar variablesx ∈ x,
collection variables X ∈ X and visible side e! ect free expressionse ∈ E, including
Boolean expressionsb ∈ B ⊆ E. Collection variables X have elementsX[i] ranging
from 0 to X.count − 1 (A.length − 1 for arrays A). The value of e ∈ E in state s ∈ #
is !e"s ∈ V. The valuesV include the BooleansB ! { true, false} where the complete
Boolean algebra�B, ⇒� is ordered by false⇒ true. The value !X"s of a collection X
in a state s ∈ # is a pair !X"s = �n, X � where n = !X.count "s " 0 is a non-negative
integer and X ∈ [0, n) → V denotes the valueX (i) of i -th element, i ∈ [0, n), in the
collection. When i ∈ [0, n), we deÞne!X"s[i] ! X (i) (= !X[e]"s where !e"s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in# . %# n is the set of non-emptyÞnite
traces %s = %s0 . . .%sn " 1 of length |%s| ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

!
n ! 1

%# n is the set of non-empty Þnite traces and %# # ! %# + ∪ {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is%ss#s%s ! ! %ss%s ! when%s,%s ! ∈ %# # and
s ∈ # , and is otherwise undeÞned.%S #%S ! ! {%ss%s ! | %ss ∈ %S ∩ %# + ∧ s%s ! ∈ %S !} . The
partial execution traces or runs of �# , ! , I � are preÞx traces generated by transitions,
as follows

«%!n ! {%s ∈ %# n | ∀i ∈ [0, n − 1) : ! (%si ,%si +1)} partial runs of length n " 0

«%!+ !
"

n ! 1

«%!n non-empty Þnite partial runs

%!n ! {%s ∈ «%!n | %sn " 1 ∈ B } complete runs of lengthn " 0

%!+ !
"

n ! 1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «%!+I !
{%s ∈ «%!+ | %s0 ∈ I } (resp. %!+I ! {%s ∈ %!+ | %s0 ∈ I }). Given S ⊆ # , we let %S n ! {%s ∈
n | %s0 ∈ S } , n " 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«%!+I = lfp
$
%

" %T .%I 1 ∪ %T #%!2

%!+ = lfp
$
%

" %T . %B 1 ∪%!2 #%T = gfp
$
!" + " %T . %B 1 ∪%!2 #%T . (1-a,1-b)

3 Specification semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { �cj , bj � | j ∈ ' }

whenever a runtime checkassert(b j) is attached to a control point cj ∈ $, j ∈ ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, andI ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for #s, s!$! ! . The final
or blocking states without any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB ! { s ! # | %s! : Â! (s, s!)} . If
the code must satisfy aglobal invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation ! (e.g.
! & G " G). We use a map ! ! # ' $ of states of # into control points in $
which is assumed to be of Þnite cardinality. The program hasscalar variables x ! x ,
collection variables X ! X and visible side e! ect free expressionse ! E, including
Boolean expressions b ! B & E. Collection variables X have elementsX[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is �e�s ! V. The values V include the BooleansB ! { true, false} where the complete
Boolean algebra#B,)$ is ordered by false) true. The value �X�s of a collection X
in a state s ! # is a pair �X�s = #n, X $ where n = �X.count �s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the valueX (i) of i -th element, i ! [0, n), in the
collection. When i ! [0, n), we deÞne�X�s[i] ! X (i) (= �X[e]�s where �e�s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in# . %# n is the set of non-emptyfinite
traces %s = %s0 . . .%sn " 1 of length |%s| ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

�
n ! 1

%# n is the set of non-empty finite traces and %# # ! %# + * {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential composition of traces is%ss�s%s ! ! %ss%s ! when%s,%s ! ! %# # and
s ! # , and is otherwise undeÞned.%S � %S ! ! {%ss%s ! | %ss ! %S + %# + , s%s ! ! %S !} . The
partial execution traces or runs of ## , ! , I $are preÞx traces generated by transitions,
as follows

«%!n ! {%s ! %# n | %i ! [0, n (1) : ! (%si ,%si +1)} partial runs of length n " 0

«%!+ !
�

n ! 1

«%!n non-empty finite partial runs

%!n ! {%s ! «%!n | %sn " 1 ! B } complete runs of length n " 0

%!+ !
�

n ! 1

%!n non-empty finite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «%!+I !
{%s ! «%!+ | %s0 ! I } (resp. %!+I ! {%s ! %!+ | %s0 ! I }). Given S & # , we let %S n ! {%s !
%# n | %s0 ! S } , n " 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«%!+I = lfp
$
%

" %T .%I 1 * %T � %!2

%!+ = lfp
$
%

" %T . %B 1 * %!2 � %T = gfp
$
!" + " %T . %B 1 * %!2 � %T . (1-a,1-b)

3 SpeciÞcation semantics
The specification includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj $ | j ! ' }

whenever a runtime checkassert(b j) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

!

!

!

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, τ ! ℘(Σ " Σ) is a non-deterministic transition relation between a state
and its possible successors, andI ! ℘(Σ) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write τ (s, s!) for #s, s!$! τ . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB � { s ! Σ | %s! : Âτ (s, s!)} . If
the code must satisfy aglobal invariant G ! ℘(Σ) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation τ (e.g.
τ & G " G). We use a map ! ! Σ ' Γ of states of Σ into control points in Γ
which is assumed to be of Þnite cardinality. The program hasscalar variablesx ! x ,
collection variables X ! X and visible side e! ect free expressionse ! E, including
Boolean expressionsb ! B & E. Collection variables X have elementsX[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! Σ
is !e"s ! V. The valuesV include the BooleansB � { true, false} where the complete
Boolean algebra#B,)$ is ordered by false) true. The value !X"s of a collection X
in a state s ! Σ is a pair !X"s = #n, X $ where n = !X.count "s � 0 is a non-negative
integer and X ! [0, n) ' V denotes the valueX (i) of i -th element, i ! [0, n), in the
collection. When i ! [0, n), we deÞne!X"s[i] � X (i) (= !X[e]"s where !e"s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states inΣ. �Σ n is the set of non-emptyÞnite
traces �s = �s0 . . .�sn " 1 of length |�s| � n � 0 including the empty trace �� of length
|�� | � 0. �Σ + � !

n�1
�Σ n is the set of non-empty Þnite traces and �Σ # � �Σ + * {��} .

As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is�ss#s�s ! � �ss�s ! when�s,�s ! ! �Σ # and
s ! Σ, and is otherwise undeÞned.�S #�S ! � {�ss�s ! | �ss ! �S + �Σ + , s�s ! ! �S !} . The
partial execution traces or runs of #Σ, τ, I $are preÞx traces generated by transitions,
as follows

«�τ n � {�s ! �Σ n | %i ! [0, n (1) : τ (�si ,�si +1)} partial runs of length n � 0

«�τ + �
"

n�1

«�τ n non-empty Þnite partial runs

�τ n � {�s ! «�τ n | �sn " 1 ! B } complete runs of lengthn � 0

�τ + �
"

n�1

�τ n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «�τ +
I �

{�s ! «�τ + | �s0 ! I } (resp. �τ +
I � {�s ! �τ + | �s0 ! I }). Given S & Σ, we let �S n � {�s !

�Σ n | �s0 ! S } , n � 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«�τ +
I = lfp

$
%

" �T . �I 1 * �T #«�τ 2

�τ + = lfp
$
%

" �T . �B 1 * «�τ 2 #�T = gfp
$
!" + " �T . �B 1 * «�τ 2 #�T . (1-a,1-b)

3 SpeciÞcation semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj $ | j ! ∆}

whenever a runtime checkassert(b j) is attached to a control point cj ! Γ , j ! ∆. A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

! $:))$)/-45/4#$/-0$%&'4&/**#&$/66#&2'-6$/&#$
,'))#,.#0$(?$/$6?-./,2,$%&#I/-/)?616$'+$."#$,'0#

! $

! $

! $$$$$$$M$A#))$0#E-#0$/-0$B161()#$610#$#N#,.$+&##

Collecting asserts

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ∈ " (# × #) is a non-deterministic transition relation between a state
and its possible successors, andI ∈ " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s�) for �s, s�� ∈ ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB ! {s ∈ # | ∀s� : ¬! (s, s�)}. If
the code must satisfy aglobal invariant G ∈ " (#) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation ! (e.g.
! ⊆ G × G). We use a map ! ∈ # → $ of states of # into control points in $
which is assumed to be of Þnite cardinality. The program hasscalar variablesx ∈ x,
collection variables X ∈ X and visible side e! ect free expressionse ∈ E, including
Boolean expressionsb ∈ B ⊆ E. Collection variables X have elementsX[i] ranging
from 0 to X.count − 1 (A.length − 1 for arrays A). The value of e ∈ E in state s ∈ #
is !e"s ∈ V. The valuesV include the BooleansB ! {true, false} where the complete
Boolean algebra�B, ⇒� is ordered by false⇒ true. The value !X"s of a collection X
in a state s ∈ # is a pair !X"s = �n, X � where n = !X.count "s " 0 is a non-negative
integer and X ∈ [0, n) → V denotes the valueX (i) of i -th element, i ∈ [0, n), in the
collection. When i ∈ [0, n), we deÞne!X"s[i] ! X (i) (= !X[e]"s where !e"s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in# . %# n is the set of non-emptyÞnite
traces %s = %s0 . . .%sn−1 of length |%s | ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

!
n ! 1

%# n is the set of non-empty Þnite traces and %# ∗ ! %# + ∪ {%&}.
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is%ss#s%s � ! %ss%s � when%s,%s � ∈ %# ∗ and
s ∈ # , and is otherwise undeÞned.%S #%S � ! {%ss%s � | %ss ∈ %S ∩ %# + ∧ s%s � ∈ %S �}. The
partial execution traces or runs of �# , ! , I � are preÞx traces generated by transitions,
as follows

«%!n ! {%s ∈ %# n | ∀i ∈ [0, n − 1) : ! (%si ,%si +1)} partial runs of length n " 0

«%!+ !
"

n ! 1

«%!n non-empty Þnite partial runs

%!n ! {%s ∈ «%!n | %sn−1 ∈ B } complete runs of lengthn " 0

%!+ !
"

n ! 1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «%!+I !
{%s ∈ «%!+ | %s0 ∈ I } (resp. %!+I ! {%s ∈ %!+ | %s0 ∈ I }). Given S ⊆ # , we let %S n ! {%s ∈
%# n | %s0 ∈ S }, n " 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«%!+I = lfp
⊆
∅ " %T .%I 1 ∪ %T #%!2

%!+ = lfp
⊆
∅ " %T . %B 1 ∪%!2 #%T = gfp

⊆
�Σ + " %T . %B 1 ∪%!2 #%T . (1-a,1-b)

3 SpeciÞcation semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = {�cj , bj � | j ∈ ' }
whenever a runtime checkassert(b j) is attached to a control point cj ∈ $, j ∈ ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, and I ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for #s, s!$! ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) are B ! { s ! # | %s! : Â! (s, s!)} . If
the code must satisfy a global invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the definition of the transition relation ! (e.g.
! & G " G). We use a map ! ! # ' $ of states of # into control points in $
which is assumed to be of finite cardinality. The program has scalar variablesx ! x ,
collection variables X ! X and visible side e! ect free expressions e ! E , including
Boolean expressionsb ! B & E . Collection variables X have elements X[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is �e�s ! V. The valuesV include the Booleans B ! { true , false} where the complete
Boolean algebra #B,)$ is ordered by false) true . The value �X�s of a collection X
in a state s ! # is a pair �X�s = #n, X$ where n = �X.count �s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the value X(i) of i-th element, i ! [0, n), in the
collection. When i ! [0, n), we define �X�s[i] ! X(i) (= �X[e]�s where �e�s = i) to
denote the i-th element in the collection.

Traces. We let traces be sequences of states in # . %# n is the set of non-empty Þnite
traces %s = %s0 . . .%sn " 1 of length |%s | ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

!
n ! 1

%# n is the set of non-empty Þnite tracesand %# # ! %# + * {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is %ss �s%s ! ! %ss%s ! when %s,%s ! ! %# # and
s ! # , and is otherwise undefined. %S � %S ! ! {%ss%s ! | %ss ! %S + %# + , s%s ! ! %S ! } . The
partial execution traces or runs of ## , ! , I $are prefix traces generated by transitions,
as follows

%́!n ! {%s ! %# n | %i ! [0, n (1) : ! (%s i ,%s i +1)} partial runs of length n " 0
%́!+ !

"

n ! 1

%́!n non-empty Þnite partial runs

%!n ! {%s ! %́!n | %sn " 1 ! B } complete runs of lengthn " 0
%!+ !

"

n ! 1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are %́!+I !
{%s ! %́!+ | %s0 ! I } (resp. %!+I ! {%s ! %!+ | %s0 ! I }). Given S & # , we let %S n ! {%s !
%# n | %s0 ! S } , n " 1. Partial and maximal finite runs have the following fixpoint
characterization [10]

%́!+I = lfp
$
%

" %T .%I 1 * %T � %!2

%!+ = lfp
$
%

" %T . %B 1 * %!2 � %T = gfp
$
!" + " %T . %B 1 * %!2 � %T . (1-a,1-b)

3 SpeciÞcation semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj $ | j ! ' }

whenever a runtime check assert(b j) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressions bj are
assumed to be both visible side e! ect free and always well-defined when evaluated,

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, andI ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for #s, s!$! ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB � { s ! # | %s! : Â! (s, s!)} . If
the code must satisfy aglobal invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation ! (e.g.
! & G " G). We use a map ! ! # ' $ of states of # into control points in $
which is assumed to be of Þnite cardinality. The program hasscalar variablesx ! x ,
collection variables X ! X and visible side e! ect free expressionse ! E, including
Boolean expressionsb ! B & E. Collection variables X have elementsX[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is !e"s ! V. The valuesV include the BooleansB � { true, false} where the complete
Boolean algebra#B,)$ is ordered by false) true. The value !X"s of a collection X
in a state s ! # is a pair !X"s = #n, X $ where n = !X.count "s � 0 is a non-negative
integer and X ! [0, n) ' V denotes the valueX (i) of i -th element, i ! [0, n), in the
collection. When i ! [0, n), we deÞne!X"s[i] � X (i) (= !X[e]"s where !e"s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states in# . %# n is the set of non-emptyÞnite
traces %s = %s0 . . .%sn " 1 of length |%s| � n � 0 including the empty trace %&of length
|%&| � 0. %# + � !

n ! 1
%# n is the set of non-empty Þnite traces and %# # � %# + * {%&} .

As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is%ss#s%s ! � %ss%s ! when%s,%s ! ! %# # and
s ! # , and is otherwise undeÞned.%S #%S ! � {%ss%s ! | %ss ! %S + %# + , s%s ! ! %S !} . The
partial execution traces or runs of ## , ! , I $are preÞx traces generated by transitions,
as follows

«%!n � {%s ! %# n | %i ! [0, n (1) : ! (%si ,%si +1)} partial runs of length n � 0

«%!+ �
"

n ! 1

«%!n non-empty Þnite partial runs

%!n � {%s ! «%!n | %sn " 1 ! B } complete runs of lengthn � 0

%!+ �
"

n ! 1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «%!+I �
{%s ! «%!+ | %s0 ! I } (resp. %!+I � {%s ! %!+ | %s0 ! I }). Given S & # , we let %S n � {%s !
%# n | %s0 ! S } , n � 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«%!+I = lfp
$
%

" %T .%I 1 * %T #%!2

%!+ = lfp
$
%

" %T . %B 1 * %!2 #%T = gfp
$
!" + " %T . %B 1 * %!2 #%T . (1-a,1-b)

3 Specification semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj $ | j ! ' }

whenever a runtime checkassert(b j) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

! $O=%ʕ'-6$$$$$$$$$$$$$$$$$1-,)50#$J'')#/-$#=%ʕ'-6$
;'B#&$6,/)/&$B/&1/()#6$'&$P5/-2+,/2'-6$'B#&$
,'))#,2'-6>

! Q/)5#6$1-,)50#

! $J'')#/-6$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$F

! H'))#,2'-6$;/&&/?6F$6#.6F$"/6"$./()#6F$#.,<>$F

! #.,

Evaluation of expressions

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, τ ! ℘(Σ " Σ) is a non-deterministic transition relation between a state
and its possible successors, andI ! ℘(Σ) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write τ (s, s!) for #s, s!$! τ . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB ! { s ! Σ | %s! : Âτ (s, s!)} . If
the code must satisfy aglobal invariant G ! ℘(Σ) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation τ (e.g.
τ & G " G). We use a map ! ! Σ ' Γ of states of Σ into control points in Γ
which is assumed to be of Þnite cardinality. The program hasscalar variablesx ! x ,
collection variables X ! X and visible side e! ect free expressionse ! E, including
Boolean expressionsb ! B & E. Collection variables X have elementsX[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! Σ
is !e"s ! V. The valuesV include the BooleansB ! { true, false} where the complete
Boolean algebra#B,)$ is ordered by false) true. The value !X"s of a collection X
in a state s ! Σ is a pair !X"s = #n, X $ where n = !X.count "s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the valueX (i) of i -th element, i ! [0, n), in the
collection. When i ! [0, n), we deÞne!X"s[i] ! X (i) (= !X[e]"s where !e"s = i) to
denote the i -th element in the collection.

Traces. We let traces be sequences of states inΣ. �Σn is the set of non-emptyÞnite
traces �s = �s0 . . .�sn" 1 of length |�s| ! n " 0 including the empty trace �� of length
|�� | ! 0. �Σ + !

!
n! 1

�Σn is the set of non-empty Þnite traces and �Σ # ! �Σ + * {��} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is�ss#s�s ! ! �ss�s ! when�s,�s ! ! �Σ # and
s ! Σ, and is otherwise undeÞned.�S #�S ! ! {�ss�s ! | �ss ! �S + �Σ + , s�s ! ! �S !} . The
partial execution traces or runs of #Σ, τ, I $are preÞx traces generated by transitions,
as follows

«�τ n ! {�s ! �Σn | %i ! [0, n (1) : τ (�si,�si+1)} partial runs of length n " 0

«�τ + !
"

n! 1

«�τ n non-empty Þnite partial runs

�τ n ! {�s ! «�τ n | �sn" 1 ! B } complete runs of lengthn " 0

�τ + !
"

n! 1

�τ n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «�τ +
I !

{�s ! «�τ + | �s0 ! I } (resp. �τ +
I ! {�s ! �τ + | �s0 ! I }). Given S & Σ, we let �S n ! {�s !

�Σn | �s0 ! S } , n " 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«�τ +
I = lfp

$
%

" �T . �I 1 * �T #�τ 2

�τ + = lfp
$
%

" �T . �B 1 * �τ 2 #�T = gfp
$
!" + " �T . �B 1 * �τ 2 #�T . (1-a,1-b)

3 SpeciÞcation semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj$| j ! ∆}

whenever a runtime checkassert(b j) is attached to a control point cj ! Γ , j ! ∆. A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, andI ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for #s, s!$! ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) areB ! { s ! # | %s! : Â! (s, s!)} . If
the code must satisfy aglobal invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the deÞnition of the transition relation ! (e.g.
! & G " G). We use a mapπ ! # ' $ of states of # into control points in $
which is assumed to be of Þnite cardinality. The program hasscalar variablesx ! x ,
collection variables X ! X and visible side e! ect free expressionse ! E, including
Boolean expressionsb ! B & E. Collection variables X have elementsX[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is �e�s ! V. The valuesV include the BooleansB ! { true , false} where the complete
Boolean algebra#B,)$ is ordered by false) true. The value �X�s of a collection X
in a state s ! # is a pair �X�s = #n, X$ where n = �X.count �s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the valueX(i) of i-th element, i ! [0, n), in the
collection. When i ! [0, n), we deÞne�X�s[i] ! X(i) (= �X[e]�s where �e�s = i) to
denote the i-th element in the collection.

Traces. We let traces be sequences of states in# . %# n is the set of non-emptyÞnite
traces %s = %s0 . . .%sn " 1 of length |%s | ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

�
n ! 1

%# n is the set of non-empty Þnite traces and %# # ! %# + * {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is%ss �s%s ! ! %ss%s ! when%s,%s ! ! %# # and
s ! # , and is otherwise undeÞned.%S � %S ! ! {%ss%s ! | %ss ! %S + %# + , s%s ! ! %S ! } . The
partial execution traces or runs of ## , ! , I$are preÞx traces generated by transitions,
as follows

«%!n ! {%s ! %# n | %i ! [0, n (1) : ! (%s i ,%s i +1)} partial runs of length n " 0

«%!+ !
�

n ! 1

«%!n non-empty Þnite partial runs

%!n ! {%s ! «%!n | %sn " 1 ! B} complete runs of lengthn " 0

%!+ !
�

n ! 1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are «%!+I !
{%s ! «%!+ | %s0 ! I} (resp. %!+I ! {%s ! %!+ | %s0 ! I}). Given S & # , we let %Sn ! {%s !
%# n | %s0 ! S} , n " 1. Partial and maximal Þnite runs have the following Þxpoint
characterization [10]

«%!+I = lfp
$
%

λ %T .%I1 * %T � %!2

%!+ = lfp
$
%

λ %T . %B1 * %!2 � %T = gfp
$
!" + λ %T . %B1 * %!2 � %T . (1-a,1-b)

3 SpeciÞcation semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj $ | j ! ' }

whenever a runtime checkassert(b j) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressionsbj are
assumed to be both visible side e! ect free and always well-deÞned when evaluated,

3

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

set of states, ! ! " (# " #) is a non-deterministic transition relation between a state
and its possible successors, and I ! " (#) is the set of initial states (on code entry, as-
suming the precondition, if any, to be true). We write ! (s, s!) for #s, s!$! ! . The Þnal
or blocking stateswithout any possible successor (on code exit or violation of a lan-
guage assertion with unpredictable consequences) are B ! { s ! # | %s! : Â! (s, s!)} . If
the code must satisfy a global invariant G ! " (#) (e.g. class invariant for a method),
we assume this to be included in the definition of the transition relation ! (e.g.
! & G " G). We use a map π ! # ' $ of states of # into control points in $
which is assumed to be of finite cardinality. The program has scalar variablesx ! x ,
collection variables X ! X and visible side e! ect free expressions e ! E , including
Boolean expressionsb ! B & E . Collection variables X have elements X[i] ranging
from 0 to X.count (1 (A.length (1 for arrays A). The value of e ! E in state s ! #
is !e"s ! V. The valuesV include the Booleans B ! { true , false} where the complete
Boolean algebra #B,)$ is ordered by false) true . The value !X"s of a collection X
in a state s ! # is a pair !X"s = #n, X$ where n = !X.count "s " 0 is a non-negative
integer and X ! [0, n) ' V denotes the value X(i) of i-th element, i ! [0, n), in the
collection. When i ! [0, n), we define !X"s[i] ! X(i) (= !X[e]"s where !e"s = i) to
denote the i-th element in the collection.

Traces. We let traces be sequences of states in # . %# n is the set of non-empty Þnite
traces %s = %s0 . . .%sn" 1 of length |%s | ! n " 0 including the empty trace %&of length
|%&| ! 0. %# + !

!
n! 1

%# n is the set of non-empty Þnite tracesand %# # ! %# + * {%&} .
As usual, concatenation is denoted by juxtaposition and extended to sets of traces.
Moreover, the sequential compositionof traces is %ss#s%s ! ! %ss%s ! when %s,%s ! ! %# # and
s ! # , and is otherwise undefined. %S #%S ! ! {%ss%s ! | %ss ! %S + %# + , s%s ! ! %S ! } . The
partial execution traces or runs of ## , ! , I$are prefix traces generated by transitions,
as follows

%́!n ! {%s ! %# n | %i ! [0, n (1) : ! (%si,%si+1)} partial runs of length n " 0
%́!+ !

"

n! 1

%́!n non-empty Þnite partial runs

%!n ! {%s ! %́!n | %sn" 1 ! B} complete runs of lengthn " 0
%!+ !

"

n! 1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are %́!+I !
{%s ! %́!+ | %s0 ! I} (resp. %!+I ! {%s ! %!+ | %s0 ! I}). Given S & # , we let %Sn ! {%s !
%# n | %s0 ! S} , n " 1. Partial and maximal finite runs have the following fixpoint
characterization [10]

%́!+I = lfp
$
%

λ %T .%I1 * %T #%!2

%!+ = lfp
$
%

λ %T . %B1 * %!2 #%T = gfp
$
�Σ + λ %T . %B1 * %!2 #%T . (1-a,1-b)

3 SpeciÞcation semantics
The speciÞcation includes the existing precondition and postcondition, if any, the
language and programmer assertions, made explicit in the form

A = { #cj , bj$| j ! ' }

whenever a runtime check assert(b j) is attached to a control point cj ! $, j ! ' . A
is computed by a syntactic pre-analysis of the code. The Boolean expressions bj are
assumed to be both visible side e! ect free and always well-defined when evaluated,

3

¥

! R/%

Control

code entry, assuming the precondition, if any, to be true). We write ! (s, s!)
for �s, s!� ∈ ! . The Þnal or blocking stateswithout any possible successor (on
code exit or violation of a language assertion with unpredictable consequences)
are B ! { s ∈ " | ∀s! : Â! (s, s!)} . If the code must satisfy a global invariant
G ∈ #(") (e.g. class invariant for a method), we assume this to be included
in the deÞnition of the transition relation ! (e.g. ! ⊆ G × G). We use a map
! ∈ " → $ of states of" into control points in $ which is assumed to be of Þnite
cardinality. The program has scalar variablesx ∈ x, collection variables X∈ X
and visible side effect free expressionse ∈ E, including Boolean expressionsb ∈
B ⊆ E. Collection variables X have elementsX[i] ranging from 0 to X.count − 1
(A.length − 1 for arrays A). The value of e ∈ E in state s ∈ " is !e"s ∈ V. The
values V include the BooleansB ! { true, false} where the complete Boolean
algebra �B, ⇒� is ordered by false ⇒ true. The value !X"s of a collection X in
a state s ∈ " is a pair !X"s = �n, X � where n = !X.count "s " 0 is a non-
negative integer and X ∈ [0, n) → V denotes the valueX (i) of i -th element,
i ∈ [0, n), in the collection. When i ∈ [0, n), we deÞne!X"s[i] ! X (i) (= !X[e]"s
where !e"s = i) to denote the i -th element in the collection. The collection
index expressions are assumed to be converted in canonical normal form (e.g.
via auxiliary variables, so that e.g. for integer arrays, ...A[B[i]]... becomes
... { int x; x := B[i]; A[x] } ...).

Traces. We let traces be sequences of states in" . %" n is the set of non-empty
Þnite traces %s = %s0 . . .%sn " 1 of length |%s| ! n " 0 including the empty trace %&of
length |%&| ! 0. %" + !

!
n ! 1

%" n is the set of non-empty Þnite tracesand %" # !
%" + ∪ {%&} . As usual, concatenation is denoted by juxtaposition and extended to
sets of traces. Moreover, thesequential compositionof traces is

%ss #s%s ! ! %ss%s ! when %s ∈ %" # and s ∈ " , otherwise undeÞned
%S #%S ! ! {%ss%s ! | %ss ∈ %S ∩ %" + ∧ s%s ! ∈ %S !} .

The partial execution traces or runs of �" , ! , I � are preÞx traces generated by
transitions, as follows

«%!n ! {%s ∈ %" n | ∀i ∈ [0, n − 1) : ! (%si ,%si +1)} partial runs of length n " 0

«%!+ !
"

n ! 1

«%!n non-empty Þnite partial runs

%!n ! {%s ∈ «%!n | %sn " 1 ∈ B } complete runs of lengthn " 0

%!+ !
"

n ! 1

%!n non-empty Þnite complete runs.

The partial (resp. complete/maximal) runs starting from an initial state are
«%!+I ! {%s ∈ «%!+ | %s0 ∈ I } (resp. %!+I ! {%s ∈ %!+ | %s0 ∈ I }). Given S ⊆ " , we
let %S n ! {%s ∈ " n | %s0 ∈ S } , n " 1. Partial and maximal Þnite runs have the
following Þxpoint characterization [?]

4

;'+$E-1.#$,/&01-/)1.?>

Bad states and bad traces

bad runs

good run

erroneous states

! O&&'-#'56S(/0$6./.#6

! O&&'-#'56S(/0$.&/,#6

Formal speciÞcation of
the contract inference

problem

Contract precondition inference problem

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a priorassert (e.g. assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written
bj (x)) or to an element of a collection (written bj (X, i)). This deÞnes

EA � { s ! ! | "#c, b$! A : ! s = c %Â!b"s} erroneous or bad states
«"EA � { "s ! "! + | " i < |"s | : "si ! EA } erroneous or bad runs.

As part of the implicit speciÞcation, and for the sake of brevity, we consider that pro-
gram executions should terminate. Otherwise the results are similar after revisiting
(1-a,1-b) for inÞnite runs as considered in [10].

4 The contract precondition inference problem

DeÞnition 4 Given a transition system #! , #, I $and a specification A, the contract
precondition inference problem consists in computing PA ! $(!) such that when
replacing the initial states I by PA & I , we have

"# +
PA! I ' "# +

I (no new run is introduced) (2)

"# +
I \ PA

= "# +
I \ "# +

PA
' «"EA (all eliminated runs are bad runs). (3) ()

The following lemma shows that, according to Def.4, no Þnite maximal good run is
ever eliminated.

Lemma 5 (3) implies "# +
I & Â«"EA ' "# +

PA
.

Choosing PA = I so that I \ PA = * hence"# +
I \ PA

= * is a trivial solution, so we

would like PA to be minimal, whenever possible (so that"# +
I \ PA

is maximal). Please
note that this is not the weakest (liberal) precondition [15], which yields the weakest
condition under which the code (either does not terminate or) terminates without
assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest (5) solution to the precondition inference problem in Def. 4
is P A � { s | " s"s ! "# + & Â«"EA } . (4) ()

Instead of reasoning on the setP A of states from which there exists a good run
without any error, we can reason on the complementP A that is the set of states
from which all runs are bad in that they always lead to an error. DeÞneP A to be
the set of states from which any complete run in"# + does fail.

P A � ÂP A = { s | +s"s ! "# + : s"s ! «"EA } .

5 Basic elements of abstract interpretation

Galois connections. A Galois connection #L, �$,,,-.,,, !

"
#L, /$ consists of posets#L,

�$, #L, /$ and maps%! L - L , & ! L - L such that +x ! L, y ! L : %(x) / y 0
x � &(y). The dual is #L, 1$,,,-.,,, "

!
#L, �$. In a Galois connection, theabstraction

%preserves existing least upper bounds (lubs) hence is increasing so, by duality, the
concretization & is increasing and preserves existing greatest lower bounds (glbs). If
#L, �$is a complete Boolean lattice with unique complementÂ then the complement
isomorphism is #L, �$,,,-.,,, Â

Â
#L, �$ (since Âx � y 0 x � Ây).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.

4

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a priorassert (e.g.assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written
bj (x)) or to an element of a collection (written bj (X, i)). This deÞnes

EA ! { s ! Σ | "#c, b$! A : πs = c %Â!b"s} erroneous or bad states
«�EA ! {�s ! �Σ+ | " i < |�s| : �si ! EA} erroneous or bad runs.

As part of the implicit speciÞcation, and for the sake of brevity, we consider that pro-
gram executions should terminate. Otherwise the results are similar after revisiting
(1-a,1-b) for inÞnite runs as considered in [10].

4 The contract precondition inference problem
DeÞnition 4 Given a transition system #Σ, τ, I $and a speciÞcationA , the contract
precondition inference problem consists in computing PA ! ℘(Σ) such that when
replacing the initial states I by PA & I , we have

�τ +
PA ! I ' �τ +

I (no new run is introduced) (2)

�τ +
I\ PA

= �τ +
I \ �τ +

PA
' «�EA (all eliminated runs are bad runs). (3) ()

The following lemma shows that, according to Def.4, no Þnite maximal good run is
ever eliminated.

Lemma 5 (3) implies �τ +
I & Â«�EA ' �τ +

PA
.

Choosing PA = I so that I \ PA = * hence�τ +
I\ PA

= * is a trivial solution, so we

would like PA to be minimal, whenever possible (so that�τ +
I\ PA

is maximal). Please
note that this is not the weakest (liberal) precondition [15], which yields the weakest
condition under which the code (either does not terminate or) terminates without
assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest(5) solution to the precondition inference problem in Def.4
is P A ! { s | " s�s ! �τ + & Â«�EA} . (4) ()

Instead of reasoning on the setP A of states from which there exists a good run
without any error, we can reason on the complementP A that is the set of states
from which all runs are bad in that they always lead to an error. DeÞneP A to be
the set of states from which any complete run in�τ + does fail.

P A ! ÂP A = { s | +s�s ! �τ + : s�s ! «�EA} .

5 Basic elements of abstract interpretation

Galois connections. A Galois connection #L, " $,,,-.,,, !

"
#L, /$ consists of posets#L,

" $, #L, /$ and mapsα ! L - L , γ ! L - L such that +x ! L, y ! L : α(x) / y 0
x " γ(y). The dual is #L, 1$,,,-.,,, "

!
#L, # $. In a Galois connection, the abstraction

α preserves existing least upper bounds (lubs) hence is increasing so, by duality, the
concretization γ is increasing and preserves existing greatest lower bounds (glbs). If
#L, " $ is a complete Boolean lattice with unique complementÂ then the complement
isomorphism is #L, " $,,,-.,,, Â

Â
#L, # $ (since Âx " y 0 x # Ây).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.

4

T'$-'$E-1.#$*/=1*/)$4''0$&5-$16$#B#&$#)1*1-/.#0M

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a priorassert (e.g.assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written
bj (x)) or to an element of a collection (written bj (X, i)). This deÞnes

EA ! { s ∈ ! | ∃�c, b� ∈ A : ! s = c∧ Â!b"s} erroneous or bad states
«"EA ! { "s ∈ "! + | ∃i < |"s | : "si ∈ EA } erroneous or bad runs.

As part of the implicit speciÞcation, and for the sake of brevity, we consider that pro-
gram executions should terminate. Otherwise the results are similar after revisiting
(1-a,1-b) for inÞnite runs as considered in [10].

4 The contract precondition inference problem
DeÞnition 4 Given a transition system �! , #, I� and a speciÞcationA , the contract
precondition inference problem consists in computing PA ∈ $(!) such that when
replacing the initial states I by PA ∩ I, we have

"# +
PA ∩I ⊆ "# +

I (no new run is introduced) (2)

"# +
I \ PA

= "# +
I \ "# +

PA
⊆ «"EA (all eliminated runs are bad runs). (3) ��

The following lemma shows that, according to Def.4, no Þnite maximal good run is
ever eliminated.

Lemma 5 (3) implies "# +
I ∩ Â«"EA ⊆ "# +

PA
.

Choosing PA = I so that I \ PA = ∅ hence"# +
I \ PA

= ∅ is a trivial solution, so we

would like PA to be minimal, whenever possible (so that"# +
I \ PA

is maximal). Please
note that this is not the weakest (liberal) precondition [15], which yields the weakest
condition under which the code (either does not terminate or) terminates without
assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest(5) solution to the precondition inference problem in Def.4
is PA ! { s | ∃s"s ∈ "# + ∩ Â«"EA } . (4) ��

Instead of reasoning on the setPA of states from which there exists a good run
without any error, we can reason on the complementPA that is the set of states
from which all runs are bad in that they always lead to an error. DeÞnePA to be
the set of states from which any complete run in"# + does fail.

PA ! ÂPA = { s | ∀s"s ∈ "# + : s"s ∈ «"EA } .

5 Basic elements of abstract interpretation

Galois connections. A Galois connection �L, " � −−−→←−−−
α

γ
�L, �� consists of posets�L,

" �, �L, �� and maps%∈ L → L, & ∈ L → L such that ∀x ∈ L, y ∈ L : %(x) � y ⇔
x " &(y). The dual is �L, �� −−−→←−−−

γ

α �L, # �. In a Galois connection, the abstraction

%preserves existing least upper bounds (lubs) hence is increasing so, by duality, the
concretization & is increasing and preserves existing greatest lower bounds (glbs). If
�L, " � is a complete Boolean lattice with unique complementÂ then the complement
isomorphism is �L, " � −−−→←−−−

Â

Â �L, # � (since Âx " y ⇔ x # Ây).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.

4

The strongest solution

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a prior assert (e.g.assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written

bj (x)) or to an element of a collection (written bj (X, i)). This defines

EA ! { s ! ! | "#c, b$! A : ! s = c %Â�b�s} erroneous or bad states
"́EA ! { "s ! "! + | " i < |"s | : "si ! EA } erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-

gram executions should terminate. Otherwise the results are similar after revisiting

(1-a,1-b) for infinite runs as considered in [10].

4 The contract precondition inference problem
DeÞnition 4 Given a transition system #! , #, I $and a speciÞcationA , the contract

precondition inference problem consists in computing PA ! $(!) such that when
replacing the initial states I by PA & I , we have

"# +
PA ! I ' "# +

I (no new run is introduced) (2)

"# +
I \PA

= "# +
I \ "# +

PA
' "́EA (all eliminated runs are bad runs). (3) ()

The following lemma shows that, according to Def. 4, no finite maximal good run is

ever eliminated.

Lemma 5 (3) implies "# +
I & Â"́EA ' "# +

PA
.

Choosing PA = I so that I \ PA = * hence "# +
I \PA

= * is a trivial solution, so we

would like PA to be minimal, whenever possible (so that "# +
I \PA

is maximal). Please

note that this is not the weakest (liberal) precondition [15], which yields the weakest

condition under which the code (either does not terminate or) terminates without

assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest(5) solution to the precondition inference problem in Def.4
is P A ! { s | " s"s ! "# + & Â"́EA } . (4) ()

Instead of reasoning on the set P A of states from which there exists a good run

without any error, we can reason on the complement P A that is the set of states

from which all runs are bad in that they always lead to an error. Define P A to be

the set of states from which any complete run in "# + does fail.

P A ! ÂP A = { s | +s"s ! "# +
: s"s ! "́EA } .

5 Basic elements of abstract interpretation

Galois connections. A Galois connection #L, " $,,,-.,,, !

"
#L, /$ consists of posets #L,

" $, #L, /$ and maps %! L - L , & ! L - L such that +x ! L, y ! L : %(x) / y 0
x " &(y). The dual is #L, 1$,,,-.,,, "

!
#L, # $. In a Galois connection, the abstraction

%preserves existing least upper bounds (lubs) hence is increasing so, by duality, the

concretization & is increasing and preserves existing greatest lower bounds (glbs). If

#L, " $ is a complete Boolean lattice with unique complement Â then the complement
isomorphism is #L, " $,,,-.,,, ¬

¬
#L, # $ (since Âx " y 0 x # Ây).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ⊆ Q.

4

bad state

bad run

bad run

bad state

bad state

bad run

good run
OK

], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.(5)

! 7''0$6./.#6$M$6./&.$/.$)#/6.$'-#$4''0$&5-

! J/0$6./.#6$M$6./&.$'-)?$(/0$&5-6$

Good and bad states

erroneous state

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a prior assert (e.g.assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written

bj (x)) or to an element of a collection (written bj (X, i)). This defines

EA ! { s ! ! | "#c, b$! A : πs = c %Â!b"s} erroneous or bad states
"́EA ! { "s ! "! + | " i < |"s | : "si ! EA } erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-

gram executions should terminate. Otherwise the results are similar after revisiting

(1-a,1-b) for infinite runs as considered in [10].

4 The contract precondition inference problem
DeÞnition 4 Given a transition system #! , #, I $and a speciÞcationA , the contract

precondition inference problem consists in computing PA ! $(!) such that when
replacing the initial states I by PA & I , we have

"# +
PA ! I ' "# +

I (no new run is introduced) (2)

"# +
I \ PA

= "# +
I \ "# +

PA
' "́EA (all eliminated runs are bad runs). (3) ()

The following lemma shows that, according to Def. 4, no finite maximal good run is

ever eliminated.

Lemma 5 (3) implies "# +
I & Â"́EA ' "# +

PA
.

Choosing PA = I so that I \ PA = * hence "# +
I \ PA

= * is a trivial solution, so we

would like PA to be minimal, whenever possible (so that "# +
I \ PA

is maximal). Please

note that this is not the weakest (liberal) precondition [15], which yields the weakest

condition under which the code (either does not terminate or) terminates without

assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest(5) solution to the precondition inference problem in Def.4
is P A ! { s | " s"s ! "# + & Â"́EA } . (4) ()

Instead of reasoning on the set P A of states from which there exists a good run

without any error, we can reason on the complement P A that is the set of states

from which all runs are bad in that they always lead to an error. Define P A to be

the set of states from which any complete run in "# + does fail.

P A ! ÂP A = { s | +s"s ! "# +
: s"s ! "́EA } .

5 Basic elements of abstract interpretation

Galois connections. A Galois connection #L, " $,,,-.,,, !

"
#L, /$ consists of posets #L,

" $, #L, /$ and maps %! L - L , & ! L - L such that +x ! L, y ! L : %(x) / y 0
x " &(y). The dual is #L, 1$,,,-.,,, "

!
#L, # $. In a Galois connection, the abstraction

%preserves existing least upper bounds (lubs) hence is increasing so, by duality, the

concretization & is increasing and preserves existing greatest lower bounds (glbs). If

#L, " $ is a complete Boolean lattice with unique complement Â then the complement
isomorphism is #L, " $,,,-.,,, Â

Â
#L, # $ (since Âx " y 0 x # Ây).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.

4

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a prior assert (e.g.assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written

bj (x)) or to an element of a collection (written bj (X, i)). This defines

EA ! { s ∈ ! | ∃�c, b� ∈ A : ! s = c∧ Â!b"s} erroneous or bad states
"́EA ! { "s ∈ "! + | ∃i < |"s | : "si ∈ EA } erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-

gram executions should terminate. Otherwise the results are similar after revisiting

(1-a,1-b) for infinite runs as considered in [10].

4 The contract precondition inference problem
DeÞnition 4 Given a transition system �! , #, I � and a speciÞcationA , the contract

precondition inference problem consists in computing PA ∈ $(!) such that when
replacing the initial states I by PA ∩ I , we have

"# +
PA ! I ⊆ "# +

I (no new run is introduced) (2)

"# +
I \ PA

= "# +
I \ "# +

PA
⊆ "́EA (all eliminated runs are bad runs). (3) ��

The following lemma shows that, according to Def. 4, no finite maximal good run is

ever eliminated.

Lemma 5 (3) implies "# +
I ∩ Â"́EA ⊆ "# +

PA
.

Choosing PA = I so that I \ PA = ∅ hence "# +
I \ PA

= ∅ is a trivial solution, so we

would like PA to be minimal, whenever possible (so that "# +
I \ PA

is maximal). Please

note that this is not the weakest (liberal) precondition [15], which yields the weakest

condition under which the code (either does not terminate or) terminates without

assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest(5) solution to the precondition inference problem in Def.4
is P A ! { s | ∃s"s ∈ "# + ∩ Â"́EA } . (4) ��

Instead of reasoning on the set P A of states from which there exists a good run

without any error, we can reason on the complement P A that is the set of states

from which all runs are bad in that they always lead to an error. Define P A to be

the set of states from which any complete run in "# + does fail.

P A ! ÂP A = { s | ∀s"s ∈ "# +
: s"s ∈ "́EA } .

5 Basic elements of abstract interpretation

Galois connections. A Galois connection �L, " � −−−→←−−−
!

"
�L, �� consists of posets �L,

" �, �L, �� and maps %∈ L → L , & ∈ L → L such that ∀x ∈ L, y ∈ L : %(x) � y ⇔
x " &(y). The dual is �L, �� −−−→←−−−

"

! �L, # �. In a Galois connection, the abstraction

%preserves existing least upper bounds (lubs) hence is increasing so, by duality, the

concretization & is increasing and preserves existing greatest lower bounds (glbs). If

�L, " � is a complete Boolean lattice with unique complement Â then the complement
isomorphism is �L, " � −−−→←−−−

Â

Â �L, # � (since Âx " y ⇔ x # Ây).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.

4

Trace predicate transformerscontÕd)

! !&/,#$%,/.#$.&/-6+'&*#&6

! 7/)'16$,'--#,2'-

! J/0$1-12/)$6./.#6$;/))$&5-6$+&'*$."#6#$6./.#6$/&#$(/0>

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If !L, �, "# is a complete lattice or a cpo,F $ L % L is increasing, !L,
&# is a poset, ! $ L % L is continuous(6) ,(7) , F $ L % L commutes (resp. semi-
commutes) with F that is ! ! F = F ! ! (resp. ! ! F & F ! !) then ! (lfp

!
"

F) =

lfp
#
! (")

F (resp. ! (lfp
!
"

F) & lfp
#
! (")

F).

Applying Lem. 7 to !L, �#'''%('''
¬
¬

!L, �#, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F $ L % L is increasing on a complete Boolean
lattice !L, �, " , Â# then Â lfp

!
"

F = gfp
!
¬"

Â ! F ! Â .

Corollary 9 If !L, &,)# is a complete lattice or a dcpo,F $ L % L is increasing,
" $ L % L is co-continuous(8) , F $ L % L commutes withF that is " ! F = F ! "
then " (gfp

#
$

F) = gfp
!
" ($)

F .

6 Fixpoint strongest contract precondition
Following [10], let us deÞne the abstraction generalizing [15] to traces

wlp[#T] � ! #Q . !
s

"
" * s#s $ #T : s#s $ #Q

#

wlp%1[#Q] � ! P . !
s#s $ #$ +

"
" (s $ P) + (s#s $ #Q)

#

such that !%(#$ +), ,# ''''''''''%(''''''''''
! #T . wlp[#T] #Q

wlp! 1 [#Q]
!%($), -# and PA = wlp[#&+](«#EA). By Þxpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
&
$

! P . EA . (ÂB / $pre[t]P) and PA = lfp
&
'

! P . ÂEA /

(B . pre[t]P) wherepre[t]Q � { s | 0s($ Q : !s, s(# $ t} and $pre[t]Q � Âpre[t](ÂQ) =
{ s | * s(: !s, s(# $ t + s($ Q} . 12

If the set $ of states is Þnite, as assumed in model-checking [2], the Þxpoint deÞnition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s $ PA can proceed by exhaustive enumeration. In case
this does not scale up or for inÞnite state systems, bounded model-checking [5] is an
alternative using

%k
i=0 #&i instead of#&+ but, by Th. 6, the bounded preÞx abstraction

! k(#T) �
!
#s $ #T

"
" |#s| � k

#
is unsound for approximating both PA and PA .

7 Contract precondition inference by data ßow analysis
Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
effect is the same. This can be done by a sound data ßow analysis [18] when
1. the value of the visible side effect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert on
all paths that can be taken from the program entry.

We propose a backward data ßow analysis to check for both sufficient conditions 1
and 2.

(6) ! is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for ! can be restricted to the iterates of the least Þxpoint of F .
(8) " is co-continuous if and only if it preserves existing glbs of decreasing chains.

5

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If !L, ! , "# is a complete lattice or a cpo,F $ L % L is increasing, !L,
&# is a poset, α $ L % L is continuous(6) , (7) , F $ L % L commutes (resp. semi-
commutes) with F that is α ◦ F = F ◦ α (resp. α ◦ F & F ◦ α) then α(lfp !

⊥ F) =
lfp

�
! (⊥)

F (resp. α(lfp !
⊥ F) & lfp

�
! (⊥)

F).

Applying Lem. 7 to !L, ! # '''%('''
Â

Â
!L, " #, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F $ L % L is increasing on a complete Boolean
lattice !L, ! , " , ¬# then ¬ lfp

!
⊥ F = gfp

!
Â⊥ ¬ ◦ F ◦ ¬ .

Corollary 9 If !L, &,)# is a complete lattice or a dcpo,F $ L % L is increasing,
γ $ L % L is co-continuous(8) , F $ L % L commutes withF that is γ ◦ F = F ◦ γ

then γ(gfp
�
� F) = gfp

!
" (�)

F .

6 Fixpoint strongest contract precondition
Following [10], let us define the abstraction generalizing [15] to traces

wlp[�T] # ! �Q . !
s

"
" * s�s $ �T : s�s $ �Q

#

wlp−1[�Q] # ! P . !
s�s $ �Σ +

"
" (s $ P) + (s�s $ �Q)

#

such that !℘(�Σ +), ,# ''''''''''%(''''''''''
! #T .wlp[#T] #Q

wlp! 1[#Q]
!℘(Σ), -# and PA = wlp[�τ +](�́EA). By fixpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
⊆
$

! P .EA . (¬B / $pre[t]P) and PA = lfp
⊆
∅ ! P .¬EA /

(B . pre[t]P) wherepre[t]Q # {s | 0s� $ Q : !s, s�# $ t} and $pre[t]Q # ¬pre[t](¬Q) =
{s | * s� : !s, s�# $ t + s� $ Q}. 12

If the set Σ of states is finite, as assumed in model-checking [2], the fixpoint definition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s $ PA can proceed by exhaustive enumeration. In case
this does not scale up or for infinite state systems, bounded model-checking [5] is an
alternative using

%k
i =0 �τ i instead of �τ + but, by Th. 6, the bounded prefix abstraction

αk (�T) #
!
�s $ �T

"
" |�s | ! k

#
is unsound for approximating both PA and PA .

7 Contract precondition inference by data flow analysis
Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
effect is the same. This can be done by a sound data flow analysis [18] when
1. the value of the visible side effect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert on
all paths that can be taken from the program entry.

We propose a backward data flow analysis to check for both sufficient conditions 1
and 2.

(6) ! is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for ! can be restricted to the iterates of the least Þxpoint of F .
(8) " is co-continuous if and only if it preserves existing glbs of decreasing chains.

5

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If !L, �, "# is a complete lattice or a cpo,F $ L % L is increasing, !L,
&# is a poset, ! $ L % L is continuous(6),(7), F $ L % L commutes (resp. semi-
commutes) with F that is ! ! F = F ! ! (resp. ! ! F & F ! !) then ! (lfp

!
"

F) =

lfp
#
α(")

F (resp. ! (lfp
!
"

F) & lfp
#
α(")

F).

Applying Lem. 7 to !L, �#'''%('''
¬
¬

!L, �#, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F $ L % L is increasing on a complete Boolean
lattice !L, �, " , ¬# then ¬ lfp

!
"

F = gfp
!
¬"

¬ ! F ! ¬ .

Corollary 9 If !L, &,)# is a complete lattice or a dcpo,F $ L % L is increasing,
" $ L % L is co-continuous(8), F $ L % L commutes withF that is " ! F = F ! "
then " (gfp

#
$

F) = gfp
!
γ($)

F .

6 Fixpoint strongest contract precondition
Following [10], let us deÞne the abstraction generalizing [15] to traces

wlp[#T] � ! #Q . !
s

"
" * s#s $ #T : s#s $ #Q

#

wlp%1[#Q] � ! P . !
s#s $ #$ +

"
" (s $ P) + (s#s $ #Q)

#

such that !%(#$ +), ,# ''''''''''%(''''''''''
! �T . wlp[�T]�Q

wlp! 1 [�Q]
!%($), -# and P A = wlp[#&+](«#EA). By Þxpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 P A = gfp
&
Σ

! P . EA . (¬B / $pre[t]P) and P A = lfp
&
'

! P . ¬EA /

(B . pre[t]P) wherepre[t]Q � {s | 0s($ Q : !s, s(# $ t} and $pre[t]Q � ¬pre[t](¬Q) =
{s | * s(: !s, s(# $ t + s($ Q}. 12

If the set $ of states is Þnite, as assumed in model-checking [2], the Þxpoint deÞnition
of P A in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s $ P A can proceed by exhaustive enumeration. In case
this does not scale up or for inÞnite state systems, bounded model-checking [5] is an
alternative using

%k
i=0 #&i instead of#&+ but, by Th. 6, the bounded preÞx abstraction

! k(#T) �
!
#s $ #T

"
" |#s | � k

#
is unsound for approximating both P A and P A .

7 Contract precondition inference by data ßow analysis
Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
e! ect is the same. This can be done by a sound data ßow analysis [18] when
1. the value of the visible side e! ect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert on
all paths that can be taken from the program entry.

We propose a backward data ßow analysis to check for both su" cient conditions 1
and 2.

(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates of the least fixpoint of F .
(8) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.

5

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a priorassert (e.g.assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written
bj (x)) or to an element of a collection (written bj (X, i)). This deÞnes

EA ! { s ! ! | "#c, b$! A : ! s = c %Â!b"s} erroneous or bad states
«"EA ! { "s ! "! + | " i < |"s | : "si ! EA } erroneous or bad runs.

As part of the implicit speciÞcation, and for the sake of brevity, we consider that pro-
gram executions should terminate. Otherwise the results are similar after revisiting
(1-a,1-b) for inÞnite runs as considered in [10].

4 The contract precondition inference problem
DeÞnition 4 Given a transition system #! , #, I $and a speciÞcationA , the contract
precondition inference problem consists in computing PA ! $(!) such that when
replacing the initial states I by PA & I , we have

"# +
PA ! I ' "# +

I (no new run is introduced) (2)

"# +
I \ PA

= "# +
I \ "# +

PA
' «"EA (all eliminated runs are bad runs). (3) ()

The following lemma shows that, according to Def.4, no Þnite maximal good run is
ever eliminated.

Lemma 5 (3) implies "# +
I & Â«"EA ' "# +

PA
.

Choosing PA = I so that I \ PA = * hence"# +
I \ PA

= * is a trivial solution, so we

would like PA to be minimal, whenever possible (so that"# +
I \ PA

is maximal). Please
note that this is not the weakest (liberal) precondition [15], which yields the weakest
condition under which the code (either does not terminate or) terminates without
assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest(5) solution to the precondition inference problem in Def.4
is P A ! { s | " s"s ! "# + & Â«"EA } . (4) ()

Instead of reasoning on the setP A of states from which there exists a good run
without any error, we can reason on the complementP A that is the set of states
from which all runs are bad in that they always lead to an error. DeÞneP A to be
the set of states from which any complete run in"# + does fail.

P A ! ÂP A = { s | +s"s ! "# + : s"s ! «"EA } .

5 Basic elements of abstract interpretation

Galois connections. A Galois connection #L, " $,,,-.,,, !

"
#L, /$ consists of posets#L,

" $, #L, /$ and maps%! L - L , & ! L - L such that +x ! L, y ! L : %(x) / y 0
x " &(y). The dual is #L, 1$,,,-.,,, "

!
#L, # $. In a Galois connection, the abstraction

%preserves existing least upper bounds (lubs) hence is increasing so, by duality, the
concretization & is increasing and preserves existing greatest lower bounds (glbs). If
#L, " $ is a complete Boolean lattice with unique complementÂ then the complement
isomorphism is #L, " $,,,-.,,, Â

Â
#L, # $ (since Âx " y 0 x # Ây).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.

4

U#-'.#0$/6F$(5.$01N#&#-.$+&'*F$/-0$#-G'?1-4$%&'%#&2#6$61*1)/&$.'$U1G86.&/D6$6?-./,2,$CVK$%,/.#$.&/-6+'&*#&

;W>

;W>

A very brief recap of
abstract interpretation

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a priorassert (e.g.assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written
bj (x)) or to an element of a collection (written bj (X, i)). This deÞnes

EA ! { s ! Σ | "#c, b$! A : πs = c %Â!b"s} erroneous or bad states
«�EA ! {�s ! �Σ + | " i < |�s| : �si ! EA } erroneous or bad runs.

As part of the implicit speciÞcation, and for the sake of brevity, we consider that pro-
gram executions should terminate. Otherwise the results are similar after revisiting
(1-a,1-b) for inÞnite runs as considered in [10].

4 The contract precondition inference problem
DeÞnition 4 Given a transition system #Σ, τ, I $and a speciÞcationA, the contract
precondition inference problem consists in computing PA ! ℘(Σ) such that when
replacing the initial states I by PA & I , we have

�τ +
PA ! I ' �τ +

I (no new run is introduced) (2)

�τ +
I \PA

= �τ +
I \ �τ +

PA
' «�EA (all eliminated runs are bad runs). (3) ()

The following lemma shows that, according to Def.4, no Þnite maximal good run is
ever eliminated.

Lemma 5 (3) implies �τ +
I & Â«�EA ' �τ +

PA
.

Choosing PA = I so that I \ PA = * hence�τ +
I \PA

= * is a trivial solution, so we

would like PA to be minimal, whenever possible (so that�τ +
I \PA

is maximal). Please
note that this is not the weakest (liberal) precondition [15], which yields the weakest
condition under which the code (either does not terminate or) terminates without
assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest(5) solution to the precondition inference problem in Def.4
is P A ! { s | " s�s ! �τ + & Â«�EA } . (4) ()

Instead of reasoning on the setP A of states from which there exists a good run
without any error, we can reason on the complementP A that is the set of states
from which all runs are bad in that they always lead to an error. DeÞneP A to be
the set of states from which any complete run in�τ + does fail.

P A ! ÂP A = { s | +s�s ! �τ + : s�s ! «�EA } .

5 Basic elements of abstract interpretation

Galois connections. A Galois connection #L, " $,,,-.,,, !

"
#L, /$ consists of posets#L,

" $, #L, /$ and mapsα ! L - L , γ ! L - L such that +x ! L, y ! L : α(x) / y 0
x " γ(y). The dual is #L, 1$,,,-.,,, "

!
#L, # $. In a Galois connection, the abstraction

α preserves existing least upper bounds (lubs) hence is increasing so, by duality, the
concretization γ is increasing and preserves existing greatest lower bounds (glbs). If
#L, " $ is a complete Boolean lattice with unique complementÂ then the complement
isomorphism is #L, " $,,,-.,,, ¬

¬
#L, # $ (since Âx " y 0 x # Ây).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.

4

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a priorassert (e.g.assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written
bj(x)) or to an element of a collection (written bj(X, i)). This deÞnes

EA � {s ! ! | "#c, b$! A : ! s = c %¬!b"s} erroneous or bad states
«"EA � {"s ! "! + | " i < |"s | : "si ! EA} erroneous or bad runs.

As part of the implicit speciÞcation, and for the sake of brevity, we consider that pro-
gram executions should terminate. Otherwise the results are similar after revisiting
(1-a,1-b) for inÞnite runs as considered in [10].

4 The contract precondition inference problem
DeÞnition 4 Given a transition system #! , #, I $and a speciÞcationA, the contract
precondition inference problem consists in computing PA ! $(!) such that when
replacing the initial states I by PA & I , we have

"# +
PA ! I ' "# +

I (no new run is introduced) (2)

"# +
I \ PA

= "# +
I \ "# +

PA
' «"EA (all eliminated runs are bad runs). (3) ()

The following lemma shows that, according to Def.4, no Þnite maximal good run is
ever eliminated.

Lemma 5 (3) implies "# +
I & ¬«"EA ' "# +

PA
.

Choosing PA = I so that I \ PA = * hence"# +
I \ PA

= * is a trivial solution, so we

would like PA to be minimal, whenever possible (so that"# +
I \ PA

is maximal). Please
note that this is not the weakest (liberal) precondition [15], which yields the weakest
condition under which the code (either does not terminate or) terminates without
assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest(5) solution to the precondition inference problem in Def.4
is P A � {s | " s"s ! "# + & ¬«"EA}. (4) ()

Instead of reasoning on the setP A of states from which there exists a good run
without any error, we can reason on the complementP A that is the set of states
from which all runs are bad in that they always lead to an error. DeÞneP A to be
the set of states from which any complete run in"# + does fail.

P A � ¬P A = {s | +s"s ! "# + : s"s ! «"EA}.

5 Basic elements of abstract interpretation

Galois connections. A Galois connection #L, �$,,,-.,,, α

γ
#L, /$ consists of posets#L,

�$, #L, /$ and maps%! L - L, & ! L - L such that +x ! L, y ! L : %(x) / y 0
x � &(y). The dual is #L, 1$,,,-.,,, γ

α
#L, �$. In a Galois connection, the abstraction

%preserves existing least upper bounds (lubs) hence is increasing so, by duality, the
concretization & is increasing and preserves existing greatest lower bounds (glbs). If
#L, �$is a complete Boolean lattice with unique complement¬ then the complement
isomorphism is #L, �$,,,-.,,, Â

Â
#L, �$ (since¬x � y 0 x � ¬y).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.

4

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a priorassert (e.g.assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written
bj (x)) or to an element of a collection (written bj (X, i)). This deÞnes

EA ! { s ∈ ! | ∃�c, b� ∈ A : ! s = c∧ Â!b"s} erroneous or bad states
«"EA ! { "s ∈ "! + | ∃i < |"s | : "si ∈ EA } erroneous or bad runs.

As part of the implicit speciÞcation, and for the sake of brevity, we consider that pro-
gram executions should terminate. Otherwise the results are similar after revisiting
(1-a,1-b) for inÞnite runs as considered in [10].

4 The contract precondition inference problem
DeÞnition 4 Given a transition system �! , #, I� and a speciÞcationA , the contract
precondition inference problem consists in computing PA ∈ $(!) such that when
replacing the initial states I by PA ∩ I, we have

"# +
PA ∩I ⊆ "# +

I (no new run is introduced) (2)

"# +
I \ PA

= "# +
I \ "# +

PA
⊆ «"EA (all eliminated runs are bad runs). (3) ��

The following lemma shows that, according to Def.4, no Þnite maximal good run is
ever eliminated.

Lemma 5 (3) implies "# +
I ∩ Â«"EA ⊆ "# +

PA
.

Choosing PA = I so that I \ PA = ∅ hence"# +
I \ PA

= ∅ is a trivial solution, so we

would like PA to be minimal, whenever possible (so that"# +
I \ PA

is maximal). Please
note that this is not the weakest (liberal) precondition [15], which yields the weakest
condition under which the code (either does not terminate or) terminates without
assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest(5) solution to the precondition inference problem in Def.4
is PA ! { s | ∃s"s ∈ "# + ∩ Â«"EA } . (4) ��

Instead of reasoning on the setPA of states from which there exists a good run
without any error, we can reason on the complementPA that is the set of states
from which all runs are bad in that they always lead to an error. DeÞnePA to be
the set of states from which any complete run in"# + does fail.

PA ! ÂPA = { s | ∀s"s ∈ "# + : s"s ∈ «"EA } .

5 Basic elements of abstract interpretation

Galois connections. A Galois connection �L, " � −−−→←−−−
!

"
�L, �� consists of posets�L,

" �, �L, �� and maps%∈ L → L, & ∈ L → L such that ∀x ∈ L, y ∈ L : %(x) � y ⇔
x " &(y). The dual is �L, �� −−−→←−−−

"

! �L, # �. In a Galois connection, the abstraction

%preserves existing least upper bounds (lubs) hence is increasing so, by duality, the
concretization & is increasing and preserves existing greatest lower bounds (glbs). If
�L, " � is a complete Boolean lattice with unique complementÂ then the complement
isomorphism is �L, " � −−−→←−−−

Â

Â �L, # � (since Âx " y ⇔ x # Ây).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.

4

Galois connections

,'-,&#.#
0'*/1-

,'-,&#.#
1*%)1,/2'-

/(6.&/,.
0'*/1-

/(6.&/,.
1*%)1,/2'-

,'-,X/2'-

/(6.&/,2'-

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a prior assert (e.g.assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written

bj (x)) or to an element of a collection (written bj (X, i)). This defines

EA ! { s ! ! | "#c, b$! A : ! s = c %Â!b"s} erroneous or bad states
"́EA ! { "s ! "! + | " i < |"s | : "si ! EA } erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-

gram executions should terminate. Otherwise the results are similar after revisiting

(1-a,1-b) for infinite runs as considered in [10].

4 The contract precondition inference problem
DeÞnition 4 Given a transition system #! , #, I $and a speciÞcationA , the contract

precondition inference problem consists in computing PA ! $(!) such that when
replacing the initial states I by PA & I , we have

"# +
PA ∩I ' "# +

I (no new run is introduced) (2)

"# +
I \ PA

= "# +
I \ "# +

PA
' "́EA (all eliminated runs are bad runs). (3) ()

The following lemma shows that, according to Def. 4, no finite maximal good run is

ever eliminated.

Lemma 5 (3) implies "# +
I & Â"́EA ' "# +

PA
.

Choosing PA = I so that I \ PA = * hence "# +
I \ PA

= * is a trivial solution, so we

would like PA to be minimal, whenever possible (so that "# +
I \ PA

is maximal). Please

note that this is not the weakest (liberal) precondition [15], which yields the weakest

condition under which the code (either does not terminate or) terminates without

assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest(5) solution to the precondition inference problem in Def.4
is P A ! { s | " s"s ! "# + & Â"́EA } . (4) ()

Instead of reasoning on the set P A of states from which there exists a good run

without any error, we can reason on the complement P A that is the set of states

from which all runs are bad in that they always lead to an error. Define P A to be

the set of states from which any complete run in "# + does fail.

P A ! ÂP A = { s | +s"s ! "# +
: s"s ! "́EA } .

5 Basic elements of abstract interpretation

Galois connections. A Galois connection #L, " $,,,-.,,, !

"
#L, /$ consists of posets #L,

" $, #L, /$ and maps %! L - L , & ! L - L such that +x ! L, y ! L : %(x) / y 0
x " &(y). The dual is #L, 1$,,,-.,,, "

!
#L, # $. In a Galois connection, the abstraction

%preserves existing least upper bounds (lubs) hence is increasing so, by duality, the

concretization & is increasing and preserves existing greatest lower bounds (glbs). If

#L, " $ is a complete Boolean lattice with unique complement Â then the complement
isomorphism is #L, " $,,,-.,,, Â

Â
#L, # $ (since Âx " y 0 x # Ây).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.

4

Duality
soundness

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If !L, ! , "# is a complete lattice or a cpo,F $ L % L is increasing, !L,
&# is a poset, ! $ L % L is continuous(6) , (7) , F $ L % L commutes (resp. semi-
commutes) with F that is ! ! F = F ! ! (resp. ! ! F & F ! !) then ! (lfp

!
"

F) =

lfp
#
! (")

F (resp. ! (lfp
!
"

F) & lfp
#
! (")

F).

Applying Lem. 7 to !L, ! # '''%('''
Â

Â
!L, " #, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F $ L % L is increasing on a complete Boolean
lattice !L, ! , " , Â# then Â lfp

!
"

F = gfp
!
Â"

Â ! F ! Â .

Corollary 9 If !L, &,)# is a complete lattice or a dcpo,F $ L % L is increasing,
" $ L % L is co-continuous(8) , F $ L % L commutes withF that is " ! F = F ! "
then " (gfp

#
$

F) = gfp
!
" ($)

F .

6 Fixpoint strongest contract precondition
Following [10], let us deÞne the abstraction generalizing [15] to traces

wlp[#T] # ! #Q . !
s

"
" * s#s $ #T : s#s $ #Q

#

wlp%1[#Q] # ! P . !
s#s $ #$ +

"
" (s $ P) + (s#s $ #Q)

#

such that !%(#$ +), ,# ''''''''''%(''''''''''
λ #T . wlp[#T] #Q

wlp−1 [#Q]
!%($), -# and P A = wlp[#&+](«#EA). By Þxpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 P A = gfp
&
$

! P . EA . (ÂB / $pre[t]P) and P A = lfp
&
'

! P . ÂEA /

(B . pre[t]P) wherepre[t]Q # { s | 0s($ Q : !s, s(# $ t} and $pre[t]Q # Âpre[t](ÂQ) =
{ s | * s(: !s, s(# $ t + s($ Q} . 12

If the set $ of states is Þnite, as assumed in model-checking [2], the Þxpoint deÞnition
of P A in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s $ P A can proceed by exhaustive enumeration. In case
this does not scale up or for inÞnite state systems, bounded model-checking [5] is an
alternative using

%k
i =0 #&i instead of#&+ but, by Th. 6, the bounded preÞx abstraction

! k (#T) #
!
#s $ #T

"
" |#s| ! k

#
is unsound for approximating both P A and P A .

7 Contract precondition inference by data ßow analysis
Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
e! ect is the same. This can be done by a sound data ßow analysis [18] when
1. the value of the visible side e! ect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert on
all paths that can be taken from the program entry.

We propose a backward data ßow analysis to check for both su" cient conditions 1
and 2.

(6) α is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for α can be restricted to the iterates of the least fixpoint of F .
(8) γ is co-continuous if and only if it preserves existing glbs of decreasing chains.

5

best abstraction

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpointabstraction.Recallfrom[12,7.1.0.4]that

Lemma7If!L,!,"#isacompletelatticeoracpo,F$L%Lisincreasing,!L,
&#isaposet,!$L%Liscontinuous(6),(7),F$L%Lcommutes(resp.semi-
commutes)withFthatis!!F=F!!(resp.!!F&F!!)then!(lfp

!
"F)=

lfp
#
!(")F(resp.!(lfp

!
"F)&lfp

#
!(")F).

ApplyingLem.7to!L,!#'''%('' '
Â

Â
!L,"#,wegetCor.8andbydualityCor.9below.

Corollary8(DavidPark)IfF$L%LisincreasingonacompleteBoolean
lattice!L,!,",Â#thenÂlfp

!
"F=gfp

!
Â"Â!F!Â.

Corollary9If!L,&,)#isacompletelatticeoradcpo,F$L%Lisincreasing,
"$L%Lisco-continuous(8),F$L%LcommuteswithFthatis"!F=F!"
then"(gfp

#
$F)=gfp

!
"($)F.

6Fixpointstrongestcontractprecondition
Following[10],letusdeÞnetheabstractiongeneralizing[15]totraces

wlp[#T]#!#Q.
!

s
"
"*s#s$#T:s#s$#Q#

wlp
%1

[#Q]#!P.
!

s#s$#$+"
"(s$P)+(s#s$#Q)

#

suchthat!%(#$+),,#''''''''''%(''''''''''
λ#T.wlp[#T]#Q

wlp−1
[#Q]

!%($),-#andPA=wlp[#&+](«#EA).ByÞxpoint

abstraction,itfollowsfrom(1-a)andCor.8that

Theorem10PA=gfp
&
$!P.EA.(ÂB/$pre[t]P)andPA=lfp

&
'!P.ÂEA/

(B.pre[t]P)wherepre[t]Q#{s|0s($Q:!s,s(#$t}and$pre[t]Q#Âpre[t](ÂQ)=
{s|*s(:!s,s(#$t+s($Q}.12

Iftheset$ofstatesisÞnite,asassumedinmodel-checking[2],theÞxpointdeÞnition
ofPAinTh.10iscomputableiteratively,uptocombinatorialexplosion.Thecode
tocheckthepreconditions$PAcanproceedbyexhaustiveenumeration.Incase
thisdoesnotscaleuporforinÞnitestatesystems,boundedmodel-checking[5]isan
alternativeusing

%k
i=0#&iinsteadof#&+but,byTh.6,theboundedpreÞxabstraction

!k(#T)#
!
#s$#T

"
"|#s|!k

#
isunsoundforapproximatingbothPAandPA.

7Contractpreconditioninferencebydataßowanalysis
Insteadofstate-basedreasonings,asinSect. 4and6,wecanconsidersymbolic(or
evensyntactic)reasoningsmovingthecodeassertionstothecodeentry,whenthe
e!ectisthesame.Thiscanbedonebyasounddataßowanalysis[18]when
1.thevalueofthevisiblesidee!ectfreeBooleanexpressiononscalarorcollection

variablesintheassertisexactlythesameasthevalueofthisexpressionwhen
evaluatedonentry;

2.thevalueoftheexpressioncheckedonprogramentryischeckedinanasserton
allpathsthatcanbetakenfromtheprogramentry.

Weproposeabackwarddataßowanalysistocheckforbothsu"cientconditions1
and2.

(6)αiscontinuousifandonlyifitpreservesexistinglubsofincreasingchains.
(7)ThecontinuityhypothesisforαcanberestrictedtotheiteratesoftheleastfixpointofF.
(8)γisco-continuousifandonlyifitpreservesexistingglbsofdecreasingchains.

5

Example: complement isomorphism

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a priorassert (e.g.assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written
bj (x)) or to an element of a collection (written bj (X, i)). This deÞnes

EA ! { s ∈ ! | ∃�c, b� ∈ A : ! s = c∧ Â!b"s} erroneous or bad states
«"EA ! { "s ∈ "! + | ∃i < |"s | : "si ∈ EA } erroneous or bad runs.

As part of the implicit speciÞcation, and for the sake of brevity, we consider that pro-
gram executions should terminate. Otherwise the results are similar after revisiting
(1-a,1-b) for inÞnite runs as considered in [10].

4 The contract precondition inference problem
DeÞnition 4 Given a transition system �! , #, I� and a speciÞcationA , the contract
precondition inference problem consists in computing PA ∈ $(!) such that when
replacing the initial states I by PA ∩ I, we have

"# +
PA ! I ⊆ "# +

I (no new run is introduced) (2)

"# +
I \ PA

= "# +
I \ "# +

PA
⊆ «"EA (all eliminated runs are bad runs). (3) ��

The following lemma shows that, according to Def.4, no Þnite maximal good run is
ever eliminated.

Lemma 5 (3) implies "# +
I ∩ Â«"EA ⊆ "# +

PA
.

Choosing PA = I so that I \ PA = ∅ hence"# +
I \ PA

= ∅ is a trivial solution, so we

would like PA to be minimal, whenever possible (so that"# +
I \ PA

is maximal). Please
note that this is not the weakest (liberal) precondition [15], which yields the weakest
condition under which the code (either does not terminate or) terminates without
assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest(5) solution to the precondition inference problem in Def.4
is PA ! { s | ∃s"s ∈ "# + ∩ Â«"EA } . (4) ��

Instead of reasoning on the setPA of states from which there exists a good run
without any error, we can reason on the complementPA that is the set of states
from which all runs are bad in that they always lead to an error. DeÞnePA to be
the set of states from which any complete run in"# + does fail.

PA ! ÂPA = { s | ∀s"s ∈ "# + : s"s ∈ «"EA } .

5 Basic elements of abstract interpretation

Galois connections. A Galois connection �L, " � −−−→←−−−
!

"
�L, �� consists of posets�L,

" �, �L, �� and maps%∈ L → L, & ∈ L → L such that ∀x ∈ L, y ∈ L : %(x) � y ⇔
x " &(y). The dual is �L, �� −−−→←−−−

"

! �L, # �. In a Galois connection, the abstraction

%preserves existing least upper bounds (lubs) hence is increasing so, by duality, the
concretization & is increasing and preserves existing greatest lower bounds (glbs). If
�L, " � is a complete Boolean lattice with unique complementÂ then the complement
isomorphism is �L, " � −−−→←−−−

Â

Â �L, # � (since Âx " y ⇔ x # Ây).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.

4

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a prior assert (e.g.assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written

bj (x)) or to an element of a collection (written bj (X, i)). This defines

EA ! { s ! Σ | "#c, b$! A : ! s = c %Â!b"s} erroneous or bad states
�́EA ! {�s ! �Σ+ | " i < |�s| : �si ! EA } erroneous or bad runs.

As part of the implicit specification, and for the sake of brevity, we consider that pro-

gram executions should terminate. Otherwise the results are similar after revisiting

(1-a,1-b) for infinite runs as considered in [10].

4 The contract precondition inference problem
DeÞnition 4 Given a transition system #Σ, τ, I $and a speciÞcationA , the contract

precondition inference problem consists in computing PA ! ℘(Σ) such that when
replacing the initial states I by PA & I , we have

�τ +
PA! I ' �τ +

I (no new run is introduced) (2)

�τ +
I\ PA

= �τ +
I \ �τ +

PA
' �́EA (all eliminated runs are bad runs). (3) ()

The following lemma shows that, according to Def. 4, no finite maximal good run is

ever eliminated.

Lemma 5 (3) implies �τ +
I & Â�́EA ' �τ +

PA
.

Choosing PA = I so that I \ PA = * hence �τ +
I\ PA

= * is a trivial solution, so we

would like PA to be minimal, whenever possible (so that �τ +
I\ PA

is maximal). Please

note that this is not the weakest (liberal) precondition [15], which yields the weakest

condition under which the code (either does not terminate or) terminates without

assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest(5) solution to the precondition inference problem in Def.4
is P A ! { s | " s�s ! �τ + & Â�́EA } . (4) ()

Instead of reasoning on the set P A of states from which there exists a good run

without any error, we can reason on the complement P A that is the set of states

from which all runs are bad in that they always lead to an error. Define P A to be

the set of states from which any complete run in �τ + does fail.

P A ! ÂP A = { s | +s�s ! �τ +
: s�s ! �́EA } .

5 Basic elements of abstract interpretation

Galois connections. A Galois connection #L, " $,,,-.,,, !

"
#L, /$ consists of posets #L,

" $, #L, /$ and maps α ! L - L , γ ! L - L such that +x ! L, y ! L : α(x) / y 0
x " γ(y). The dual is #L, 1$,,,-.,,, "

!
#L, # $. In a Galois connection, the abstraction

α preserves existing least upper bounds (lubs) hence is increasing so, by duality, the

concretization γ is increasing and preserves existing greatest lower bounds (glbs). If

#L, " $ is a complete Boolean lattice with unique complement Â then the complement
isomorphism is #L, " $,,,-.,,, Â

Â
#L, # $ (since Âx " y 0 x # Ây).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.

4

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

which may have to be checked by a priorassert (e.g.assert((A!= null) && (A[i]
== 0))). For simplicity, we assume that bj either refers to a scalar variable (written
bj (x)) or to an element of a collection (written bj (X, i)). This deÞnes

EA ! { s ! ! | "#c, b$! A : ! s = c %Â�b�s} erroneous or bad states
«"EA ! { "s ! "! + | " i < |"s | : "si ! EA } erroneous or bad runs.

As part of the implicit speciÞcation, and for the sake of brevity, we consider that pro-
gram executions should terminate. Otherwise the results are similar after revisiting
(1-a,1-b) for inÞnite runs as considered in [10].

4 The contract precondition inference problem

DeÞnition 4 Given a transition system #! , #, I $and a speciÞcationA , the contract
precondition inference problem consists in computing PA ! $(!) such that when
replacing the initial states I by PA & I , we have

"# +
PA ! I ' "# +

I (no new run is introduced) (2)

"# +
I\ PA

= "# +
I \ "# +

PA
' «"EA (all eliminated runs are bad runs). (3) ()

The following lemma shows that, according to Def.4, no Þnite maximal good run is
ever eliminated.

Lemma 5 (3) implies "# +
I & Â«"EA ' "# +

PA
.

Choosing PA = I so that I \ PA = * hence"# +
I\ PA

= * is a trivial solution, so we

would like PA to be minimal, whenever possible (so that"# +
I\ PA

is maximal). Please
note that this is not the weakest (liberal) precondition [15], which yields the weakest
condition under which the code (either does not terminate or) terminates without
assertion failure, whichever non-deterministic choice is chosen.

Theorem 6 The strongest(5) solution to the precondition inference problem in Def.4
is P A ! { s | " s"s ! "# + & Â«"EA } . (4) ()

Instead of reasoning on the setP A of states from which there exists a good run
without any error, we can reason on the complementP A that is the set of states
from which all runs are bad in that they always lead to an error. DeÞneP A to be
the set of states from which any complete run in"# + does fail.

P A ! ÂP A = { s | +s"s ! "# + : s"s ! «"EA } .

5 Basic elements of abstract interpretation

Galois connections. A Galois connection #L, " $,,,-.,,, α

γ
#L, /$ consists of posets#L,

" $, #L, /$ and maps%! L - L , & ! L - L such that +x ! L, y ! L : %(x) / y 0
x " &(y). The dual is #L, 1$,,,-.,,, γ

α
#L, # $. In a Galois connection, the abstraction

%preserves existing least upper bounds (lubs) hence is increasing so, by duality, the
concretization & is increasing and preserves existing greatest lower bounds (glbs). If
#L, " $ is a complete Boolean lattice with unique complementÂ then the self-dual
complement isomorphismis #L, " $,,,-.,,, Â

Â
#L, # $ (since Âx " y 0 x # Ây).

(5) Following [15], P is said to be stronger than Q and Q weaker than P if and only if P ! Q.

4

!

!

Fixpoint abstraction (contÕd)
01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If !L, ! , "# is a complete lattice or a cpo,F $ L % L is increasing, !L,
&# is a poset, ! $ L % L is continuous(6) , (7) , F $ L % L commutes (resp. semi-
commutes) with F that is ! ! F = F ! ! (resp. ! ! F & F ! !) then ! (lfp

!
"

F) =

lfp
#
! (")

F (resp. ! (lfp
!
"

F) & lfp
#
! (")

F).

Applying Lem. 7 to !L, ! # '''%('''
Â

Â
!L, " #, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F $ L % L is increasing on a complete Boolean
lattice !L, ! , " , Â# then Â lfp

!
"

F = gfp
!
Â"

Â ! F ! Â .

Corollary 9 If !L, &,)# is a complete lattice or a dcpo,F $ L % L is increasing,
" $ L % L is co-continuous(8) , F $ L % L commutes withF that is " ! F = F ! "
then " (gfp

#
$

F) = gfp
!
" ($)

F .

6 Fixpoint strongest contract precondition
Following [10], let us deÞne the abstraction generalizing [15] to traces

wlp[#T] # ! #Q . !
s

"
" * s#s $ #T : s#s $ #Q

#

wlp%1[#Q] # ! P . !
s#s $ #$ +

"
" (s $ P) + (s#s $ #Q)

#

such that !%(#$ +), ,# ''''''''''%(''''''''''
! #T . wlp[#T] #Q

wlp! 1 [#Q]
!%($), -# and PA = wlp[#&+](«#EA). By Þxpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
&
$

! P . EA . (ÂB / $pre[t]P) and PA = lfp
&
'

! P . ÂEA /

(B . pre[t]P) wherepre[t]Q # { s | 0s($ Q : !s, s(# $ t} and $pre[t]Q # Âpre[t](ÂQ) =
{ s | * s(: !s, s(# $ t + s($ Q} . 12

If the set $ of states is Þnite, as assumed in model-checking [2], the Þxpoint deÞnition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s $ PA can proceed by exhaustive enumeration. In case
this does not scale up or for inÞnite state systems, bounded model-checking [5] is an
alternative using

%k
i =0 #&i instead of#&+ but, by Th. 6, the bounded preÞx abstraction

! k (#T) #
!
#s $ #T

"
" |#s| ! k

#
is unsound for approximating both PA and PA .

7 Contract precondition inference by data ßow analysis
Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
e! ect is the same. This can be done by a sound data ßow analysis [18] when
1. the value of the visible side e! ect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert on
all paths that can be taken from the program entry.

We propose a backward data ßow analysis to check for both su" cient conditions 1
and 2.

(6) ! is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for ! can be restricted to the iterates of the least Þxpoint of F .
(8) " is co-continuous if and only if it preserves existing glbs of decreasing chains.

5

(6) ! is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for ! can be restricted to the iterates of the least Þxpoint of F .
(8) " is co-continuous if and only if it preserves existing glbs of decreasing chains.

Fixpoint abstraction (contÕd)
01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If !L, ! , "# is a complete lattice or a cpo,F $ L % L is increasing, !L,
&# is a poset, ! $ L % L is continuous(6) , (7) , F $ L % L commutes (resp. semi-
commutes) with F that is ! ! F = F ! ! (resp. ! ! F & F ! !) then ! (lfp

!
"

F) =

lfp
#
! (")

F (resp. ! (lfp
!
"

F) & lfp
#
! (")

F).

Applying Lem. 7 to !L, ! # '''%('''
Â

Â
!L, " #, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F $ L % L is increasing on a complete Boolean
lattice !L, ! , " , Â# then Â lfp

!
"

F = gfp
!
Â"

Â ! F ! Â .

Corollary 9 If !L, &,)# is a complete lattice or a dcpo,F $ L % L is increasing,
" $ L % L is co-continuous(8) , F $ L % L commutes withF that is " ! F = F ! "
then " (gfp

#
$

F) = gfp
!
" ($)

F .

6 Fixpoint strongest contract precondition
Following [10], let us deÞne the abstraction generalizing [15] to traces

wlp[#T] # ! #Q . !
s

"
" * s#s $ #T : s#s $ #Q

#

wlp%1[#Q] # ! P . !
s#s $ #$ +

"
" (s $ P) + (s#s $ #Q)

#

such that !%(#$ +), ,# ''''''''''%(''''''''''
! #T . wlp[#T] #Q

wlp! 1 [#Q]
!%($), -# and PA = wlp[#&+](«#EA). By Þxpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
&
$

! P . EA . (ÂB / $pre[t]P) and PA = lfp
&
'

! P . ÂEA /

(B . pre[t]P) wherepre[t]Q # { s | 0s($ Q : !s, s(# $ t} and $pre[t]Q # Âpre[t](ÂQ) =
{ s | * s(: !s, s(# $ t + s($ Q} . 12

If the set $ of states is Þnite, as assumed in model-checking [2], the Þxpoint deÞnition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s $ PA can proceed by exhaustive enumeration. In case
this does not scale up or for inÞnite state systems, bounded model-checking [5] is an
alternative using

%k
i =0 #&i instead of#&+ but, by Th. 6, the bounded preÞx abstraction

! k (#T) #
!
#s $ #T

"
" |#s| ! k

#
is unsound for approximating both PA and PA .

7 Contract precondition inference by data ßow analysis
Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
e! ect is the same. This can be done by a sound data ßow analysis [18] when
1. the value of the visible side e! ect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert on
all paths that can be taken from the program entry.

We propose a backward data ßow analysis to check for both su" cient conditions 1
and 2.

(6) ! is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for ! can be restricted to the iterates of the least Þxpoint of F .
(8) " is co-continuous if and only if it preserves existing glbs of decreasing chains.

5

(6) ! is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for ! can be restricted to the iterates of the least Þxpoint of F .
(8) " is co-continuous if and only if it preserves existing glbs of decreasing chains.

Fixpoint abstraction (contÕd)
01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If !L, ! , "# is a complete lattice or a cpo,F $ L % L is increasing, !L,
&# is a poset, ! $ L % L is continuous(6) , (7) , F $ L % L commutes (resp. semi-
commutes) with F that is ! ! F = F ! ! (resp. ! ! F & F ! !) then ! (lfp

!
"

F) =

lfp
#
! (")

F (resp. ! (lfp
!
"

F) & lfp
#
! (")

F).

Applying Lem. 7 to !L, ! # '''%('''
Â

Â
!L, " #, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F $ L % L is increasing on a complete Boolean
lattice !L, ! , " , Â# then Â lfp

!
"

F = gfp
!
Â"

Â ! F ! Â .

Corollary 9 If !L, &,)# is a complete lattice or a dcpo,F $ L % L is increasing,
" $ L % L is co-continuous(8) , F $ L % L commutes withF that is " ! F = F ! "
then " (gfp

#
$

F) = gfp
!
" ($)

F .

6 Fixpoint strongest contract precondition
Following [10], let us deÞne the abstraction generalizing [15] to traces

wlp[#T] # ! #Q . !
s

"
" * s#s $ #T : s#s $ #Q

#

wlp%1[#Q] # ! P . !
s#s $ #$ +

"
" (s $ P) + (s#s $ #Q)

#

such that !%(#$ +), ,# ''''''''''%(''''''''''
! #T . wlp[#T] #Q

wlp! 1 [#Q]
!%($), -# and PA = wlp[#&+](«#EA). By Þxpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
&
$

! P . EA . (ÂB / $pre[t]P) and PA = lfp
&
'

! P . ÂEA /

(B . pre[t]P) wherepre[t]Q # { s | 0s($ Q : !s, s(# $ t} and $pre[t]Q # Âpre[t](ÂQ) =
{ s | * s(: !s, s(# $ t + s($ Q} . 12

If the set $ of states is Þnite, as assumed in model-checking [2], the Þxpoint deÞnition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s $ PA can proceed by exhaustive enumeration. In case
this does not scale up or for inÞnite state systems, bounded model-checking [5] is an
alternative using

%k
i =0 #&i instead of#&+ but, by Th. 6, the bounded preÞx abstraction

! k (#T) #
!
#s $ #T

"
" |#s| ! k

#
is unsound for approximating both PA and PA .

7 Contract precondition inference by data ßow analysis
Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
e! ect is the same. This can be done by a sound data ßow analysis [18] when
1. the value of the visible side e! ect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert on
all paths that can be taken from the program entry.

We propose a backward data ßow analysis to check for both su" cient conditions 1
and 2.

(6) ! is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for ! can be restricted to the iterates of the least Þxpoint of F .
(8) " is co-continuous if and only if it preserves existing glbs of decreasing chains.

5

(6) ! is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for ! can be restricted to the iterates of the least Þxpoint of F .
(8) " is co-continuous if and only if it preserves existing glbs of decreasing chains.

Fixpoint strongest
contrat precondition
(collecting semantics)

Fixpoint strongest contract precondition (proof)

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If !L, ! , "# is a complete lattice or a cpo,F $ L % L is increasing, !L,
&# is a poset, ! $ L % L is continuous(6) , (7) , F $ L % L commutes (resp. semi-
commutes) with F that is ! ◦ F = F ◦ ! (resp. ! ◦ F & F ◦ !) then ! (lfp

!
⊥ F) =

lfp
�
! (⊥)

F (resp. ! (lfp
!
⊥ F) & lfp

�
! (⊥)

F).

Applying Lem. 7 to !L, ! # '''%('''
Â

Â
!L, " #, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F $ L % L is increasing on a complete Boolean
lattice !L, ! , " , ¬# then ¬ lfp

!
⊥ F = gfp

!
Â⊥ ¬ ◦ F ◦ ¬ .

Corollary 9 If !L, &,)# is a complete lattice or a dcpo,F $ L % L is increasing,
" $ L % L is co-continuous(8) , F $ L % L commutes withF that is " ◦ F = F ◦ "
then " (gfp

�
� F) = gfp

!
" (�)

F .

6 Fixpoint strongest contract precondition
Following [10], let us deÞne the abstraction generalizing [15] to traces

wlp[#T] # ! #Q . !
s

"
" * s#s $ #T : s#s $ #Q

#

wlp−1[#Q] # ! P . !
s#s $ #$ +

"
" (s $ P) + (s#s $ #Q)

#

such that !%(#$ +), ,# ''''''''''%(''''''''''
! #T . wlp[#T] #Q

wlp! 1 [#Q]
!%($), -# and PA = wlp[#&+](«#EA). By Þxpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
⊆
$

! P . EA . (¬B / $pre[t]P) and PA = lfp
⊆
∅ ! P . ¬EA /

(B . pre[t]P) wherepre[t]Q # {s | 0s� $ Q : !s, s�# $ t} and $pre[t]Q # ¬pre[t](¬Q) =
{s | * s� : !s, s�# $ t + s� $ Q}. 12

If the set $ of states is Þnite, as assumed in model-checking [2], the Þxpoint deÞnition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s $ PA can proceed by exhaustive enumeration. In case
this does not scale up or for inÞnite state systems, bounded model-checking [5] is an
alternative using

%k
i =0 #&i instead of#&+ but, by Th. 6, the bounded preÞx abstraction

! k (#T) #
!
#s $ #T

"
" |#s | ! k

#
is unsound for approximating both PA and PA .

7 Contract precondition inference by data ßow analysis
Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
effect is the same. This can be done by a sound data ßow analysis [18] when
1. the value of the visible side effect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert on
all paths that can be taken from the program entry.

We propose a backward data ßow analysis to check for both sufficient conditions 1
and 2.

(6) ! is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for ! can be restricted to the iterates of the least Þxpoint of F .
(8) " is co-continuous if and only if it preserves existing glbs of decreasing chains.

5

Proof sketch:«�τ +
I = lfp

!
"

λ �T .�I 1 ! �T ! �τ 2

�τ + = lfp
!
"

λ �T . �B 1 ! �τ 2 ! �T = gfp
!
!" + λ �T . �B 1 ! �τ 2 ! �T . (1-a,1-b)

3 Specification semantics

The speciÞcation includes the existing precondition and postcondition, if any,
the language and programmer assertions, made explicit in the form

A = { "cj , bj # | j $ ∆}

whenever a runtime checkassert(b j) is attached to a control point cj $ Γ ,
j $ ∆. A is computed by a syntactic pre-analysis of the code. The Boolean
expressionsbj are assumed to be both visible side e! ect free and always well-
deÞned when evaluated, which may have to be checked by a priorassert (e.g.
assert((A!= null) && (A[i] == 0))). For simplicity, we assume that bj ei-
ther refers to a scalar variable (written bj (x)) or to an element of a collection
(written bj (X, i)). This deÞnes

EA ! { s $ Σ | %"c, b# $ A : πs = c & Â"b#s} erroneous or bad states
«�EA ! {�s $ �Σ + | %i < |�s | : �s i $ EA } erroneous or bad runs.

As part of the implicit speciÞcation, and for the sake of brevity, we consider that
program executions should terminate. Otherwise the results are similar after
revisiting (1-a,1-b) for inÞnite runs as considered in [?].

4 The contract precondition inference problem

DeÞnition 4 Given a transition system "Σ, τ, I # with maximal Þnite runs �τ +
I

and a speciÞcationA , the contract precondition inference problem consists in
computing PA $ ℘(Σ) such that when replacing the initial statesI by PA ' I ,
we have

�τ +
PA # I (�τ +

I (no new run is introduced) (2)

�τ +
I \ PA

= �τ +
I \ �τ +

PA
(«�EA (all eliminated runs are bad runs). (3))*

In Def. 4, we have

�τ +
I \ PA

= { s�s $ �τ + | s $ I \ PA } $def. �τ +
Q , Q $ ℘(Σ)%

= { s�s $ �τ + | s $ I & s +$PA } $def. \ %

= { s�s $ �τ + | s $ I } ' Â{ s�s $ �τ + | s $ PA } $def. ' and Â %

= �τ +
I ' Â�τ +

PA
$def. �τ +

Q , Q $ ℘(Σ)% (4)

= �τ +
I \ �τ +

PA
$def. \ %)*

5

By the dual of Lem. 8, we get (in particular since �L, ! � −−−→←−−−
!

"
�L, �� implies

�L, �� −−−→←−−−
"

! �L, " �)

Corollary 10 If �L, �, �� is a complete lattice or a dcpo,F ∈ L → L is
increasing, ! ∈ L → L is co-continuous(12) , F ∈ L → L commutes withF that
is ! ! F = F ! ! then ! (gfp

"
#

F) = gfp
!
" (#)

F .

6 Fixpoint strongest contract precondition

Following [?], let us deÞne the abstraction generalizing [?] to traces

wlp["T] # ! "Q . !
s

"
" ∀s"s ∈ "T : s"s ∈ "Q

#

wlp$ 1["Q] # ! P . !
s"s ∈ "# +

"
" (s ∈ P) ⇒ (s"s ∈ "Q)

#

such that �$("# +), ⊆� −−−−−−−−−−−→←−−−−−−−−−−−
! #T . wlp[#T] #Q

wlp! 1[#Q]
�$(#), ⊇� and P A = wlp["%+](«"EA).

Proof

wlp["T] ⊇ P

⇔
!
s

"
" ∀s"s ∈ "T : s"s ∈ "Q

#
⊇ P ! def. wlp"

⇔ ∀s ∈ P : ∀s"s ∈ "T : s"s ∈ "Q ! def. ⊇"

⇔ ∀s"s ∈ "T : (s ∈ P) ⇒ (s"s ∈ "Q) ! def.⇒"

⇔ "T ⊆
!
s"s ∈ "# +

"
" (s ∈ P) ⇒ (s"s ∈ "Q)

#
! def. ⊆"

⇔ "T ⊆ wlp$ 1["Q](P) ! def. wlp$ 1" ��

By Þxpoint abstraction, it follows from (1-a) and Cor. 9 that

Theorem 11 P A = gfp
%
$

! P . EA ∪(¬B ∩$pre[t]P) and P A = lfp
%
&

! P . ¬EA ∩
(B ∪ pre[t]P) where pre[t]Q # {s | ∃s' ∈ Q : �s, s' � ∈ t} and $pre[t]Q #
¬pre[t](¬Q) = {s | ∀s' : �s, s' � ∈ t ⇒ s' ∈ Q}. ��

Proof

wlp[∅](«"EA)

= {s | ∀s"s ∈ ∅ : s"s ∈ «"EA } ! def. wlp"

= # !∀x ∈ ∅ : P (x) is true"

wlp["B 1 ∪ "%2 #"T](«"EA)

= wlp["B 1](«"EA) ∩ wlp["%2 #"T](«"EA) ! Galois connections preserve existing lubs"

= {s | ∀s"s ∈ "B 1 : s"s ∈ «"EA } ∩ {s | ∀s"s ∈ "%2 #"T : s"s ∈ «"EA } ! def. wlp"

(12) ! is co-continuous if and only if it preserves existing glbs of decreasing chains.

9

= { s | s ! B " s ! EA } # { s | $s!s ! !" 2 ! !T : s!s ! !́EA } "def. !B 1 and !́EA #

= (ÂB %EA) # { s | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |ss!!s | : (ss!!s)i ! EA)}
"def ! and !́EA #

= (ÂB %EA) # { s | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | : (s!!s)i !
EA)} "separating the case i = 0#

= (ÂB %EA) # ({ s ! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)} %{ s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}) "X = (X # Y) %(X # ÂY)#

= (ÂB %EA) # (EA %{ s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |s!!s | :
(s!!s)i ! EA)}) "def. (#

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! wlp[!T](!́EA)}) "def. wlp#

= (ÂB %EA) # (EA %!pre[t](wlp[!T](!́EA))) "def. !pre#

= EA %(ÂB # !pre[t](wlp[!T](!́EA))) "commutativity and distributivity#

P A = wlp[!" +](!́EA) "def. P A and wlp#

= wlp[lfp "
#

! !T . !B 1 %!" 2 ! !T](!́EA) "by (1-a)#
= lfp

$
!

! P . EA %(ÂB # !pre[t]P)
"by Galois connection, commutativity, Lem. 8, and wlp[*](!́EA) = # #

= gfp
"
!

! P . EA %(ÂB # !pre[t]P) "by duality#

P A = ÂP A "def. P A #

= Âgfp
"
!

! P . EA %(ÂB # !pre[t]P) "as shown above#

= lfp
"
Â!

! P . Â(EA %(ÂB # !pre[t](ÂP))) "by Cor. 9#

= lfp
"
#

! P . ÂEA # (B %Â!pre[t](ÂP)) "de Morgan law#

= lfp
"
#

! P . ÂEA # (B %pre[t]P) "def. !pre[t]Q ! Âpre[t](ÂQ).# +,

If the set # of states is finite, as assumed in model-checking [?], the fixpoint
definition of P A in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the precondition s ! P A can proceed by exhaustive
enumeration. In case this does not scale up or for infinite state systems, bounded
model-checking [?] is an alternative using

" k
i =0 !" i instead of !" + but, by Th. 6,

the bounded prefix abstraction $k (!T) !
#
!s ! !T

$
$ |!s | " k

%
is unsound for

approximating both P A and P A .

Proof We have P k
A ! { s | ' s!s !

" k
i =0 !" i # Â!́EA } - { s | ' s!s ! !" + # Â!́EA } !

P A , but this provides an under-approximation, which is unsound since, by Th. 6,

10

By the dual of Lem. 8, we get (in particular since !L, ! " ###$%###
!

"
!L, &" implies

!L, '" ###$%###
"

!
!L, " ")

Corollary 10 If !L, &, (" is a complete lattice or a dcpo,F) L $ L is
increasing, !) L $ L is co-continuous(12) , F) L $ L commutes with F that
is ! ! F = F ! ! then ! (gfp

"
#

F) = gfp
!
" (#)

F .

6 Fixpoint strongest contract precondition

Following [?], let us deÞne the abstraction generalizing [?] to traces

wlp["T] # ! "Q . !
s

"
" * s"s) "T : s"s) "Q

#

wlp$ 1["Q] # ! P . !
s"s) "# +

"
" (s) P) + (s"s) "Q)

#

such that !$("# +), ," ###########$%###########
! #T .wlp[#T] #Q

wlp! 1 [#Q]
!$(#), -" and PA = wlp["%+](«"EA).

Proof

wlp["T] - P

.
!

s
"
" * s"s) "T : s"s) "Q

#
- P ! def. wlp"

. * s) P : * s"s) "T : s"s) "Q ! def. - "

. * s"s) "T : (s) P) + (s"s) "Q) ! def. + "

. "T ,
!

s"s) "# +
"
" (s) P) + (s"s) "Q)

#
! def. , "

. "T , wlp$ 1["Q](P) ! def. wlp$ 1" /0

By Þxpoint abstraction, it follows from (1-a) and Cor. 9 that

Theorem 11 PA = gfp
%
$

! P .EA 1(ÂB2 $pre[t]P) and PA = lfp
%
&

! P .ÂEA 2

(B 1 pre[t]P) where pre[t]Q # { s | 3s') Q : !s, s' ") t} and $pre[t]Q #
Âpre[t](ÂQ) = { s | * s' : !s, s' ") t + s') Q} . /0

Proof

wlp[4](«"EA)

= { s | * s"s) 4 : s"s) «"EA } ! def. wlp"

= # ! * x) 4 : P(x) is true"

wlp["B1 1 "%2 #"T](«"EA)

= wlp["B1](«"EA) 2 wlp["%2 #"T](«"EA) ! Galois connections preserve existing lubs"

= { s | * s"s) "B1 : s"s) «"EA } 2 { s | * s"s) "%2 #"T : s"s) «"EA } ! def. wlp"

(12) ! is co-continuous if and only if it preserves existing glbs of decreasing chains.

9

= { s | s ∈ B ⇒ s ∈ EA } ∩ { s | ∀s!s ∈ !" 2 ! !T : s!s ∈ «!EA } "def. !B 1 and «!EA #

= (ÂB ∪ EA) ∩ { s | ∀s!, !s : (" (s, s!) ∧ s!!s ∈ !T) ⇒ (∃i < |ss!!s | : (ss!!s)i ∈ EA)}

"def ! and «!EA #

= (ÂB ∪EA) ∩ { s | ∀s!, !s : (" (s, s!) ∧ s!!s ∈ !T) ⇒ (s ∈ EA ∨ ∃i < |s!!s | : (s!!s)i ∈
EA)} "separating the casei = 0#

= (ÂB ∪ EA) ∩ ({ s ∈ EA | ∀s!, !s : (" (s, s!) ∧ s!!s ∈ !T) ⇒ (s ∈ EA ∨ ∃i < |s!!s | :
(s!!s)i ∈ EA)} ∪ { s �∈ EA | ∀s!, !s : (" (s, s!) ∧ s!!s ∈ !T) ⇒ (s ∈ EA ∨∃i < |s!!s | :
(s!!s)i ∈ EA)}) "X = (X ∩ Y) ∪ (X ∩ ÂY)#

= (ÂB ∪ EA) ∩ (EA ∪ { s �∈ EA | ∀s!, !s : (" (s, s!) ∧ s!!s ∈ !T) ⇒ (∃i < |s!!s | :
(s!!s)i ∈ EA)}) "def. ∨#

= (ÂB ∪ EA) ∩ (EA ∪ { s | ∀s! : " (s, s!) ⇒ s! ∈ { s! | ∀!s : (s!!s ∈ !T) ⇒ (∃i <
|s!!s | : (s!!s)i ∈ EA)}}) "def. ∪, ⇒ and ∈#

= (ÂB ∪ EA) ∩ (EA ∪ { s | ∀s! : " (s, s!) ⇒ s! ∈ { s! | ∀!s : (s!!s ∈ !T) ⇒ (∃i <
|s!!s | : (s!!s)i ∈ EA)}}) "def. ∪, ⇒ and ∈#

= (ÂB ∪ EA) ∩ (EA ∪ { s | ∀s! : " (s, s!) ⇒ s! ∈ wlp[!T](«!EA)}) "def. wlp#

= (ÂB ∪ EA) ∩ (EA ∪ !pre[t](wlp[!T](«!EA))) "def. !pre#

= EA ∪ (ÂB ∩ !pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

P A = wlp[!" +](«!EA) "def. P A and wlp#

= wlp[lfp
"
#

λ !T . !B 1 ∪ !" 2 ! !T](«!EA) "by (1-a)#

= lfp
$
Σ

λ P . EA ∪ (ÂB ∩ !pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[∅](«!EA) = # #

= gfp
"
Σ

λ P . EA ∪ (ÂB ∩ !pre[t]P) "by duality #

P A = ÂP A "def. P A #

= Âgfp
"
Σ

λ P . EA ∪ (ÂB ∩ !pre[t]P) "as shown above#

= lfp
"
ÂΣ

λ P . Â(EA ∪ (ÂB ∩ !pre[t](ÂP))) "by Cor. 9#

= lfp
"
#

λ P . ÂEA ∩ (B ∪ Â!pre[t](ÂP)) "de Morgan law#

= lfp
"
#

λ P . ÂEA ∩ (B ∪ pre[t]P) "def. !pre[t]Q � Âpre[t](ÂQ).# ��

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of P A in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ∈ P A can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

" k
i=0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k(!T) �
#
!s ∈ !T

$
$ |!s | � k

%
is unsound for

approximating both P A and P A .

Proof We have P k
A � { s | ∃s!s ∈

" k
i=0 !" i ∩ Â«!EA } ⊆ { s | ∃s!s ∈ !" + ∩ Â«!EA } �

P A , but this provides an under-approximation, which is unsound since, by Th.6,

10

= { s | s ! B " s ! EA } # { s | $s!s ! !" 2 ! !T : s!s ! «!EA } "def. !B 1 and «!EA #

= (ÂB %EA) # { s | $s�, !s : (" (s, s�) & s�!s ! !T) " (' i < |ss�!s | : (ss�!s)i ! EA)}

"def ! and «!EA #

= (ÂB %EA) # { s | $s�, !s : (" (s, s�) & s�!s ! !T) " (s ! EA (' i < |s�!s | : (s�!s)i !
EA)} "separating the casei = 0#

= (ÂB %EA) # ({ s ! EA | $s�, !s : (" (s, s�) & s�!s ! !T) " (s ! EA (' i < |s�!s | :
(s�!s)i ! EA)} %{ s)! EA | $s�, !s : (" (s, s�) & s�!s ! !T) " (s ! EA (' i < |s�!s | :
(s�!s)i ! EA)}) "X = (X # Y) %(X # ÂY)#

= (ÂB %EA) # (EA %{ s)! EA | $s�, !s : (" (s, s�) & s�!s ! !T) " (' i < |s�!s | :
(s�!s)i ! EA)}) "def. (#

= (ÂB %EA) # (EA %{ s | $s� : " (s, s�) " s� ! { s� | $!s : (s�!s ! !T) " (' i <
|s�!s | : (s�!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s� : " (s, s�) " s� ! { s� | $!s : (s�!s ! !T) " (' i <
|s�!s | : (s�!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s� : " (s, s�) " s� ! wlp[!T](«!EA)}) "def. wlp#

= (ÂB %EA) # (EA %!pre[t](wlp[!T](«!EA))) "def. !pre#

= EA %(ÂB # !pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

P A = wlp[!" +](«!EA) "def. P A and wlp#

= wlp[lfp
⊆
∅ ! !T . !B 1 %!" 2 ! !T](«!EA) "by (1-a)#

= lfp
⊇
!

! P .EA %(ÂB # !pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[*](«!EA) = # #

= gfp
⊆
!

! P .EA %(ÂB # !pre[t]P) "by duality #

P A = ÂP A "def. P A #

= Âgfp
⊆
!

! P .EA %(ÂB # !pre[t]P) "as shown above#

= lfp
⊆
¬!

! P .Â(EA %(ÂB # !pre[t](ÂP))) "by Cor. 9#

= lfp
⊆
∅ ! P .ÂEA # (B %Â!pre[t](ÂP)) "de Morgan law#

= lfp
⊆
∅ ! P .ÂEA # (B %pre[t]P) "def. !pre[t]Q ! Âpre[t](ÂQ).# +,

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of P A in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ! P A can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

" k
i =0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k (!T) !
#
!s ! !T

$
$ |!s | " k

%
is unsound for

approximating both P A and P A .

Proof We have P k
A ! { s | ' s!s !

" k
i =0 !" i # Â«!EA } - { s | ' s!s ! !" + # Â«!EA } !

P A , but this provides an under-approximation, which is unsound since, by Th.6,

10

= { s | s ! B " s ! EA } # { s | $s!s ! !" 2 ! !T : s!s ! «!EA } "def. !B 1 and «!EA #

= (ÂB %EA) # { s | $s! , !s : (" (s, s!) & s!!s ! !T) " (' i < |ss!!s | : (ss!!s)i ! EA)}

"def ! and «!EA #

= (ÂB %EA) # { s | $s! , !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | : (s!!s)i !
EA)} "separating the casei = 0#

= (ÂB %EA) # ({ s ! EA | $s! , !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)} %{ s)! EA | $s! , !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}) "X = (X # Y) %(X # ÂY)#

= (ÂB %EA) # (EA %{ s)! EA | $s! , !s : (" (s, s!) & s!!s ! !T) " (' i < |s!!s | :
(s!!s)i ! EA)}) "def. (#

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! wlp[!T](«!EA)}) "def. wlp#

= (ÂB %EA) # (EA %�pre[t](wlp[!T](«!EA))) "def. �pre#

= EA %(ÂB # �pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

P A = wlp[!" +](«!EA) "def. P A and wlp#

= wlp[lfp
"
#

! !T . !B 1 %!" 2 ! !T](«!EA) "by (1-a)#

= lfp
$
!

! P . EA %(ÂB # �pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[*](«!EA) = # #

= gfp
"
!

! P . EA %(ÂB # �pre[t]P) "by duality #

P A = ÂP A "def. P A #

= Âgfp
"
!

! P . EA %(ÂB # �pre[t]P) "as shown above#

= lfp
"
Â!

! P . Â(EA %(ÂB # �pre[t](ÂP))) "by Cor. 9#

= lfp
"
#

! P . ÂEA # (B %Â�pre[t](ÂP)) "de Morgan law#

= lfp
"
#

! P . ÂEA # (B %pre[t]P) "def. �pre[t]Q ! Âpre[t](ÂQ).# +,

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of P A in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ! P A can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

�k
i =0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k (!T) !
�
!s ! !T

�� |!s | " k
�

is unsound for
approximating both P A and P A .

Proof We have P k
A ! { s | ' s!s !

�k
i =0 !" i # Â«!EA } - { s | ' s!s ! !" + # Â«!EA } !

P A , but this provides an under-approximation, which is unsound since, by Th.6,

10

= { s | s ! B " s ! EA } # { s | $s!s ! !" 2 ! !T : s!s ! «!EA } "def. !B1 and «!EA #

= (ÂB %EA) # { s | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |ss!!s | : (ss!!s)i ! EA)}

"def ! and «!EA #

= (ÂB %EA) # { s | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | : (s!!s)i !
EA)} "separating the casei = 0#

= (ÂB %EA) # ({ s ! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)} %{ s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}) "X = (X # Y) %(X # ÂY)#

= (ÂB %EA) # (EA %{ s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |s!!s | :
(s!!s)i ! EA)}) "def. (#

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! wlp[!T](«!EA)}) "def. wlp#

= (ÂB %EA) # (EA %!pre[t](wlp[!T](«!EA))) "def. !pre#

= EA %(ÂB # !pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

PA = wlp[!" +](«!EA) "def. PA and wlp#

= wlp[lfp
"
#

! !T . !B1 %!" 2 ! !T](«!EA) "by (1-a)#

= lfp
$
!

! P . EA %(ÂB # !pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[*](«!EA) = # #

= gfp
"
!

! P . EA %(ÂB # !pre[t]P) "by duality #

PA = ÂPA "def. PA #

= Âgfp
"
!

! P . EA %(ÂB # !pre[t]P) "as shown above#

= lfp
"
Â!

! P . Â(EA %(ÂB # !pre[t](ÂP))) "by Cor. 9#

= lfp
"
#

! P . ÂEA # (B %Â!pre[t](ÂP)) "de Morgan law#

= lfp
"
#

! P . ÂEA # (B %pre[t]P) "def. !pre[t]Q ! Âpre[t](ÂQ).# +,

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of PA in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ! PA can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

" k
i =0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k (!T) !
#
!s ! !T

$
$ |!s | " k

%
is unsound for

approximating both PA and PA .

Proof We have Pk
A ! { s | ' s!s !

" k
i =0 !" i # Â«!EA } - { s | ' s!s ! !" + # Â«!EA } !

PA , but this provides an under-approximation, which is unsound since, by Th.6,

10

= {s | s ! B " s ! EA} # {s | $s!s ! !" 2 ! !T : s!s ! «!EA} "def. !B 1 and «!EA#

= (¬B %EA) # {s | $s! , !s : (" (s, s!) & s!!s ! !T) " (' i < |ss!!s | : (ss!!s)i ! EA)}
"def ! and «!EA#

= (¬B %EA) # {s | $s! , !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | : (s!!s)i !
EA)} "separating the casei = 0#

= (¬B %EA) # ({s ! EA | $s! , !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}%{s)! EA | $s! , !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}) "X = (X # Y) %(X # ¬Y)#

= (¬B %EA) # (EA %{s)! EA | $s! , !s : (" (s, s!) & s!!s ! !T) " (' i < |s!!s | :
(s!!s)i ! EA)}) "def. (#

= (¬B %EA) # (EA %{s | $s! : " (s, s!) " s! ! {s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (¬B %EA) # (EA %{s | $s! : " (s, s!) " s! ! {s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (¬B %EA) # (EA %{s | $s! : " (s, s!) " s! ! wlp[!T](«!EA)}) "def. wlp#

= (¬B %EA) # (EA %!pre[t](wlp[!T](«!EA))) "def. !pre#

= EA %(¬B # !pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

P A = wlp[!" +](«!EA) "def. P A and wlp#

= wlp[lfp
"
#

! !T . !B 1 %!" 2 ! !T](«!EA) "by (1-a)#

= lfp
$
!

! P . EA %(¬B # !pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[*](«!EA) = # #

= gfp
"
!

! P . EA %(¬B # !pre[t]P) "by duality #

P A = ¬P A "def. P A#

= ¬gfp
"
!

! P . EA %(¬B # !pre[t]P) "as shown above#

= lfp
"
Â!

! P . ¬(EA %(¬B # !pre[t](¬P))) "by Cor. 9#

= lfp
"
#

! P . ¬EA # (B %¬ !pre[t](¬P)) "de Morgan law#

= lfp
"
#

! P . ¬EA # (B %pre[t]P) "def. !pre[t]Q ! ¬pre[t](¬Q).# +,

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of P A in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ! P A can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

" k
i =0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k (!T) !
#
!s ! !T

$
$ |!s | " k

%
is unsound for

approximating both P A and P A.

Proof We have P k
A ! {s | ' s!s !

" k
i =0 !" i # ¬«!EA} - {s | ' s!s ! !" + # ¬«!EA} !

P A, but this provides an under-approximation, which is unsound since, by Th.6,

10

= {s | s ! B " s ! EA} # {s | $s!s ! !" 2 ! !T : s!s ! «!EA} "def. !B 1 and «!EA#

= (¬B %EA) # {s | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |ss!!s | : (ss!!s)i ! EA)}
"def ! and «!EA#

= (¬B %EA) # {s | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | : (s!!s)i !
EA)} "separating the casei = 0#

= (¬B %EA) # ({s ! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}%{s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}) "X = (X # Y) %(X # ¬Y)#

= (¬B %EA) # (EA %{s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |s!!s | :
(s!!s)i ! EA)}) "def. (#

= (¬B %EA) # (EA %{s | $s! : " (s, s!) " s! ! {s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (¬B %EA) # (EA %{s | $s! : " (s, s!) " s! ! {s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (¬B %EA) # (EA %{s | $s! : " (s, s!) " s! ! wlp[!T](«!EA)}) "def. wlp#

= (¬B %EA) # (EA %!pre[t](wlp[!T](«!EA))) "def. !pre#

= EA %(¬B # !pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

P A = wlp[!" +](«!EA) "def. P A and wlp#

= wlp[lfp
"
#

! !T . !B 1 %!" 2 ! !T](«!EA) "by (1-a)#

= lfp
$
!

! P . EA %(¬B # !pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[*](«!EA) = # #

= gfp
"
!

! P . EA %(¬B # !pre[t]P) "by duality #

P A = ¬P A "def. P A#

= ¬gfp
"
!

! P . EA %(¬B # !pre[t]P) "as shown above#

= lfp
"
Â!

! P . ¬(EA %(¬B # !pre[t](¬P))) "by Cor. 9#

= lfp
"
#

! P . ¬EA # (B %¬ !pre[t](¬P)) "de Morgan law#

= lfp
"
#

! P . ¬EA # (B %pre[t]P) "def. !pre[t]Q ! ¬pre[t](¬Q).# +,

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of P A in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ! P A can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

" k
i =0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k (!T) !
#
!s ! !T

$
$ |!s | " k

%
is unsound for

approximating both P A and P A.

Proof We have P k
A ! {s | ' s!s !

" k
i =0 !" i # ¬«!EA} - {s | ' s!s ! !" + # ¬«!EA} !

P A, but this provides an under-approximation, which is unsound since, by Th.6,

10

(Park)

!

!

!

!

!

Fixpoint strongest contract precondition (proof)

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If !L, ! , "# is a complete lattice or a cpo,F $ L % L is increasing, !L,
&# is a poset, ! $ L % L is continuous(6) , (7) , F $ L % L commutes (resp. semi-
commutes) with F that is ! ◦ F = F ◦ ! (resp. ! ◦ F & F ◦ !) then ! (lfp

!
⊥ F) =

lfp
�
! (⊥)

F (resp. ! (lfp
!
⊥ F) & lfp

�
! (⊥)

F).

Applying Lem. 7 to !L, ! # '''%('''
Â

Â
!L, " #, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F $ L % L is increasing on a complete Boolean
lattice !L, ! , " , ¬# then ¬ lfp

!
⊥ F = gfp

!
Â⊥ ¬ ◦ F ◦ ¬ .

Corollary 9 If !L, &,)# is a complete lattice or a dcpo,F $ L % L is increasing,
" $ L % L is co-continuous(8) , F $ L % L commutes withF that is " ◦ F = F ◦ "
then " (gfp

�
� F) = gfp

!
" (�)

F .

6 Fixpoint strongest contract precondition
Following [10], let us deÞne the abstraction generalizing [15] to traces

wlp[#T] # ! #Q . !
s

"
" * s#s $ #T : s#s $ #Q

#

wlp−1[#Q] # ! P . !
s#s $ #$ +

"
" (s $ P) + (s#s $ #Q)

#

such that !%(#$ +), ,# ''''''''''%(''''''''''
! #T . wlp[#T] #Q

wlp! 1 [#Q]
!%($), -# and PA = wlp[#&+](«#EA). By Þxpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 PA = gfp
⊆
$

! P . EA . (¬B / $pre[t]P) and PA = lfp
⊆
∅ ! P . ¬EA /

(B . pre[t]P) wherepre[t]Q # {s | 0s� $ Q : !s, s�# $ t} and $pre[t]Q # ¬pre[t](¬Q) =
{s | * s� : !s, s�# $ t + s� $ Q}. 12

If the set $ of states is Þnite, as assumed in model-checking [2], the Þxpoint deÞnition
of PA in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s $ PA can proceed by exhaustive enumeration. In case
this does not scale up or for inÞnite state systems, bounded model-checking [5] is an
alternative using

%k
i =0 #&i instead of#&+ but, by Th. 6, the bounded preÞx abstraction

! k (#T) #
!
#s $ #T

"
" |#s | ! k

#
is unsound for approximating both PA and PA .

7 Contract precondition inference by data ßow analysis
Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
effect is the same. This can be done by a sound data ßow analysis [18] when
1. the value of the visible side effect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert on
all paths that can be taken from the program entry.

We propose a backward data ßow analysis to check for both sufficient conditions 1
and 2.

(6) ! is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for ! can be restricted to the iterates of the least Þxpoint of F .
(8) " is co-continuous if and only if it preserves existing glbs of decreasing chains.

5

K&''+$68#.,"M«�τ +
I = lfp

!
"

λ �T .�I 1 ! �T ! �τ 2

�τ + = lfp
!
"

λ �T . �B 1 ! �τ 2 ! �T = gfp
!
!" + λ �T . �B 1 ! �τ 2 ! �T . (1-a,1-b)

3 Specification semantics

The speciÞcation includes the existing precondition and postcondition, if any,
the language and programmer assertions, made explicit in the form

A = { "cj , bj # | j $ ∆}

whenever a runtime checkassert(b j) is attached to a control point cj $ Γ ,
j $ ∆. A is computed by a syntactic pre-analysis of the code. The Boolean
expressionsbj are assumed to be both visible side e! ect free and always well-
deÞned when evaluated, which may have to be checked by a priorassert (e.g.
assert((A!= null) && (A[i] == 0))). For simplicity, we assume that bj ei-
ther refers to a scalar variable (written bj (x)) or to an element of a collection
(written bj (X, i)). This deÞnes

EA ! { s $ Σ | %"c, b# $ A : πs = c & Â"b#s} erroneous or bad states
«�EA ! {�s $ �Σ + | %i < |�s | : �s i $ EA } erroneous or bad runs.

As part of the implicit speciÞcation, and for the sake of brevity, we consider that
program executions should terminate. Otherwise the results are similar after
revisiting (1-a,1-b) for inÞnite runs as considered in [?].

4 The contract precondition inference problem

DeÞnition 4 Given a transition system "Σ, τ, I # with maximal Þnite runs �τ +
I

and a speciÞcationA , the contract precondition inference problem consists in
computing PA $ ℘(Σ) such that when replacing the initial statesI by PA ' I ,
we have

�τ +
PA # I (�τ +

I (no new run is introduced) (2)

�τ +
I \ PA

= �τ +
I \ �τ +

PA
(«�EA (all eliminated runs are bad runs). (3))*

In Def. 4, we have

�τ +
I \ PA

= { s�s $ �τ + | s $ I \ PA } $def. �τ +
Q , Q $ ℘(Σ)%

= { s�s $ �τ + | s $ I & s +$PA } $def. \ %

= { s�s $ �τ + | s $ I } ' Â{ s�s $ �τ + | s $ PA } $def. ' and Â %

= �τ +
I ' Â�τ +

PA
$def. �τ +

Q , Q $ ℘(Σ)% (4)

= �τ +
I \ �τ +

PA
$def. \ %)*

5

By the dual of Lem. 8, we get (in particular since �L, ! � −−−→←−−−
!

"
�L, �� implies

�L, �� −−−→←−−−
"

! �L, " �)

Corollary 10 If �L, �, �� is a complete lattice or a dcpo,F ∈ L → L is
increasing, ! ∈ L → L is co-continuous(12) , F ∈ L → L commutes withF that
is ! ! F = F ! ! then ! (gfp

"
#

F) = gfp
!
" (#)

F .

6 Fixpoint strongest contract precondition

Following [?], let us deÞne the abstraction generalizing [?] to traces

wlp["T] # ! "Q . !
s

"
" ∀s"s ∈ "T : s"s ∈ "Q

#

wlp$ 1["Q] # ! P . !
s"s ∈ "# +

"
" (s ∈ P) ⇒ (s"s ∈ "Q)

#

such that �$("# +), ⊆� −−−−−−−−−−−→←−−−−−−−−−−−
! #T . wlp[#T] #Q

wlp! 1[#Q]
�$(#), ⊇� and P A = wlp["%+](«"EA).

Proof

wlp["T] ⊇ P

⇔
!
s

"
" ∀s"s ∈ "T : s"s ∈ "Q

#
⊇ P ! def. wlp"

⇔ ∀s ∈ P : ∀s"s ∈ "T : s"s ∈ "Q ! def. ⊇"

⇔ ∀s"s ∈ "T : (s ∈ P) ⇒ (s"s ∈ "Q) ! def.⇒"

⇔ "T ⊆
!
s"s ∈ "# +

"
" (s ∈ P) ⇒ (s"s ∈ "Q)

#
! def. ⊆"

⇔ "T ⊆ wlp$ 1["Q](P) ! def. wlp$ 1" ��

By Þxpoint abstraction, it follows from (1-a) and Cor. 9 that

Theorem 11 P A = gfp
%
$

! P . EA ∪(¬B ∩$pre[t]P) and P A = lfp
%
&

! P . ¬EA ∩
(B ∪ pre[t]P) where pre[t]Q # {s | ∃s' ∈ Q : �s, s' � ∈ t} and $pre[t]Q #
¬pre[t](¬Q) = {s | ∀s' : �s, s' � ∈ t ⇒ s' ∈ Q}. ��

Proof

wlp[∅](«"EA)

= {s | ∀s"s ∈ ∅ : s"s ∈ «"EA } ! def. wlp"

= # !∀x ∈ ∅ : P (x) is true"

wlp["B 1 ∪ "%2 #"T](«"EA)

= wlp["B 1](«"EA) ∩ wlp["%2 #"T](«"EA) ! Galois connections preserve existing lubs"

= {s | ∀s"s ∈ "B 1 : s"s ∈ «"EA } ∩ {s | ∀s"s ∈ "%2 #"T : s"s ∈ «"EA } ! def. wlp"

(12) ! is co-continuous if and only if it preserves existing glbs of decreasing chains.

9

= { s | s ! B " s ! EA } # { s | $s!s ! !" 2 ! !T : s!s ! !́EA } "def. !B 1 and !́EA #

= (ÂB %EA) # { s | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |ss!!s | : (ss!!s)i ! EA)}
"def ! and !́EA #

= (ÂB %EA) # { s | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | : (s!!s)i !
EA)} "separating the case i = 0#

= (ÂB %EA) # ({ s ! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)} %{ s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}) "X = (X # Y) %(X # ÂY)#

= (ÂB %EA) # (EA %{ s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |s!!s | :
(s!!s)i ! EA)}) "def. (#

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! wlp[!T](!́EA)}) "def. wlp#

= (ÂB %EA) # (EA %!pre[t](wlp[!T](!́EA))) "def. !pre#

= EA %(ÂB # !pre[t](wlp[!T](!́EA))) "commutativity and distributivity#

P A = wlp[!" +](!́EA) "def. P A and wlp#

= wlp[lfp "
#

! !T . !B 1 %!" 2 ! !T](!́EA) "by (1-a)#
= lfp

$
!

! P . EA %(ÂB # !pre[t]P)
"by Galois connection, commutativity, Lem. 8, and wlp[*](!́EA) = # #

= gfp
"
!

! P . EA %(ÂB # !pre[t]P) "by duality#

P A = ÂP A "def. P A #

= Âgfp
"
!

! P . EA %(ÂB # !pre[t]P) "as shown above#

= lfp
"
Â!

! P . Â(EA %(ÂB # !pre[t](ÂP))) "by Cor. 9#

= lfp
"
#

! P . ÂEA # (B %Â!pre[t](ÂP)) "de Morgan law#

= lfp
"
#

! P . ÂEA # (B %pre[t]P) "def. !pre[t]Q ! Âpre[t](ÂQ).# +,

If the set # of states is finite, as assumed in model-checking [?], the fixpoint
definition of P A in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the precondition s ! P A can proceed by exhaustive
enumeration. In case this does not scale up or for infinite state systems, bounded
model-checking [?] is an alternative using

" k
i =0 !" i instead of !" + but, by Th. 6,

the bounded prefix abstraction $k (!T) !
#
!s ! !T

$
$ |!s | " k

%
is unsound for

approximating both P A and P A .

Proof We have P k
A ! { s | ' s!s !

" k
i =0 !" i # Â!́EA } - { s | ' s!s ! !" + # Â!́EA } !

P A , but this provides an under-approximation, which is unsound since, by Th. 6,

10

By the dual of Lem. 8, we get (in particular since !L, ! " ###$%###
!

"
!L, &" implies

!L, '" ###$%###
"

!
!L, " ")

Corollary 10 If !L, &, (" is a complete lattice or a dcpo,F) L $ L is
increasing, !) L $ L is co-continuous(12) , F) L $ L commutes with F that
is ! ! F = F ! ! then ! (gfp

"
#

F) = gfp
!
" (#)

F .

6 Fixpoint strongest contract precondition

Following [?], let us deÞne the abstraction generalizing [?] to traces

wlp["T] # ! "Q . !
s

"
" * s"s) "T : s"s) "Q

#

wlp$ 1["Q] # ! P . !
s"s) "# +

"
" (s) P) + (s"s) "Q)

#

such that !$("# +), ," ###########$%###########
! #T .wlp[#T] #Q

wlp! 1 [#Q]
!$(#), -" and PA = wlp["%+](«"EA).

Proof

wlp["T] - P

.
!

s
"
" * s"s) "T : s"s) "Q

#
- P ! def. wlp"

. * s) P : * s"s) "T : s"s) "Q ! def. - "

. * s"s) "T : (s) P) + (s"s) "Q) ! def. + "

. "T ,
!

s"s) "# +
"
" (s) P) + (s"s) "Q)

#
! def. , "

. "T , wlp$ 1["Q](P) ! def. wlp$ 1" /0

By Þxpoint abstraction, it follows from (1-a) and Cor. 9 that

Theorem 11 PA = gfp
%
$

! P .EA 1(ÂB2 $pre[t]P) and PA = lfp
%
&

! P .ÂEA 2

(B 1 pre[t]P) where pre[t]Q # { s | 3s') Q : !s, s' ") t} and $pre[t]Q #
Âpre[t](ÂQ) = { s | * s' : !s, s' ") t + s') Q} . /0

Proof

wlp[4](«"EA)

= { s | * s"s) 4 : s"s) «"EA } ! def. wlp"

= # ! * x) 4 : P(x) is true"

wlp["B1 1 "%2 #"T](«"EA)

= wlp["B1](«"EA) 2 wlp["%2 #"T](«"EA) ! Galois connections preserve existing lubs"

= { s | * s"s) "B1 : s"s) «"EA } 2 { s | * s"s) "%2 #"T : s"s) «"EA } ! def. wlp"

(12) ! is co-continuous if and only if it preserves existing glbs of decreasing chains.

9

= { s | s ∈ B ⇒ s ∈ EA } ∩ { s | ∀s!s ∈ !" 2 ! !T : s!s ∈ «!EA } "def. !B 1 and «!EA #

= (ÂB ∪ EA) ∩ { s | ∀s!, !s : (" (s, s!) ∧ s!!s ∈ !T) ⇒ (∃i < |ss!!s | : (ss!!s)i ∈ EA)}

"def ! and «!EA #

= (ÂB ∪EA) ∩ { s | ∀s!, !s : (" (s, s!) ∧ s!!s ∈ !T) ⇒ (s ∈ EA ∨ ∃i < |s!!s | : (s!!s)i ∈
EA)} "separating the casei = 0#

= (ÂB ∪ EA) ∩ ({ s ∈ EA | ∀s!, !s : (" (s, s!) ∧ s!!s ∈ !T) ⇒ (s ∈ EA ∨ ∃i < |s!!s | :
(s!!s)i ∈ EA)} ∪ { s �∈ EA | ∀s!, !s : (" (s, s!) ∧ s!!s ∈ !T) ⇒ (s ∈ EA ∨∃i < |s!!s | :
(s!!s)i ∈ EA)}) "X = (X ∩ Y) ∪ (X ∩ ÂY)#

= (ÂB ∪ EA) ∩ (EA ∪ { s �∈ EA | ∀s!, !s : (" (s, s!) ∧ s!!s ∈ !T) ⇒ (∃i < |s!!s | :
(s!!s)i ∈ EA)}) "def. ∨#

= (ÂB ∪ EA) ∩ (EA ∪ { s | ∀s! : " (s, s!) ⇒ s! ∈ { s! | ∀!s : (s!!s ∈ !T) ⇒ (∃i <
|s!!s | : (s!!s)i ∈ EA)}}) "def. ∪, ⇒ and ∈#

= (ÂB ∪ EA) ∩ (EA ∪ { s | ∀s! : " (s, s!) ⇒ s! ∈ { s! | ∀!s : (s!!s ∈ !T) ⇒ (∃i <
|s!!s | : (s!!s)i ∈ EA)}}) "def. ∪, ⇒ and ∈#

= (ÂB ∪ EA) ∩ (EA ∪ { s | ∀s! : " (s, s!) ⇒ s! ∈ wlp[!T](«!EA)}) "def. wlp#

= (ÂB ∪ EA) ∩ (EA ∪ !pre[t](wlp[!T](«!EA))) "def. !pre#

= EA ∪ (ÂB ∩ !pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

P A = wlp[!" +](«!EA) "def. P A and wlp#

= wlp[lfp
"
#

λ !T . !B 1 ∪ !" 2 ! !T](«!EA) "by (1-a)#

= lfp
$
Σ

λ P . EA ∪ (ÂB ∩ !pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[∅](«!EA) = # #

= gfp
"
Σ

λ P . EA ∪ (ÂB ∩ !pre[t]P) "by duality #

P A = ÂP A "def. P A #

= Âgfp
"
Σ

λ P . EA ∪ (ÂB ∩ !pre[t]P) "as shown above#

= lfp
"
ÂΣ

λ P . Â(EA ∪ (ÂB ∩ !pre[t](ÂP))) "by Cor. 9#

= lfp
"
#

λ P . ÂEA ∩ (B ∪ Â!pre[t](ÂP)) "de Morgan law#

= lfp
"
#

λ P . ÂEA ∩ (B ∪ pre[t]P) "def. !pre[t]Q � Âpre[t](ÂQ).# ��

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of P A in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ∈ P A can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

" k
i=0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k(!T) �
#
!s ∈ !T

$
$ |!s | � k

%
is unsound for

approximating both P A and P A .

Proof We have P k
A � { s | ∃s!s ∈

" k
i=0 !" i ∩ Â«!EA } ⊆ { s | ∃s!s ∈ !" + ∩ Â«!EA } �

P A , but this provides an under-approximation, which is unsound since, by Th.6,

10

= { s | s ! B " s ! EA } # { s | $s!s ! !" 2 ! !T : s!s ! «!EA } "def. !B 1 and «!EA #

= (ÂB %EA) # { s | $s�, !s : (" (s, s�) & s�!s ! !T) " (' i < |ss�!s | : (ss�!s)i ! EA)}

"def ! and «!EA #

= (ÂB %EA) # { s | $s�, !s : (" (s, s�) & s�!s ! !T) " (s ! EA (' i < |s�!s | : (s�!s)i !
EA)} "separating the casei = 0#

= (ÂB %EA) # ({ s ! EA | $s�, !s : (" (s, s�) & s�!s ! !T) " (s ! EA (' i < |s�!s | :
(s�!s)i ! EA)} %{ s)! EA | $s�, !s : (" (s, s�) & s�!s ! !T) " (s ! EA (' i < |s�!s | :
(s�!s)i ! EA)}) "X = (X # Y) %(X # ÂY)#

= (ÂB %EA) # (EA %{ s)! EA | $s�, !s : (" (s, s�) & s�!s ! !T) " (' i < |s�!s | :
(s�!s)i ! EA)}) "def. (#

= (ÂB %EA) # (EA %{ s | $s� : " (s, s�) " s� ! { s� | $!s : (s�!s ! !T) " (' i <
|s�!s | : (s�!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s� : " (s, s�) " s� ! { s� | $!s : (s�!s ! !T) " (' i <
|s�!s | : (s�!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s� : " (s, s�) " s� ! wlp[!T](«!EA)}) "def. wlp#

= (ÂB %EA) # (EA %!pre[t](wlp[!T](«!EA))) "def. !pre#

= EA %(ÂB # !pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

P A = wlp[!" +](«!EA) "def. P A and wlp#

= wlp[lfp
⊆
∅ ! !T . !B 1 %!" 2 ! !T](«!EA) "by (1-a)#

= lfp
⊇
!

! P .EA %(ÂB # !pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[*](«!EA) = # #

= gfp
⊆
!

! P .EA %(ÂB # !pre[t]P) "by duality #

P A = ÂP A "def. P A #

= Âgfp
⊆
!

! P .EA %(ÂB # !pre[t]P) "as shown above#

= lfp
⊆
¬!

! P .Â(EA %(ÂB # !pre[t](ÂP))) "by Cor. 9#

= lfp
⊆
∅ ! P .ÂEA # (B %Â!pre[t](ÂP)) "de Morgan law#

= lfp
⊆
∅ ! P .ÂEA # (B %pre[t]P) "def. !pre[t]Q ! Âpre[t](ÂQ).# +,

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of P A in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ! P A can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

" k
i =0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k (!T) !
#
!s ! !T

$
$ |!s | " k

%
is unsound for

approximating both P A and P A .

Proof We have P k
A ! { s | ' s!s !

" k
i =0 !" i # Â«!EA } - { s | ' s!s ! !" + # Â«!EA } !

P A , but this provides an under-approximation, which is unsound since, by Th.6,

10

= { s | s ! B " s ! EA } # { s | $s!s ! !" 2 ! !T : s!s ! «!EA } "def. !B 1 and «!EA #

= (ÂB %EA) # { s | $s! , !s : (" (s, s!) & s!!s ! !T) " (' i < |ss!!s | : (ss!!s)i ! EA)}

"def ! and «!EA #

= (ÂB %EA) # { s | $s! , !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | : (s!!s)i !
EA)} "separating the casei = 0#

= (ÂB %EA) # ({ s ! EA | $s! , !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)} %{ s)! EA | $s! , !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}) "X = (X # Y) %(X # ÂY)#

= (ÂB %EA) # (EA %{ s)! EA | $s! , !s : (" (s, s!) & s!!s ! !T) " (' i < |s!!s | :
(s!!s)i ! EA)}) "def. (#

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! wlp[!T](«!EA)}) "def. wlp#

= (ÂB %EA) # (EA %�pre[t](wlp[!T](«!EA))) "def. �pre#

= EA %(ÂB # �pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

P A = wlp[!" +](«!EA) "def. P A and wlp#

= wlp[lfp
"
#

! !T . !B 1 %!" 2 ! !T](«!EA) "by (1-a)#

= lfp
$
!

! P . EA %(ÂB # �pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[*](«!EA) = # #

= gfp
"
!

! P . EA %(ÂB # �pre[t]P) "by duality #

P A = ÂP A "def. P A #

= Âgfp
"
!

! P . EA %(ÂB # �pre[t]P) "as shown above#

= lfp
"
Â!

! P . Â(EA %(ÂB # �pre[t](ÂP))) "by Cor. 9#

= lfp
"
#

! P . ÂEA # (B %Â�pre[t](ÂP)) "de Morgan law#

= lfp
"
#

! P . ÂEA # (B %pre[t]P) "def. �pre[t]Q ! Âpre[t](ÂQ).# +,

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of P A in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ! P A can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

�k
i =0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k (!T) !
�
!s ! !T

�� |!s | " k
�

is unsound for
approximating both P A and P A .

Proof We have P k
A ! { s | ' s!s !

�k
i =0 !" i # Â«!EA } - { s | ' s!s ! !" + # Â«!EA } !

P A , but this provides an under-approximation, which is unsound since, by Th.6,

10

= { s | s ! B " s ! EA } # { s | $s!s ! !" 2 ! !T : s!s ! «!EA } "def. !B1 and «!EA #

= (ÂB %EA) # { s | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |ss!!s | : (ss!!s)i ! EA)}

"def ! and «!EA #

= (ÂB %EA) # { s | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | : (s!!s)i !
EA)} "separating the casei = 0#

= (ÂB %EA) # ({ s ! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)} %{ s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}) "X = (X # Y) %(X # ÂY)#

= (ÂB %EA) # (EA %{ s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |s!!s | :
(s!!s)i ! EA)}) "def. (#

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! wlp[!T](«!EA)}) "def. wlp#

= (ÂB %EA) # (EA %!pre[t](wlp[!T](«!EA))) "def. !pre#

= EA %(ÂB # !pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

PA = wlp[!" +](«!EA) "def. PA and wlp#

= wlp[lfp
"
#

! !T . !B1 %!" 2 ! !T](«!EA) "by (1-a)#

= lfp
$
!

! P . EA %(ÂB # !pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[*](«!EA) = # #

= gfp
"
!

! P . EA %(ÂB # !pre[t]P) "by duality #

PA = ÂPA "def. PA #

= Âgfp
"
!

! P . EA %(ÂB # !pre[t]P) "as shown above#

= lfp
"
Â!

! P . Â(EA %(ÂB # !pre[t](ÂP))) "by Cor. 9#

= lfp
"
#

! P . ÂEA # (B %Â!pre[t](ÂP)) "de Morgan law#

= lfp
"
#

! P . ÂEA # (B %pre[t]P) "def. !pre[t]Q ! Âpre[t](ÂQ).# +,

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of PA in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ! PA can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

" k
i =0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k (!T) !
#
!s ! !T

$
$ |!s | " k

%
is unsound for

approximating both PA and PA .

Proof We have Pk
A ! { s | ' s!s !

" k
i =0 !" i # Â«!EA } - { s | ' s!s ! !" + # Â«!EA } !

PA , but this provides an under-approximation, which is unsound since, by Th.6,

10

= {s | s ! B " s ! EA} # {s | $s!s ! !" 2 ! !T : s!s ! «!EA} "def. !B 1 and «!EA#

= (¬B %EA) # {s | $s! , !s : (" (s, s!) & s!!s ! !T) " (' i < |ss!!s | : (ss!!s)i ! EA)}
"def ! and «!EA#

= (¬B %EA) # {s | $s! , !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | : (s!!s)i !
EA)} "separating the casei = 0#

= (¬B %EA) # ({s ! EA | $s! , !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}%{s)! EA | $s! , !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}) "X = (X # Y) %(X # ¬Y)#

= (¬B %EA) # (EA %{s)! EA | $s! , !s : (" (s, s!) & s!!s ! !T) " (' i < |s!!s | :
(s!!s)i ! EA)}) "def. (#

= (¬B %EA) # (EA %{s | $s! : " (s, s!) " s! ! {s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (¬B %EA) # (EA %{s | $s! : " (s, s!) " s! ! {s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (¬B %EA) # (EA %{s | $s! : " (s, s!) " s! ! wlp[!T](«!EA)}) "def. wlp#

= (¬B %EA) # (EA %!pre[t](wlp[!T](«!EA))) "def. !pre#

= EA %(¬B # !pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

P A = wlp[!" +](«!EA) "def. P A and wlp#

= wlp[lfp
"
#

! !T . !B 1 %!" 2 ! !T](«!EA) "by (1-a)#

= lfp
$
!

! P . EA %(¬B # !pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[*](«!EA) = # #

= gfp
"
!

! P . EA %(¬B # !pre[t]P) "by duality #

P A = ¬P A "def. P A#

= ¬gfp
"
!

! P . EA %(¬B # !pre[t]P) "as shown above#

= lfp
"
Â!

! P . ¬(EA %(¬B # !pre[t](¬P))) "by Cor. 9#

= lfp
"
#

! P . ¬EA # (B %¬ !pre[t](¬P)) "de Morgan law#

= lfp
"
#

! P . ¬EA # (B %pre[t]P) "def. !pre[t]Q ! ¬pre[t](¬Q).# +,

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of P A in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ! P A can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

" k
i =0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k (!T) !
#
!s ! !T

$
$ |!s | " k

%
is unsound for

approximating both P A and P A.

Proof We have P k
A ! {s | ' s!s !

" k
i =0 !" i # ¬«!EA} - {s | ' s!s ! !" + # ¬«!EA} !

P A, but this provides an under-approximation, which is unsound since, by Th.6,

10

= {s | s ! B " s ! EA} # {s | $s!s ! !" 2 ! !T : s!s ! «!EA} "def. !B 1 and «!EA#

= (¬B %EA) # {s | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |ss!!s | : (ss!!s)i ! EA)}
"def ! and «!EA#

= (¬B %EA) # {s | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | : (s!!s)i !
EA)} "separating the casei = 0#

= (¬B %EA) # ({s ! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}%{s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}) "X = (X # Y) %(X # ¬Y)#

= (¬B %EA) # (EA %{s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |s!!s | :
(s!!s)i ! EA)}) "def. (#

= (¬B %EA) # (EA %{s | $s! : " (s, s!) " s! ! {s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (¬B %EA) # (EA %{s | $s! : " (s, s!) " s! ! {s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (¬B %EA) # (EA %{s | $s! : " (s, s!) " s! ! wlp[!T](«!EA)}) "def. wlp#

= (¬B %EA) # (EA %!pre[t](wlp[!T](«!EA))) "def. !pre#

= EA %(¬B # !pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

P A = wlp[!" +](«!EA) "def. P A and wlp#

= wlp[lfp
"
#

! !T . !B 1 %!" 2 ! !T](«!EA) "by (1-a)#

= lfp
$
!

! P . EA %(¬B # !pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[*](«!EA) = # #

= gfp
"
!

! P . EA %(¬B # !pre[t]P) "by duality #

P A = ¬P A "def. P A#

= ¬gfp
"
!

! P . EA %(¬B # !pre[t]P) "as shown above#

= lfp
"
Â!

! P . ¬(EA %(¬B # !pre[t](¬P))) "by Cor. 9#

= lfp
"
#

! P . ¬EA # (B %¬ !pre[t](¬P)) "de Morgan law#

= lfp
"
#

! P . ¬EA # (B %pre[t]P) "def. !pre[t]Q ! ¬pre[t](¬Q).# +,

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of P A in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ! P A can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

" k
i =0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k (!T) !
#
!s ! !T

$
$ |!s | " k

%
is unsound for

approximating both P A and P A.

Proof We have P k
A ! {s | ' s!s !

" k
i =0 !" i # ¬«!EA} - {s | ' s!s ! !" + # ¬«!EA} !

P A, but this provides an under-approximation, which is unsound since, by Th.6,

10

;K/&8>

!

!

!

!

!

Model-checking

¥H'*%5.#&6$/&#$E-1.#

¥H'*%5.# 1.#&/2B#)?

! R14".$-'.$6,/)#$5%$;%5&#$,'-G#,.5&#F$-'.$1*%)#*#-.#0>

is unsound both for and

By the dual of Lem. 8, we get (in particular since !L, ! " ###$%###
!

"
!L, &" implies

!L, '" ###$%###
"

!
!L, " ")

Corollary 10 If !L, &, (" is a complete lattice or a dcpo,F) L $ L is
increasing, !) L $ L is co-continuous(12) , F) L $ L commutes with F that
is ! ! F = F ! ! then ! (gfp

"
#

F) = gfp
!
" (#)

F .

6 Fixpoint strongest contract precondition

Following [?], let us deÞne the abstraction generalizing [?] to traces

wlp["T] # λ "Q . !
s

"
" * s"s) "T : s"s) "Q

#

wlp$ 1["Q] # λ P . !
s"s) "# +

"
" (s) P) + (s"s) "Q)

#

such that !$("# +), ," ###########$%###########
! #T . wlp[#T] #Q

wlp! 1 [#Q]
!$(#), -" and P A = wlp["%+](«"EA).

Proof

wlp["T] - P

.
!

s
"
" * s"s) "T : s"s) "Q

#
- P ! def. wlp"

. * s) P : * s"s) "T : s"s) "Q ! def. - "

. * s"s) "T : (s) P) + (s"s) "Q) ! def. + "

. "T ,
!

s"s) "# +
"
" (s) P) + (s"s) "Q)

#
! def. , "

. "T , wlp$ 1["Q](P) ! def. wlp$ 1" /0

By Þxpoint abstraction, it follows from (1-a) and Cor. 9 that

Theorem 11 P A = gfp
%
$

λ P . EA 1(ÂB 2 $pre[t]P) and P A = lfp
%
&

λ P . ÂEA 2

(B 1 pre[t]P) where pre[t]Q # { s | 3s') Q : !s, s' ") t} and $pre[t]Q #
Âpre[t](ÂQ) = { s | * s' : !s, s' ") t + s') Q} . /0

Proof

wlp[4](«"EA)

= { s | * s"s) 4 : s"s) «"EA } ! def. wlp"

= # ! * x) 4 : P(x) is true"

wlp["B 1 1 "%2 #"T](«"EA)

= wlp["B 1](«"EA) 2 wlp["%2 #"T](«"EA) ! Galois connections preserve existing lubs"

= { s | * s"s) "B 1 : s"s) «"EA } 2 { s | * s"s) "%2 #"T : s"s) «"EA } ! def. wlp"

(12) ! is co-continuous if and only if it preserves existing glbs of decreasing chains.

9

By the dual of Lem. 8, we get (in particular since !L, �" ###$%###
!

"
!L, &" implies

!L, '" ###$%###
"

!
!L, �")

Corollary 10 If !L, &, (" is a complete lattice or a dcpo,F) L $ L is
increasing, !) L $ L is co-continuous(12) , F) L $ L commutes with F that
is ! ◦ F = F ◦ ! then ! (gfp

�
� F) = gfp

!
" (�)

F .

6 Fixpoint strongest contract precondition

Following [?], let us deÞne the abstraction generalizing [?] to traces

wlp["T] � ! "Q . !
s

"
" * s"s) "T : s"s) "Q

#

wlp−1["Q] � ! P . !
s"s) "# +

"
" (s) P) + (s"s) "Q)

#

such that !$("# +), ," ###########$%###########
! #T .wlp[#T] #Q

wlp! 1[#Q]
!$(#), -" and P A = wlp["%+](«"EA).

Proof

wlp["T] - P

.
!

s
"
" * s"s) "T : s"s) "Q

#
- P ! def. wlp"

. * s) P : * s"s) "T : s"s) "Q ! def. - "

. * s"s) "T : (s) P) + (s"s) "Q) ! def. + "

. "T ,
!

s"s) "# +
"
" (s) P) + (s"s) "Q)

#
! def. , "

. "T , wlp−1["Q](P) ! def. wlp−1" /0

By Þxpoint abstraction, it follows from (1-a) and Cor. 9 that

Theorem 11 P A = gfp
⊆
$

! P .EA 1(¬B 2 $pre[t]P) and P A = lfp
⊆
∅ ! P .¬EA 2

(B 1 pre[t]P) where pre[t]Q � {s | 3s�) Q : !s, s�") t} and $pre[t]Q �
¬pre[t](¬Q) = {s | * s� : !s, s�") t + s�) Q}. /0

Proof

wlp[4](«"EA)

= {s | * s"s) 4 : s"s) «"EA } ! def. wlp"

= # ! * x) 4 : P(x) is true"

wlp["B 1 1 "%2 #"T](«"EA)

= wlp["B 1](«"EA) 2 wlp["%2 #"T](«"EA) ! Galois connections preserve existing lubs"

= {s | * s"s) "B 1 : s"s) «"EA } 2 {s | * s"s) "%2 #"T : s"s) «"EA } ! def. wlp"

(12) ! is co-continuous if and only if it preserves existing glbs of decreasing chains.

9

= { s | s ! B " s ! EA } # { s | $s!s ! !" 2 ! !T : s!s ! «!EA } "def. !B 1 and «!EA #

= (ÂB %EA) # { s | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |ss!!s | : (ss!!s)i ! EA)}

"def ! and «!EA #

= (ÂB %EA) # { s | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | : (s!!s)i !
EA)} "separating the casei = 0#

= (ÂB %EA) # ({ s ! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)} %{ s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}) "X = (X # Y) %(X # ÂY)#

= (ÂB %EA) # (EA %{ s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |s!!s | :
(s!!s)i ! EA)}) "def. (#

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! wlp[!T](«!EA)}) "def. wlp#

= (ÂB %EA) # (EA %�pre[t](wlp[!T](«!EA))) "def. �pre#

= EA %(ÂB # �pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

P A = wlp[!" +](«!EA) "def. P A and wlp#

= wlp[lfp
"
#

! !T . !B 1 %!" 2 ! !T](«!EA) "by (1-a)#

= lfp
$
!

! P .EA %(ÂB # �pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[*](«!EA) = # #

= gfp
"
!

! P .EA %(ÂB # �pre[t]P) "by duality #

P A = ÂP A "def. P A #

= Âgfp
"
!

! P .EA %(ÂB # �pre[t]P) "as shown above#

= lfp
"
Â!

! P .Â(EA %(ÂB # �pre[t](ÂP))) "by Cor. 9#

= lfp
"
#

! P .ÂEA # (B %Â�pre[t](ÂP)) "de Morgan law#

= lfp
"
#

! P .ÂEA # (B %pre[t]P) "def. �pre[t]Q ! Âpre[t](ÂQ).# +,

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of P A in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ! P A can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

�k
i =0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k (!T) !
�
!s ! !T

�� |!s | " k
�

is unsound for
approximating both P A and P A .

Proof We have P k
A ! { s | ' s!s !

�k
i =0 !" i # Â«!EA } - { s | ' s!s ! !" + # Â«!EA } !

P A , but this provides an under-approximation, which is unsound since, by Th.6,

10

= { s | s ! B " s ! EA } # { s | $s!s ! !" 2 ! !T : s!s ! «!EA } "def. !B1 and «!EA #

= (ÂB %EA) # { s | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |ss!!s | : (ss!!s)i ! EA)}

"def ! and «!EA #

= (ÂB %EA) # { s | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | : (s!!s)i !
EA)} "separating the casei = 0#

= (ÂB %EA) # ({ s ! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)} %{ s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (s ! EA (' i < |s!!s | :
(s!!s)i ! EA)}) "X = (X # Y) %(X # ÂY)#

= (ÂB %EA) # (EA %{ s)! EA | $s!, !s : (" (s, s!) & s!!s ! !T) " (' i < |s!!s | :
(s!!s)i ! EA)}) "def. (#

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! { s! | $!s : (s!!s ! !T) " (' i <
|s!!s | : (s!!s)i ! EA)}}) "def. %, " and ! #

= (ÂB %EA) # (EA %{ s | $s! : " (s, s!) " s! ! wlp[!T](«!EA)}) "def. wlp#

= (ÂB %EA) # (EA %!pre[t](wlp[!T](«!EA))) "def. !pre#

= EA %(ÂB # !pre[t](wlp[!T](«!EA))) "commutativity and distributivity #

PA = wlp[!" +](«!EA) "def. PA and wlp#

= wlp[lfp
"
#

! !T . !B1 %!" 2 ! !T](«!EA) "by (1-a)#

= lfp
$
!

! P . EA %(ÂB # !pre[t]P)

"by Galois connection, commutativity, Lem. 8, and wlp[*](«!EA) = # #

= gfp
"
!

! P . EA %(ÂB # !pre[t]P) "by duality #

PA = ÂPA "def. PA #

= Âgfp
"
!

! P . EA %(ÂB # !pre[t]P) "as shown above#

= lfp
"
Â!

! P . Â(EA %(ÂB # !pre[t](ÂP))) "by Cor. 9#

= lfp
"
#

! P . ÂEA # (B %Â!pre[t](ÂP)) "de Morgan law#

= lfp
"
#

! P . ÂEA # (B %pre[t]P) "def. !pre[t]Q ! Âpre[t](ÂQ).# +,

If the set # of states is Þnite, as assumed in model-checking [?], the Þxpoint
deÞnition of PA in Th. 11 is computable iteratively, up to combinatorial ex-
plosion. The code to check the preconditions ! PA can proceed by exhaustive
enumeration. In case this does not scale up or for inÞnite state systems, bounded
model-checking [?] is an alternative using

" k
i =0 !" i instead of !" + but, by Th. 6,

the bounded preÞx abstraction $k (!T) !
#
!s ! !T

$
$ |!s | " k

%
is unsound for

approximating both PA and PA .

Proof We have Pk
A ! { s | ' s!s !

" k
i =0 !" i # Â«!EA } - { s | ' s!s ! !" + # Â«!EA } !

PA , but this provides an under-approximation, which is unsound since, by Th.6,

10

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Fixpoint abstraction. Recall from [12, 7.1.0.4] that

Lemma 7 If !L, �, "# is a complete lattice or a cpo,F $ L % L is increasing, !L,
&# is a poset, ! $ L % L is continuous(6),(7), F $ L % L commutes (resp. semi-
commutes) with F that is ! ! F = F ! ! (resp. ! ! F & F ! !) then ! (lfp

!
"

F) =

lfp
#
α(")

F (resp. ! (lfp
!
"

F) & lfp
#
α(")

F).

Applying Lem. 7 to !L, �#'''%('''
Â

Â
!L, �#, we get Cor. 8 and by duality Cor. 9 below.

Corollary 8 (David Park) If F $ L % L is increasing on a complete Boolean
lattice !L, �, " , Â# then Â lfp

!
"

F = gfp
!
Â"

Â ! F ! Â .

Corollary 9 If !L, &,)# is a complete lattice or a dcpo,F $ L % L is increasing,
" $ L % L is co-continuous(8), F $ L % L commutes withF that is " ! F = F ! "
then " (gfp

#
$

F) = gfp
!
γ($)

F .

6 Fixpoint strongest contract precondition
Following [10], let us deÞne the abstraction generalizing [15] to traces

wlp[#T] � ! #Q . !
s

"
" * s#s $ #T : s#s $ #Q

#

wlp%1[#Q] � ! P . !
s#s $ #$ +

"
" (s $ P) + (s#s $ #Q)

#

such that !%(#$ +), ,# ''''''''''%(''''''''''
! �T . wlp[�T]�Q

wlp! 1 [�Q]
!%($), -# and P A = wlp[#&+](«#EA). By Þxpoint

abstraction, it follows from (1-a) and Cor. 8 that

Theorem 10 P A = gfp
&
Σ

! P . EA . (ÂB / $pre[t]P) and P A = lfp
&
'

! P . ÂEA /

(B . pre[t]P) wherepre[t]Q � { s | 0s($ Q : !s, s(# $ t} and $pre[t]Q � Âpre[t](ÂQ) =
{ s | * s(: !s, s(# $ t + s($ Q} . 12

If the set $ of states is Þnite, as assumed in model-checking [2], the Þxpoint deÞnition
of P A in Th. 10 is computable iteratively, up to combinatorial explosion. The code
to check the precondition s $ P A can proceed by exhaustive enumeration. In case
this does not scale up or for inÞnite state systems, bounded model-checking [5] is an
alternative using

%k
i=0 #&i instead of#&+ but, by Th. 6, the bounded preÞx abstraction

! k(#T) �
!
#s0 . . . #smin(k,|�s |)%1

"
" #s $ #T

#
is unsound for approximating both P A and

P A .

7 Contract precondition inference by data ßow analysis
Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic (or
even syntactic) reasonings moving the code assertions to the code entry, when the
e! ect is the same. This can be done by a sound data ßow analysis [18] when
1. the value of the visible side e! ect free Boolean expression on scalar or collection

variables in the assert is exactly the same as the value of this expression when
evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert on
all paths that can be taken from the program entry.

We propose a backward data ßow analysis to check for both su" cient conditions 1
and 2.

(6) ! is continuous if and only if it preserves existing lubs of increasing chains.
(7) The continuity hypothesis for ! can be restricted to the iterates of the least fixpoint of F .
(8) " is co-continuous if and only if it preserves existing glbs of decreasing chains.

5

Bounded model-checking

Contract precondition
inference by abstract

interpretation

(I) Backward
expression propagation

General idea

! Y#%)/,#$6./.#I(/6#0 $&#/6'-1-46$(?$6?*(')1, $
&#/6'-1-46$$$

! 30#/M$.&?$.'$*'B#$."#$,'-012'-$,'0#$1-$/66#&2'-6$/.$
."#$(#41--1-4$'+$."#$%&'4&/*S*#."'0S<<<

! !"16$16$%'661()#$5-0#&$."#$65Z,1#-.$,'-012'-6 M

we look for an overapproximation PA ⊆ PA , not missing any initial state from
which a good run is possible.

For the complement PA , we have P
k
A � { s | ∀s�s ∈

! k
i =0 �τ i : s�s ∈ �́EA } ⊇ { s |

∀s�s ∈ �τ + : s�s ∈ �́EA } = PA , but this provides an over-approximation, which
is unsound since we look for an underapproximation P ⊆ PA , eliminating only
initial states from which no good run is possible. ��

7 Contract precondition inference by data flow analysis

Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data flow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert , which can be determined by a forward data flow analysis. But
condition 2 is better handled backwards, so we propose a backward data flow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c ∈ Γ be a control point and b be a
Boolean expression. For example b can contain ForAll or Exists assertions on
unmodified collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P (c, b) holds at program point c when Boolean expression
b will definitely be checked in an assert(b) on all paths from c without being
changed up to this check. P = gfp

ú!
B!τ " is the ⇒̇-greatest solution of the

backward system of equations (where ⇒̇ is the pointwise extension of logical
implication ⇒)"

P (c, b) = B!τ "(P)(c, b)
c ∈ Γ, b ∈ Ab

where the expressions and control points of assert s are respectively Ab � { b |
∃c : �c, b� ∈ A} and Ac � { c | ∃b : �c, b� ∈ A} , the transformer B ∈ (Γ ×Ab →
B) → (Γ ×Ab → B) is

B!τ "(P)(c, b) = true when �c, b� ∈ A (assert(b) at c)
B!τ "(P)(c, b) = false when ∃s ∈ B : ! s = c ∧ �c, b� �∈ A (exit at c)

B!τ "(P)(c, b) =
#

c! " succ! ! " (c)

unchanged!τ "(c, c#, b) ∧ P (c#, b) (otherwise)

the set succ!τ "(c) of successors of the program point c ∈ Γ satisfies

11

Dataßow analysis (contÕd)

we look for an overapproximation P A ! PA , not missing any initial state from
which a good run is possible.

For the complementP A , we haveP
k
A � {s | " s!s #

! k
i=0 !" i : s!s # «!EA } $ {s |

" s!s # !" + : s!s # «!EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! P A , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert , which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P (c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B�" � is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')"

P (c, b) = B�" �(P)(c, b)

c # # , b # Ab

where the expressions and control points ofassert s are respectivelyAb � {b |
(c :)c, b* # A} and Ac � {c | (b :)c, b* # A}, the transformer B # (# + Ab ,
B) , (# + Ab , B) is

B�" �(P)(c, b) = true when)c, b* # A (assert(b) at c)

B�" �(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B�" �(P)(c, b) =
#

c! " succ! ! " (c)

unchanged�" �(c, c#, b) - P (c#, b) (otherwise)

the set succ�" �(c) of successors of the program pointc # # satisÞes

11

!

assert(b)

we look for an overapproximation P A ! PA , not missing any initial state from
which a good run is possible.

For the complementP A , we haveP
k
A ! { s | " s!s #

�k
i =0 !" i : s!s # «!EA } $ { s |

" s!s # !" + : s!s # «!EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! P A , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data flow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert , which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')�

P(c, b) = B ! " "(P)(c, b)

c # #, b # A b

where the expressions and control points ofassert s are respectivelyA b ! { b |
(c :)c, b* # A } and A c ! { c | (b :)c, b* # A } , the transformer B # (# + A b ,
B) , (# + A b , B) is

B ! " "(P)(c, b) = true when)c, b* # A (assert(b) at c)

B ! " "(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B ! " "(P)(c, b) =
�

c! " succ! ! " (c)

unchanged! " "(c, c#, b) - P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11

assert(b)

we look for an overapproximation P A
! PA

, not missing any initial state from

which a good run is possible.

For the complementP A
, we haveP

k
A

! { s | " s!s #
! k

i =0
!"

i : s!s #
«!E A

} $ { s |

" s!s
!"

+ : s!s
#

«!E A
} = P A

, but this provides an over-approximation, which

is unsound since we look for an underapproximationP
! P A

, eliminating only

initial states from which no good run is possible.

%&

7
Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic

(or even syntactic) reasonings moving the code assertio
ns to the code entry,

when

the e! ect is the same. This can be done by a sound data ßow analysis [?] when

1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression

when evaluated on entry;

2. the value of the expression checked on program entry
is checked in anassert

on all paths that can be taken from the program entry.

Condition 1 is true in partic
ular when none of the values of the variables involved

in the expression have been changed in any possible execution between the entry

and the assert , which can be determined by a forward data ßow analysis. But

condition 2 is better handled backwards, so we propose a backward data ßow

analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation.
Let c # # be a control point and b be a

Boolean expression. For exampleb can contain ForAll
or Exists

assertio
ns on

unmodiÞed collections without free scalar variables and no visible side e! ect (see

Sect. 10 otherwise). P(c, b)
holds at program point c when Boolean expression

b will deÞnitely be checked in anassert(
b)

on all paths from c without being

changed up to this check.P
= gfp

ú! B ! " " is the ú' -greatest solution of the

backward
system of equations (where

ú'
is the pointwise extension of logical

implication ')

" P(c, b)
=

B ! " "(P
)(c, b)

c # #,
b# Ab

where the expressions and control points ofassert s are respectivelyAb
! { b |

(c :)c, b* # A} and Ac
! { c | (b :)c, b* # A} , the transformer B # (#

+ Ab
,

B) , (#
+ Ab

, B) is

B ! " "(P
)(c, b)

=
true

when
)c, b* # A

(assert(
b) at c)

B ! " "(P
)(c, b)

=
fals

e
when

(s # B : ! s = c -) c, b* .#A

(exit at c)

B ! " "(P
)(c, b)

=

#

c! " suc
c! ! " (c)

unchanged! " "(c, c
#, b)

- P(c
#, b)

(otherwise)

the set succ! " "(c)
of successors of the program pointc # # satisÞes

11

we look for an overapproximation P
A ! P

A , not missing any initial state from

which a good run is possible.

For the complementP
A , we haveP k

A ! { s | " s!s # !
k

i =0 !" i
: s!s # «!E

A } $ { s |

" s!s # !" +
: s!s # «!E

A } = P
A , but this provides an over-approximation, which

is unsound since we look for an underapproximationP ! P
A , eliminating only

initial states from which no good run is possible.

%&

7
Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic

(or even syntactic) reasonings moving the code assertions to the code entry, when

the e! ect is the same. This can be done by a sound data ßow analysis [?] when

1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression

when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert

on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved

in the expression have been changed in any possible execution between the entry

and the assert , which can be determined by a forward data ßow analysis. But

condition 2 is better handled backwards, so we propose a backward data ßow

analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation.
Let c # # be a control point and b be a

Boolean expression. For exampleb can contain ForAll or Exists
assertions on

unmodiÞed collections without free scalar variables and no visible side e! ect (see

Sect. 10 otherwise). P(c, b) holds at program
point c when Boolean expression

b will deÞnitely be checked in anassert(b) on all paths from c without being

changed up to this check.P
=

gfp ú!
B ! " " is the

ú' -greatest solution of the

backward system
of equations (where

ú'
is the pointwise extension of logical

implication ')

"
P(c, b) =

B ! " "(P)(c, b)

c # #,
b# A

b

where the expressions and control points ofassert s are respectivelyA
b ! { b |

(c :)c, b* # A} and A
c ! { c | (b :)c, b* # A} , the transformer B # (# + A

b ,

B) ,
(# + A

b ,
B) is

B ! " "(P)(c, b) =
true

when
)c, b* # A

(assert(b) at c)

B ! " "(P)(c, b) =
false

when
(s # B : ! s = c -) c, b* .#A

(exit at c)

B ! " "(P)(c, b) =
#

c !" succ! ! " (c)
unchanged! " "(c, c#, b) - P(c #, b)

(otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11

we look for an overapproximation P A ! PA , not missing any initial state from
which a good run is possible.

For the complementP A , we haveP
k
A ! { s | " s!s #

! k
i =0 !" i : s!s # «!EA } $ { s |

" s!s # !" + : s!s # «!EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! P A , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert, which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')"

P(c, b) = B ! " "(P)(c, b)

c # #, b # A b

where the expressions and control points ofasserts are respectivelyA b ! { b |
(c :)c, b* # A } and A c ! { c | (b :)c, b* # A } , the transformer B # (# + A b ,
B) , (# + A b , B) is

B ! " "(P)(c, b) = true when)c, b* # A (assert(b) at c)

B ! " "(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B ! " "(P)(c, b) =
#

c�" succ! ! " (c)

unchanged! " "(c, c#, b) - P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11

we look for an overapproximation P A ⊆ PA , not missing any initial state from
which a good run is possible.

For the complement P A , we have P
k
A � { s | ∀s�s ∈

�k
i =0 �τ i : s�s ∈ �́EA } ⊇ { s |

∀s�s ∈ �τ + : s�s ∈ �́EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximation P ⊆ P A , eliminating only
initial states from which no good run is possible. ��

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data flow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert , which can be determined by a forward data flow analysis. But
condition 2 is better handled backwards, so we propose a backward data flow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c ∈ Γ be a control point and b be a
Boolean expression. For example b can contain ForAll or Exists assertions on
unmodified collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will definitely be checked in an assert(b) on all paths from c without being
changed up to this check. P = gfp

ú!
B !τ " is the ⇒̇-greatest solution of the

backward system of equations (where ⇒̇ is the pointwise extension of logical
implication ⇒)�

P(c, b) = B !τ "(P)(c, b)
c ∈ Γ, b∈ A b

where the expressions and control points of assert s are respectively A b � { b |
∃c : �c, b� ∈ A } and A c � { c | ∃b : �c, b� ∈ A } , the transformer B ∈ (Γ × A b →
B) → (Γ × A b → B) is

B !τ "(P)(c, b) = true when �c, b� ∈ A (assert(b) at c)
B !τ "(P)(c, b) = false when ∃s ∈ B : ! s = c∧ �c, b� �∈ A (exit at c)

B !τ "(P)(c, b) =
�

c! " succ�τ�(c)

unchanged!τ "(c, c#, b) ∧ P(c#, b) (otherwise)

the set succ!τ "(c) of successors of the program point c ∈ Γ satisfies

11

we look for an overapproximation P A ! PA , not missing any initial state from
which a good run is possible.

For the complementP A , we haveP
k
A ! { s | " s!s #

�k
i =0 !" i : s!s # «!EA } $ { s |

" s!s # !" + : s!s # «!EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! P A , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data flow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert , which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')�

P(c, b) = B ! " "(P)(c, b)

c # #, b # A b

where the expressions and control points ofassert s are respectivelyA b ! { b |
(c :)c, b* # A } and A c ! { c | (b :)c, b* # A } , the transformer B # (# + A b ,
B) , (# + A b , B) is

B ! " "(P)(c, b) = true when)c, b* # A (assert(b) at c)

B ! " "(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B ! " "(P)(c, b) =
�

c! " succ! ! " (c)

unchanged! " "(c, c#, b) - P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11

we look for an overapproximation P A ! PA , not missing any initial state from
which a good run is possible.

For the complementP A , we haveP
k
A ! { s | " s!s #

! k
i =0 !" i : s!s # «!EA } $ { s |

" s!s # !" + : s!s # «!EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! P A , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert, which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')"

P(c, b) = B ! " "(P)(c, b)

c # #, b # A b

where the expressions and control points ofasserts are respectivelyA b ! { b |
(c :)c, b* # A } and A c ! { c | (b :)c, b* # A } , the transformer B # (# + A b ,
B) , (# + A b , B) is

B ! " "(P)(c, b) = true when)c, b* # A (assert(b) at c)

B ! " "(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B ! " "(P)(c, b) =
#

c! " succ! ! " (c)

unchanged! " "(c, c#, b) - P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11

we look for an overapproximation P A ! PA , not missing any initial state from
which a good run is possible.

For the complementP A , we haveP
k
A ! { s | " s!s #

�k
i =0 !" i : s!s # «!EA } $ { s |

" s!s # !" + : s!s # «!EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! P A , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data flow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert , which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')�

P(c, b) = B ! " "(P)(c, b)

c # #, b # A b

where the expressions and control points ofassert s are respectivelyA b ! { b |
(c :)c, b* # A } and A c ! { c | (b :)c, b* # A } , the transformer B # (# + A b ,
B) , (# + A b , B) is

B ! " "(P)(c, b) = true when)c, b* # A (assert(b) at c)

B ! " "(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B ! " "(P)(c, b) =
�

c! " succ! ! " (c)

unchanged! " "(c, c#, b) - P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11

we look for an overapproximation P A ! PA , not missing any initial state from
which a good run is possible.

For the complementP A , we haveP
k
A ! { s | " s!s #

! k
i =0 !" i : s!s # «!EA } $ { s |

" s!s # !" + : s!s # «!EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! P A , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert, which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')"

P(c, b) = B ! " "(P)(c, b)

c # #, b # A b

where the expressions and control points ofasserts are respectivelyA b ! { b |
(c :)c, b* # A } and A c ! { c | (b :)c, b* # A } , the transformer B # (# + A b ,
B) , (# + A b , B) is

B ! " "(P)(c, b) = true when)c, b* # A (assert(b) at c)

B ! " "(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B ! " "(P)(c, b) =
#

c! " succ! ! " (c)

unchanged! " "(c, c#, b) - P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11

we look for an overapproximation P A ! PA , not missing any initial state from
which a good run is possible.

For the complementP A , we haveP
k
A ! { s | " s!s #

�k
i =0 !" i : s!s # «!EA } $ { s |

" s!s # !" + : s!s # «!EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! P A , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data flow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert , which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')�

P(c, b) = B ! " "(P)(c, b)

c # #, b # A b

where the expressions and control points ofassert s are respectivelyA b ! { b |
(c :)c, b* # A } and A c ! { c | (b :)c, b* # A } , the transformer B # (# + A b ,
B) , (# + A b , B) is

B ! " "(P)(c, b) = true when)c, b* # A (assert(b) at c)

B ! " "(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B ! " "(P)(c, b) =
�

c! " succ! ! " (c)

unchanged! " "(c, c#, b) - P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11

we look for an overapproximation P A ! PA , not missing any initial state from
which a good run is possible.

For the complementP A , we haveP
k
A ! { s | " s!s #

! k
i =0 !" i : s!s # «!EA } $ { s |

" s!s # !" + : s!s # «!EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! P A , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert, which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')"

P(c, b) = B ! " "(P)(c, b)

c # #, b # A b

where the expressions and control points ofasserts are respectivelyA b ! { b |
(c :)c, b* # A } and A c ! { c | (b :)c, b* # A } , the transformer B # (# + A b ,
B) , (# + A b , B) is

B ! " "(P)(c, b) = true when)c, b* # A (assert(b) at c)

B ! " "(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B ! " "(P)(c, b) =
#

c! " succ! ! " (c)

unchanged! " "(c, c#, b) - P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11

Dataßow analysis (contÕd)

!

!
succ! ! "(c) ! { c� " " | #s, s� : πs = c $! (s, s�) $ πs� = c�}

(succ! ! "(c) ! " yields a ßow-insensitive analysis) andunchanged! ! "(c, c�, b) im-
plies than a transition by ! from program point c to program point c� can never
change the value of Boolean expressionb

unchanged! ! "(c, c�, b) % &s, s� : (πs = c $! (s, s�) $ πs� = c�) % (!b"s = !b"s�).

unchanged! ! "(c, c�, b) can be a syntactic underapproximation of its semantic def-
inition [?]. DeÞne

RA ! λ b. { ' s, s�(| ' πs�, b(" A $!b"s = !b"s�}
#R A ! λ b. {#s " #$ + | #i < |#s| : ' #s0, #si(" RA(b)}

and the abstraction

#%D(#T)(c, b) ! &#s " #T : π#s0 = c % #s " #R A(b)

#&D(P) ! {#s | &b " A b : P(π#s0, b) % #s " #R A(b)}

such that ' #$ + ,)(****+,****
!" D

!# D
' " - A b + B, ú.(.

Proof

#%D(#T) ú. P

/ & c " " : &b " A b : P(c, b) % #%D(#T)(c, b) #pointwise def. ú%$

/ & c " " : &b " A b : P(c, b) % (&#s " #T : π#s0 = c % #s " #R A(b)) #def. #%D$

/ & c " " : &#s " #T : &b " A b : P(c, b) % (π#s0 = c % #s " #R A(b)) #def. &$

/ & #s " #T : &b " A b : P(π#s0, b) % #s " #R A(b)

#(%) for c = π#s0, (.) true when #s0 0= c$

/ #T) {#s | &b " A b : P(π#s0, b) % #s " #R A(b)} #def.) $

/ #T) #&D(P) #def. #&D$ 12

By (1-a) and Lem. 8, we have

Theorem 12 #%D(#! +) ú. lfp
ú⇐

B ! ! " = gfp
ú⇒

B ! ! " ! P. 12

Proof By (1-a), we have #! + = lfp
⊆
∅ λ #T . #B 1 3 #! 2 %#T so, by Lem. 8, it is

su! cient to prove the semi-commutativity property #%D(#B 13#! 2%#T) = #%D(#B 1) ú$
#%D(#! 2 %#T) ú. B ! ! "(#%D(#T)). We proceed pointwise, and there are two cases.

#%D(#B 1)(c, b)

= &#s " #B 1 : π#s0 = c % #s " #R A(b) #def. #%D$

12

we look for an overapproximation PA ! PA , not missing any initial state from
which a good run is possible.

For the complementPA , we haveP
k
A � { s | " s!s #

�k
i =0 !" i : s!s # «!EA } $ { s |

" s!s # !" + : s!s # «!EA } = PA , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! PA , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert , which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')�

P(c, b) = B ! " "(P)(c, b)

c # #, b # A b

where the expressions and control points ofassert s are respectivelyA b � { b |
(c :)c, b* # A } and A c � { c | (b :)c, b* # A } , the transformer B # (# + A b ,
B) , (# + A b , B) is

B ! " "(P)(c, b) = true when)c, b* # A (assert(b) at c)

B ! " "(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B ! " "(P)(c, b) =
�

c! " succ! ! " (c)

unchanged! " "(c, c#, b) - P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11
succ! ! "(c) ! { c� " " | #s, s� : πs = c $! (s, s�) $ πs� = c�}

(succ! ! "(c) ! " yields a ßow-insensitive analysis) andunchanged! ! "(c, c�, b) im-
plies than a transition by ! from program point c to program point c� can never
change the value of Boolean expressionb

unchanged! ! "(c, c�, b) % &s, s� : (πs = c $! (s, s�) $ πs� = c�) % (!b"s = !b"s�).

unchanged! ! "(c, c�, b) can be a syntactic underapproximation of its semantic def-
inition [?]. DeÞne

RA ! λ b. { ' s, s�(| ' πs�, b(" A $!b"s = !b"s�}
#R A ! λ b. {#s " #$ + | #i < |#s| : ' #s0, #si (" RA(b)}

and the abstraction

#%D (#T)(c, b) ! &#s " #T : π#s0 = c % #s " #R A(b)

#&D (P) ! {#s | &b " A b : P(π#s0, b) % #s " #R A(b)}

such that ' #$ + ,)(****+,****
!" D

!# D
' " - A b + B, ú.(.

Proof

#%D (#T) ú. P

/ & c " " : &b " A b : P(c, b) % #%D (#T)(c, b) #pointwise def. ú%$

/ & c " " : &b " A b : P(c, b) % (&#s " #T : π#s0 = c % #s " #R A(b)) #def. #%D $

/ & c " " : &#s " #T : &b " A b : P(c, b) % (π#s0 = c % #s " #R A(b)) #def. &$

/ & #s " #T : &b " A b : P(π#s0, b) % #s " #R A(b)

#(%) for c = π#s0, (.) true when #s0 0= c$

/ #T) {#s | &b " A b : P(π#s0, b) % #s " #R A(b)} #def.) $

/ #T) #&D (P) #def. #&D $ 12

By (1-a) and Lem. 8, we have

Theorem 12 #%D (#! +) ú. lfp
ú⇐

B ! ! " = gfp
ú⇒

B ! ! " ! P. 12

Proof By (1-a), we have #! + = lfp
⊆
∅ λ #T . #B 1 3 #! 2 %#T so, by Lem. 8, it is

sufficient to prove the semi-commutativity property #%D (#B 13#! 2%#T) = #%D (#B 1) ú$
#%D (#! 2 %#T) ú. B ! ! "(#%D (#T)). We proceed pointwise, and there are two cases.

#%D (#B 1)(c, b)

= &#s " #B 1 : π#s0 = c % #s " #R A(b) #def. #%D $

12

succ! ! "(c) ! { c! " " | #s, s! : ! s = c $! (s, s!) $! s! = c!}

(succ! ! "(c) � " yields a ßow-insensitive analysis) andunchanged! ! "(c, c!, b) im-
plies than a transition by ! from program point c to program point c! can never
change the value of Boolean expressionb

unchanged! ! "(c, c!, b) % &s, s! : (! s = c $! (s, s!) $! s! = c!) % (!b"s = !b"s!).

unchanged! ! "(c, c!, b) can be a syntactic underapproximation of its semantic def-
inition [?]. DeÞne

RA � " b. { ' s, s!(| ' ! s! , b(" A $!b"s = !b"s!}
#R A � " b. {#s " #$ + | #i < |#s| : ' #s0, #si (" RA (b)}

and the abstraction

#%D (#T)(c, b) � &#s " #T : ! #s0 = c % #s " #R A (b)

#&D (P) � {#s | &b " A b : P(! #s0, b) % #s " #R A (b)}

such that ' #$ + ,)(****+,****
!" D

!# D
' " - A b + B, ú.(.

Proof

#%D (#T) ú. P

/ & c " " : &b " A b : P(c, b) % #%D (#T)(c, b) #pointwise def. ú%$

/ & c " " : &b " A b : P(c, b) % (&#s " #T : ! #s0 = c % #s " #R A (b)) #def. #%D $

/ & c " " : &#s " #T : &b " A b : P(c, b) % (! #s0 = c % #s " #R A (b)) #def. &$

/ & #s " #T : &b " A b : P(! #s0, b) % #s " #R A (b)

#(%) for c = ! #s0, (.) true when #s0 0= c$

/ #T) {#s | &b " A b : P(! #s0, b) % #s " #R A (b)} #def.) $

/ #T) #&D (P) #def. #&D $ 12

By (1-a) and Lem. 8, we have

Theorem 12 #%D (#! +) ú. lfp
ú"

B ! ! " = gfp
ú#

B ! ! " � P. 12

Proof By (1-a), we have #! + = lfp
$
%

" #T . #B 1 3 #! 2 %#T so, by Lem. 8, it is

su! cient to prove the semi-commutativity property #%D (#B 13#! 2%#T) = #%D (#B 1) ú$
#%D (#! 2 %#T) ú. B ! ! "(#%D (#T)). We proceed pointwise, and there are two cases.

#%D (#B 1)(c, b)

= &#s " #B 1 : ! #s0 = c % #s " #R A (b) #def. #%D $

12

we look for an overapproximation PA ! PA , not missing any initial state from
which a good run is possible.

For the complementPA , we haveP
k
A ! { s | " s!s #

! k
i =0 !" i : s!s # «!EA } $ { s |

" s!s # !" + : s!s # «!EA } = PA , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! PA , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert , which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')"

P(c, b) = B ! " "(P)(c, b)

c # #, b # Ab

where the expressions and control points ofassert s are respectivelyAb ! { b |
(c :)c, b* # A} and Ac ! { c | (b :)c, b* # A} , the transformer B # (# + Ab ,
B) , (# + Ab , B) is

B ! " "(P)(c, b) = true when)c, b* # A (assert(b) at c)

B ! " "(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B ! " "(P)(c, b) =
#

c! " succ! ! " (c)

unchanged! " "(c, c#, b) - P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11

we look for an overapproximation PA ! PA , not missing any initial state from
which a good run is possible.

For the complementPA , we haveP
k
A ! { s | " s!s #

! k
i =0 !" i : s!s # «!EA } $ { s |

" s!s # !" + : s!s # «!EA } = PA , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! PA , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert, which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')"

P(c, b) = B ! " "(P)(c, b)

c # #, b # A b

where the expressions and control points ofasserts are respectivelyA b ! { b |
(c :)c, b* # A } and A c ! { c | (b :)c, b* # A } , the transformer B # (# + A b ,
B) , (# + A b , B) is

B ! " "(P)(c, b) = true when)c, b* # A (assert(b) at c)

B ! " "(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B ! " "(P)(c, b) =
#

c! " succ! ! " (c)

unchanged! " "(c, c#, b) - P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11

we look for an overapproximation P A ! PA , not missing any initial state from
which a good run is possible.

For the complementP A , we haveP
k
A � { s | " s�s #

! k
i =0 �τ i : s�s # «�EA } $ { s |

" s�s # �τ + : s�s # «�EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! P A , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert , which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # Γ be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P (c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

˙!
B�τ� is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')"

P (c, b) = B�τ�(P)(c, b)

c # Γ, b # A b

where the expressions and control points ofassert s are respectivelyA b � { b |
(c :)c, b* # A } and A c � { c | (b :)c, b* # A } , the transformer B # (Γ + A b ,
B) , (Γ + A b , B) is

B�τ�(P)(c, b) = true when)c, b* # A (assert(b) at c)

B�τ�(P)(c, b) = false when (s # B : πs = c -) c, b* .#A (exit at c)

B�τ�(P)(c, b) =
#

c! " succ! ! "(c)

unchanged�τ�(c, c#, b) - P (c#, b) (otherwise)

the set succ�τ�(c) of successors of the program pointc # Γ satisÞes

11

we look for an overapproximation P A ! PA , not missing any initial state from
which a good run is possible.

For the complementP A , we haveP
k
A ! { s | " s!s #

! k
i =0 !" i : s!s # «!EA } $ { s |

" s!s # !" + : s!s # «!EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! P A , eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert, which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')"

P(c, b) = B ! " "(P)(c, b)

c # #, b # A b

where the expressions and control points ofasserts are respectivelyA b ! { b |
(c :)c, b* # A } and A c ! { c | (b :)c, b* # A } , the transformer B # (# + A b ,
B) , (# + A b , B) is

B ! " "(P)(c, b) = true when)c, b* # A (assert(b) at c)

B ! " "(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B ! " "(P)(c, b) =
#

c! " succ! ! " (c)

unchanged! " "(c, c#, b) - P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11

we look for an overapproximation P A ⊆ PA , not missing any initial state from
which a good run is possible.

For the complementP A , we haveP
k
A ! { s | ∀s!s ∈

�k
i =0 !" i : s!s ∈ «!EA } ⊇ { s |

∀s!s ∈ !" + : s!s ∈ «!EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximationP ⊆ P A , eliminating only
initial states from which no good run is possible. ��

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert , which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c ∈ # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú⇒-greatest solution of the

backward system of equations (where ú⇒ is the pointwise extension of logical
implication ⇒)�

P(c, b) = B ! " "(P)(c, b)

c ∈ #, b∈ A b

where the expressions and control points ofassert s are respectivelyA b ! { b |
∃c : �c, b� ∈ A } and A c ! { c | ∃b : �c, b� ∈ A } , the transformer B ∈ (# × A b →
B) → (# × A b → B) is

B ! " "(P)(c, b) = true when �c, b� ∈ A (assert(b) at c)

B ! " "(P)(c, b) = false when ∃s ∈ B : ! s = c∧ �c, b� �∈ A (exit at c)

B ! " "(P)(c, b) =
�

c�" succ�τ�(c)

unchanged! " "(c, c#, b) ∧ P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc ∈ # satisÞes

11

we look for an overapproximation P A ⊆ PA , not missing any initial state from
which a good run is possible.

For the complement P A , we have P
k
A � { s | ∀s�s ∈

! k
i =0 �τ i : s�s ∈ �́EA } ⊇ { s |

∀s�s ∈ �τ + : s�s ∈ �́EA } = P A , but this provides an over-approximation, which
is unsound since we look for an underapproximation P ⊆ P A , eliminating only
initial states from which no good run is possible. ��

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect. 4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the e! ect is the same. This can be done by a sound data flow analysis [?] when
1. the value of the visible side e! ect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in an assert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert , which can be determined by a forward data flow analysis. But
condition 2 is better handled backwards, so we propose a backward data flow
analysis to check for both su" cient conditions 1 and 2.

Backward expression propagation. Let c ∈ Γ be a control point and b be a
Boolean expression. For example b can contain ForAll or Exists assertions on
unmodified collections without free scalar variables and no visible side e! ect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will definitely be checked in an assert(b) on all paths from c without being
changed up to this check. P = gfp

˙!
B �τ� is the ⇒̇-greatest solution of the

backward system of equations (where ⇒̇ is the pointwise extension of logical
implication ⇒)"

P(c, b) = B �τ�(P)(c, b)
c ∈ Γ, b∈ A b

where the expressions and control points of assert s are respectively A b � { b |
∃c : �c, b� ∈ A } and A c � { c | ∃b : �c, b� ∈ A } , the transformer B ∈ (Γ × A b →
B) → (Γ × A b → B) is

B �τ�(P)(c, b) = true when �c, b� ∈ A (assert(b) at c)
B �τ�(P)(c, b) = false when ∃s ∈ B : πs = c∧ �c, b� �∈ A (exit at c)

B �τ�(P)(c, b) =
#

c! " succ�! �(c)

unchanged�τ�(c, c#, b) ∧ P(c#, b) (otherwise)

the set succ�τ�(c) of successors of the program point c ∈ Γ satisfies

11

we look for an overapproximation P A ! PA, not missing any initial state from
which a good run is possible.

For the complementP A, we haveP
k
A ! {s | " s!s #

! k
i =0 !" i : s!s # «!EA} $ {s |

" s!s # !" + : s!s # «!EA} = P A, but this provides an over-approximation, which
is unsound since we look for an underapproximationP ! P A, eliminating only
initial states from which no good run is possible. %&

7 Contract precondition inference by data ßow analysis

Instead of state-based reasonings, as in Sect.4 and 6, we can consider symbolic
(or even syntactic) reasonings moving the code assertions to the code entry, when
the effect is the same. This can be done by a sound data ßow analysis [?] when
1. the value of the visible side effect free Boolean expression on scalar or collec-

tion variables in the assert is exactly the same as the value of this expression
when evaluated on entry;

2. the value of the expression checked on program entry is checked in anassert
on all paths that can be taken from the program entry.

Condition 1 is true in particular when none of the values of the variables involved
in the expression have been changed in any possible execution between the entry
and the assert , which can be determined by a forward data ßow analysis. But
condition 2 is better handled backwards, so we propose a backward data ßow
analysis to check for both sufficient conditions 1 and 2.

Backward expression propagation. Let c # # be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on
unmodiÞed collections without free scalar variables and no visible side effect (see
Sect. 10 otherwise). P(c, b) holds at program point c when Boolean expression
b will deÞnitely be checked in anassert(b) on all paths from c without being
changed up to this check.P = gfp

ú!
B ! " " is the ú' -greatest solution of the

backward system of equations (where ú' is the pointwise extension of logical
implication ')"

P(c, b) = B ! " "(P)(c, b)

c # #, b # Ab

where the expressions and control points ofassert s are respectivelyAb ! {b |
(c :)c, b* # A} and Ac ! {c | (b :)c, b* # A}, the transformer B # (# + Ab ,
B) , (# + Ab , B) is

B ! " "(P)(c, b) = true when)c, b* # A (assert(b) at c)

B ! " "(P)(c, b) = false when (s # B : ! s = c -) c, b* .#A (exit at c)

B ! " "(P)(c, b) =
#

c�" succ! ! " (c)

unchanged! " "(c, c#, b) - P(c#, b) (otherwise)

the set succ! " "(c) of successors of the program pointc # # satisÞes

11

!

!

!

Soundness of the dataßow analysis (contÕd)

!

!

succ! ! "(c) ⊇ { c! ∈ " | ∃s, s! : ! s = c∧ ! (s, s!) ∧ ! s! = c!}

(succ! ! "(c) ! " yields a ßow-insensitive analysis) andunchanged! ! "(c, c!, b) im-
plies than a transition by ! from program point c to program point c! can never
change the value of Boolean expressionb

unchanged! ! "(c, c!, b) ⇒ ∀s, s! : (! s = c∧ ! (s, s!) ∧ ! s! = c!) ⇒ (!b"s = !b"s!).

unchanged! ! "(c, c!, b) can be a syntactic underapproximation of its semantic def-
inition [?]. DeÞne

RA ! " b. { �s, s!� | �! s! , b� ∈ A ∧ !b"s = !b"s!}
#R A ! " b. {#s ∈ #$ + | ∃i < |#s| : �#s0, #si � ∈ RA (b)}

and the abstraction

#%D (#T)(c, b) ! ∀#s ∈ #T : ! #s0 = c⇒ #s ∈ #R A (b)

#&D (P) ! {#s | ∀b∈ A b : P(! #s0, b) ⇒ #s ∈ #R A (b)}

such that � #$ + , ⊆� −−−−→←−−−−
!" D

!# D �" × A b → B, ú⇐�.

Proof

#%D (#T) ú⇐ P

⇔ ∀c ∈ " : ∀b∈ A b : P(c, b) ⇒ #%D (#T)(c, b) #pointwise def. ú⇒$

⇔ ∀c ∈ " : ∀b∈ A b : P(c, b) ⇒ (∀#s ∈ #T : ! #s0 = c⇒ #s ∈ #R A (b)) #def. #%D $

⇔ ∀c ∈ " : ∀#s ∈ #T : ∀b∈ A b : P(c, b) ⇒ (! #s0 = c⇒ #s ∈ #R A (b)) #def. ∀$

⇔ ∀#s ∈ #T : ∀b∈ A b : P(! #s0, b) ⇒ #s ∈ #R A (b)

#(⇒) for c = ! #s0, (⇐) true when #s0 �= c$

⇔ #T ⊆ {#s | ∀b∈ A b : P(! #s0, b) ⇒ #s ∈ #R A (b)} #def. ⊆$

⇔ #T ⊆ #&D (P) #def. #&D $ ��

By (1-a) and Lem. 8, we have

Theorem 12 #%D (#! +) ú⇐ lfp
ú"

B ! ! " = gfp
ú#

B ! ! " ! P. ��

Proof By (1-a), we have #! + = lfp
$
%

" #T . #B 1 ∪ #! 2 %#T so, by Lem. 8, it is

su! cient to prove the semi-commutativity property #%D (#B 1∪#! 2%#T) = #%D (#B 1) ú∧
#%D (#! 2 %#T) ú⇐ B ! ! "(#%D (#T)). We proceed pointwise, and there are two cases.

#%D (#B 1)(c, b)

= ∀#s ∈ #B 1 : ! #s0 = c⇒ #s ∈ #R A (b) #def. #%D $

12

succ�τ�(c) ! { c! " Γ | #s, s! : ! s = c $ τ (s, s!) $! s! = c! }

(succ�τ�(c) ! Γ yields a ßow-insensitive analysis) andunchanged�τ�(c, c! , b) im-
plies than a transition by τ from program point c to program point c! can never
change the value of Boolean expressionb

unchanged�τ�(c, c! , b) % &s, s! : (! s = c $ τ (s, s!) $! s! = c!) % (�b�s = �b�s!).

unchanged�τ�(c, c! , b) can be a syntactic underapproximation of its semantic def-
inition [?]. DeÞne

RA ! " b . { ' s, s! (| ' ! s! , b(" A $ �b�s = �b�s! }
�RA ! " b . {�s " �Σ+ | #i < |�s | : ' �s0, �si(" RA (b)}

and the abstraction

�αD(�T)(c, b) ! &�s " �T : ! �s0 = c % �s " �RA (b)

�γD(P) ! {�s | &b " A b : P (! �s0, b) % �s " �RA (b)}

such that ' �Σ+,)(****+,****
!" D

!# D
' Γ - A b + B, ú.(.

Proof

�αD(�T) ú. P

/ & c " Γ : &b " A b : P (c, b) % �αD(�T)(c, b) �pointwise def. ú%�
/ & c " Γ : &b " A b : P (c, b) % (&�s " �T : ! �s0 = c % �s " �RA (b)) �def. �αD�
/ & c " Γ : &�s " �T : &b " A b : P (c, b) % (! �s0 = c % �s " �RA (b)) �def. &�
/ & �s " �T : &b " A b : P (! �s0, b) % �s " �RA (b)

�(%) for c = ! �s0, (.) true when �s0 0= c�
/ �T) {�s | &b " A b : P (! �s0, b) % �s " �RA (b)} �def.) �
/ �T) �γD(P) �def. �γD� 12

By (1-a) and Lem. 8, we have

Theorem 12 �αD(�τ +) ú. lfp
˙"
B�τ� = gfp

#̇
B�τ� ! P . 12

Proof By (1-a), we have �τ + = lfp
$
%

" �T . �B1 3 �τ 2 � �T so, by Lem. 8, it is

su! cient to prove the semi-commutativity property �αD(�B13�τ 2� �T) = �αD(�B1) ú$
�αD(�τ 2 � �T) ú. B�τ�(�αD(�T)). We proceed pointwise, and there are two cases.

�αD(�B1)(c, b)

= &�s " �B1 : ! �s0 = c % �s " �RA (b) �def. �αD�

12

succ! ! "(c) ! {c! " " | #s, s! : ! s = c $! (s, s!) $! s! = c!}

(succ! ! "(c) ! " yields a ßow-insensitive analysis) andunchanged! ! "(c, c!, b) im-
plies than a transition by ! from program point c to program point c! can never
change the value of Boolean expressionb

unchanged! ! "(c, c!, b) % &s, s! : (! s = c $! (s, s!) $! s! = c!) % (!b"s = !b"s!).

unchanged! ! "(c, c!, b) can be a syntactic underapproximation of its semantic def-
inition [?]. DeÞne

RA ! " b. {' s, s!(| ' ! s! , b(" A $!b"s = !b"s!}
#RA ! " b. {#s " #$ + | #i < |#s | : ' #s0, #si (" RA (b)}

and the abstraction

#%D (#T)(c, b) ! &#s " #T : ! #s0 = c % #s " #RA (b)

#&D (P) ! {#s | &b " A b : P(! #s0, b) % #s " #RA (b)}

such that ' #$ +,)(****+,****
!" D

!# D
' " - A b + B, ú.(.

Proof

#%D (#T) ú. P

/ & c " " : &b " A b : P(c, b) % #%D (#T)(c, b) #pointwise def. ú%$

/ & c " " : &b " A b : P(c, b) % (&#s " #T : ! #s0 = c % #s " #RA (b)) #def. #%D $

/ & c " " : &#s " #T : &b " A b : P(c, b) % (! #s0 = c % #s " #RA (b)) #def. &$

/ & #s " #T : &b " A b : P(! #s0, b) % #s " #RA (b)

#(%) for c = ! #s0, (.) true when #s0 0= c$

/ #T) {#s | &b " A b : P(! #s0, b) % #s " #RA (b)} #def.) $

/ #T) #&D (P) #def. #&D $ 12

By (1-a) and Lem. 8, we have

Theorem 12 #%D (#! +) ú. lfp
˙"

B ! ! " = gfp
#̇

B ! ! " ! P . 12

Proof By (1-a), we have #! + = lfp
$
%

" #T . #B1 3 #! 2 %#T so, by Lem. 8, it is

su! cient to prove the semi-commutativity property #%D (#B13#! 2%#T) = #%D (#B1) ú$
#%D (#! 2 %#T) ú. B ! ! "(#%D (#T)). We proceed pointwise, and there are two cases.

#%D (#B1)(c, b)

= &#s " #B1 : ! #s0 = c % #s " #RA (b) #def. #%D $

12

K&''+ and Þxpoint abstraction (Lem. 8)

Calculational design of the dataßow analysis

= ! s " B : ! s = c # $ s, s% "RA (b) �def. !B 1 and !R A (b)�
= ! s " B : ! s = c # $ c, b% "A �def. RA �
= true �when $c, b% "A�
= false �when &s " B : ! s = c ' $ c, b% ("A�
= B �" �(!# D (!T)(c, b) �def. B �" ��

!# D (!" 2 � !T)(c, b)

= ! !s " !" 2 � !T : ! !s0 = c # !s " !R A (b) �def. !# D �

= ! s, s!, !s : (" (s, s!) ' s!!s " !T ' ! s = c) # ss!!s " !R A (b) �def. � and !" 2�

= ! s, s!, !s : (" (s, s!) ' s!!s " !T ' ! s = c) # (&j < |ss!!s | : $s, (ss!!s)j % "RA (b))

�def. !R A �

= ! s, s!, !s : (" (s, s!) ' s!!s " !T ' ! s = c) # (&j < |ss!!s | : $! (ss!!s)j , b% "
A ' �b�s = �b�(ss!!s)j) �def. RA �

= ! s, s!, !s : (" (s, s!) ' s!!s " !T ' ! s = c) # ($! s, b% "A) (&j < |s!!s | : $! (s!!s)j ,
b% "A ' �b�s = �b�(s!!s)j)) �separating the casej = 0 �

* $ c, b% "A) ! s, s!, !s : (" (s, s!) ' s!!s " !T ' ! s = c) # (&j < |s!!s | : $! (s!!s)j ,
b% "A ' �b�s = �b�(s!!s)j) �def. # �

= $c, b% " A) ! s, s! :
!
" (s, s!) ' ! s = c

"
#

!
! s!!s " !T : &j < |s!!s | : $! (s!!s)j ,

b% "A ' �b�s = �b�(s!!s)j
"

�def. # �
* $ c, b% " A) ! s, s! :

!
" (s, s!) ' ! s = c

"
#

!
�b�s = �b�s! ' ! s!!s ! " !T : (&j <

|s!!s ! | : $! (s!!s !)j , b% "A ' �b�s! = �b�(s!!s !)j)
"

�transitivity of = and !s! = !s�
= $c, b% "A)! s, s! :

!
" (s, s!) ' ! s = c

"
#

!
�b�s = �b�s! '! s!!s ! " !T : ! (s!!s !)0 =

! s! # (&j < |s!!s ! | : $! (s!!s !)j , b% "A ' �b�(s!!s !)0 = �b�(s!!s !)j)
"

�(s!!s !)0 = s!�

= $c, b% " A) ! s, s! :
!
" (s, s!) ' ! s = c

"
#

!
�b�s = �b�s! ' ! !s " !T : ! !s0 =

! s! # (&j < |!s | : $! !sj , b% "A ' �b�!s0 = �b�!sj)
"

�letting !s = s!!s !�
= $c, b% "A) ! c! : ! s, s! :

!
" (s, s!) ' ! s = c ' ! s! = c!" #

!
�b�s = �b�s! ' ! !s "

!T : ! !s0 = c! # (&j < |!s | : $! !sj , b% "A ' �b�!s0 = �b�!sj)
"

�letting c! = ! s!�
* $ c, b% " A) ! c! : ! s, s! :

!
" (s, s!) ' ! s = c ' ! s! = c!" #

!
! s, s! : (! s =

c' " (s, s!)' ! s! = c!) # (�b�s = �b�s!)'! !s " !T : ! !s0 = c! # (&j < |!s | : $! !sj ,
b% "A ' �b�!s0 = �b�!sj)

"
�sinceA # (A # B ' C) implies A # (B ' C)�

* $ c, b% " A) ! c! :
!
&s, s! : " (s, s!) ' ! s = c ' ! s! = c!" #

!
! s, s! : (! s =

c' " (s, s!)' ! s! = c!) # (�b�s = �b�s!)'! !s " !T : ! !s0 = c! # (&j < |!s | : $! !sj ,
b% "A ' �b�!s0 = �b�!sj)

"
�(&x : A) # B i! ! x : (A # B)�

13

= �c, b� ∈ A ∨ ∀c! :
!
∃s, s! : ! (s, s!) ∧ πs = c ∧ πs! = c!" ⇒

!
∀s, s! : (πs =

c∧ ! (s, s!)∧πs! = c!) ⇒ (!b"s = !b"s!)∧∀"s ∈ "T : π"s0 = c! ⇒ (∃j < |"s | : �"s0,
"sj � ∈ RA (b))

"
#def. RA ! λ b. {�s, s!� | �πs!, b� ∈ A ∧ !b"s = !b"s!}$

= �c, b� ∈ A ∨ ∀c! :
!
∃s, s! : ! (s, s!) ∧ πs = c ∧ πs! = c!" ⇒

!
∀s, s! : (πs =

c∧ ! (s, s!) ∧ πs! = c!) ⇒ (!b"s = !b"s!) ∧ ∀"s ∈ "T : π"s0 = c! ⇒ "s ∈ "R A (b)
"

#def. "R A (b)$

⇐ �c, b� ∈ A ∨∀c! ∈ succ! ! "(c) : (∀s, s! : (πs = c∧ ! (s, s!) ∧πs! = c!) ⇒ (!b"s =
!b"s!) ∧ ∀"s ∈ "T : π"s0 = c! ⇒ "s ∈ "R A (b))

#def. succ! ! "(c) ⊇ {c! ∈ # | ∃s, s! : ! (s, s!) ∧ πs = c∧ πs! = c!}$

= �c, b� ∈ A ∨∀c! ∈ succ! ! "(c) : (∀s, s! : (πs = c∧ ! (s, s!) ∧πs! = c!) ⇒ (!b"s =
!b"s!) ∧ "$ D ("T)(c!, b)) #def. "$ D ("T)(c, b) ! ∀"s ∈ "T : π"s0 = c⇒ "s ∈ "R A (b)$

⇐ �c, b� ∈ A ∨ ∀c! ∈ succ! ! "(c) : unchanged! ! "(c, c!, b) ∧ "$ D ("T)(c!, b) #def.
unchanged! ! "(c, c!, b) ⇒ ∀s, s! : (πs = c∧! (s, s!)∧πs! = c!) ⇒ (!b"s = !b"s!)$

= B ! ! "("$ D ("T))(c, b) #def. B ! ! "$ ��

Precondition generation. The syntactic precondition generated at entry con-
trol point i ∈ I ! ! {s ∈ I | πs = i} is (assuming&& ∅ ! true)

Pi ! &&
b" A b, P (i,b)

b

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i ∈ # is

Pi ! {s ∈ % | πs = i ∧ ! Pi "s}

and so for all program entry points (in case there is more than one)

PI ! {s ∈ % | ∃i ∈ I ! : s ∈ Pi }

We have

Theorem 13 P A ∩ I ⊆ PI. ��

Proof Assume, by reductio ad absurdum, thatP A ∩ I �⊆ PI. Then there is an
initial state in P A ∩ I not in PI. By def. (5) of P A , this state initiates a good
run "s ∈ "! + ∩ ¬"E+

A which is refused on entry point i ∈ I ! such that π"s0 = i
(the run start at program point i). This means that ∃b ∈ Ab such that P(i, b)
(since otherwiseb would not have been checked) and¬!b""s0 (the run is rejected
on entry) while ∀j < |"s | : "sj �∈ EA so ∀j < |"s | : ∀�π"sj , b’� ∈ A : !b’""sj (since
EA ! {s ∈ % | ∃�c, b� ∈ A : πs = c∧ !b"s = false}). But

P(i, b)

⇒ "$ D ("! +)(i, b) #by Th. 12$

14

succ! ! "(c) ! { c� " " | #s, s� : πs = c $! (s, s�) $ πs� = c�}

(succ! ! "(c) ! " yields a ßow-insensitive analysis) andunchanged! ! "(c, c�, b) im-
plies than a transition by ! from program point c to program point c� can never
change the value of Boolean expressionb

unchanged! ! "(c, c�, b) % &s, s� : (πs = c $! (s, s�) $ πs� = c�) % (!b"s = !b"s�).

unchanged! ! "(c, c�, b) can be a syntactic underapproximation of its semantic def-
inition [?]. DeÞne

RA ! λ b. { ' s, s�(| ' πs�, b(" A $!b"s = !b"s�}
#R A ! λ b. {#s " #$ + | #i < |#s| : ' #s0, #si (" RA (b)}

and the abstraction

#%D (#T)(c, b) ! &#s " #T : π#s0 = c % #s " #R A (b)

#&D (P) ! {#s | &b " A b : P(π#s0, b) % #s " #R A (b)}

such that ' #$ + ,)(****+,****
!" D

!# D
' " - A b + B, ú.(.

Proof

#%D (#T) ú. P

/ & c " " : &b " A b : P(c, b) % #%D (#T)(c, b) #pointwise def. ú%$

/ & c " " : &b " A b : P(c, b) % (&#s " #T : π#s0 = c % #s " #R A (b)) #def. #%D $

/ & c " " : &#s " #T : &b " A b : P(c, b) % (π#s0 = c % #s " #R A (b)) #def. &$

/ & #s " #T : &b " A b : P(π#s0, b) % #s " #R A (b)

#(%) for c = π#s0, (.) true when #s0 0= c$

/ #T) {#s | &b " A b : P(π#s0, b) % #s " #R A (b)} #def.) $

/ #T) #&D (P) #def. #&D $ 12

By (1-a) and Lem. 8, we have

Theorem 12 #%D (#! +) ú. lfp
ú⇐

B ! ! " = gfp
ú⇒

B ! ! " ! P. 12

Proof By (1-a), we have #! + = lfp
⊆
∅ λ #T . #B 1 3 #! 2 %#T so, by Lem. 8, it is

su! cient to prove the semi-commutativity property #%D (#B 13#! 2%#T) = #%D (#B 1) ú$
#%D (#! 2 %#T) ú. B ! ! "(#%D (#T)). We proceed pointwise, and there are two cases.

#%D (#B 1)(c, b)

= &#s " #B 1 : π#s0 = c % #s " #R A (b) #def. #%D $

12
= ! s " B : πs = c # $ s, s% "RA(b) ! def. !B 1 and !R A(b)"

= ! s " B : πs = c # $ c, b% "A ! def. RA"

= true ! when $c, b% "A"

= false ! when &s " B : πs = c ' $ c, b% ("A"

= B#" $(!# D (!T)(c, b) ! def. B#" $"

!# D (!" 2 %!T)(c, b)

= ! !s " !" 2 %!T : π!s0 = c # !s " !R A(b) ! def. !# D "

= ! s, s! , !s : (" (s, s!) ' s!!s " !T ' πs = c) # ss!!s " !R A(b) ! def. %and !" 2"

= ! s, s! , !s : (" (s, s!) ' s!!s " !T ' πs = c) # (&j < |ss!!s | : $s, (ss!!s)j % "RA(b))

! def. !R A"

= ! s, s! , !s : (" (s, s!) ' s!!s " !T ' πs = c) # (&j < |ss!!s | : $π(ss!!s)j , b% "
A ' #b$s = #b$(ss!!s)j) ! def. RA"

= ! s, s! , !s : (" (s, s!) ' s!!s " !T ' πs = c) # ($πs, b% "A) (&j < |s!!s | : $π(s!!s)j ,
b% "A ' #b$s = #b$(s!!s)j)) ! separating the casej = 0"

* $ c, b% "A) ! s, s! , !s : (" (s, s!) ' s!!s " !T ' πs = c) # (&j < |s!!s | : $π(s!!s)j ,
b% "A ' #b$s = #b$(s!!s)j) ! def. # "

= $c, b% " A) ! s, s! :
�
" (s, s!) ' πs = c

�
#

�
! s!!s " !T : &j < |s!!s | : $π(s!!s)j ,

b% "A ' #b$s = #b$(s!!s)j
�

! def. # "

* $ c, b% "A) ! s, s! :
�
" (s, s!) ' πs = c

�
#

�
#b$s = #b$s! ' ! s!!s ! " !T : (&j <

|s!!s ! | : $π(s!!s !)j , b% "A ' #b$s! = #b$(s!!s !)j)
�

! transitivity of = and !s! = !s"

= $c, b% "A)! s, s! :
�
" (s, s!) ' πs = c

�
#

�
#b$s = #b$s! '! s!!s ! " !T : π(s!!s !)0 =

πs! # (&j < |s!!s ! | : $π(s!!s !)j , b% "A ' #b$(s!!s !)0 = #b$(s!!s !)j)
�

! (s!!s !)0 = s! "

= $c, b% " A) ! s, s! :
�
" (s, s!) ' πs = c

�
#

�
#b$s = #b$s! ' ! !s " !T : π!s0 =

πs! # (&j < |!s | : $π!s j , b% "A ' #b$!s0 = #b$!s j)
�

! letting !s = s!!s ! "

= $c, b% "A) ! c! : ! s, s! :
�
" (s, s!) ' πs = c ' πs! = c!� #

�
#b$s = #b$s! ' ! !s "

!T : π!s0 = c! # (&j < |!s | : $π!s j , b% "A ' #b$!s0 = #b$!s j)
�

! letting c! = πs! "

* $ c, b% " A) ! c! : ! s, s! :
�
" (s, s!) ' πs = c ' πs! = c!� #

�
! s, s! : (πs =

c' " (s, s!)' πs! = c!) # (#b$s = #b$s!)'! !s " !T : π!s0 = c! # (&j < |!s | : $π!s j ,
b% "A ' #b$!s0 = #b$!s j)

�
! sinceA # (A # B ' C) implies A # (B ' C)"

* $ c, b% " A) ! c! :
�
&s, s! : " (s, s!) ' πs = c ' πs! = c!� #

�
! s, s! : (πs =

c' " (s, s!)' πs! = c!) # (#b$s = #b$s!)'! !s " !T : π!s0 = c! # (&j < |!s | : $π!s j ,
b% "A ' #b$!s0 = #b$!s j)

�
! (&x : A) # B iff ! x : (A # B)"

13

= ! s " B : ! s = c # $ s, s% "RA (b) ! def. �B 1 and �R A (b)"

= ! s " B : ! s = c # $ c, b% "A ! def. RA "

= true ! when $c, b% "A"

= false ! when &s " B : ! s = c ' $ c, b% ("A"

= B #τ$(�αD (�T)(c, b) ! def. B #τ$"

�αD (�τ 2 %�T)(c, b)

= ! �s " �τ 2 %�T : ! �s0 = c # �s " �R A (b) ! def. �αD "

= ! s, s!,�s : (τ (s, s!) ' s!�s " �T ' ! s = c) # ss!�s " �R A (b) ! def. %and �τ 2"

= ! s, s!,�s : (τ (s, s!) ' s!�s " �T ' ! s = c) # (&j < |ss!�s| : $s, (ss!�s)j % "RA (b))

! def. �R A "

= ! s, s!,�s : (τ (s, s!) ' s!�s " �T ' ! s = c) # (&j < |ss!�s| : $! (ss!�s)j , b% "
A ' #b$s = #b$(ss!�s)j) ! def. RA "

= ! s, s!,�s : (τ (s, s!) ' s!�s " �T ' ! s = c) # ($! s, b% "A) (&j < |s!�s| : $! (s!�s)j ,
b% "A ' #b$s = #b$(s!�s)j)) ! separating the casej = 0 "

* $ c, b% "A) ! s, s!,�s : (τ (s, s!) ' s!�s " �T ' ! s = c) # (&j < |s!�s| : $! (s!�s)j ,
b% "A ' #b$s = #b$(s!�s)j) ! def. # "

= $c, b% " A) ! s, s! :
!
τ (s, s!) ' ! s = c

"
#

!
! s!�s " �T : &j < |s!�s| : $! (s!�s)j ,

b% "A ' #b$s = #b$(s!�s)j
"

! def. # "

* $ c, b% " A) ! s, s! :
!
τ (s, s!) ' ! s = c

"
#

!
#b$s = #b$s! ' ! s!�s ! " �T : (&j <

|s!�s ! | : $! (s!�s !)j , b% "A ' #b$s! = #b$(s!�s !)j)
"

! transitivity of = and �s! = �s"

= $c, b% "A)! s, s! :
!
τ (s, s!) ' ! s = c

"
#

!
#b$s = #b$s! '! s!�s ! " �T : ! (s!�s !)0 =

! s! # (&j < |s!�s ! | : $! (s!�s !)j , b% "A ' #b$(s!�s !)0 = #b$(s!�s !)j)
"

! (s!�s !)0 = s!"

= $c, b% " A) ! s, s! :
!
τ (s, s!) ' ! s = c

"
#

!
#b$s = #b$s! ' ! �s " �T : ! �s0 =

! s! # (&j < |�s| : $! �sj , b% "A ' #b$�s0 = #b$�sj)
"

! letting �s = s!�s !"

= $c, b% "A) ! c! : ! s, s! :
!
τ (s, s!) ' ! s = c ' ! s! = c!" #

!
#b$s = #b$s! ' ! �s "

�T : ! �s0 = c! # (&j < |�s| : $! �sj , b% "A ' #b$�s0 = #b$�sj)
"

! letting c! = ! s!"

* $ c, b% " A) ! c! : ! s, s! :
!
τ (s, s!) ' ! s = c ' ! s! = c!" #

!
! s, s! : (! s =

c' τ (s, s!)' ! s! = c!) # (#b$s = #b$s!)'! �s " �T : ! �s0 = c! # (&j < |�s| : $! �sj ,
b% "A ' #b$�s0 = #b$�sj)

"
! sinceA # (A # B ' C) implies A # (B ' C)"

* $ c, b% " A) ! c! :
!
&s, s! : τ (s, s!) ' ! s = c ' ! s! = c!" #

!
! s, s! : (! s =

c' τ (s, s!)' ! s! = c!) # (#b$s = #b$s!)'! �s " �T : ! �s0 = c! # (&j < |�s| : $! �sj ,
b% "A ' #b$�s0 = #b$�sj)

"
! (&x : A) # B i! ! x : (A # B)"

13

succ! ! "(c) ! { c! " " | #s, s! : ! s = c $! (s, s!) $! s! = c!}

(succ! ! "(c) ! " yields a ßow-insensitive analysis) andunchanged! ! "(c, c!, b) im-
plies than a transition by ! from program point c to program point c! can never
change the value of Boolean expressionb

unchanged! ! "(c, c!, b) % &s, s! : (! s = c $! (s, s!) $! s! = c!) % (!b"s = !b"s!).

unchanged! ! "(c, c!, b) can be a syntactic underapproximation of its semantic def-
inition [?]. DeÞne

RA ! " b. { ' s, s!(| ' ! s! , b(" A $!b"s = !b"s!}
#R A ! " b. {#s " #$ + | #i < |#s| : ' #s0, #si (" RA (b)}

and the abstraction

#%D (#T)(c, b) ! &#s " #T : ! #s0 = c % #s " #R A (b)

#&D (P) ! {#s | &b " A b : P(! #s0, b) % #s " #R A (b)}

such that ' #$ + ,)(****+,****
!" D

!# D
' " - A b + B, ú.(.

Proof

#%D (#T) ú. P

/ & c " " : &b " A b : P(c, b) % #%D (#T)(c, b) #pointwise def. ú%$

/ & c " " : &b " A b : P(c, b) % (&#s " #T : ! #s0 = c % #s " #R A (b)) #def. #%D $

/ & c " " : &#s " #T : &b " A b : P(c, b) % (! #s0 = c % #s " #R A (b)) #def. &$

/ & #s " #T : &b " A b : P(! #s0, b) % #s " #R A (b)

#(%) for c = ! #s0, (.) true when #s0 0= c$

/ #T) {#s | &b " A b : P(! #s0, b) % #s " #R A (b)} #def.) $

/ #T) #&D (P) #def. #&D $ 12

By (1-a) and Lem. 8, we have

Theorem 12 #%D (#! +) ú. lfp
ú"

B ! ! " = gfp
ú#

B ! ! " ! P. 12

Proof By (1-a), we have #! + = lfp
$
%

" #T . #B 1 3 #! 2 %#T so, by Lem. 8, it is

su! cient to prove the semi-commutativity property #%D (#B 13#! 2%#T) = #%D (#B 1) ú$
#%D (#! 2 %#T) ú. B ! ! "(#%D (#T)). We proceed pointwise, and there are two cases.

#%D (#B 1)(c, b)

= &#s " #B 1 : ! #s0 = c % #s " #R A (b) #def. #%D $

12

succ�τ�(c) ! { c! " Γ | #s, s! : ! s = c $ τ(s, s!) $! s! = c!}

(succ�τ�(c) ! Γ yields a flow-insensitive analysis) and unchanged�τ�(c, c!, b) im-
plies than a transition by τ from program point c to program point c! can never
change the value of Boolean expression b

unchanged�τ�(c, c!, b) % &s, s! : (! s = c $ τ(s, s!) $! s! = c!) % (�b�s = �b�s!).

unchanged�τ�(c, c!, b) can be a syntactic underapproximation of its semantic def-
inition [?]. Define

RA ! " b. { ' s, s!(| ' ! s! , b(" A $ �b�s = �b�s!}
�R A ! " b. {�s " �Σ + | #i < |�s| : ' �s0, �si (" RA (b)}

and the abstraction

�αD (�T)(c, b) ! &�s " �T : ! �s0 = c % �s " �R A (b)

�γ D (P) ! {�s | &b " A b : P(! �s0, b) % �s " �R A (b)}

such that ' �Σ + ,)(****+,****
�αD

�γ D
' Γ - A b + B, ˙.(.

Proof

�αD (�T) ˙. P

/ & c " Γ : &b " A b : P(c, b) % �αD (�T)(c, b) �pointwise def. %̇�
/ & c " Γ : &b " A b : P(c, b) % (&�s " �T : ! �s0 = c % �s " �R A (b)) �def. �αD �
/ & c " Γ : &�s " �T : &b " A b : P(c, b) % (! �s0 = c % �s " �R A (b)) �def. &�
/ & �s " �T : &b " A b : P(! �s0, b) % �s " �R A (b)

�(%) for c = ! �s0, (.) true when �s0 0= c�
/ �T) {�s | &b " A b : P(! �s0, b) % �s " �R A (b)} �def.) �
/ �T) �γ D (P) �def. �γ D � 12

By (1-a) and Lem. 8, we have

Theorem 12 �αD (�τ +) ˙. lfp
ú"

B �τ� = gfp
ú#

B �τ� ! P . 12

Proof By (1-a), we have �τ + = lfp
$
%

" �T . �B 1 3 �τ 2 � �T so, by Lem. 8, it is
su! cient to prove the semi-commutativity property �αD (�B 13�τ 2� �T) = �αD (�B 1)$̇
�αD (�τ 2 � �T) ˙. B �τ�(�αD (�T)). We proceed pointwise, and there are two cases.

�αD (�B 1)(c, b)
= &�s " �B 1 : ! �s0 = c % �s " �R A (b) �def. �αD �

12

= ! s " B : ! s = c # $ s, s% "RA (b) �def. !B 1 and !R A (b)�
= ! s " B : ! s = c # $ c, b% "A �def. RA �
= true �when $c, b% "A�
= false �when &s " B : ! s = c ' $ c, b% ("A�
= B �" �(!# D(!T)(c, b) �def. B �" ��

!# D(!" 2 � !T)(c, b)

= ! !s " !" 2 � !T : ! !s0 = c # !s " !R A (b) �def. !# D�

= ! s, s!, !s : (" (s, s!) ' s!!s " !T ' ! s = c) # ss!!s " !R A (b) �def. � and !" 2�

= ! s, s!, !s : (" (s, s!) ' s!!s " !T ' ! s = c) # (&j < |ss!!s | : $s, (ss!!s)j% "RA (b))

�def. !R A �

= ! s, s!, !s : (" (s, s!) ' s!!s " !T ' ! s = c) # (&j < |ss!!s | : $! (ss!!s)j , b% "
A ' �b�s = �b�(ss!!s)j) �def. RA �

= ! s, s!, !s : (" (s, s!) ' s!!s " !T ' ! s = c) # ($! s, b% "A) (&j < |s!!s | : $! (s!!s)j ,
b% "A ' �b�s = �b�(s!!s)j)) �separating the casej = 0 �

* $ c, b% "A) ! s, s!, !s : (" (s, s!) ' s!!s " !T ' ! s = c) # (&j < |s!!s | : $! (s!!s)j ,
b% "A ' �b�s = �b�(s!!s)j) �def. # �

= $c, b% " A) ! s, s! :
!
" (s, s!) ' ! s = c

"
#

!
! s!!s " !T : &j < |s!!s | : $! (s!!s)j ,

b% "A ' �b�s = �b�(s!!s)j

"
�def. # �

* $ c, b% " A) ! s, s! :
!
" (s, s!) ' ! s = c

"
#

!
�b�s = �b�s! ' ! s!!s ! " !T : (&j <

|s!!s ! | : $! (s!!s !)j , b% "A ' �b�s! = �b�(s!!s !)j)
"

�transitivity of = and !s! = !s�
= $c, b% "A)! s, s! :

!
" (s, s!) ' ! s = c

"
#

!
�b�s = �b�s! '! s!!s ! " !T : ! (s!!s !)0 =

! s! # (&j < |s!!s ! | : $! (s!!s !)j , b% "A ' �b�(s!!s !)0 = �b�(s!!s !)j)
"

�(s!!s !)0 = s!�

= $c, b% " A) ! s, s! :
!
" (s, s!) ' ! s = c

"
#

!
�b�s = �b�s! ' ! !s " !T : ! !s0 =

! s! # (&j < |!s | : $! !sj , b% "A ' �b�!s0 = �b�!sj)
"

�letting !s = s!!s !�
= $c, b% "A) ! c! : ! s, s! :

!
" (s, s!) ' ! s = c ' ! s! = c!" #

!
�b�s = �b�s! ' ! !s "

!T : ! !s0 = c! # (&j < |!s | : $! !sj , b% "A ' �b�!s0 = �b�!sj)
"

�letting c! = ! s!�
* $ c, b% " A) ! c! : ! s, s! :

!
" (s, s!) ' ! s = c ' ! s! = c!" #

!
! s, s! : (! s =

c' " (s, s!)' ! s! = c!) # (�b�s = �b�s!)'! !s " !T : ! !s0 = c! # (&j < |!s | : $! !sj ,
b% "A ' �b�!s0 = �b�!sj)

"
�sinceA # (A # B ' C) implies A # (B ' C)�

* $ c, b% " A) ! c! :
!
&s, s! : " (s, s!) ' ! s = c ' ! s! = c!" #

!
! s, s! : (! s =

c' " (s, s!)' ! s! = c!) # (�b�s = �b�s!)'! !s " !T : ! !s0 = c! # (&j < |!s | : $! !sj ,
b% "A ' �b�!s0 = �b�!sj)

"
�(&x : A) # B i! ! x : (A # B)�

13

succ! ! "(c) ! { c! " " | #s, s! : ! s = c $! (s, s!) $! s! = c!}

(succ! ! "(c) � " yields a ßow-insensitive analysis) andunchanged! ! "(c, c!, b) im-
plies than a transition by ! from program point c to program point c! can never
change the value of Boolean expressionb

unchanged! ! "(c, c!, b) % &s, s! : (! s = c $! (s, s!) $! s! = c!) % (!b"s = !b"s!).

unchanged! ! "(c, c!, b) can be a syntactic underapproximation of its semantic def-
inition [?]. DeÞne

RA � " b. { ' s, s!(| ' ! s! , b(" A $!b"s = !b"s!}
#R A � " b. {#s " #$ + | #i < |#s| : ' #s0, #si (" RA (b)}

and the abstraction

#%D (#T)(c, b) � &#s " #T : ! #s0 = c % #s " #R A (b)

#&D (P) � {#s | &b " A b : P(! #s0, b) % #s " #R A (b)}

such that ' #$ + ,)(****+,****
!" D

!# D
' " - A b + B, ú.(.

Proof

#%D (#T) ú. P

/ & c " " : &b " A b : P(c, b) % #%D (#T)(c, b) #pointwise def. ú%$

/ & c " " : &b " A b : P(c, b) % (&#s " #T : ! #s0 = c % #s " #R A (b)) #def. #%D $

/ & c " " : &#s " #T : &b " A b : P(c, b) % (! #s0 = c % #s " #R A (b)) #def. &$

/ & #s " #T : &b " A b : P(! #s0, b) % #s " #R A (b)

#(%) for c = ! #s0, (.) true when #s0 0= c$

/ #T) {#s | &b " A b : P(! #s0, b) % #s " #R A (b)} #def.) $

/ #T) #&D (P) #def. #&D $ 12

By (1-a) and Lem. 8, we have

Theorem 12 #%D (#! +) ú. lfp
ú"

B ! ! " = gfp
ú#

B ! ! " � P. 12

Proof By (1-a), we have #! + = lfp
$
%

" #T . #B 1 3 #! 2 %#T so, by Lem. 8, it is

su! cient to prove the semi-commutativity property #%D (#B 13#! 2%#T) = #%D (#B 1) ú$
#%D (#! 2 %#T) ú. B ! ! "(#%D (#T)). We proceed pointwise, and there are two cases.

#%D (#B 1)(c, b)

= &#s " #B 1 : ! #s0 = c % #s " #R A (b) #def. #%D $

12

[56.$.'$6"'A$."/.$
16$16$*/,"1-#I

,"#,8/()#

Backward expression propagation-based
precondition generation

!

= !c, b" # A $ %c! :
�
&s, s! : ! (s, s!) ' ! s = c ' ! s! = c!� (

�
%s, s! : (! s =

c' ! (s, s!) ' ! s! = c!) ((!b"s = !b"s!) '%"s # "T : ! "s0 = c! ((&j < |"s | : !"s0,
"sj" # RA(b))

�
#def. RA ! " b. {!s, s!" | ! ! s! , b" # A ' !b"s = !b"s!}$

= !c, b" # A $ %c! :
�
&s, s! : ! (s, s!) ' ! s = c ' ! s! = c!� (

�
%s, s! : (! s =

c ' ! (s, s!) ' ! s! = c!) ((!b"s = !b"s!) ' %"s # "T : ! "s0 = c! ("s # "RA(b)
�

#def. "RA(b)$

) ! c, b" # A $ %c! # succ! ! "(c) : (%s, s! : (! s = c' ! (s, s!) ' ! s! = c!) ((!b"s =
!b"s!) ' %"s # "T : ! "s0 = c! ("s # "RA(b))

#def. succ! ! "(c) * {c! # # | &s, s! : ! (s, s!) ' ! s = c ' ! s! = c!}$

= !c, b" # A $ %c! # succ! ! "(c) : (%s, s! : (! s = c' ! (s, s!) ' ! s! = c!) ((!b"s =
!b"s!) ' "$ D("T)(c!, b)) #def. "$ D("T)(c, b) ! %"s # "T : ! "s0 = c ("s # "RA(b)$

) ! c, b" # A $ %c! # succ! ! "(c) : unchanged! ! "(c, c!, b) ' "$ D("T)(c!, b) #def.
unchanged! ! "(c, c!, b) (% s, s! : (! s = c' ! (s, s!) ' ! s! = c!) ((!b"s = !b"s!)$

= B ! ! "("$ D("T))(c, b) #def. B ! ! "$ +,

Precondition generation. The syntactic precondition generated at entry con-
trol point i # I! ! {s # I | ! s = i} is (assuming&&- ! true)

Pi ! &&
b" Ab, P (i,b)

b

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i # # is

Pi ! {s # % | ! s = i ' ! Pi"s}

and so for all program entry points (in case there is more than one)

PI ! {s # % | &i # I! : s # Pi}

We have

Theorem 13 PA . I / PI . +,

Proof Assume, by reductio ad absurdum, thatPA . I 0/ PI . Then there is an
initial state in PA . I not in PI . By def. (5) of PA, this state initiates a good
run "s # "! + . ¬"E+

A which is refused on entry point i # I! such that ! "s0 = i
(the run start at program point i). This means that &b # A b such that P(i, b)
(since otherwiseb would not have been checked) and¬!b""s0 (the run is rejected
on entry) while %j < |"s | : "sj 0#EA so %j < |"s | : %!! "sj , b’" # A : !b’""sj (since
EA ! {s # % | &!c, b" # A : ! s = c ' !b"s = false}). But

P(i, b)

("$ D("! +)(i, b) #by Th. 12$

14

!

= !c, b" # A $ %c! :
�
&s, s! : ! (s, s!) ' ! s = c ' ! s! = c!� (

�
%s, s! : (! s =

c ' ! (s, s!) ' ! s! = c!) ((!b"s = !b"s!) '%"s # "T : ! "s0 = c! ((&j < |"s | : !"s0,
"s j " # RA (b))

�
#def. RA ! " b . { !s, s! " | ! ! s! , b" # A ' ! b"s = !b"s! } $

= !c, b" # A $ %c! :
�
&s, s! : ! (s, s!) ' ! s = c ' ! s! = c!� (

�
%s, s! : (! s =

c ' ! (s, s!) ' ! s! = c!) ((!b"s = !b"s!) ' %"s # "T : ! "s0 = c! ("s # "R A (b)
�

#def. "R A (b)$

) ! c, b" # A $ %c! # succ! ! "(c) : (%s, s! : (! s = c ' ! (s, s!) ' ! s! = c!) ((!b"s =
!b"s!) ' %"s # "T : ! "s0 = c! ("s # "R A (b))

#def. succ! ! "(c) * { c! # # | &s, s! : ! (s, s!) ' ! s = c ' ! s! = c! } $

= !c, b" # A $ %c! # succ! ! "(c) : (%s, s! : (! s = c ' ! (s, s!) ' ! s! = c!) ((!b"s =
!b"s!) ' "$ D ("T)(c! , b)) #def. "$ D ("T)(c, b) ! %"s # "T : ! "s0 = c ("s # "R A (b)$

) ! c, b" # A $ %c! # succ! ! "(c) : unchanged! ! "(c, c! , b) ' "$ D ("T)(c! , b) #def.
unchanged! ! "(c, c! , b) (% s, s! : (! s = c' ! (s, s!) ' ! s! = c!) ((!b"s = !b"s!)$

= B! ! "("$ D ("T))(c, b) #def. B! ! "$ +,

Precondition generation. The syntactic precondition generated at entry con-
trol point i # I ! ! { s # I | ! s = i} is (assuming&&- ! true)

Pi ! &&
b" A b, P (i,b)

b

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i # # is

Pi ! { s # % | ! s = i ' ! Pi "s}

and so for all program entry points (in case there is more than one)

PI ! { s # % | &i # I ! : s # Pi }

We have

Theorem 13 P A . I / PI . +,

Proof Assume, by reductio ad absurdum, thatP A . I 0/ PI . Then there is an
initial state in P A . I not in PI . By def. (5) of P A , this state initiates a good
run "s # "! + . Â"E+

A which is refused on entry point i # I ! such that ! "s0 = i
(the run start at program point i). This means that &b # A b such that P (i, b)
(since otherwiseb would not have been checked) andÂ!b""s0 (the run is rejected
on entry) while %j < |"s | : "s j 0#EA so %j < |"s | : %!! "s j , bÕ" # A : !bÕ""s j (since
EA ! { s # % | &!c, b" # A : ! s = c ' ! b"s = false}). But

P (i, b)

("$ D ("! +)(i, b) #by Th. 12$

14

!

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Backward expression propagation. Let c ∈ ! be a control point and b be a
Boolean expression. For exampleb can contain ForAll or Exists assertions on un-
modiÞed collections without free scalar variables and no visible side effect (see Sect.10
otherwise). P(c, b) holds at program point c when Boolean expressionb will deÞnitely
be checked in anassert(b) on all paths from c without being changed up to this
check.P = gfp

ú!
B �" � is the ú⇒-greatest solution of the backward system of equations

(where ú⇒ is the pointwise extension of logical implication⇒)
!

P(c, b) = B �" �(P)(c, b)

c ∈ ! , b∈ A b

where the expressions and control points ofassert s are respectivelyA b ! { b | ∃c : �c,
b� ∈ A } and A c ! { c | ∃b : �c, b� ∈ A } , the transformer B ∈ (! × A b → B) →
(! × A b → B) is

B �" �(P)(c, b) = true when �c, b� ∈ A (assert(b) at c)

B �" �(P)(c, b) = false when ∃s ∈ B : πs = c∧ �c, b� �∈ A (exit at c)

B �" �(P)(c, b) =
"

c�" succ! ! " (c)

unchanged�" �(c, c#, b) ∧ P(c#, b) (otherwise)

the set succ�" �(c) of successors of the program pointc ∈ ! satisÞes
succ�" �(c) ⊇ { c#∈ ! | ∃s, s# : πs = c∧ " (s, s#) ∧ πs# = c#}

(succ�" �(c) ! ! yields a ßow-insensitive analysis) andunchanged�" �(c, c#, b) implies
than a transition by " from program point c to program point c# can never change
the value of Boolean expressionb

unchanged�" �(c, c#, b) ⇒ ∀s, s# : (πs = c∧ " (s, s#) ∧ πs# = c#) ⇒ (�b�s = �b�s#).

unchanged�" �(c, c#, b) can be a syntactic underapproximation of its semantic deÞnition
[3]. DeÞne

RA ! λ b. { �s, s#� | �πs#, b� ∈ A ∧ �b�s = �b�s#}
#R A ! λ b. {#s ∈ #$ + | ∃i < |#s| : �#s0, #si � ∈ RA(b)}

and the abstraction
#%D (#T)(c, b) ! ∀#s ∈ #T : π#s0 = c⇒ #s ∈ #R A(b)

#&D (P) ! {#s | ∀b∈ A b : P(π#s0, b) ⇒ #s ∈ #R A(b)}

such that � #$ + , ⊆� −−−−→←−−−−
"# D

"$ D �! × A b → B, ú⇐�. By (1-a) and Lem. 7, we have

Theorem 11 #%D (#" +) ú⇐ lfp
ú$

B �" � = gfp
ú!

B �" � ! P . ��

Precondition generation. The syntactic precondition generated at entry control
point i ∈ I ! ! { i ∈ ! | ∃s ∈ I : πs = i } is (assuming&&∅ ! true)

Pi ! &&
b" Ab, P (i,b)

b

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i ∈ ! is Pi ! { s ∈ $ | πs = i ∧ � Pi �s} and so for all program entry
points (in case there is more than one)PI ! { s ∈ $ | ∃i ∈ I ! : s ∈ Pi } . We have

Theorem 12 P A ∩ I ⊆ PI . ��

By Th. 6 and 12, the precondition generation is sound: a rejected initial state would
inevitably have lead to an assertion failure.

6

Example

! !"#$ 0/./\'A$ /-/)?616$ 16$ /$ 6'5-0$ /(6.&/,2'-$ '+$."#$
.&/,#$6#*/-2,6$(5.$.''$1*%&#,16#

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Example 13 Continuing Ex. 1, the assertionA != null is checked on all paths and
A is not changed (only its elements are), so the data ßow analysis is able to move the
assertion as a precondition. !"

However, the data ßow abstraction is rather imprecise because a precondition is
checked on code entry only if
1. the exact same precondition is checked in anassert (since scalar and collection

variable modiÞcations are not taken into account, other than annihilating the
backward propagation);

2. and this, whichever execution path is taken (conditions are not taken into account).
We propose remedies to1 and 2 in the following Sect. 8 and 9.

8 Contract precondition inference for scalar variables by
forward symbolic analysis

Let us deÞne thecmd, succand pred functions mapping control points to their com-
mand, successors and predecessors (#c, c! $! : c! $ pred(c) % c $ succ(c!)).

c: x:=e; c ! :... cmd(c, c!) ! x:=e succ(c) ! { c!} pred(c!) ! { c}
c: assert(b); c ! :... cmd(c, c!) ! b succ(c) ! { c!} pred(c!) ! { c}
c: if b then cmd(c, c!

t) ! b succ(c) ! { c!
t , c!

f }
c!

t :...c
!!
t : cmd(c, c!

f) ! Âb pred(c!
t) ! { c}

else cmd(c!!
t , c!) ! skip succ(c!!

t) ! { c!}
c!

f :...c !!
f : cmd(c!!

f , c!) ! skip succ(c!!
f) ! { c!} pred(c!

f) ! { c}
fi; c ! ... pred(c!) ! { c!!

t , c!!
f }

c :while c ! : b do cmd(c, c!) ! skip succ(c) ! { c!} pred(c!) ! { c, c!!
b }

c!
b:...c !!

b : cmd(c! , c!
b) ! b succ(c!) ! { c!

b, c!! } pred(c!
b) ! { c!}

od; c !! ... cmd(c! , c!!) ! Âb succ(c!!
b) ! { c!} pred(c!!) ! { c!}

cmd(c!!
b , c) ! skip

For programs with scalar variables "x, we denote by "x (or x0) their initial values
and by "x their current values. Following [8, Sect. 3.4.5], the symbolic execution [19]
attaches invariants #(c) to program points c $! deÞned as the pointwise ú& -least
Þxpoint of the system of equations# = F (#) with

!
"

#

F (#)c =
$

c! " pred(c)

F(cmd(c!, c), #(c!)) '
$

c " I π

("x = "x)

c $!

wherepred(c) = (for program entry points c $ I π and the forward transformers are
in FloydÕs style (the predicates$ depends only on the symbolic initial "x and current
"x values of the program variables"x)

F(skip , $) ! $

F(x:=e , $) !) "x ! : $["x := "x !] * dom(e, "x !) * "x = "x ![x := e["x := "x !]]

F(b, $) ! $ * dom(b, "x) * b["x := "x]

where dom(e, "x) is the condition on "x for evaluating e as a function of "x without
runtime error. By allowing inÞnitary disjunctions, we have [8, Sect. 3.4.5]

Theorem 14 # = lfp
#̇

F has the form #(c) =
%

i " ! c
pc,i ("x) * "x = "ec,i ("x) where

pc,i ("x) is a Boolean expression defining the condition for control to reach the current
program point c as a function of the initial values "x of the scalar variables "x and
"ei ("x) defines the current values "x of the scalar variables "x as a function of their
initial values "x when reaching program point c with path condition pc,i ("x) true. !"

7

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

void AllNotNull(Ptr[] A) {
/* 1: */ int i = 0;
/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {
/* 4: */ assert((A != null) && (A[i] != null));
/* 5: */ A[i].f = new Object();
/* 6: */ i++;
/* 7: */ }
/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modiÞed
at program point 5:. !"

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposede.g.
in [9, Sect. 10-4.6]) or [8, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that efficient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the codex = random(); assert(x
==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side effect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;
while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))
{ return false };

i++ }
return true }

ModiÞcations of i have no visible side effects while those of elements ofA do have,
so the assignmentA[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. !"

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and efficient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantiÞers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. !"

The semantics of code is formalized in Sect.2 and that of speciÞcations by runtime
assertions in Sect.3. The contract precondition inference problem is deÞned in Sect.4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect.5 and used in Sect.6 to provide a Þxpoint solution to
the contract precondition inference problem. Several effective contract precondition
inference are then proposed, by data ßow analysis in Sect.7, for scalar variables both
by forward symbolic analysis in Sect.8 and by backward symbolic analysis in Sect.9,
for collections by forward analysis in Sect.10. Sect.11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [8], the small-step operational se-
mantics of code is assumed to be given by atransition system #! , " , I $where ! is a

2

(II) Forward symbolic
execution ! @1=%'1-.$/%%&'=1*/2'-$."/-86$.'$."#$+'&*/)1X/2'-$

'+$6?*(')1,$#=#,52'-$/6$/-$/(6.&/,.$1-.#&%&#./2'-$
]^F$T#,.<$_<`<ab$;/$A10#-1-4$#-+'&,#6$,'-B#&4#-,#>$

! K#&+'&*$/$6?*(')1,$#=#,52'-$]cdb
! R'B#$/66#&.6$6?*(')1,/))?$.'$."#$%&'4&/*$#-.&?

Just the idea:
01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

The soundness follows from ! !s " !" + : ! j < |!s | : #(c)[!x := !!x"!s0][!x := !!x"!sj] =

! !s " !" + : ! j < |!s | : ! i " $! !s j : p! !s j ,i [!x := !!x"!s0] # !!x"!sj = !e! !s j ,i [!x := !!x"!s0]

where !!x"s is the value of the vector !x of scalar variables in state s.
This suggests a method for calculating the precondition by adding for each as-

sertion c:assert(b) the condition
!

i∈" c
pc,i [!x := !x] # b[!x := !ec,i [!x := !x]] which is

checked on the initial values of variables.

Example 15 For the program

/* 1: x=x0 & y=y0 */ if (x == 0) {
/* 2: x0=0 & x=x0 & y=y0 */ x++;
/* 3: x0=0 & x=x0+1 & y=y0 */ assert(x==y);

}
the precondition at program point 1: is (!(x==0)||(x+1==y)) . $%

Of course the iterative computation of lfp
ú⇒

F will in general not terminate so that

a widening [11] is needed. A simple one would bound the number of iterations and

widen
"

i∈" c
pc,i (!x) & !x = !ec,i (!x) to

!
i∈" c

pc,i (!x) # !x = !ec,i (!x).

9 Contract precondition inference by backward symbolic
analysis

Backward symbolic precondition analysis of simple assertions. The symbolic

relation between entry and assert conditions can be also established backwards,

starting from the assert conditions and propagating towards the entry points taking

assignments and tests into account with widening around unbounded loops. We first

consider simple assertions involving only scalar variables (including e.g. the size of

collections as needed in Sect. 10).

Abstract domain. Given the set B of visible side e! ect free Boolean expressions on

scalar variables, we consider the abstract domain B / ≡ containing the infimum false
(unreachable), the supremum true (unknown) and equivalence classes of expressions

[b]/ ≡ for the abstract equivalence of expressions ' abstracting semantic equality that

is b ' b� # ! s " % : !b"s = !b�"s. The equivalence classes are encoded by choosing

an arbitrary representative b� " [b]/ ≡. The abstract equivalence ' can be chosen

within a wide range of possibilities, from syntactic equality, to the use of a simplifier,

of abstract domains, or that of a SMT solver. This provides an abstract implication

b ## b� underapproximating the concrete implication # in that b ## b� implies that

! s " % : !b"s # !b�"s. The equivalence is defined as b ' b� ! b ## b� & b� ## b. The

basic abstract domain is therefore (B / ≡, ##) .

We now define the abstract domain functor

B
2

! { bp ! ba | bp " B & ba " B & bp *## ba}

Notice that bp ! ba denotes the pair ([bp]/ ≡, [ba]/ ≡) of B / ≡ + B / ≡. The interpre-

tation of bp ! ba is that when the path condition bp holds, an execution path will

be followed to some assert(b) and checking ba at the beginning of the path is the

same as checking this b later in the path when reaching the assertion. We exclude

the elements such that bp ## ba which implies bp # ba so that no precondition is

needed. An example is if (b p) { assert(b a) } where the assertion has already

been checked on the paths leading to that assertion. The abstract ordering on B
2

is

bp ! ba ## b�p ! b�a ! b�p ## bp & ba ## b�a .

8

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

the consideration of inÞnite behaviors and the use of more expressive abstract do-
mains than segmentation to express relations between values of components of data
structures in assert s and on code entry while preserving scalability.

References
[1] Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. IEEE Com-

puter 36(11), 48–55 (2003)
[2] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
[3] Barnett, M., Fähndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)

precise points-to analysis. In: IWACO ’07. DSV Report series No. 07-010, Stockholm
University and KTH (2007)

[4] Barnett, M., Fähndrich, M., Logozzo, F.: Embedded contract languages. In: SAC’10.
pp. 2103–2110. ACM Press (2010)

[5] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 118–149 (2003)

[6] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI ’93.
pp. 46–55. ACM Press (1993)

[7] Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: 36th POPL. pp. 289–300. ACM Press (2009)

[8] Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opé-
rateurs monotones sur un treillis, analyse sémantique de programmes (in French). Thèse
d’État ès sciences mathématiques, Université scientifique et médicale de Grenoble (1978)

[9] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.)
Program Flow Analysis: Theory and Applications, chap. 10, pp. 303–342. Prentice-Hall
(1981)

[10] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1—2), 47–103 (2002)

[11] Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive proce-
dures. In: Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Con-
cepts. pp. 237–277. North-Holland (1977)

[12] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL. pp. 269–282. ACM Press (1979)
[13] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.

Journal of Logic Programming 13(2–3), 103–179 (1992),
[14] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully au-

tomatic and scalable array content analysis. Tech. rep., MSR-TR-2009-194, MSR Red-
mond (Sep 2009)

[15] Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of programs.
CACM 18(8), 453–457 (1975)

[16] Fähndrich, M., Logozzo, F.: Clousot: Static contract checking with abstract interpre-
tation. In: FoVeOOS: Conference on Formal Verification of Object-Oriented software.
Springer-Verlag (2010)

[17] Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis.
In: ESOP ’07, pp. 253–267. LNCS 4421, Springer (2007)

[18] Hecht, M.: Flow Analysis of Computer Programs. Elsevier North-Holland (1977)
[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385–394 (1976)
[20] Meyer, B.: Eiffel: The Language. Prentice Hall (1991)
[21] Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40–51 (1992)
[22] Moy, Y.: Sufficient preconditions for modular assertion checking. In: VMCAI 08. pp.

188–202. LNCS 4905, Springer (2008)
[23] Rival, X.: Understanding the origin of alarms in Astr «ee. In: SAS ’05, pp. 303–319.

LNCS 3672, Springer (2005)
[24] T.Lev-Ami, Sagiv, M., Reps, T., Gulwani, S.: Backward analysis for inferring quantified

preconditions. Tr-2007-12-01, Tel Aviv University (2007)

15

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

the consideration of inÞnite behaviors and the use of more expressive abstract do-
mains than segmentation to express relations between values of components of data
structures in assert s and on code entry while preserving scalability.

References
[1] Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. IEEE Com-

puter 36(11), 48Ð55 (2003)
[2] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
[3] Barnett, M., F¬ahndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)

precise points-to analysis. In: IWACO Õ07. DSV Report series No. 07-010, Stockholm
University and KTH (2007)

[4] Barnett, M., F¬ahndrich, M., Logozzo, F.: Embedded contract languages. In: SACÕ10.
pp. 2103Ð2110. ACM Press (2010)

[5] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 118Ð149 (2003)

[6] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI Õ93.
pp. 46Ð55. ACM Press (1993)

[7] Calcagno, C., Distefano, D., OÕHearn, P., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: 36th POPL. pp. 289Ð300. ACM Press (2009)

[8] Cousot, P.: M«ethodes it«eratives de construction et dÕapproximation de points Þxes dÕop«e-
rateurs monotones sur un treillis, analyse s«emantique de programmes (in French). Thèse
dÕ«Etatès sciences math«ematiques, Universit«e scientiÞque et m«edicale de Grenoble (1978)

[9] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.)
Program Flow Analysis: Theory and Applications, chap. 10, pp. 303Ð342. Prentice-Hall
(1981)

[10] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1Ñ2), 47Ð103 (2002)

[11] Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive proce-
dures. In: Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Con-
cepts. pp. 237Ð277. North-Holland (1977)

[12] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL. pp. 269Ð282. ACM Press (1979)
[13] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.

Journal of Logic Programming 13(2Ð3), 103Ð179 (1992),
[14] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully au-

tomatic and scalable array content analysis. Tech. rep., MSR-TR-2009-194, MSR Red-
mond (Sep 2009)

[15] Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of programs.
CACM 18(8), 453Ð457 (1975)

[16] F¬ahndrich, M., Logozzo, F.: Clousot: Static contract checking with abstract interpre-
tation. In: FoVeOOS: Conference on Formal VeriÞcation of Object-Oriented software.
Springer-Verlag (2010)

[17] Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis.
In: ESOP Õ07, pp. 253Ð267. LNCS 4421, Springer (2007)

[18] Hecht, M.: Flow Analysis of Computer Programs. Elsevier North-Holland (1977)
[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385Ð394 (1976)
[20] Meyer, B.: Ei ! el: The Language. Prentice Hall (1991)
[21] Meyer, B.: Applying ÒDesign by ContractÓ. IEEE Computer 25(10), 40Ð51 (1992)
[22] Moy, Y.: Su " cient preconditions for modular assertion checking. In: VMCAI 08. pp.

188Ð202. LNCS 4905, Springer (2008)
[23] Rival, X.: Understanding the origin of alarms in Astr «ee. In: SAS Õ05, pp. 303Ð319.

LNCS 3672, Springer (2005)
[24] T.Lev-Ami, Sagiv, M., Reps, T., Gulwani, S.: Backward analysis for inferring quantiÞed

preconditions. Tr-2007-12-01, Tel Aviv University (2007)

15

(III) Backward symbolic
execution

Abstract domain

9 Contract precondition inference by backward symbolic
analysis

Backward symbolic precondition analysis of simple assertions. The
symbolic relation between entry and assert conditions can be also established
backwards, starting from the assert conditions and propagating towards the
entry points taking assignments and tests into account with widening around
unbounded loops. The advantage is that we start from a known condition and
assignments and tests are easily handled symbolically using HoareÕs weakest pre-
condition rule.We Þrst consider simple assertions involving only scalar variables
(including e.g. the size of collections as needed in Sect.10).

In general the assertions on structured data are on elements of this data.
Propagating these checks in the precondition will just duplicate the traversal
on the data structure to test individual elements. At runtime, this duplicates
the data structure traversal, which is the main reason which programmers do
hesitate to write a contract precondition which is rechecked in assertions, which
provides more precise information at debug time. Moreover, for static analysis,
the information collected on individual elements of data structures through deep
traversals is likely to be abstracted away. So the interest of a contract precondi-
tion on data structure seems to be obvious in the case of a global data structure
property which is easily checked at runtime and e! ciently abstracted without
loss of precision in the static analysis.

Abstract domain. Given the set B of visible side e" ect free Boolean expres-
sions on scalar variables (which can be chosen as a subset of the Boolean ex-
pressions of the language), we consider the abstract domainB/! containing the
inÞmum false (unreachable), the supremumtrue (unknown) and equivalence
classes of expressions [b]/! for the abstract equivalence of expressions! abstract-
ing semantic equality that is b ! b" " # s $! : !b"s = !b""s. The equivalence
classes are encoded by choosing an arbitrary representativeb" $ [b]/! .

The abstract equivalence! can be chosen within a wide range of possibilities,
from syntactic equality, to the use of a simpliÞer, of abstract domains, or that of
a SMT solver. This provides an abstract implication b #" b" underapproximating
the concrete implication " in that b #" b" implies that #s $! : !b"s " !b""s.
The equivalence is deÞned asb ! b" ! b #" b" %b" #" b. The basic abstract
domain is therefore&B/! , #"' .

We now deÞne the abstract domain functor

B
2

! { bp ! ba | bp $ B %ba $ B %bp (#" ba}

Notice that bp ! ba denotes the pair &[bp]/! , [ba]/! ' of B/!) B/! . The
interpretation of bp ! ba is that when the path condition bp holds, an execution
path will be followed to some assert(b) and checking ba at the beginning of
the path is the same as checking thisb later in the path when reaching the
assertion. We exclude the elements such thatbp #" ba which implies bp " ba so
that no precondition is needed. An example isif (b p) { assert(b a) } where

17

M$B161()#$610#I#N#,.$/-0$#&&'&$+&##$J'')#/-$
#=%ʕ'-6$'-$6,/)/&$B/&1/()#6

9 Contract precondition inference by backward symbolic
analysis

Backward symbolic precondition analysis of simple assertions. The
symbolic relation between entry andassert conditions can be also established
backwards, starting from the assert conditions and propagating towards the
entry points taking assignments and tests into account with widening around
unbounded loops. The advantage is that we start from a known condition and
assignments and tests are easily handled symbolically using HoareÕs weakest pre-
condition rule.We Þrst consider simple assertions involving only scalar variables
(including e.g. the size of collections as needed in Sect.10).

In general the assertions on structured data are on elements of this data.
Propagating these checks in the precondition will just duplicate the traversal
on the data structure to test individual elements. At runtime, this duplicates
the data structure traversal, which is the main reason which programmers do
hesitate to write a contract precondition which is rechecked in assertions, which
provides more precise information at debug time. Moreover, for static analysis,
the information collected on individual elements of data structures through deep
traversals is likely to be abstracted away. So the interest of a contract precondi-
tion on data structure seems to be obvious in the case of a global data structure
property which is easily checked at runtime and e! ciently abstracted without
loss of precision in the static analysis.

Abstract domain. Given the set B of visible side e" ect free Boolean expres-
sions on scalar variables (which can be chosen as a subset of the Boolean ex-
pressions of the language), we consider the abstract domainB/! containing the
inÞmum false (unreachable), the supremumtrue (unknown) and equivalence
classes of expressions [b]/! for the abstract equivalence of expressions! abstract-
ing semantic equality that is b ! b" " # s $! : !b"s = !b""s. The equivalence
classes are encoded by choosing an arbitrary representativeb" $ [b]/! .

The abstract equivalence! can be chosen within a wide range of possibilities,
from syntactic equality, to the use of a simpliÞer, of abstract domains, or that of
a SMT solver. This provides an abstract implication b #" b" underapproximating
the concrete implication " in that b #" b" implies that #s $! : !b"s " !b""s.
The equivalence is deÞned asb ! b" ! b #" b" %b" #" b. The basic abstract
domain is therefore&B/! , #"' .

We now deÞne the abstract domain functor

B
2

! { bp ! ba | bp $ B %ba $ B %bp (#" ba}

Notice that bp ! ba denotes the pair &[bp]/! , [ba]/! ' of B/!) B/! . The
interpretation of bp ! ba is that when the path condition bp holds, an execution
path will be followed to some assert(b) and checkingba at the beginning of
the path is the same as checking thisb later in the path when reaching the
assertion. We exclude the elements such thatbp #" ba which implies bp " ba so
that no precondition is needed. An example isif (bp) { assert(ba) } where

17

/(6.&/,.$
1*%)1,/2'-

9 Contract precondition inference by backward symbolic
analysis

Backward symbolic precondition analysis of simple assertions. The
symbolic relation between entry andassert conditions can be also established
backwards, starting from the assert conditions and propagating towards the
entry points taking assignments and tests into account with widening around
unbounded loops. The advantage is that we start from a known condition and
assignments and tests are easily handled symbolically using HoareÕs weakest pre-
condition rule.We Þrst consider simple assertions involving only scalar variables
(including e.g. the size of collections as needed in Sect.10).

In general the assertions on structured data are on elements of this data.
Propagating these checks in the precondition will just duplicate the traversal
on the data structure to test individual elements. At runtime, this duplicates
the data structure traversal, which is the main reason which programmers do
hesitate to write a contract precondition which is rechecked in assertions, which
provides more precise information at debug time. Moreover, for static analysis,
the information collected on individual elements of data structures through deep
traversals is likely to be abstracted away. So the interest of a contract precondi-
tion on data structure seems to be obvious in the case of a global data structure
property which is easily checked at runtime and e! ciently abstracted without
loss of precision in the static analysis.

Abstract domain. Given the set B of visible side e" ect free Boolean expres-
sions on scalar variables (which can be chosen as a subset of the Boolean ex-
pressions of the language), we consider the abstract domainB/≡ containing the
inÞmum false (unreachable), the supremumtrue (unknown) and equivalence
classes of expressions [b]/≡ for the abstract equivalence of expressions! abstract-
ing semantic equality that is b ! b� " # s $! : !b"s = !b�"s. The equivalence
classes are encoded by choosing an arbitrary representativeb� $ [b]/≡.

The abstract equivalence! can be chosen within a wide range of possibilities,
from syntactic equality, to the use of a simpliÞer, of abstract domains, or that of
a SMT solver. This provides an abstract implication b #" b� underapproximating
the concrete implication " in that b #" b� implies that #s $! : !b"s " !b�"s.
The equivalence is deÞned asb ! b� ! b #" b� %b� #" b. The basic abstract
domain is therefore&B/≡, #"' .

We now deÞne the abstract domain functor

B
2

! { bp ❀ ba | bp $ B %ba $ B %bp (#" ba}

Notice that bp ❀ ba denotes the pair &[bp]/≡, [ba]/≡' of B/≡) B/≡. The
interpretation of bp ❀ ba is that when the path condition bp holds, an execution
path will be followed to some assert(b) and checkingba at the beginning of
the path is the same as checking thisb later in the path when reaching the
assertion. We exclude the elements such thatbp #" ba which implies bp " ba so
that no precondition is needed. An example isif (bp) { assert(ba) } where

17

/(6.&/,.$#P51B/)#-,#

9 Contract precondition inference by backward symbolic
analysis

Backward symbolic precondition analysis of simple assertions. The
symbolic relation between entry and assert conditions can be also established
backwards, starting from the assert conditions and propagating towards the
entry points taking assignments and tests into account with widening around
unbounded loops. The advantage is that we start from a known condition and
assignments and tests are easily handled symbolically using HoareÕs weakest pre-
condition rule.We Þrst consider simple assertions involving only scalar variables
(including e.g. the size of collections as needed in Sect.10).

In general the assertions on structured data are on elements of this data.
Propagating these checks in the precondition will just duplicate the traversal
on the data structure to test individual elements. At runtime, this duplicates
the data structure traversal, which is the main reason which programmers do
hesitate to write a contract precondition which is rechecked in assertions, which
provides more precise information at debug time. Moreover, for static analysis,
the information collected on individual elements of data structures through deep
traversals is likely to be abstracted away. So the interest of a contract precondi-
tion on data structure seems to be obvious in the case of a global data structure
property which is easily checked at runtime and e! ciently abstracted without
loss of precision in the static analysis.

Abstract domain. Given the set B of visible side e" ect free Boolean expres-
sions on scalar variables (which can be chosen as a subset of the Boolean ex-
pressions of the language), we consider the abstract domainB / ! containing the
inÞmum false (unreachable), the supremumtrue (unknown) and equivalence
classes of expressions [b]/ ! for the abstract equivalence of expressions! abstract-
ing semantic equality that is b ! b" " # s $! : !b"s = !b""s. The equivalence
classes are encoded by choosing an arbitrary representativeb" $ [b]/ ! .

The abstract equivalence! can be chosen within a wide range of possibilities,
from syntactic equality, to the use of a simpliÞer, of abstract domains, or that of
a SMT solver. This provides an abstract implication b #" b" underapproximating
the concrete implication " in that b #" b" implies that #s $! : !b"s " !b""s.
The equivalence is deÞned asb ! b" ! b #" b" %b" #" b. The basic abstract
domain is therefore&B / ! , #"' .

We now deÞne the abstract domain functor

B
2

! {bp ❀ ba | bp $ B %ba $ B %bp (#" ba}

Notice that bp ❀ ba denotes the pair &[bp]/ ! , [ba]/ ! ' of B / !) B / ! . The
interpretation of bp ❀ ba is that when the path condition bp holds, an execution
path will be followed to some assert(b) and checking ba at the beginning of
the path is the same as checking thisb later in the path when reaching the
assertion. We exclude the elements such thatbp #" ba which implies bp " ba so
that no precondition is needed. An example isif (b p) { assert(b a) } where

17

encoding of equivalence class by a representant

!

!

!

!

9 Contract precondition inference by backward symbolic
analysis

Backward symbolic precondition analysis of simple assertions. The
symbolic relation between entry andassert conditions can be also established
backwards, starting from the assert conditions and propagating towards the
entry points taking assignments and tests into account with widening around
unbounded loops. The advantage is that we start from a known condition and
assignments and tests are easily handled symbolically using HoareÕs weakest pre-
condition rule.We Þrst consider simple assertions involving only scalar variables
(including e.g. the size of collections as needed in Sect.10).

In general the assertions on structured data are on elements of this data.
Propagating these checks in the precondition will just duplicate the traversal
on the data structure to test individual elements. At runtime, this duplicates
the data structure traversal, which is the main reason which programmers do
hesitate to write a contract precondition which is rechecked in assertions, which
provides more precise information at debug time. Moreover, for static analysis,
the information collected on individual elements of data structures through deep
traversals is likely to be abstracted away. So the interest of a contract precondi-
tion on data structure seems to be obvious in the case of a global data structure
property which is easily checked at runtime and e! ciently abstracted without
loss of precision in the static analysis.

Abstract domain. Given the set B of visible side e" ect free Boolean expres-
sions on scalar variables (which can be chosen as a subset of the Boolean ex-
pressions of the language), we consider the abstract domainB/! containing the
inÞmum false (unreachable), the supremumtrue (unknown) and equivalence
classes of expressions [b]/! for the abstract equivalence of expressions! abstract-
ing semantic equality that is b ! b" " # s $! : !b"s = !b""s. The equivalence
classes are encoded by choosing an arbitrary representativeb" $ [b]/! .

The abstract equivalence! can be chosen within a wide range of possibilities,
from syntactic equality, to the use of a simpliÞer, of abstract domains, or that of
a SMT solver. This provides an abstract implication b #" b" underapproximating
the concrete implication " in that b #" b" implies that #s $! : !b"s " !b""s.
The equivalence is deÞned asb ! b" ! b #" b" %b" #" b. The basic abstract
domain is therefore&B/! , #"' .

We now deÞne the abstract domain functor

B
2

! { bp ! ba | bp $ B %ba $ B %bp (#" ba}

Notice that bp ! ba denotes the pair &[bp]/! , [ba]/! ' of B/!) B/! . The
interpretation of bp ! ba is that when the path condition bp holds, an execution
path will be followed to some assert(b) and checkingba at the beginning of
the path is the same as checking thisb later in the path when reaching the
assertion. We exclude the elements such thatbp #" ba which implies bp " ba so
that no precondition is needed. An example isif (bp) { assert(ba) } where

17

! abstract domain of Boolean expressions

! (Trivial) example:
x==0 x==1 x==2 x==3

true

false

x==-1x==-2x==-3

9 Contract precondition inference by backward symbolic
analysis

Backward symbolic precondition analysis of simple assertions. The

symbolic relation between entry and assert conditions can be also established

backwards, starting from the assert conditions and propagating towards the

entry points taking assignments and tests into account with widening around

unbounded loops. The advantage is that we start from a known condition and

assignments and tests are easily handled symbolically using Hoare’s weakest pre-

condition rule.We first consider simple assertions involving only scalar variables

(including e.g. the size of collections as needed in Sect. 10).

In general the assertions on structured data are on elements of this data.

Propagating these checks in the precondition will just duplicate the traversal

on the data structure to test individual elements. At runtime, this duplicates

the data structure traversal, which is the main reason which programmers do

hesitate to write a contract precondition which is rechecked in assertions, which

provides more precise information at debug time. Moreover, for static analysis,

the information collected on individual elements of data structures through deep

traversals is likely to be abstracted away. So the interest of a contract precondi-

tion on data structure seems to be obvious in the case of a global data structure

property which is easily checked at runtime and e! ciently abstracted without

loss of precision in the static analysis.

Abstract domain. Given the set B of visible side e" ect free Boolean expres-

sions on scalar variables (which can be chosen as a subset of the Boolean ex-

pressions of the language), we consider the abstract domain B / ! containing the

infimum false (unreachable), the supremum true (unknown) and equivalence

classes of expressions [b]/ ! for the abstract equivalence of expressions ! abstract-

ing semantic equality that is b ! b" " # s $! : !b"s = !b""s. The equivalence

classes are encoded by choosing an arbitrary representative b" $ [b]/ ! .

The abstract equivalence ! can be chosen within a wide range of possibilities,

from syntactic equality, to the use of a simplifier, of abstract domains, or that of

a SMT solver. This provides an abstract implication b #" b"
underapproximating

the concrete implication " in that b #" b"
implies that #s $! : !b"s " !b""s.

The equivalence is defined as b ! b" ! b #" b" %b" #" b. The basic abstract

domain is therefore &B / ! , #"' .

We now define the abstract domain functor

B
2

! { bp ! ba | bp $ B %ba $ B %bp (#" ba}

Notice that bp ! ba denotes the pair &[bp]/ ! , [ba]/ ! ' of B / !) B / ! . The

interpretation of bp ! ba is that when the path condition bp holds, an execution

path will be followed to some assert(b) and checking ba at the beginning of

the path is the same as checking this b later in the path when reaching the

assertion. We exclude the elements such that bp #" ba which implies bp " ba so

that no precondition is needed. An example is if (b p) { assert(b a) } where

17

9 Contract precondition inference by backward symbolic
analysis

Backward symbolic precondition analysis of simple assertions. The
symbolic relation between entry and assert conditions can be also established
backwards, starting from the assert conditions and propagating towards the
entry points taking assignments and tests into account with widening around
unbounded loops. The advantage is that we start from a known condition and
assignments and tests are easily handled symbolically using HoareÕs weakest pre-
condition rule.We Þrst consider simple assertions involving only scalar variables
(including e.g. the size of collections as needed in Sect.10).

In general the assertions on structured data are on elements of this data.
Propagating these checks in the precondition will just duplicate the traversal
on the data structure to test individual elements. At runtime, this duplicates
the data structure traversal, which is the main reason which programmers do
hesitate to write a contract precondition which is rechecked in assertions, which
provides more precise information at debug time. Moreover, for static analysis,
the information collected on individual elements of data structures through deep
traversals is likely to be abstracted away. So the interest of a contract precondi-
tion on data structure seems to be obvious in the case of a global data structure
property which is easily checked at runtime and efficiently abstracted without
loss of precision in the static analysis.

Abstract domain. Given the set B of visible side effect free Boolean expres-
sions on scalar variables (which can be chosen as a subset of the Boolean ex-
pressions of the language), we consider the abstract domainB / ! containing the
inÞmum false (unreachable), the supremumtrue (unknown) and equivalence
classes of expressions [b]/ ! for the abstract equivalence of expressions≡ abstract-
ing semantic equality that is b ≡ b" ⇒ ∀s ∈ ! : !b"s = !b""s. The equivalence
classes are encoded by choosing an arbitrary representativeb" ∈ [b]/ ! .

The abstract equivalence≡ can be chosen within a wide range of possibilities,
from syntactic equality, to the use of a simpliÞer, of abstract domains, or that of
a SMT solver. This provides an abstract implication b #⇒ b" underapproximating
the concrete implication ⇒ in that b #⇒ b" implies that ∀s ∈ ! : !b"s ⇒ !b""s.
The equivalence is deÞned asb ≡ b" ! b #⇒ b" ∧ b" #⇒ b. The basic abstract
domain is therefore�B / ! , #⇒�.

We now deÞne the abstract domain functor

B
2

! { bp ! ba | bp ∈ B ∧ ba ∈ B ∧ bp �#⇒ ba}

Notice that bp ! ba denotes the pair �[bp]/ ! , [ba]/ ! � of B / ! × B / ! . The
interpretation of bp ! ba is that when the path condition bp holds, an execution
path will be followed to some assert(b) and checking ba at the beginning of
the path is the same as checking thisb later in the path when reaching the
assertion. We exclude the elements such thatbp #⇒ ba which implies bp ⇒ ba so
that no precondition is needed. An example isif (b p) { assert(b a) } where

17

!

Abstract domain

!

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

The soundness follows from ∀!s ∈ !" + : ∀j < |!s | : #(c)[!x := !!x"!s0][!x := !!x"!sj] =

∀!s ∈ !" + : ∀j < |!s | : ∀i ∈ $! !s j : p! !s j ,i [!x := !!x"!s0] ⇒ !!x"!sj = !e! !s j ,i [!x := !!x"!s0]

where !!x"s is the value of the vector !x of scalar variables in state s.
This suggests a method for calculating the precondition by adding for each as-

sertion c:assert(b) the condition
!

i∈" c
pc,i [!x := !x] ⇒ b[!x := !ec,i [!x := !x]] which is

checked on the initial values of variables.

Example 15 For the program

/* 1: x=x0 & y=y0 */ if (x == 0) {
/* 2: x0=0 & x=x0 & y=y0 */ x++;
/* 3: x0=0 & x=x0+1 & y=y0 */ assert(x==y);

}

the precondition at program point 1: is (!(x==0)||(x+1==y)) . ��

Of course the iterative computation of lfp
ú⇒

F will in general not terminate so that

a widening [11] is needed. A simple one would bound the number of iterations and

widen
"

i∈" c
pc,i (!x) ∧ !x = !ec,i (!x) to

!
i∈" c

pc,i (!x) ⇒ !x = !ec,i (!x).

9 Contract precondition inference by backward symbolic
analysis

Backward symbolic precondition analysis of simple assertions. The symbolic

relation between entry and assert conditions can be also established backwards,

starting from the assert conditions and propagating towards the entry points taking

assignments and tests into account with widening around unbounded loops. We first

consider simple assertions involving only scalar variables (including e.g. the size of

collections as needed in Sect. 10).

Abstract domain. Given the set B of visible side e! ect free Boolean expressions on

scalar variables, we consider the abstract domain B/ ≡ containing the infimum false
(unreachable), the supremum true (unknown) and equivalence classes of expressions

[b]/ ≡ for the abstract equivalence of expressions ≡ abstracting semantic equality that

is b ≡ b� ⇒ ∀s ∈ % : !b"s = !b�"s. The equivalence classes are encoded by choosing

an arbitrary representative b� ∈ [b]/ ≡. The abstract equivalence ≡ can be chosen

within a wide range of possibilities, from syntactic equality, to the use of a simplifier,

of abstract domains, or that of a SMT solver. This provides an abstract implication

b #⇒ b� underapproximating the concrete implication ⇒ in that b #⇒ b� implies that

∀s ∈ % : !b"s ⇒ !b�"s. The equivalence is defined as b ≡ b� ! b #⇒ b� ∧ b� #⇒ b. The

basic abstract domain is therefore �B/ ≡, #⇒�.
We now define the abstract domain functor

B
2

! { bp ! ba | bp ∈ B ∧ ba ∈ B ∧ bp �#⇒ ba}

Notice that bp ! ba denotes the pair �[bp]/ ≡, [ba]/ ≡� of B/ ≡ × B/ ≡. The interpre-

tation of bp ! ba is that when the path condition bp holds, an execution path will

be followed to some assert(b) and checking ba at the beginning of the path is the

same as checking this b later in the path when reaching the assertion. We exclude

the elements such that bp #⇒ ba which implies bp ⇒ ba so that no precondition is

needed. An example is if (b p) { assert(b a) } where the assertion has already

been checked on the paths leading to that assertion. The abstract ordering on

�B2
, #⇒� is bp ! ba #⇒ b�p ! b�a ! b�p #⇒ bp ∧ ba #⇒ b�a .

8

:

!

the assertion has already been checked on the paths leading to that assertion.
The abstract ordering on �B2

, !⇒� is bp ! ba !⇒ b!
p ! b!

a ! b!
p !⇒ bp ∧ ba !⇒ b!

a .

Di ! erent paths to di! erent assertions are abstracted by elements of�! (B
2
),

⊆�, eachbp ! ba corresponding to a di! erent path to an assertion. The number

of paths can grow indeÞnitely so�! (B
2
), ⊆� must be equipped with a widening.

Finally our abstract domain will be �" → ! (B
2
), ú⊆� ordered pointwise so as

to attach an abstract property #(c) ∈ ! (B
2
) to each program point c ∈ " .

Example 17 The program on the left has abstract properties given on the
right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

#(1) = {odd(x) ! y >= 0,¬odd(x) ! y < 0}
#(2) = {true ! y >= 0}
#(3) = {true ! y > 0}

#(4) = {true ! y < 0}
#(5) = ∅ ��

Because the abstraction is syntactic, there may be no best abstraction, so we de-
Þne the concretization (recall thatA is the set of pairs�c, b� such that assert(b)
is checked at program pointc and deÞneA(c) !

!
"c, b#$A b)

ú$ ∈ (" → ! (B
2
)) → ! (%& +), ú$(#) !

"

c $!

{%s ∈ $c(#(c)) | ! %s0 = c}

$c ∈ ! (B
2
) → ! ({%s ∈ %& + | ! %s0 = c}), $c(C) !

#

bp ! ba $ C

$c(bp ! ba)

$c ∈ B
2 → ! ({%s ∈ %& + | ! %s0 = c})

$c(bp ! ba) ! {%s ∈ %& + | ! %s0 = c∧ "bp#%s0 ⇒ (∃j < |%s | : "ba#%s0 = "A(! %sj)#%sj)}.

Observe that ú$ is decreasing which corresponds to the intuition that an analysis
Þnding no path precondition bp ! ba deÞnes all possible executions in%& + .

Backward path condition and checked expression propagation. The
system of backward equations# = B (#) is (recall that

$
∅ = ∅)

%
&

'

B (#)c =
"

c�$ succ(c) , b! b�$ " (c�)

B(cmd(c, c!), b ! b!) ∪ {true ! b | �c, b� ∈ A}

c ∈ "

where (writing e[x := e!] for the substitution of e! for x in e)

B (skip, bp ! ba) ! {bp ! ba}
B (x:=e, bp ! ba) ! {bp[x := e] ! ba[x := e]} if bp[x := e] ∈ B ∧ ba[x := e] ∈ B

∧ bp[x := e] �!⇒ bc[x := e]
! ∅ otherwise

B (b, bp ! ba) ! {b &&bp ! ba} if b &&bp ∈ B ∧ b &&bp �!⇒ ba

! ∅ otherwise

By Cor. 10 and (1-b), the analysis is sound,i.e.

18

O=/*%)#

the assertion has already been checked on the paths leading to that assertion.
The abstract ordering on �B 2

, !⇒� is bp ! ba !⇒ b!
p ! b!

a ! b!
p !⇒ bp ∧ ba !⇒ b!

a.

Di ! erent paths to di! erent assertions are abstracted by elements of�! (B
2
),

⊆�, eachbp ! ba corresponding to a di! erent path to an assertion. The number

of paths can grow indeÞnitely so�! (B
2
), ⊆� must be equipped with a widening.

Finally our abstract domain will be �" → ! (B
2
), ú⊆� ordered pointwise so as

to attach an abstract property #(c) ∈ ! (B
2
) to each program point c ∈ " .

Example 17 The program on the left has abstract properties given on the
right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

#(1) = { odd(x) ! y >= 0, Âodd(x) ! y < 0}
#(2) = { true ! y >= 0}
#(3) = { true ! y > 0}

#(4) = { true ! y < 0}
#(5) = ∅ ��

Because the abstraction is syntactic, there may be no best abstraction, so we de-
Þne the concretization (recall thatA is the set of pairs�c, b� such that assert(b)
is checked at program pointc and deÞneA (c) !

!
"c, b#$A b)

ú$ ∈ (" → ! (B
2
)) → ! (%& +), ú$(#) !

"

c $!

{%s ∈ $c(#(c)) | π%s0 = c}

$c ∈ ! (B
2
) → ! ({%s ∈ %& + | π%s0 = c}), $c(C) !

#

bp ! ba $ C

$c(bp ! ba)

$c ∈ B
2 → ! ({%s ∈ %& + | π%s0 = c})

$c(bp ! ba) ! {%s ∈ %& + | π%s0 = c∧ "bp#%s0 ⇒ (∃j < |%s| : "ba#%s0 = "A (π%sj)#%sj)} .

Observe that ú$ is decreasing which corresponds to the intuition that an analysis
Þnding no path precondition bp ! ba deÞnes all possible executions in%& + .

Backward path condition and checked expression propagation. The
system of backward equations# = B (#) is (recall that

$
∅ = ∅)

%
&

'

B (#)c =
"

c! $ succ(c) , b! b! $ " (c!)

B(cmd(c, c!), b ! b!) ∪ { true ! b | �c, b� ∈ A }

c ∈ "

where (writing e[x := e!] for the substitution of e! for x in e)

B (skip, bp ! ba) ! { bp ! ba}
B (x:=e, bp ! ba) ! { bp[x := e] ! ba[x := e]} if bp[x := e] ∈ B ∧ ba[x := e] ∈ B

∧ bp[x := e] �!⇒ bc[x := e]
! ∅ otherwise

B (b, bp ! ba) ! { b &&bp ! ba} if b &&bp ∈ B ∧ b &&bp �!⇒ ba

! ∅ otherwise

By Cor. 10 and (1-b), the analysis is sound,i.e.

18

order

assert(bÕ) = true

Intuitive meaning of

assert(bÕ) = true
assert(b) = true
assert(b) = false
assert(b) = false

c

Abstract domains and
01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Different paths to different assertions are abstracted by elements of �! (B
2
), ⊆�,

each bp ! ba corresponding to a different path to an assertion. The number of paths

can grow indefinitely so �! (B
2
), ⊆� must be equipped with a widening.

Finally our abstract domain will be �" → ! (B
2
), ⊆̇� ordered pointwise so as to

attach an abstract property #(c) ∈ ! (B
2
) to each program point c ∈ " .

Example 16 The program on the left has abstract properties given on the right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

#(1) = {odd(x) ! y >= 0,¬odd(x) ! y < 0}
#(2) = {true ! y >= 0}
#(3) = {true ! y > 0}

#(4) = {true ! y < 0}
#(5) = ∅ ��

Because the abstraction is syntactic, there may be no best abstraction, so we define

the concretization (recall that A is the set of pairs �c, b� such that assert(b) is

checked at program point c and define A (c) !
!

! c, b"# A b)

$̇ ∈ (" → ! (B
2
)) → ! (%& +

), $̇(#) !
"

c # Γ

{%s ∈ $c(#(c)) | ! %s0 = c}

$c ∈ ! (B
2
) → ! ({%s ∈ %& + | ! %s0 = c}), $c(C) !

#

bp ! ba # C

$c(bp ! ba)

$c ∈ B
2 → ! ({%s ∈ %& + | ! %s0 = c})

$c(bp ! ba) ! {%s ∈ %& + | ! %s0 = c∧ !bp"%s0 ⇒ (∃j < |%s | : !ba"%s0 = !A (! %sj)"%sj)}.

Observe that $̇ is decreasing which corresponds to the intuition that an analysis

finding no path precondition bp ! ba defines all possible executions in %& + .

Backward path condition and checked expression propagation. The system

of backward equations # = B (#) is (recall that
$
∅ = ∅)

%
&

'

B (#)c =

"

c! # succ(c) , b! b! # ρ(c!)

B(cmd(c, c$
), b ! b$

) ∪ {true ! b | �c, b� ∈ A }

c ∈ "

where (writing e[x := e$] for the substitution of e$ for x in e)

B (skip , bp ! ba) ! {bp ! ba}
B (x:=e , bp ! ba) ! {bp[x := e] ! ba[x := e]} if bp[x := e] ∈ B ∧ ba[x := e] ∈ B

∧ bp[x := e] �#⇒ bc[x := e]

! ∅ otherwise

B (b, bp ! ba) ! {b &&bp ! ba} if b &&bp ∈ B ∧ b &&bp �#⇒ ba

! ∅ otherwise

By Cor. 9 and (1-b), the analysis is sound, i.e.

Theorem 17 If # ⊆̇ lfp
ú%

B then %'+ ⊆ $̇(#). ��

Observe that B can be #̇⇒ -overapproximated (e.g. to allow for simplifications of the

Boolean expressions).

Example 18 The analysis of the following program

/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */

9

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Di! erent paths to di! erent assertions are abstracted by elements of!℘(B
2
), "# ,

eachbp ❀ ba corresponding to a di! erent path to an assertion. The number of paths

can grow indeÞnitely so!℘(B
2
), "# must be equipped with a widening.

Finally our abstract domain will be !Γ $ ℘(B
2
), ú"# ordered pointwise so as to

attach an abstract property ρ(c) %℘(B
2
) to each program point c %Γ .

Example 16 The program on the left has abstract properties given on the right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

ρ(1) = { odd(x) ❀ y >= 0, Âodd(x) ❀ y < 0}
ρ(2) = { true ❀ y >= 0}
ρ(3) = { true ❀ y > 0}

ρ(4) = { true ❀ y < 0}
ρ(5) = & '(

Because the abstraction is syntactic, there may be no best abstraction, so we deÞne
the concretization (recall that A is the set of pairs !c, b# such that assert(b) is
checked at program point c and deÞneA (c) !

!
! c, b"# A b)

úγ % (Γ $ ℘(B
2
)) $ ℘(�Σ +), úγ(ρ) !

"

c # !

{�s %γc(ρ(c)) | ! �s0 = c}

γc % ℘(B
2
) $ ℘({�s % �Σ + | ! �s0 = c}), γc(C) !

#

bp ! ba # C

γc(bp ❀ ba)

γc % B
2

$ ℘({�s % �Σ + | ! �s0 = c})

γc(bp ❀ ba) ! {�s % �Σ + | ! �s0 = c) !bp"�s0 * (+j < |�s| : !ba"�s0 = !A (! �sj)"�sj)} .

Observe that úγ is decreasing which corresponds to the intuition that an analysis
Þnding no path precondition bp ❀ ba deÞnes all possible executions in�Σ + .

Backward path condition and checked expression propagation. The system
of backward equationsρ = B (ρ) is (recall that

$
&= &)

%
&

'

B (ρ)c =
"

c! # succ(c) , b! b! # " (c!)

B(cmd(c, c$), b❀ b$) , { true ❀ b | !c, b# %A }

c %Γ

where (writing e[x := e$] for the substitution of e$ for x in e)

B (skip , bp ❀ ba) ! { bp ❀ ba}
B (x:=e , bp ❀ ba) ! { bp[x := e] ❀ ba[x := e]} if bp[x := e] %B) ba[x := e] %B

) bp[x := e] -#* bc[x := e]
! & otherwise

B (b, bp ❀ ba) ! { b &&bp ❀ ba} if b &&bp %B) b &&bp -#* ba

! & otherwise

By Cor. 9 and (1-b), the analysis is sound,i.e.

Theorem 17 If ρ ú" lfp
ú%

B then �τ + " úγ(ρ). '(

Observe that B can be ú#* -overapproximated (e.g. to allow for simpliÞcations of the
Boolean expressions).

Example 18 The analysis of the following program
/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */

9

!

!

! 3-E-1.#)?$*/-?$%/."6M$A10#-1-4

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

leads to the following iterates at program point 1: ! 0(1) = ! , ! 1(1) = { x "= 0 ! x >
0} , which is stable since the next iterate is (x "= 0 # x > 0# x $ 1 "= 0) ! (x $ 1 > 0)
% x > 1 ! x > 1, which is trivially satisÞed hence not added to! 2(1) = ! 1(1). &'

Example 19 The backward symbolic analysis of Ex. 1 moves the checks(A !=
null) to the precondition. &'

A simple widening to enforce convergence would limit the size of the elements of
" (B

2
), which is sound since eliminating a pair bp ! ba would just lead to ignore

some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis! ú(lfp
⊆

B , the syntactic precondi-
tion generated at entry control point i) I π � { s) I | ! s = i } is

Pi � &&
bp ❀ba∈! (i)

(!(bp) || (ba)) (again, assuming&& ! � true)

Example 20 For Ex. 18, the precondition generated at program point1 will be !(x
!= 0) || (x > 0) since the static analysis was able to show that only the Þrst assert
in the loop does matter because when passed successfully it implies all the following
ones. &'

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i) # is Pi � { s) $ | ! s = i # ! Pi "s} and so for all program entry
points (in case there is more than one)PI � { s) $ | * i) I π : s) Pi } .

Theorem 21 P A + I (PI . &'

So, by Th. 6, the data ßow analysis is sound, a rejected initial state would inevitably
have lead to an assertion failure.

10 Contract precondition inference for collections by forward
static analysis

Symbolic execution as considered in Sect.8 and 9 for scalars is harder for data
structures since all the elements of the data structure must be handled individually
without loss of precision. We propose a simple solution for collections (including
arrays). The idea is to move to the precondition the assertions on elements of the
collection which can be proved to be unmodiÞed before reaching the condition.

Abstract domain for scalar variables. For scalar variablesx) x , we assume that
we are given abstract properties in%) # , R with concretization &x(%)) " ($).
Moreover, we consider a dataßow analysis with abstract properties') # , x , A
and pointwise extension of the order 0- 0 . 1 - 1 on A � { 0, 1} where 0 means
ÒunmodiÞedÓ and 1 ÒunknownÓ. The concretization is

&(%, ') � { (s) ($ + | / j < |(s | : (sj) &x(%) #
/ x) x : ' (! (sj)(x) = 0 0 !x"(s0 = !x"(sπ"s j }

Segmentation abstract domain. For collections X) X , we propose to use seg-
mentation as introduced by [14]. A segmentation abstract property in S(A) depends
on abstract properties in A holding for elements of segments. So

S(A) � { (B 1 A) 1 (B 1 A 1 { , ?})k 1 (B 1 { , ?}) | k � 0} 2 { 3 }

and the segmentation abstract properties have the form
{ e1

1 ... e1
m 1} A1 { e2

1 ... e2
m 2} [?2] A2 . . . An−1 { en

1 ... en
m n} [?n]

where

10

! /$6#.$'+$,'-012'-6$$$$$$$$$$$$$$$/e/,"#0$.'$#/,"$%&'4&/*$%'1-.

the assertion has already been checked on the paths leading to that assertion.

The abstract ordering on �B 2
, !⇒� is bp ❀ ba !⇒ b!

p ❀ b!
a ! b!

p !⇒ bp ∧ ba !⇒ b!
a.

Di! erent paths to di! erent assertions are abstracted by elements of �! (B
2
),

⊆�, each bp ❀ ba corresponding to a di! erent path to an assertion. The number

of paths can grow indefinitely so �! (B
2
), ⊆� must be equipped with a widening.

Finally our abstract domain will be �" → ! (B
2
), ⊆̇� ordered pointwise so as

to attach an abstract property #(c) ∈ ! (B
2
) to each program point c ∈ " .

Example 17 The program on the left has abstract properties given on the

right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

#(1) = { odd(x) ❀ y >= 0, Âodd(x) ❀ y < 0}
#(2) = { true ❀ y >= 0}
#(3) = { true ❀ y > 0}

#(4) = { true ❀ y < 0}
#(5) = ∅ ��

Because the abstraction is syntactic, there may be no best abstraction, so we de-

fine the concretization (recall that A is the set of pairs �c, b� such that assert(b)
is checked at program point c and define A (c) !

!
"c, b#$A b)

$̇ ∈ (" → ! (B
2
)) → ! (%& +

), $̇(#) !
"

c $!

{%s ∈ $c(#(c)) | ! %s0 = c}

$c ∈ ! (B
2
) → ! ({%s ∈ %& + | ! %s0 = c}), $c(C) !

#

bp ! ba $ C

$c(bp ❀ ba)

$c ∈ B
2 → ! ({%s ∈ %& + | ! %s0 = c})

$c(bp ❀ ba) ! {%s ∈ %& + | ! %s0 = c∧ "bp#%s0 ⇒ (∃j < |%s| : "ba#%s0 = "A (! %sj)#%sj)} .

Observe that $̇ is decreasing which corresponds to the intuition that an analysis

finding no path precondition bp ❀ ba defines all possible executions in %& + .

Backward path condition and checked expression propagation. The

system of backward equations # = B (#) is (recall that
$
∅ = ∅)

%
&

'

B (#)c =

"

c! $ succ(c) , b! b! $ " (c!)

B(cmd(c, c!
), b❀ b!

) ∪ { true ❀ b | �c, b� ∈ A }

c ∈ "

where (writing e[x := e!] for the substitution of e! for x in e)

B (skip , bp ❀ ba) ! { bp ❀ ba}
B (x:=e , bp ❀ ba) ! { bp[x := e] ❀ ba[x := e]} if bp[x := e] ∈ B ∧ ba[x := e] ∈ B

∧ bp[x := e] �!⇒ bc[x := e]

! ∅ otherwise

B (b, bp ❀ ba) ! { b &&bp ❀ ba} if b &&bp ∈ B ∧ b &&bp �!⇒ ba

! ∅ otherwise

By Cor. 10 and (1-b), the analysis is sound, i.e.

18

Concretization

!

the assertion has already been checked on the paths leading to that assertion.
The abstract ordering on !B

2
, !"# is bp ! ba !" b!

p ! b!
a ! b!

p !" bp $ ba !" b!
a.

Different paths to different assertions are abstracted by elements of! ! (B
2
),

%#, eachbp ! ba corresponding to a different path to an assertion. The number

of paths can grow indeÞnitely so! ! (B
2
), %#must be equipped with a widening.

Finally our abstract domain will be ! " & ! (B
2
), ú%#ordered pointwise so as

to attach an abstract property #(c) ' ! (B
2
) to each program point c ' " .

Example 17 The program on the left has abstract properties given on the
right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

#(1) = { odd(x) ! y >= 0, Âodd(x) ! y < 0}
#(2) = { true ! y >= 0}
#(3) = { true ! y > 0}

#(4) = { true ! y < 0}
#(5) = ()*

Because the abstraction is syntactic, there may be no best abstraction, so we de-
Þne the concretization (recall thatA is the set of pairs!c, b#such that assert(b)
is checked at program pointc and deÞneA (c) !

!
"c, b#$A b)

ú$ ' (" & ! (B
2
)) & ! (%& +), ú$(#) !

"

c $!

{%s ' $c(#(c)) | ! %s0 = c}

$c ' ! (B
2
) & ! ({%s ' %& + | ! %s0 = c}), $c(C) !

#

bp ! ba $ C

$c(bp ! ba)

$c ' B
2

& ! ({%s ' %& + | ! %s0 = c})

$c(bp ! ba) ! {%s ' %& + | ! %s0 = c $ "bp#%s0 " (+j < |%s| : "ba#%s0 = "A (! %sj)#%sj)} .

Observe that ú$ is decreasing which corresponds to the intuition that an analysis
Þnding no path precondition bp ! ba deÞnes all possible executions in%& + .

Backward path condition and checked expression propagation. The
system of backward equations# = B (#) is (recall that

$
(= ()

%
&

'

B (#)c =
"

c�$ succ(c) , b! b�$ " (c�)

B(cmd(c, c!), b ! b!) , { true ! b | !c, b# ' A }

c ' "

where (writing e[x := e!] for the substitution of e! for x in e)

B (skip , bp ! ba) ! { bp ! ba}
B (x:=e , bp ! ba) ! { bp[x := e] ! ba[x := e]} if bp[x := e] ' B $ ba[x := e] ' B

$ bp[x := e] -!" bc[x := e]
! (otherwise

B (b, bp ! ba) ! { b && bp ! ba} if b && bp ' B $ b && bp -!" ba

! (otherwise

By Cor. 10 and (1-b), the analysis is sound,i.e.

18

Concretization of for a given program point c

the assertion has already been checked on the paths leading to that assertion.
The abstract ordering on !B

2
, !"# is bp ! ba !" b!

p ! b!
a ! b!

p !" bp $ ba !" b!
a.

Di ! erent paths to di! erent assertions are abstracted by elements of! ! (B
2
),

%#, eachbp ! ba corresponding to a di! erent path to an assertion. The number

of paths can grow indeÞnitely so! ! (B
2
), %#must be equipped with a widening.

Finally our abstract domain will be ! " & ! (B
2
), ú%#ordered pointwise so as

to attach an abstract property #(c) ' ! (B
2
) to each program point c ' " .

Example 17 The program on the left has abstract properties given on the
right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

#(1) = { odd(x) ! y >= 0, Âodd(x) ! y < 0}
#(2) = { true ! y >= 0}
#(3) = { true ! y > 0}

#(4) = { true ! y < 0}
#(5) = ()*

Because the abstraction is syntactic, there may be no best abstraction, so we de-
Þne the concretization (recall thatA is the set of pairs!c, b#such that assert(b)
is checked at program pointc and deÞneA(c) !

!
"c, b#$A b)

ú$ ' (" & ! (B
2
)) & ! (%& +), ú$(#) !

"

c $ Γ

{%s ' $c(#(c)) | π%s0 = c}

$c ' ! (B
2
) & ! ({%s ' %& + | π%s0 = c}), $c(C) !

#

bp ! ba $ C

$c(bp ! ba)

$c ' B
2

& ! ({%s ' %& + | π%s0 = c})

$c(bp ! ba) ! {%s ' %& + | π%s0 = c $ "bp#%s0 " (+j < |%s | : "ba#%s0 = "A(π%s j)#%s j)} .

Observe that ú$ is decreasing which corresponds to the intuition that an analysis
Þnding no path precondition bp ! ba deÞnes all possible executions in%& +.

Backward path condition and checked expression propagation. The
system of backward equations# = B(#) is (recall that

$
(= ()

%
&

'

B(#)c =
"

c! $ succ(c), b! b! $ ρ(c!)

B(cmd(c, c!), b ! b!) , { true ! b | !c, b# ' A}

c ' "

where (writing e[x := e!] for the substitution of e! for x in e)

B(skip , bp ! ba) ! { bp ! ba}
B(x:=e , bp ! ba) ! { bp[x := e] ! ba[x := e]} if bp[x := e] ' B $ ba[x := e] ' B

$ bp[x := e] -!" bc[x := e]
! (otherwise

B(b, bp ! ba) ! { b &&bp ! ba} if b &&bp ' B $ b &&bp -!" ba

! (otherwise

By Cor. 10 and (1-b), the analysis is sound,i.e.

18

the assertion has already been checked on the paths leading to that assertion.
The abstract ordering on !B

2
, !"# is bp ! ba !" b!

p ! b!
a ! b!

p !" bp $ ba !" b!
a.

Different paths to different assertions are abstracted by elements of! ! (B
2
),

%#, eachbp ! ba corresponding to a different path to an assertion. The number

of paths can grow indeÞnitely so! ! (B
2
), %#must be equipped with a widening.

Finally our abstract domain will be ! " & ! (B
2
), ú%#ordered pointwise so as

to attach an abstract property #(c) ' ! (B
2
) to each program point c ' " .

Example 17 The program on the left has abstract properties given on the
right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

#(1) = {odd(x) ! y >= 0,¬odd(x) ! y < 0}
#(2) = {true ! y >= 0}
#(3) = {true ! y > 0}

#(4) = {true ! y < 0}
#(5) = ()*

Because the abstraction is syntactic, there may be no best abstraction, so we de-
Þne the concretization (recall thatA is the set of pairs!c, b#such that assert(b)
is checked at program pointc and deÞneA (c) !

!
"c, b#$A b)

ú$ ' (" & ! (B
2
)) & ! (%& +), ú$(#) !

"

c $!

{%s ' $c(#(c)) | ! %s0 = c}

$c ' ! (B
2
) & ! ({%s ' %& + | ! %s0 = c}), $c(C) !

#

bp ! ba $ C

$c(bp ! ba)

$c ' B
2

& ! ({%s ' %& + | ! %s0 = c})

$c(bp ! ba) ! {%s ' %& + | ! %s0 = c $ "bp#%s0 " (+j < |%s | : "ba#%s0 = "A (! %sj)#%sj)}.

Observe that ú$ is decreasing which corresponds to the intuition that an analysis
Þnding no path precondition bp ! ba deÞnes all possible executions in%& + .

Backward path condition and checked expression propagation. The
system of backward equations# = B (#) is (recall that

$
(= ()

%
&

'

B (#)c =
"

c! $ succ(c) , b! b! $ " (c!)

B(cmd(c, c!), b ! b!) , {true ! b | !c, b# ' A }

c ' "

where (writing e[x := e!] for the substitution of e! for x in e)

B (skip , bp ! ba) ! {bp ! ba}
B (x:=e , bp ! ba) ! {bp[x := e] ! ba[x := e]} if bp[x := e] ' B $ ba[x := e] ' B

$ bp[x := e] -!" bc[x := e]
! (otherwise

B (b, bp ! ba) ! {b && bp ! ba} if b && bp ' B $ b && bp -!" ba

! (otherwise

By Cor. 10 and (1-b), the analysis is sound,i.e.

18

! Concretization of a set of for a given program point c

the assertion has already been checked on the paths leading to that assertion.
The abstract ordering on !B

2
, !"# is bp ! ba !" b!

p ! b!
a ! b!

p !" bp $ ba !" b!
a.

Di ! erent paths to di! erent assertions are abstracted by elements of! ! (B
2
),

%#, eachbp ! ba corresponding to a di! erent path to an assertion. The number

of paths can grow indeÞnitely so! ! (B
2
), %#must be equipped with a widening.

Finally our abstract domain will be ! " & ! (B
2
), ú%#ordered pointwise so as

to attach an abstract property #(c) ' ! (B
2
) to each program point c ' " .

Example 17 The program on the left has abstract properties given on the
right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

#(1) = { odd(x) ! y >= 0, Âodd(x) ! y < 0}
#(2) = { true ! y >= 0}
#(3) = { true ! y > 0}

#(4) = { true ! y < 0}
#(5) = ()*

Because the abstraction is syntactic, there may be no best abstraction, so we de-
Þne the concretization (recall thatA is the set of pairs!c, b#such that assert(b)
is checked at program pointc and deÞneA(c) !

!
"c, b#$A b)

ú$ ' (" & ! (B
2
)) & ! (%& +), ú$(#) !

"

c $ Γ

{%s ' $c(#(c)) | π%s0 = c}

$c ' ! (B
2
) & ! ({%s ' %& + | π%s0 = c}), $c(C) !

#

bp ! ba $ C

$c(bp ! ba)

$c ' B
2

& ! ({%s ' %& + | π%s0 = c})

$c(bp ! ba) ! {%s ' %& + | π%s0 = c $ "bp#%s0 " (+j < |%s | : "ba#%s0 = "A(π%s j)#%s j)} .

Observe that ú$ is decreasing which corresponds to the intuition that an analysis
Þnding no path precondition bp ! ba deÞnes all possible executions in%& +.

Backward path condition and checked expression propagation. The
system of backward equations# = B(#) is (recall that

$
(= ()

%
&

'

B(#)c =
"

c! $ succ(c), b! b! $ ρ(c!)

B(cmd(c, c!), b ! b!) , { true ! b | !c, b# ' A}

c ' "

where (writing e[x := e!] for the substitution of e! for x in e)

B(skip , bp ! ba) ! { bp ! ba}
B(x:=e , bp ! ba) ! { bp[x := e] ! ba[x := e]} if bp[x := e] ' B $ ba[x := e] ' B

$ bp[x := e] -!" bc[x := e]
! (otherwise

B(b, bp ! ba) ! { b &&bp ! ba} if b &&bp ' B $ b &&bp -!" ba

! (otherwise

By Cor. 10 and (1-b), the analysis is sound,i.e.

18

the assertion has already been checked on the paths leading to that assertion.

The abstract ordering on !B
2
, !"# is bp ! ba !" b!

p ! b!
a ! b!

p !" bp $ ba !" b!
a.

Di! erent paths to di! erent assertions are abstracted by elements of ! ! (B
2
),

%#, each bp ! ba corresponding to a di! erent path to an assertion. The number

of paths can grow indefinitely so ! ! (B
2
), %#must be equipped with a widening.

Finally our abstract domain will be ! " & ! (B
2
), %̇#ordered pointwise so as

to attach an abstract property #(c) ' ! (B
2
) to each program point c ' " .

Example 17 The program on the left has abstract properties given on the

right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

#(1) = { odd(x) ! y >= 0, Âodd(x) ! y < 0}
#(2) = { true ! y >= 0}
#(3) = { true ! y > 0}

#(4) = { true ! y < 0}
#(5) = ()*

Because the abstraction is syntactic, there may be no best abstraction, so we de-

fine the concretization (recall that A is the set of pairs !c, b#such that assert(b)
is checked at program point c and define A(c) !

!
"c, b#$A b)

$̇ ' (" & ! (B
2
)) & ! (%& +

), $̇(#) !
"

c $!

{%s ' $c(#(c)) | π%s0 = c}

$c ' ! (B
2
) & ! ({%s ' %& + | π%s0 = c}), $c(C) !

#

bp ! ba $ C

$c(bp ! ba)

$c ' B
2

& ! ({%s ' %& + | π%s0 = c})

$c(bp ! ba) ! {%s ' %& + | π%s0 = c $ "bp#%s0 " (+j < |%s| : "ba#%s0 = "A(π%sj)#%sj)} .

Observe that $̇ is decreasing which corresponds to the intuition that an analysis

finding no path precondition bp ! ba defines all possible executions in %& + .

Backward path condition and checked expression propagation. The

system of backward equations # = B (#) is (recall that
$

(= ()
%
&

'

B (#)c =

"

c! $ succ(c) , b! b! $ " (c!)

B(cmd(c, c!
), b ! b!

) , { true ! b | !c, b# ' A}

c ' "

where (writing e[x := e!] for the substitution of e! for x in e)

B (skip, bp ! ba) ! { bp ! ba}
B (x:=e, bp ! ba) ! { bp[x := e] ! ba[x := e]} if bp[x := e] ' B $ ba[x := e] ' B

$ bp[x := e] -!" bc[x := e]
! (otherwise

B (b, bp ! ba) ! { b &&bp ! ba} if b &&bp ' B $ b &&bp -!" ba

! (otherwise

By Cor. 10 and (1-b), the analysis is sound, i.e.

18

the assertion has already been checked on the paths leading to that assertion.
The abstract ordering on !B

2
, !"# is bp ! ba !" b!

p ! b!
a ! b!

p !" bp $ ba !" b!
a.

Di ! erent paths to di! erent assertions are abstracted by elements of! ! (B
2
),

%#, eachbp ! ba corresponding to a di! erent path to an assertion. The number

of paths can grow indeÞnitely so! ! (B
2
), %#must be equipped with a widening.

Finally our abstract domain will be ! " & ! (B
2
), ú%#ordered pointwise so as

to attach an abstract property #(c) ' ! (B
2
) to each program point c ' " .

Example 17 The program on the left has abstract properties given on the
right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

#(1) = { odd(x) ! y >= 0, Âodd(x) ! y < 0}
#(2) = { true ! y >= 0}
#(3) = { true ! y > 0}

#(4) = { true ! y < 0}
#(5) = ()*

Because the abstraction is syntactic, there may be no best abstraction, so we de-
Þne the concretization (recall thatA is the set of pairs!c, b#such that assert(b)
is checked at program pointc and deÞneA (c) !

!
"c, b#$A b)

ú$ ' (" & ! (B
2
)) & ! (%& +), ú$(#) !

"

c $!

{%s ' $c(#(c)) | ! %s0 = c}

$c ' ! (B
2
) & ! ({%s ' %& + | ! %s0 = c}), $c(C) !

#

bp ! ba $ C

$c(bp ! ba)

$c ' B
2

& ! ({%s ' %& + | ! %s0 = c})

$c(bp ! ba) ! {%s ' %& + | ! %s0 = c $ "bp#%s0 " (+j < |%s| : "ba#%s0 = "A (! %sj)#%sj)} .

Observe that ú$ is decreasing which corresponds to the intuition that an analysis
Þnding no path precondition bp ! ba deÞnes all possible executions in%& + .

Backward path condition and checked expression propagation. The
system of backward equations# = B (#) is (recall that

$
(= ()

%
&

'

B (#)c =
"

c! $ succ(c) , b! b! $ " (c!)

B(cmd(c, c!), b ! b!) , { true ! b | !c, b# ' A }

c ' "

where (writing e[x := e!] for the substitution of e! for x in e)

B (skip , bp ! ba) ! { bp ! ba}
B (x:=e , bp ! ba) ! { bp[x := e] ! ba[x := e]} if bp[x := e] ' B $ ba[x := e] ' B

$ bp[x := e] -!" bc[x := e]
! (otherwise

B (b, bp ! ba) ! { b && bp ! ba} if b && bp ' B $ b && bp -!" ba

! (otherwise

By Cor. 10 and (1-b), the analysis is sound,i.e.

18

the assertion has already been checked on the paths leading to that assertion.
The abstract ordering on !B

2
, �"# is bp ! ba �" b!

p ! b!
a ! b!

p �" bp $ ba �" b!
a.

Different paths to different assertions are abstracted by elements of! ! (B
2
),

%#, eachbp ! ba corresponding to a different path to an assertion. The number

of paths can grow indeÞnitely so! ! (B
2
), %#must be equipped with a widening.

Finally our abstract domain will be ! " & ! (B
2
), ú%#ordered pointwise so as

to attach an abstract property #(c) ' ! (B
2
) to each program point c ' " .

Example 17 The program on the left has abstract properties given on the
right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

#(1) = {odd(x) ! y >= 0,¬odd(x) ! y < 0}
#(2) = {true ! y >= 0}
#(3) = {true ! y > 0}

#(4) = {true ! y < 0}
#(5) = ()*

Because the abstraction is syntactic, there may be no best abstraction, so we de-
Þne the concretization (recall thatA is the set of pairs!c, b#such that assert(b)
is checked at program pointc and deÞneA (c) !

!
"c, b#$A b)

ú$ ' (" & ! (B
2
)) & ! (%& +), ú$(#) !

"

c $!

{%s ' $c(#(c)) | ! %s0 = c}

$c ' ! (B
2
) & ! ({%s ' %& + | ! %s0 = c}), $c(C) !

#

bp ! ba $ C

$c(bp ! ba)

$c ' B
2

& ! ({%s ' %& + | ! %s0 = c})

$c(bp ! ba) ! {%s ' %& + | ! %s0 = c $ �bp�%s0 " (+j < |%s | : �ba�%s0 = �A (! %sj)�%sj)}.

Observe that ú$ is decreasing which corresponds to the intuition that an analysis
Þnding no path precondition bp ! ba deÞnes all possible executions in%& + .

Backward path condition and checked expression propagation. The
system of backward equations# = B (#) is (recall that

$
(= ()

%
&

'

B (#)c =
"

c! $ succ(c) , b! b! $ " (c!)

B(cmd(c, c!), b ! b!) , {true ! b | !c, b# ' A }

c ' "

where (writing e[x := e!] for the substitution of e! for x in e)

B (skip , bp ! ba) ! {bp ! ba}
B (x:=e , bp ! ba) ! {bp[x := e] ! ba[x := e]} if bp[x := e] ' B $ ba[x := e] ' B

$ bp[x := e] -�" bc[x := e]
! (otherwise

B (b, bp ! ba) ! {b && bp ! ba} if b && bp ' B $ b && bp -�" ba

! (otherwise

By Cor. 10 and (1-b), the analysis is sound,i.e.

18

! Concretization for all program points c

the assertion has already been checked on the paths leading to that assertion.
The abstract ordering on !B

2
, !"# is bp ! ba !" b!

p ! b!
a ! b!

p !" bp $ ba !" b!
a.

Di ! erent paths to di! erent assertions are abstracted by elements of! ! (B
2
),

%#, eachbp ! ba corresponding to a di! erent path to an assertion. The number

of paths can grow indeÞnitely so! ! (B
2
), %#must be equipped with a widening.

Finally our abstract domain will be ! " & ! (B
2
), ú%#ordered pointwise so as

to attach an abstract property #(c) ' ! (B
2
) to each program point c ' " .

Example 17 The program on the left has abstract properties given on the
right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

#(1) = { odd(x) ! y >= 0, Âodd(x) ! y < 0}
#(2) = { true ! y >= 0}
#(3) = { true ! y > 0}

#(4) = { true ! y < 0}
#(5) = ()*

Because the abstraction is syntactic, there may be no best abstraction, so we de-
Þne the concretization (recall thatA is the set of pairs!c, b#such that assert(b)
is checked at program pointc and deÞneA (c) !

!
"c, b#$A b)

ú$ ' (" & ! (B
2
)) & ! (%& +), ú$(#) !

"

c $ Γ

{%s ' $c(#(c)) | ! %s0 = c}

$c ' ! (B
2
) & ! ({%s ' %& + | ! %s0 = c}), $c(C) !

#

bp❀ba $ C

$c(bp ! ba)

$c ' B
2

& ! ({%s ' %& + | ! %s0 = c})

$c(bp ! ba) ! {%s ' %& + | ! %s0 = c $ "bp#%s0 " (+j < |%s | : "ba#%s0 = "A (! %s j)#%s j)} .

Observe that ú$ is decreasing which corresponds to the intuition that an analysis
Þnding no path precondition bp ! ba deÞnes all possible executions in%& +.

Backward path condition and checked expression propagation. The
system of backward equations# = B(#) is (recall that

$
(= ()

%
&

'

B(#)c =
"

c! $ succ(c), b❀b! $ ρ(c!)

B(cmd(c, c!), b ! b!) , { true ! b | !c, b# ' A }

c ' "

where (writing e[x := e!] for the substitution of e! for x in e)

B(skip , bp ! ba) ! { bp ! ba}
B(x:=e , bp ! ba) ! { bp[x := e] ! ba[x := e]} if bp[x := e] ' B $ ba[x := e] ' B

$ bp[x := e] -!" bc[x := e]
! (otherwise

B(b, bp ! ba) ! { b &&bp ! ba} if b &&bp ' B $ b &&bp -!" ba

! (otherwise

By Cor. 10 and (1-b), the analysis is sound,i.e.

18

the assertion has already been checked on the paths leading to that assertion.
The abstract ordering on !B

2
, !"# is bp ! ba !" b�

p ! b�
a � b�

p !" bp $ ba !" b�
a.

Di! erent paths to di! erent assertions are abstracted by elements of!℘(B
2
),

%#, eachbp ! ba corresponding to a di! erent path to an assertion. The number

of paths can grow indeÞnitely so!℘(B
2
), %#must be equipped with a widening.

Finally our abstract domain will be !Γ & ℘(B
2
), ú%#ordered pointwise so as

to attach an abstract property ρ(c) ' ℘(B
2
) to each program point c ' Γ .

Example 17 The program on the left has abstract properties given on the
right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

ρ(1) = { odd(x) ! y >= 0, Âodd(x) ! y < 0}
ρ(2) = { true ! y >= 0}
ρ(3) = { true ! y > 0}

ρ(4) = { true ! y < 0}
ρ(5) = ()*

Because the abstraction is syntactic, there may be no best abstraction, so we de-
Þne the concretization (recall thatA is the set of pairs!c, b#such that assert(b)
is checked at program pointc and deÞneA (c) � �

�c, b�∈A b)

úγ ' (Γ & ℘(B
2
)) & ℘(�Σ +), úγ(ρ) �

�

c ∈ !

{�s ' γc(ρ(c)) | ! �s0 = c}

γc ' ℘(B
2
) & ℘({�s ' �Σ + | ! �s0 = c}), γc(C) �

�

bp ! ba ∈ C

γc(bp ! ba)

γc ' B
2

& ℘({�s ' �Σ + | ! �s0 = c})

γc(bp ! ba) � {�s ' �Σ + | ! �s0 = c $ "bp#�s0 " (+j < |�s| : "ba#�s0 = "A (! �sj)#�sj)} .

Observe that úγ is decreasing which corresponds to the intuition that an analysis
Þnding no path precondition bp ! ba deÞnes all possible executions in�Σ + .

Backward path condition and checked expression propagation. The
system of backward equationsρ = B (ρ) is (recall that

�
(= ()





B (ρ)c =

�

c! ∈succ(c) , b! b! ∈" (c!)

B(cmd(c, c�), b ! b�) , { true ! b | !c, b# ' A }

c ' Γ

where (writing e[x := e�] for the substitution of e� for x in e)

B (skip , bp ! ba) � { bp ! ba}
B (x:=e , bp ! ba) � { bp[x := e] ! ba[x := e]} if bp[x := e] ' B $ ba[x := e] ' B

$ bp[x := e] -!" bc[x := e]
� (otherwise

B (b, bp ! ba) � { b &&bp ! ba} if b &&bp ' B $ b &&bp -!" ba

� (otherwise

By Cor. 10 and (1-b), the analysis is sound,i.e.

18

Command, successor and predecessor of a program point

! " !s ! # !" + : ! !s !
0 = i ! !s ! # !R A (b) ! def. !# D "

! " !s ! # !" + : ! !s !
0 = i ! ($k < |!s ! | : %!s !

0, !s !
k & #RA (b))

! def. !R A (b) ! { !s # !$ + | $i < |!s | : %!s0, !si & #RA (b)} "

! " !s ! # !" + : ! !s !
0 = i ! ($k < |!s ! | : %! !s !

k , b& #A ' #b$!s !
0 = #b$!s !

k)

! def. RA (b) ! { %s, s!&| %! s!, b& #A ' #b$s = #b$s!} "

! Â#b$!s0 ' (" j < |!s | : "%! !sj , bÕ& # A : #bÕ$!sj) ' ($k < |!s | : %! !sk , b& #
A ' #b$!s0 = #b$!sk) ! for the rejected good run!s"

! $ k < |!s | : %! !sk , b& #A ' Â#b$!sk ' #b$!sk ! a contradiction" ()

By Th. 6 and 13, the precondition generation is sound: a rejected initial state
would inevitably have lead to an assertion failure.

Example 14 Continuing Ex. 1, the assertionA != null is checked on all paths
and A is not changed (only its elements are), so the data ßow analysis is able to
move the assertion as a precondition. ()

However, the data ßow abstraction is rather imprecise because a precondition is
checked on code entry only if
1. the exact same precondition is checked in anassert (since scalar and collec-

tion variable modiÞcations are not taken into account, other than annihilating
the backward propagation);

2. and this, whichever execution path is taken (conditions are not taken into
account).

We propose remedies to1 and 2 in the following Sect. 8 and 9.

8 Contract precondition inference for scalar variables by
forward symbolic analysis

Let us deÞne thecmd, succand pred functions mapping control points to their
command, successors and predecessors (" c, c! # % : c! # pred(c) * c # succ(c!)).

c: x:=e; c ! :... cmd(c, c!) ! x:=e succ(c) ! { c!} pred(c!) ! { c}
c: assert(b); c ! :... cmd(c, c!) ! b succ(c) ! { c!} pred(c!) ! { c}
c: if b then cmd(c, c!

t) ! b succ(c) ! { c!
t , c!

f }
c!

t :...c
!!
t : cmd(c, c!

f) ! Âb pred(c!
t) ! { c}

else cmd(c!!
t , c!) ! skip succ(c!!

t) ! { c!}
c!

f :...c !!
f : cmd(c!!

f , c!) ! skip succ(c!!
f) ! { c!} pred(c!

f) ! { c}
fi; c ! ... pred(c!) ! { c!!

t , c!!
f }

c :while c ! : b do cmd(c, c!) ! skip succ(c) ! { c!} pred(c!) ! { c, c!!
b }

c!
b:...c !!

b : cmd(c! , c!
b) ! b succ(c!) ! { c!

b, c!! } pred(c!
b) ! { c!}

od; c !! ... cmd(c! , c!!) ! Âb succ(c!!
b) ! { c!} pred(c!!) ! { c!}

cmd(c!!
b , c) ! skip

15

Backward symbolic execution

Theorem 18 If ! ú! lfp
ú!

B then "# + ! ú$(!). "#

Observe that B can be ú!$ -overapproximated (e.g. to allow for simpliÞcations of
the Boolean expressions).

Proof Apply Cor. 10 to "# + = gfp
!
!" + ! "T . "B 1 %"# 2 " "T (1-b).

Example 19 The analysis of the programif false { assert(false) } leads to
the precondition true since the assert is never executed (the analyzer forward
analysis will signal unreachability). "#

Example 20 The analysis of the program if x != null { assert(x != null)
} leads to the precondition true since the assert is always true when checked."#

Example 21 The analysis of the program if x == null { assert(x != null)
} leads to the precondition x!=null since the assert(x!=null) will always fail
when x==null holds on program entry. "#

Example 22 The analysis of the following program

/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */

leads to the following iterates at program point 1: ! 0(1) = &, ! 1(1) = { x '= 0 !
x > 0} , which is stable since the next iterate is (x '= 0 (x > 0 (x) 1 '= 0) !
(x) 1 > 0) * x > 1 ! x > 1, which is trivially satisÞed hence not added to
! 2(1) = ! 1(1). "#

Example 23 The backward symbolic analysis of Ex.1 moves the checks(A !=
null) to the precondition. "#

A simple widening to enforce convergence would limit the size of the elements
of %(B

2
), which is sound since eliminating a pair bp ! ba would just lead to

ignore some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis ! ú! lfp
!

B , the syntactic pre-
condition generated at entry control point i + I ! � { s + I | " s = i } is

Pi � &&
bp ! ba " #(i)

(!(bp) || (ba)) (again, assuming&&&� true)

Example 24 For Ex. 22, the precondition generated at program point1 will be
!(x != 0) || (x > 0) since the static analysis was able to show that only the
Þrst assert in the loop does matter because when passed successfully it implies
all the following ones. "#

19

! C#$,'*%5.#$1.#&/2B#)?$."#$5-0#&I/%%&'=1*/2'-

!

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Di ! erent paths to di! erent assertions are abstracted by elements of! ! (B
2
), "# ,

eachbp ! ba corresponding to a di! erent path to an assertion. The number of paths

can grow indeÞnitely so! ! (B
2
), "# must be equipped with a widening.

Finally our abstract domain will be ! " $! (B
2
), ú"# ordered pointwise so as to

attach an abstract property #(c) %! (B
2
) to each program point c %" .

Example 16 The program on the left has abstract properties given on the right.

/* 1: */ if (odd(x)) {
/* 2: */ y++;
/* 3: */ assert(y > 0);

} else {
/* 4: */ assert(y < 0); }
/* 5: */

#(1) = {odd(x) ! y >= 0,¬odd(x) ! y < 0}
#(2) = {true ! y >= 0}
#(3) = {true ! y > 0}

#(4) = {true ! y < 0}
#(5) = & '(

Because the abstraction is syntactic, there may be no best abstraction, so we deÞne
the concretization (recall that A is the set of pairs !c, b# such that assert(b) is
checked at program point c and deÞneA (c) !

!
! c, b"# A b)

ú$ % (" $! (B
2
)) $! (%& +), ú$(#) !

"

c # !

{%s %$c(#(c)) | ! %s0 = c}

$c % ! (B
2
) $! ({%s % %& + | ! %s0 = c}), $c(C) !

#

bp! ba # C

$c(bp ! ba)

$c % B
2

$! ({%s % %& + | ! %s0 = c})

$c(bp ! ba) ! {%s % %& + | ! %s0 = c) !bp"%s0 * (+j < |%s | : !ba"%s0 = !A (! %sj)"%sj)}.

Observe that ú$ is decreasing which corresponds to the intuition that an analysis
Þnding no path precondition bp ! ba deÞnes all possible executions in%& + .

Backward path condition and checked expression propagation. The system
of backward equations# = B (#) is (recall that

$
&= &)

%
&

'

B (#)c =
"

c! # succ(c) , b! b! # " (c!)

B (cmd(c, c$), b ! b$) , {true ! b | !c, b# %A }

c %"

where (writing e[x := e$] for the substitution of e$ for x in e)

B (skip , bp ! ba) ! {bp ! ba}
B (x:=e , bp ! ba) ! {bp[x := e] ! ba[x := e]} if bp[x := e] %B) ba[x := e] %B

) bp[x := e] -#* bc[x := e]
! & otherwise

B (b, bp ! ba) ! {b &&bp ! ba} if b &&bp %B) b &&bp -#* ba

! & otherwise

By Cor. 9 and (1-b), the analysis is sound,i.e.

Theorem 17 If # ú" lfp
ú%

B then %'+ " ú$(#). '(

Observe that B can be ú#* -overapproximated (e.g. to allow for simpliÞcations of the
Boolean expressions).

Example 18 The analysis of the following program
/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */

9

Soundness of the backward symbolic execution

Theorem 18 If ! ⊆̇ lfp
ú⊆
B then "# + ⊆ $̇(!). ��

Observe that B can be ˙!⇒ -overapproximated (e.g. to allow for simplifications of

the Boolean expressions).

Proof Apply Cor. 10 to "# + = gfp
⊆
!" + ! "T . "B 1 ∪ "# 2 " "T (1-b).

Example 19 The analysis of the program if false { assert(false) } leads to

the precondition true since the assert is never executed (the analyzer forward

analysis will signal unreachability). ��

Example 20 The analysis of the program if x != null { assert(x != null)
} leads to the precondition true since the assert is always true when checked. ��

Example 21 The analysis of the program if x == null { assert(x != null)
} leads to the precondition x!=null since the assert(x!=null) will always fail

when x==null holds on program entry. ��

Example 22 The analysis of the following program

/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */

leads to the following iterates at program point 1: ! 0(1) = ∅, ! 1(1) = { x �= 0 ❀

x > 0} , which is stable since the next iterate is (x �= 0 ∧ x > 0 ∧ x − 1 �= 0) ❀

(x − 1 > 0) ≡ x > 1 ❀ x > 1, which is trivially satisfied hence not added to

! 2(1) = ! 1(1). ��

Example 23 The backward symbolic analysis of Ex. 1 moves the checks (A !=
null) to the precondition. ��

A simple widening to enforce convergence would limit the size of the elements

of %(B
2
), which is sound since eliminating a pair bp ❀ ba would just lead to

ignore some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis ! ⊆̇ lfp
⊆

B, the syntactic pre-

condition generated at entry control point i ∈ I π ! { s ∈ I | " s = i} is

Pi ! &&
bp ! ba∈#(i)

(!(bp) || (ba)) (again, assuming &&∅ ! true)

Example 24 For Ex. 22, the precondition generated at program point 1 will be

!(x != 0) || (x > 0) since the static analysis was able to show that only the

first assert in the loop does matter because when passed successfully it implies

all the following ones. ��

19

Theorem 18 If ! ú! lfp
˙!
B then "# + ! ú$(!). "#

Observe that B can be ú!$ -overapproximated (e.g. to allow for simpliÞcations of
the Boolean expressions).

Proof Apply Cor. 10 to "# + = gfp
!
!" + ! "T . "B1 %"# 2 " "T (1-b).

Example 19 The analysis of the programif false { assert(false) } leads to
the precondition true since the assert is never executed (the analyzer forward
analysis will signal unreachability). "#

Example 20 The analysis of the program if x != null { assert(x != null)

} leads to the precondition true since the assert is always true when checked."#

Example 21 The analysis of the program if x == null { assert(x != null)

} leads to the precondition x!=null since the assert(x!=null) will always fail
when x==null holds on program entry. "#

Example 22 The analysis of the following program

/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */

leads to the following iterates at program point 1: ! 0(1) = &, ! 1(1) = { x '= 0 !
x > 0} , which is stable since the next iterate is (x '= 0 (x > 0 (x) 1 '= 0) !
(x) 1 > 0) * x > 1 ! x > 1, which is trivially satisÞed hence not added to
! 2(1) = ! 1(1). "#

Example 23 The backward symbolic analysis of Ex.1 moves the checks(A !=
null) to the precondition. "#

A simple widening to enforce convergence would limit the size of the elements
of %(B

2
), which is sound since eliminating a pair bp ! ba would just lead to

ignore some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis ! ú! lfp
!

B, the syntactic pre-
condition generated at entry control point i + Iπ ! { s + I | " s = i} is

Pi ! &&
bp ! ba " #(i)

(!(bp) || (ba)) (again, assuming&&&! true)

Example 24 For Ex. 22, the precondition generated at program point1 will be
!(x != 0) || (x > 0) since the static analysis was able to show that only the
Þrst assert in the loop does matter because when passed successfully it implies
all the following ones. "#

19

Example

Theorem 18 If ! ú! lfp
˙!
B then "# + ! ú$(!). "#

Observe that B can be ú!$ -overapproximated (e.g. to allow for simpliÞcations of
the Boolean expressions).

Proof Apply Cor. 10 to "# + = gfp
!
!" + ! "T . "B 1 %"# 2 " "T (1-b).

Example 19 The analysis of the programif false { assert(false) } leads to
the precondition true since the assert is never executed (the analyzer forward
analysis will signal unreachability). "#

Example 20 The analysis of the program if x != null { assert(x != null)

} leads to the precondition true since the assert is always true when checked."#

Example 21 The analysis of the program if x == null { assert(x != null)

} leads to the precondition x!=null since the assert(x!=null) will always fail
when x==null holds on program entry. "#

Example 22 The analysis of the following program

/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */

leads to the following iterates at program point 1:

! 0(1) = & Initialization

! 1(1) = { x '= 0 ! x > 0}

! 2(1) = ! 1(1) since (x '= 0 (x > 0 (x) 1 '= 0) ! (x) 1 > 0)
* x > 1 ! x > 1 "#

Example 23 The backward symbolic analysis of Ex.1 moves the checks(A !=
null) to the precondition. "#

A simple widening to enforce convergence would limit the size of the elements
of %(B

2
), which is sound since eliminating a pair bp ! ba would just lead to

ignore some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis ! ú! lfp
!

B, the syntactic pre-
condition generated at entry control point i + I ! ! { s + I | " s = i} is

Pi ! &&
bp ! ba " #(i)

(!(bp) || (ba)) (again, assuming&&&! true)

Example 24 For Ex. 22, the precondition generated at program point1 will be
!(x != 0) || (x > 0) since the static analysis was able to show that only the
Þrst assert in the loop does matter because when passed successfully it implies
all the following ones. "#

19

Backward symbolic execution-based precondition generation

Example

Theorem 18 If ! ú! lfp
ú!

B then "# + ! ú$(!). "#

Observe that B can be ú!$ -overapproximated (e.g. to allow for simpliÞcations of
the Boolean expressions).

Proof Apply Cor. 10 to "# + = gfp
!
�Σ + λ "T . "B 1 %"# 2 " "T (1-b).

Example 19 The analysis of the programif false { assert(false) } leads to
the precondition true since the assert is never executed (the analyzer forward
analysis will signal unreachability). "#

Example 20 The analysis of the program if x != null { assert(x != null)
} leads to the precondition true since the assert is always true when checked."#

Example 21 The analysis of the program if x == null { assert(x != null)
} leads to the precondition x!=null since the assert(x!=null) will always fail
when x==null holds on program entry. "#

Example 22 The analysis of the following program

/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */

leads to the following iterates at program point 1:

! 0(1) = & Initialization

! 1(1) = {x '= 0 ! x > 0}
! 2(1) = ! 1(1) since (x '= 0 (x > 0 (x) 1 '= 0) ! (x) 1 > 0)

* x > 1 ! x > 1 "#

Example 23 The backward symbolic analysis of Ex.1 moves the checks(A !=
null) to the precondition. "#

A simple widening to enforce convergence would limit the size of the elements
of %(B

2
), which is sound since eliminating a pairbp ! ba would just lead to

ignore some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis ! ú! lfp
!

B , the syntactic pre-
condition generated at entry control point i + I ! ! {i + & | , s + I : πs = i}
is

Pi ! &&
bp❀ba" ρ(i)

(!(bp) || (ba)) (again, assuming&&&! true)

19

Theorem 18 If ! ú! lfp
ú!

B then "# + ! ú$(!). "#

Observe that B can be ú!$ -overapproximated (e.g. to allow for simpliÞcations of
the Boolean expressions).

Proof Apply Cor. 10 to "# + = gfp
!
!" + ! "T . "B 1 %"# 2 " "T (1-b).

Example 19 The analysis of the programif false { assert(false) } leads to
the precondition true since the assert is never executed (the analyzer forward
analysis will signal unreachability). "#

Example 20 The analysis of the program if x != null { assert(x != null)
} leads to the precondition true since the assert is always true when checked."#

Example 21 The analysis of the program if x == null { assert(x != null)
} leads to the precondition x!=null since the assert(x!=null) will always fail
when x==null holds on program entry. "#

Example 22 The analysis of the following program

/* 1: */ while (x != 0) {
/* 2: */ assert(x > 0);
/* 3: */ x--;
/* 4: */ } /* 5: */

leads to the following iterates at program point 1:

! 0(1) = & Initialization

! 1(1) = { x '= 0 ! x > 0}

! 2(1) = ! 1(1) since (x '= 0 (x > 0 (x) 1 '= 0) ! (x) 1 > 0)
* x > 1 ! x > 1 "#

Example 23 The backward symbolic analysis of Ex.1 moves the checks(A !=
null) to the precondition. "#

A simple widening to enforce convergence would limit the size of the elements
of %(B

2
), which is sound since eliminating a pair bp ! ba would just lead to

ignore some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis ! ú! lfp
!

B , the syntactic pre-
condition generated at entry control point i + I ! � { i + & | , s + I : " s = i }
is

Pi � &&
bp ! ba " #(i)

(!(bp) || (ba)) (again, assuming&&&� true)

19

Example 24 For Ex. 22, the precondition generated at program point1 will be
!(x != 0) || (x > 0) since the static analysis was able to show that only the
Þrst assert in the loop does matter because when passed successfully it implies
all the following ones. !"

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i # Γ is

Pi ! {s # Σ | πs = i $! Pi "s}

and so for all program entry points (in case there is more than one)

PI ! {s # Σ | %i # I π : s # Pi }

Theorem 25 P A & I ' PI . !"

So, by Th. 6, the data ßow analysis is sound, a rejected initial state would
inevitably have lead to an assertion failure.

Proof Assume that ρ ú' lfp
ú⊆ B and that, by reductio ad absurdum, P A & I ('

PI . Then there is an initial state in P A & I not in PI that is not in Pi for some
i # I π. By def. (5) of P A , this state initiates a good run �s # �τ + &¬�E+

A which is
refused on entry point i # I π such that π�s0 = i (the run start at program point
i). This means that %bp ! ba # ρ(i) such that ¬(! (bp) ba)"�s0) (the run is
rejected on entry) while * j < |�s | : �sj (#EA . so* j < |�s | : *+π�sj , bÕ, # A : !bÕ"�sj

(since EA ! {s # Σ | %+c, b, # A : πs = c $!b"s = false}). But then we have

�τ + ' úγ(ρ) #by Th. 18 sinceρ ú' lfp
ú⊆ B$

) {�s # �τ + | π�s0 = i} ' {�s # úγ(ρ) | π�s0 = i} #def. ' $

) {�s # �τ + | π�s0 = i} ' γc(ρ) #def. úγ$

and so for the good run�s # �τ + &¬�E+
A not in PI , we have�s # γc(ρ) and so, by def.

of γc, for the bp ! ba # ρ(i) such that ¬(! (bp) ba)"�s0) - !bp"�s0 $ ¬(!ba"�s0),
we have

�s # γc(bp ! ba)

) !bp"�s0) (%j < |�s | : !ba"�s0 = !A(π�sj)"�sj) #def. γc$

) % j < |�s | : !ba"�s0 = !A(π�sj)"�sj #since!bp"�s0 = true$

) % j < |�s | : ¬!A(π�sj)"�sj #since!ba"�s0 = false$

in contradiction with the fact �s # �τ + & ¬�E+
A is a good run. !"

Contract precondition inference by symbolic analysis in Sect.9 is more precise
that data ßow analysis in Sect.7 and will be used for scalar variables, including
size and bounds of collections, in next Sect.10

20

forward analysis
from precondition

(IV) Forward analysis
for collections

General idea

! !"#$%&#B1'56$/-/)?X#6$+'&$6,/)/&$B/&1/()#6$,/-$(#$
/%%)1#0$#)#*#-.A16#$.'$,'))#,2'-6⟹$*5,"$.''$,'6.)?

! $:%%)?$6#4*#-.A16#$.'$,'))#,2'-6f

! @'&A/&0$'&$(/,8A/&0$6?*(')1,$#=#,52'-$*14".$
(#$,'6.)?F$/-$#Z,1#-.$6')52'-16-##0#0⟹$6#4*#-.#0$+'&A/&0$0/./\'A$/-/)?616

Recall on segmentation (from last year talk)

a b0 n

[0,100] [-100,100] [-100,-1]

A: <{0},[0,100],{a}? ,[-100,100], {b}?,[-100,-1],{n}?>

! O=/*%)# A:

! $@'&*/))?F$."#$/(6.&/,.$0'*/1-$+5-,.'&$16

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

leads to the following iterates at program point 1: ! 0(1) = ! , ! 1(1) = { x "= 0 ! x >
0} , which is stable since the next iterate is (x "= 0 # x > 0# x $ 1 "= 0) ! (x $ 1 > 0)
% x > 1 ! x > 1, which is trivially satisÞed hence not added to! 2(1) = ! 1(1). &'

Example 19 The backward symbolic analysis of Ex. 1 moves the checks(A !=
null) to the precondition. &'

A simple widening to enforce convergence would limit the size of the elements of
" (B

2
), which is sound since eliminating a pair bp ! ba would just lead to ignore

some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis! ú(lfp
!

B , the syntactic precondi-
tion generated at entry control point i) I ! ! { i) # | * s) I : ! s = i } is

Pi ! &&
bp ! ba " ! (i)

(!(bp) || (ba)) (again, assuming&&! ! true)

Example 20 For Ex. 18, the precondition generated at program point1 will be !(x
!= 0) || (x > 0) since the static analysis was able to show that only the Þrst assert
in the loop does matter because when passed successfully it implies all the following
ones. &'

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i) # is Pi ! { s) $ | ! s = i # ! Pi "s} and so for all program entry
points (in case there is more than one)PI ! { s) $ | * i) I ! : s) Pi } .

Theorem 21 P A + I (PI . &'

So, by Th. 6, the data ßow analysis is sound, a rejected initial state would inevitably
have lead to an assertion failure.

10 Contract precondition inference for collections by forward
static analysis

Symbolic execution as considered in Sect.8 and 9 for scalars is harder for data
structures since all the elements of the data structure must be handled individually
without loss of precision. We propose a simple solution for collections (including
arrays). The idea is to move to the precondition the assertions on elements of the
collection which can be proved to be unmodiÞed before reaching the condition.

Abstract domain for scalar variables. For scalar variablesx) x , we assume that
we are given abstract properties in%) # , R with concretization &x (%)) " ($).
Moreover, we consider a dataßow analysis with abstract properties') # , x , A
and pointwise extension of the order 0- 0 . 1 - 1 on A ! { 0, 1} where 0 means
ÒunmodiÞedÓ and 1 ÒunknownÓ. The concretization is

&(%, ') ! { (s) ($ + | / j < |(s | : (sj) &x (%) #
/ x) x : ' (! (sj)(x) = 0 0 !x"(s0 = !x"(s! "s j }

Segmentation abstract domain. For collections X) X , we propose to use seg-
mentation as introduced by [16]. A segmentation abstract property in S(A) depends
on abstract properties in A holding for elements of segments. So

S(A) ! { (B 1 A) 1 (B 1 A 1 { , ?})k 1 (B 1 { , ?}) | k " 0} 2 { 3 }

and the segmentation abstract properties have the form
{ e1

1 ... e1
m 1} A1 { e2

1 ... e2
m 2} [?2] A2 . . . An # 1 { en

1 ... en
m n} [?n]

where

10

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

leads to the following iterates at program point 1: ! 0(1) = ! , ! 1(1) = { x "= 0 ❀ x >
0} , which is stable since the next iterate is (x "= 0 # x > 0 # x $ 1 "= 0) ❀ (x $ 1 > 0)
% x > 1 ❀ x > 1, which is trivially satisfied hence not added to ! 2(1) = ! 1(1). &'

Example 19 The backward symbolic analysis of Ex. 1 moves the checks (A !=
null) to the precondition. &'

A simple widening to enforce convergence would limit the size of the elements of
" (B 2), which is sound since eliminating a pair bp ❀ ba would just lead to ignore
some assertion in the precondition, which is always correct.

Precondition generation. Given an analysis ! (̇ lfp
!

B , the syntactic precondi-
tion generated at entry control point i) I ! ! { i) # | * s) I : ! s = i } is

Pi ! &&
bp ! ba " ! (i)

(!(bp) || (ba)) (again, assuming &&! ! true)

Example 20 For Ex. 18, the precondition generated at program point 1 will be !(x
!= 0) || (x > 0) since the static analysis was able to show that only the first assert
in the loop does matter because when passed successfully it implies all the following
ones. &'

The set of states for which the syntactic precondition Pi is evaluated to true at
program point i) # is Pi ! { s) $ | ! s = i # ! Pi "s} and so for all program entry
points (in case there is more than one) PI ! { s) $ | * i) I ! : s) Pi } .

Theorem 21 P A + I (PI . &'

So, by Th. 6, the data flow analysis is sound, a rejected initial state would inevitably
have lead to an assertion failure.

10 Contract precondition inference for collections by forward
static analysis

Symbolic execution as considered in Sect. 8 and 9 for scalars is harder for data
structures since all the elements of the data structure must be handled individually
without loss of precision. We propose a simple solution for collections (including
arrays). The idea is to move to the precondition the assertions on elements of the
collection which can be proved to be unmodified before reaching the condition.

Abstract domain for scalar variables. For scalar variables x) x , we assume that
we are given abstract properties in %) # , R with concretization &x (%)) " ($).
Moreover, we consider a dataflow analysis with abstract properties ') # , x , A
and pointwise extension of the order 0 - 0 . 1 - 1 on A ! { 0, 1} where 0 means
“unmodified” and 1 “unknown”. The concretization is

&(%, ') ! { (s) ($ + | / j < |(s | : (sj) &x (%) #
/ x) x : ' (! (sj)(x) = 0 0 !x"(s0 = !x"(s! "s j }

Segmentation abstract domain. For collections X) X , we propose to use seg-
mentation as introduced by [16]. A segmentation abstract property in S(A) depends
on abstract properties in A holding for elements of segments. So

S(A) ! { (B 1 A) 1 (B 1 A 1 { , ?})k 1 (B 1 { , ?}) | k " 0} 2 { 3 }

and the segmentation abstract properties have the form
{ e1

1 ... e1
m 1} A1 { e2

1 ... e2
m 2} [?2] A2 . . . An # 1 { en

1 ... en
m n} [?n]

where

10

#=%ʕ'-6
'-$6,/)/&$B/&1/()#6

;/))$"/B#$#P5/)$
B/)5#6>

)'A#&$
('5-0$'+$
6#4*#-.

;1-,)50#0>

/(6.&/,.$
%&'%#&.?$'+$/))$
#)#*#-.6$1-$

6#4*#-.

5%%#&$
('5-0$'+$
6#4*#-.

;#=,)50#0>

%'661()#$
#*%.?-#66$
'+$6#4*#-.

?: segment may be empty, segment is not empty

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Ð E is a set of symbolic expressions in normal form depending on variables. Here, the
abstract expressionsE are restricted to the normal form v+ k wherev ! x " { v0} is
an integer variable plus an integer constantk ! Z (an auxiliary variable v0 #!x is
assumed to be always 0 and is used to represent the integer constantk as v0 + k);

Ð the segment bounds{ ei
1 ... ei

mi} ! B, i ! [1, n], n > 1, are Þnite non-empty sets of
symbolic expressions in normal formei

j ! E;
Ð the abstract predicatesAi ! A denote properties that are valid for all the elements

in the collection between the bounds; and
Ð the optional question mark [?i] follows the upper bound of a segment. Its presence

? means that the segment might be empty. Its absence means that the segment
cannot be empty. Because this information is attached to the segment upper bound
(which is also the lower bound of the next segment), the lower bound{ e1

1 . . . e1
m1}

of the Þrst segment never has a question mark.${ , ?} , ! , " , # %is a complete
lattice with & ?.

Segmentation modiÞcation and checking analyses. We consider a segmen-
tation modiÞcation analysis with abstract domain S(M) where M $ { e, d} with
e ' e ! d ' d. The abstract property e states that all the elements in the segment
must be equal to their initial value (so ! (e) $ { $v, v%| v ! V}) and the abstract
property d means that some element in the segment might have been modiÞed hence
might be di! erent from its initial value (in which case we deÞne! (d) $ ().

For each assert in the program, we also use asegmentation checking analysis
with abstract domain C $ { n, c} where n ' n ! c ' c to collect the set of elements of
a collection that have been checked by thisassert . The abstract property c states
that all the elements in the segment have deÞnitely been checked by the relevant
assert and n when some element in the segment may not have been checked.

Example 22 The analysis of Ex. 1 proceeds as follows (the Þrst segmentation in
S(M) collects element modiÞcations forA while the second in segmentationS(C)
collects the set of elementsA[i] of A checked by the assertion at program point4:
while equal to its initial value. The classical analyses forA (not null whenever used)
and i are not shown.).

(a) 1: {0} e{A.length}? - {0} n{A.length}?
no element yet modiÞed (e) and none checked (n), array may be empty

(b) 2: {0,i} e{A.length}? - {0,i} n{A.length}? i = 0
(c) 3: ⊥ � ({0,i} e{A.length}? - {0,i} n{A.length}?) join

= {0,i} e{A.length}? - {0,i} n{A.length}?
(d) 4: {0,i} e{A.length} - {0,i} n{A.length}

last and only segment hence array not empty (sinceA.length > i = 0)
(e) 5: {0,i} e{A.length} - {0,i} c{1,i+1} n{A.length}?

A[i] checked while unmodiÞed
(f) 6: {0,i} d{1,i+1} e{A.length}? - {0,i} c{1,i+1} n{A.length}?

A[i] has been modiÞed
(g) 7: {0,i-1} d{1,i} e{A.length}? - {0,i-1} c{1,i} n{A.length}?

invertible assignment i old = i new) 1
(h) 3: {0,i} e{A.length}? * {0,i-1} d{1,i} e{A.length}? - join

{0,i} n{A.length}? * {0,i-1} c{1,i} n{A.length}?
= {0} e{i} e{A.length}? * {0} d{i} e{A.length}? - segment uniÞcation

{0} n{i} n{A.length}? * {0} c{i} n{A.length}?

11

(*) Tech. Rept. no. MSR-TR-2009-194, Sep. 2009, submitted.

(*)

Basic abstract domains for segments
! ModiÞcation analysis

M$/))$#)#*#-.6$1-$."#$6#4*#-.$*56.$(#$#P5/)$.'$
."#1&$1-12/)$B/)5#
M$'."#&A16#

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Ð E is a set of symbolic expressions in normal form depending on variables. Here, the
abstract expressionsE are restricted to the normal form v+ k wherev ! x " { v0} is
an integer variable plus an integer constantk ! Z (an auxiliary variable v0 #!x is
assumed to be always 0 and is used to represent the integer constantk as v0 + k);

Ð the segment bounds{ ei
1 ... ei

m i } ! B, i ! [1, n], n > 1, are Þnite non-empty sets of
symbolic expressions in normal formei

j ! E;
Ð the abstract predicatesAi ! A denote properties that are valid for all the elements

in the collection between the bounds; and
Ð the optional question mark [?i] follows the upper bound of a segment. Its presence

? means that the segment might be empty. Its absence means that the segment
cannot be empty. Because this information is attached to the segment upper bound
(which is also the lower bound of the next segment), the lower bound{ e1

1 . . . e1
m 1 }

of the Þrst segment never has a question mark.${ , ?} , ! , " , # %is a complete
lattice with & ?.

Segmentation modiÞcation and checking analyses. We consider a segmen-
tation modification analysis with abstract domain S(M) where M $ { e, d} with
e ' e ! d ' d. The abstract property e states that all the elements in the segment
must be equal to their initial value (so ! (e) $ { $v, v%| v ! V}) and the abstract
property d means that some element in the segment might have been modiÞed hence
might be di! erent from its initial value (in which case we deÞne! (d) $ ().

For each assert in the program, we also use asegmentation checking analysis
with abstract domain C $ { n, c} wheren ' n ! c ' c to collect the set of elements of
a collection that have been checked by thisassert . The abstract property c states
that all the elements in the segment have deÞnitely been checked by the relevant
assert and n when some element in the segment may not have been checked.

Example 22 The analysis of Ex. 1 proceeds as follows (the Þrst segmentation in
S(M) collects element modiÞcations forA while the second in segmentationS(C)
collects the set of elementsA[i] of A checked by the assertion at program point4:
while equal to its initial value. The classical analyses forA (not null whenever used)
and i are not shown.).

(a) 1: {0} e{A.length}? - {0} n{A.length}?
no element yet modiÞed (e) and none checked (n), array may be empty

(b) 2: {0,i} e{A.length}? - {0,i} n{A.length}? i = 0
(c) 3: ! " ({0,i} e{A.length}? - {0,i} n{A.length}?) join

= {0,i} e{A.length}? - {0,i} n{A.length}?
(d) 4: {0,i} e{A.length} - {0,i} n{A.length}

last and only segment hence array not empty (sinceA.length > i = 0)
(e) 5: {0,i} e{A.length} - {0,i} c{1,i+1} n{A.length}?

A[i] checked while unmodiÞed
(f) 6: {0,i} d{1,i+1} e{A.length}? - {0,i} c{1,i+1} n{A.length}?

A[i] has been modiÞed
(g) 7: {0,i-1} d{1,i} e{A.length}? - {0,i-1} c{1,i} n{A.length}?

invertible assignment i old = i new) 1
(h) 3: {0,i} e{A.length}? * {0,i-1} d{1,i} e{A.length}? - join

{0,i} n{A.length}? * {0,i-1} c{1,i} n{A.length}?
= {0} e{i} e{A.length}? * {0} d{i} e{A.length}? - segment uniÞcation

{0} n{i} n{A.length}? * {0} c{i} n{A.length}?

11

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

– E is a set of symbolic expressions in normal form depending on variables. Here, the
abstract expressionsE are restricted to the normal form v+ k wherev ! x " { v0} is
an integer variable plus an integer constantk ! Z (an auxiliary variable v0 #!x is
assumed to be always 0 and is used to represent the integer constantk asv0 + k);

– the segment bounds{ ei
1 ... ei

m i } ! B, i ! [1, n], n > 1, are Þnite non-empty sets of
symbolic expressions in normal formei

j ! E;
– the abstract predicatesAi ! A denote properties that are valid for all the elements

in the collection between the bounds; and
– the optional question mark [?i] follows the upper bound of a segment. Its presence

? means that the segment might be empty. Its absence means that the segment
cannot be empty. Because this information is attached to the segment upper bound
(which is also the lower bound of the next segment), the lower bound{ e1

1 . . . e1
m 1}

of the Þrst segment never has a question mark.${ , ?} , �, �, �%is a complete
lattice with & ?.

Segmentation modification and checking analyses. We consider a segmen-
tation modiÞcation analysis with abstract domain S(M) where M � { e, d} with
e ' e ! d ' d. The abstract property e states that all the elements in the segment
must be equal to their initial value (so ! (e) � { $v, v%| v ! V}) and the abstract
property d means that some element in the segment might have been modiÞed hence
might be di! erent from its initial value (in which case we deÞne! (d) � ().

For each assert in the program, we also use asegmentation checking analysis
with abstract domain C� { n, c} where n ' n ! c ' c to collect the set of elements of
a collection that have been checked by thisassert. The abstract property c states
that all the elements in the segment have deÞnitely been checked by the relevant
assert and n when some element in the segment may not have been checked.

Example 22 The analysis of Ex. 1 proceeds as follows (the Þrst segmentation in
S(M) collects element modiÞcations forA while the second in segmentationS(C)
collects the set of elementsA[i] of A checked by the assertion at program point4:
while equal to its initial value. The classical analyses forA (not null whenever used)
and i are not shown.).

(a) 1: {0} e{A.length}? - {0}n{A.length}?
no element yet modiÞed (e) and none checked (n), array may be empty

(b) 2: {0,i} e{A.length}? - {0,i}n{A.length}? i = 0
(c) 3: ! " ({0,i} e{A.length}? - {0,i}n{A.length}?) join

= {0,i} e{A.length}? - {0,i}n{A.length}?
(d) 4: {0,i} e{A.length} - {0,i}n{A.length}

last and only segment hence array not empty (sinceA.length > i = 0)
(e) 5: {0,i} e{A.length} - {0,i}c{1,i+1}n{A.length}?

A[i] checked while unmodiÞed
(f) 6: {0,i} d{1,i+1}e{A.length}? - {0,i}c{1,i+1}n{A.length}?

A[i] has been modiÞed
(g) 7: {0,i-1} d{1,i}e{A.length}? - {0,i-1}c{1,i}n{A.length}?

invertible assignment iold = inew) 1
(h) 3: {0,i} e{A.length}? * {0,i-1}d{1,i}e{A.length}? - join

{0,i} n{A.length}? * {0,i-1}c{1,i}n{A.length}?
= {0} e{i}e{A.length}? * {0}d{i}e{A.length}? - segment uniÞcation

{0} n{i}n{A.length}? * {0}c{i}n{A.length}?

11

! Checking analysis

: /))$#)#*#-.6$A[i]$1-$."#$6#4*#-.$*56.$"/B#$
(##-$, "#,8#0$1-$/66#&.;b(A[i])>$A"1)#$#P5/)$.'$
."#1&$1-12/)$B/)5#$;/6$0#.#&*1-#0$(?
."#$/('B#$*'01E,/2'-$/-/)?616>

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Ð E is a set of symbolic expressions in normal form depending on variables. Here, the
abstract expressionsE are restricted to the normal form v+ k wherev ! x " {v0} is
an integer variable plus an integer constantk ! Z (an auxiliary variable v0 #!x is
assumed to be always 0 and is used to represent the integer constantk as v0 + k);

Ð the segment bounds{ei
1 ... ei

m i } ! B, i ! [1, n], n > 1, are Þnite non-empty sets of
symbolic expressions in normal formei

j ! E ;
Ð the abstract predicatesAi ! A denote properties that are valid for all the elements

in the collection between the bounds; and
Ð the optional question mark [?i] follows the upper bound of a segment. Its presence

? means that the segment might be empty. Its absence means that the segment
cannot be empty. Because this information is attached to the segment upper bound
(which is also the lower bound of the next segment), the lower bound{e1

1 . . . e1
m 1 }

of the Þrst segment never has a question mark.${ , ?}, �, �, �%is a complete
lattice with & ?.

Segmentation modiÞcation and checking analyses. We consider a segmen-
tation modiÞcation analysis with abstract domain S(M) where M � {e, d} with
e ' e ! d ' d. The abstract property e states that all the elements in the segment
must be equal to their initial value (so ! (e) � {$v, v%| v ! V}) and the abstract
property d means that some element in the segment might have been modiÞed hence
might be di! erent from its initial value (in which case we deÞne! (d) � ().

For each assert in the program, we also use asegmentation checking analysis
with abstract domain C � {n, c} where n ' n ! c ' c to collect the set of elements of
a collection that have been checked by thisassert . The abstract property c states
that all the elements in the segment have deÞnitely been checked by the relevant
assert and n when some element in the segment may not have been checked.

Example 22 The analysis of Ex. 1 proceeds as follows (the Þrst segmentation in
S(M) collects element modiÞcations forA while the second in segmentationS(C)
collects the set of elementsA[i] of A checked by the assertion at program point4:
while equal to its initial value. The classical analyses forA (not null whenever used)
and i are not shown.).

(a) 1: {0} e{A.length}? - {0} n{A.length}?
no element yet modiÞed (e) and none checked (n), array may be empty

(b) 2: {0,i} e{A.length}? - {0,i} n{A.length}? i = 0
(c) 3: ! " ({0,i} e{A.length}? - {0,i} n{A.length}?) join

= {0,i} e{A.length}? - {0,i} n{A.length}?
(d) 4: {0,i} e{A.length} - {0,i} n{A.length}

last and only segment hence array not empty (sinceA.length > i = 0)
(e) 5: {0,i} e{A.length} - {0,i} c{1,i+1} n{A.length}?

A[i] checked while unmodiÞed
(f) 6: {0,i} d{1,i+1} e{A.length}? - {0,i} c{1,i+1} n{A.length}?

A[i] has been modiÞed
(g) 7: {0,i-1} d{1,i} e{A.length}? - {0,i-1} c{1,i} n{A.length}?

invertible assignment i old = i new) 1
(h) 3: {0,i} e{A.length}? * {0,i-1} d{1,i} e{A.length}? - join

{0,i} n{A.length}? * {0,i-1} c{1,i} n{A.length}?
= {0} e{i} e{A.length}? * {0} d{i} e{A.length}? - segment uniÞcation

{0} n{i} n{A.length}? * {0} c{i} n{A.length}?

11

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Ð E is a set of symbolic expressions in normal form depending on variables. Here, the
abstract expressionsE are restricted to the normal form v+ k wherev ! x " { v0} is
an integer variable plus an integer constantk ! Z (an auxiliary variable v0 #!x is
assumed to be always 0 and is used to represent the integer constantk as v0 + k);

Ð the segment bounds{ ei
1 ... ei

m i } ! B, i ! [1, n], n > 1, are Þnite non-empty sets of
symbolic expressions in normal formei

j ! E;
Ð the abstract predicatesAi ! A denote properties that are valid for all the elements

in the collection between the bounds; and
Ð the optional question mark [?i] follows the upper bound of a segment. Its presence

? means that the segment might be empty. Its absence means that the segment
cannot be empty. Because this information is attached to the segment upper bound
(which is also the lower bound of the next segment), the lower bound{ e1

1 . . . e1
m 1 }

of the Þrst segment never has a question mark.${ , ?} , ! , " , # %is a complete
lattice with & ?.

Segmentation modiÞcation and checking analyses. We consider a segmen-
tation modiÞcation analysis with abstract domain S(M) where M $ { e, d} with
e ' e ! d ' d. The abstract property e states that all the elements in the segment
must be equal to their initial value (so ! (e) $ { $v, v%| v ! V}) and the abstract
property d means that some element in the segment might have been modiÞed hence
might be di! erent from its initial value (in which case we deÞne! (d) $ ().

For each assert in the program, we also use asegmentation checking analysis
with abstract domain C $ { n, c} where n ' n ! c ' c to collect the set of elements of
a collection that have been checked by thisassert . The abstract property c states
that all the elements in the segment have deÞnitely been checked by the relevant
assert and n when some element in the segment may not have been checked.

Example 22 The analysis of Ex. 1 proceeds as follows (the Þrst segmentation in
S(M) collects element modiÞcations forA while the second in segmentationS(C)
collects the set of elementsA[i] of A checked by the assertion at program point4:
while equal to its initial value. The classical analyses forA (not null whenever used)
and i are not shown.).

(a) 1: {0}e{A.length}? - {0} n{A.length}?
no element yet modiÞed (e) and none checked (n), array may be empty

(b) 2: {0,i}e{A.length}? - {0,i} n{A.length}? i = 0
(c) 3: ! " ({0,i}e{A.length}? - {0,i} n{A.length}?) join

= {0,i}e{A.length}? - {0,i} n{A.length}?
(d) 4: {0,i}e{A.length} - {0,i} n{A.length}

last and only segment hence array not empty (sinceA.length > i = 0)
(e) 5: {0,i}e{A.length} - {0,i} c{1,i+1} n{A.length}?

A[i] checked while unmodiÞed
(f) 6: {0,i}d{1,i+1} e{A.length}? - {0,i} c{1,i+1} n{A.length}?

A[i] has been modiÞed
(g) 7: {0,i-1}d{1,i} e{A.length}? - {0,i-1} c{1,i} n{A.length}?

invertible assignment i old = i new) 1
(h) 3: {0,i}e{A.length}? * {0,i-1} d{1,i} e{A.length}? - join

{0,i}n{A.length}? * {0,i-1} c{1,i} n{A.length}?
= {0}e{i} e{A.length}? * {0} d{i} e{A.length}? - segment uniÞcation

{0}n{i} n{A.length}? * {0} c{i} n{A.length}?

11

: '."#&A16#

Abstract domain for collections

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?
segmentwise joine! e= e, e! d = d, n ! n = n, n ! c = c

(i) 4: {0} d{i} e{A.length} - {0} c{i} n{A.length} last segment not empty
(j) 5: {0} d{i} e{A.length} - {0} c{i} c{i+1} n{A.length}?

A[i] checked while unmodiÞed
(k) 6: {0} d{i} d{i+1} e{A.length}? - {0} c{i} c{i+1} n{A.length}?

A[i] has been modiÞed
(l) 7: {0} d{i-1} d{i} e{A.length}? - {0} c{i-1} c{i} n{A.length}?

invertible assignment i old = i new " 1
(m) 3: {0} d{i} e{A.length}? ! {0} d{i-1} d{i} e{A.length}? - join

{0} c{i} n{A.length}? ! {0} c{i-1} c{i} n{A.length}?
= {0} d{i} e{A.length}? ! {0} d{i} e{A.length}? - segment uniÞcation

{0} c{i} n{A.length}? ! {0} c{i} n{A.length}?
= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?

segmentwise join, convergence
(m) 8: {0} d{i,A.length}? - {0} c{i,A.length}?

i ! A.length in segmentation and" in test negation so i = A.length .

To generate code for the precondition, the information{0} c{i,A.length}? in (m) is
valid at program 8: dominating the end of the program, soassert(A[i] != null)
has been checked on all the elements of the array before they where changed in the
program. Hence the generated precondition isForall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic
bounds in a collection can change from one program point to another. So these
expressions in the Þnal segmentation must be expressed in terms of values on entry,
a problem solved in Sect.8. #!

Abstract domain for collections. The abstract properties are

! $ " % X$ X &%S(M) ' A (X) % S(C)

At program point c $ " , the collection X $ X has the collection segmentation ab-
stract property ! (c)(X) which is a pair (! (c)(X)M , ! (c)(X)C). The abstract relational
invariance property ! (c)(X)M speciÞes which elements of the collection are for sure
equal to their initial values. For each assertion in (c, b(X,i)) $ A (X) (where c is
a program point designating anassert(b) and b(X,i) is a side e! ect free Boolean
expression checking a property of elementX[i] of collection X(9)), the abstract trace-
based property ! (c)(X)C(c, b(X,i)) speciÞes which elements of the collection have
been checked for sure byb at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization #X
S of a seg-

mentation B1A1B2[?2]A2 . . . An−1Bn [?n] $ S(A) for a collection X is the set of
preÞxes$s = $s0 . . . $s! of the program run describing how the elementsA[k], k $
[0, A.count) of the collection Xhave been organized into consecutive, non-overlapping
segments, covering the whole collection.

(b) All the elements of the collection in each segmentBk Ak Bk+1 [?k] have the
property described by Ak . The values of expressions in segment boundsB1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]) ,
the modiÞcation analysis must check that the array A has not been modiÞed for all these indexes.

12

K&'4&/*
%'1-.

H'))#,2'-
B/&1/()#

T#4*#-.$
*'01E,/2'-$

/-/)?616

T#4*#-.$
,"#,81-4$
/-/)?616

:66#&2'-6$'-$X

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?
segmentwise joine� e= e, e� d = d, n� n = n, n� c = c

(i) 4: {0} d{i} e{A.length} - {0} c{i} n{A.length} last segment not empty
(j) 5: {0} d{i} e{A.length} - {0} c{i} c{i+1} n{A.length}?

A[i] checked while unmodiÞed
(k) 6: {0} d{i} d{i+1} e{A.length}? - {0} c{i} c{i+1} n{A.length}?

A[i] has been modiÞed
(l) 7: {0} d{i-1} d{i} e{A.length}? - {0} c{i-1} c{i} n{A.length}?

invertible assignment i old = i new − 1
(m) 3: {0} d{i} e{A.length}? � {0} d{i-1} d{i} e{A.length}? - join

{0} c{i} n{A.length}? � {0} c{i-1} c{i} n{A.length}?
= {0} d{i} e{A.length}? � {0} d{i} e{A.length}? - segment uniÞcation

{0} c{i} n{A.length}? � {0} c{i} n{A.length}?
= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?

segmentwise join, convergence
(m) 8: {0} d{i,A.length}? - {0} c{i,A.length}?

i ! A.length in segmentation and" in test negation so i = A.length .

To generate code for the precondition, the information{0} c{i,A.length}? in (m) is
valid at program 8: dominating the end of the program, soassert(A[i] != null)
has been checked on all the elements of the array before they where changed in the
program. Hence the generated precondition isForall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic
bounds in a collection can change from one program point to another. So these
expressions in the Þnal segmentation must be expressed in terms of values on entry,
a problem solved in Sect.8. ��

Abstract domain for collections. The abstract properties are

! ∈ " → X∈ X �→ S(M) × A (X) → S(C)

At program point c ∈ " , the collection X ∈ X has the collection segmentation ab-
stract property ! (c)(X) which is a pair �! (c)(X)M , ! (c)(X)C�. The abstract relational
invariance property ! (c)(X)M speciÞes which elements of the collection are for sure
equal to their initial values. For each assertion in �c, b(X,i) � ∈ A (X) (where c is
a program point designating anassert(b) and b(X,i) is a side e! ect free Boolean
expression checking a property of elementX[i] of collection X(9)), the abstract trace-
based property ! (c)(X)C�c, b(X,i) � speciÞes which elements of the collection have
been checked for sure byb at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization #X
S of a seg-

mentation B1A1B2[?2]A2 . . . An ! 1Bn [?n] ∈ S(A) for a collection X is the set of
preÞxes$s = $s0 . . . $s� of the program run describing how the elementsA[k], k ∈
[0, A.count) of the collection Xhave been organized into consecutive, non-overlapping
segments, covering the whole collection.

(b) All the elements of the collection in each segmentBk Ak Bk+1 [?k] have the
property described by Ak . The values of expressions in segment boundsB1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]) ,
the modiÞcation analysis must check that the array A has not been modiÞed for all these indexes.

12

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?
segmentwise joine� e= e, e� d = d, n� n = n, n� c = c

(i) 4: {0} d{i} e{A.length} - {0} c{i} n{A.length} last segment not empty
(j) 5: {0} d{i} e{A.length} - {0} c{i} c{i+1} n{A.length}?

A[i] checked while unmodiÞed
(k) 6: {0} d{i} d{i+1} e{A.length}? - {0} c{i} c{i+1} n{A.length}?

A[i] has been modiÞed
(l) 7: {0} d{i-1} d{i} e{A.length}? - {0} c{i-1} c{i} n{A.length}?

invertible assignment i old = i new − 1
(m) 3: {0} d{i} e{A.length}? � {0} d{i-1} d{i} e{A.length}? - join

{0} c{i} n{A.length}? � {0} c{i-1} c{i} n{A.length}?
= {0} d{i} e{A.length}? � {0} d{i} e{A.length}? - segment uniÞcation

{0} c{i} n{A.length}? � {0} c{i} n{A.length}?
= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?

segmentwise join, convergence
(m) 8: {0} d{i,A.length}? - {0} c{i,A.length}?

i ! A.length in segmentation and" in test negation so i = A.length .

To generate code for the precondition, the information{0} c{i,A.length}? in (m) is
valid at program 8: dominating the end of the program, soassert(A[i] != null)
has been checked on all the elements of the array before they where changed in the
program. Hence the generated precondition isForall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic
bounds in a collection can change from one program point to another. So these
expressions in the Þnal segmentation must be expressed in terms of values on entry,
a problem solved in Sect.8. ��

Abstract domain for collections. The abstract properties are

! ∈ " → X∈ X �→ S(M) ×A(X) → S(C)

At program point c ∈ " , the collection X ∈ X has the collection segmentation ab-
stract property ! (c)(X) which is a pair �! (c)(X)M , ! (c)(X)C�. The abstract relational
invariance property ! (c)(X)M speciÞes which elements of the collection are for sure
equal to their initial values. For each assertion in �c, b(X,i) � ∈ A(X) (where c is
a program point designating anassert(b) and b(X,i) is a side e! ect free Boolean
expression checking a property of elementX[i] of collection X(9)), the abstract trace-
based property ! (c)(X)C�c, b(X,i) � speciÞes which elements of the collection have
been checked for sure byb at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization #X
S of a seg-

mentation B1A1B2[?2]A2 . . . An ! 1Bn [?n] ∈ S(A) for a collection X is the set of
preÞxes$s = $s0 . . . $s! of the program run describing how the elementsA[k], k ∈
[0, A.count) of the collection Xhave been organized into consecutive, non-overlapping
segments, covering the whole collection.

(b) All the elements of the collection in each segmentBk Ak Bk+1 [?k] have the
property described by Ak . The values of expressions in segment boundsB1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]) ,
the modification analysis must check that the array A has not been modified for all these indexes.

12

!!!!!!!!!!!!!!!!!!Example : (I) program

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

void AllNotNull(Ptr[] A) {
/* 1: */ int i = 0;
/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {
/* 4: */ assert((A != null) && (A[i] != null));
/* 5: */ A[i].f = new Object();
/* 6: */ i++;
/* 7: */ }
/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. !"

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that e! cient code can be generated to check it.
Moreover this is stronger than strictly required (e.g.the code x = random(); assert(x
==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side e" ect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;
while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))
{ return false };

i++ }
return true }

Modifications of i have no visible side e" ects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. !"

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and e! cient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. !"

The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several e" ective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by a transition system #! , " , I $where ! is a

2

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modiÞed
at program point 5: . !"

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposede.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that e! cient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the codex = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side e" ect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

ModiÞcations of i have no visible side e" ects while those of elements ofA do have,
so the assignmentA[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. !"

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and e! cient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) usingForAll quantiÞers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. !"

The semantics of code is formalized in Sect.2 and that of speciÞcations by runtime
assertions in Sect.3. The contract precondition inference problem is deÞned in Sect.4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect.5 and used in Sect.6 to provide a Þxpoint solution to
the contract precondition inference problem. Several e" ective contract precondition
inference are then proposed, by data ßow analysis in Sect.7, for scalar variables both
by forward symbolic analysis in Sect.8 and by backward symbolic analysis in Sect.9,
for collections by forward analysis in Sect.10. Sect.11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by atransition system #! , " , I $where ! is a

2

!!!!!!!!!!!!!!!!!!Example : (IIa) analysis

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

= {0} d{i}e{A.length}? - {0}c{i}n{A.length}?
segmentwise joine! e= e, e! d = d, n ! n = n, n ! c = c

(i) 4: {0} d{i}e{A.length} - {0}c{i}n{A.length} last segment not empty
(j) 5: {0} d{i}e{A.length} - {0}c{i}c{i+1}n{A.length}?

A[i] checked while unmodiÞed
(k) 6: {0} d{i}d{i+1}e{A.length}? - {0}c{i}c{i+1}n{A.length}?

A[i] has been modiÞed
(l) 7: {0} d{i-1}d{i}e{A.length}? - {0}c{i-1}c{i}n{A.length}?

invertible assignment iold = inew " 1
(m) 3: {0} d{i}e{A.length}? ! {0}d{i-1}d{i}e{A.length}? - join

{0} c{i}n{A.length}? ! {0}c{i-1}c{i}n{A.length}?
= {0} d{i}e{A.length}? ! {0}d{i}e{A.length}? - segment uniÞcation

{0} c{i}n{A.length}? ! {0}c{i}n{A.length}?
= {0} d{i}e{A.length}? - {0}c{i}n{A.length}?

segmentwise join, convergence
(m) 8: {0} d{i,A.length}? - {0}c{i,A.length}?

i ! A.length in segmentation and" in test negation soi = A.length.

To generate code for the precondition, the information{0}c{i,A.length}? in (m) is
valid at program 8: dominating the end of the program, soassert(A[i] != null)
has been checked on all the elements of the array before they where changed in the
program. Hence the generated precondition isForall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic
bounds in a collection can change from one program point to another. So these
expressions in the Þnal segmentation must be expressed in terms of values on entry,
a problem solved in Sect.8. #!

Abstract domain for collections. The abstract properties are

! $ " % X $ X &%S(M) ' A (X) % S(C)

At program point c $ " , the collection X $ X has the collection segmentation ab-
stract property ! (c)(X) which is a pair (! (c)(X)M , ! (c)(X)C). The abstract relational
invariance property ! (c)(X)M speciÞes which elements of the collection are for sure
equal to their initial values. For each assertion in (c, b(X,i)) $ A (X) (where c is
a program point designating anassert(b) and b(X,i) is a side e! ect free Boolean
expression checking a property of elementX[i] of collection X (9)), the abstract trace-
based property ! (c)(X)C(c, b(X,i)) speciÞes which elements of the collection have
been checked for sure byb at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization #X
S of a seg-

mentation B1A1B2[?2]A2 . . . An−1Bn [?n] $ S(A) for a collection X is the set of
preÞxes$s = $s0 . . . $s! of the program run describing how the elementsA[k], k $
[0, A.count) of the collection X have been organized into consecutive, non-overlapping
segments, covering the whole collection.

(b) All the elements of the collection in each segmentBk Ak Bk+1 [?k] have the
property described by Ak . The values of expressions in segment boundsB1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]) ,
the modification analysis must check that the array A has not been modified for all these indexes.

12

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

void AllNotNull(Ptr[] A) {
/* 1: */ int i = 0;
/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {
/* 4: */ assert((A != null) && (A[i] != null));
/* 5: */ A[i].f = new Object();
/* 6: */ i++;
/* 7: */ }
/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. !"

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that e! cient code can be generated to check it.
Moreover this is stronger than strictly required (e.g.the code x = random(); assert(x
==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side e" ect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;
while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))
{ return false };

i++ }
return true }

Modifications of i have no visible side e" ects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. !"

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and e! cient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. !"

The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several e" ective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by a transition system #! , " , I $where ! is a

2

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?
segmentwise joine! e= e, e! d = d, n ! n = n, n ! c = c

(i) 4: {0} d{i} e{A.length} - {0} c{i} n{A.length} last segment not empty
(j) 5: {0} d{i} e{A.length} - {0} c{i} c{i+1} n{A.length}?

A[i] checked while unmodiÞed
(k) 6: {0} d{i} d{i+1} e{A.length}? - {0} c{i} c{i+1} n{A.length}?

A[i] has been modiÞed
(l) 7: {0} d{i-1} d{i} e{A.length}? - {0} c{i-1} c{i} n{A.length}?

invertible assignment i old = i new " 1
(m) 3: {0} d{i} e{A.length}? ! {0} d{i-1} d{i} e{A.length}? - join

{0} c{i} n{A.length}? ! {0} c{i-1} c{i} n{A.length}?
= {0} d{i} e{A.length}? ! {0} d{i} e{A.length}? - segment uniÞcation

{0} c{i} n{A.length}? ! {0} c{i} n{A.length}?
= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?

segmentwise join, convergence
(m) 8: {0} d{i,A.length}? - {0} c{i,A.length}?

i ! A.length in segmentation and" in test negation so i = A.length .

To generate code for the precondition, the information{0} c{i,A.length}? in (m) is
valid at program 8: dominating the end of the program, soassert(A[i] != null)
has been checked on all the elements of the array before they where changed in the
program. Hence the generated precondition isForall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic
bounds in a collection can change from one program point to another. So these
expressions in the Þnal segmentation must be expressed in terms of values on entry,
a problem solved in Sect.8. #!

Abstract domain for collections. The abstract properties are

! $ " % X$ X &%S(M) ' A (X) % S(C)

At program point c $ " , the collection X $ X has the collection segmentation ab-
stract property ! (c)(X) which is a pair (! (c)(X)M , ! (c)(X)C). The abstract relational
invariance property ! (c)(X)M speciÞes which elements of the collection are for sure
equal to their initial values. For each assertion in (c, b(X,i)) $ A (X) (where c is
a program point designating anassert(b) and b(X,i) is a side e! ect free Boolean
expression checking a property of elementX[i] of collection X(9)), the abstract trace-
based property ! (c)(X)C(c, b(X,i)) speciÞes which elements of the collection have
been checked for sure byb at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization #X
S of a seg-

mentation B1A1B2[?2]A2 . . . An ! 1Bn [?n] $ S(A) for a collection X is the set of
preÞxes$s = $s0 . . . $s! of the program run describing how the elementsA[k], k $
[0, A.count) of the collection Xhave been organized into consecutive, non-overlapping
segments, covering the whole collection.

(b) All the elements of the collection in each segmentBk Ak Bk+1 [?k] have the
property described by Ak . The values of expressions in segment boundsB1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]) ,
the modiÞcation analysis must check that the array A has not been modiÞed for all these indexes.

12

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modiÞed
at program point 5: . !"

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposede.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that e! cient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the codex = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side e" ect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

ModiÞcations of i have no visible side e" ects while those of elements ofA do have,
so the assignmentA[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. !"

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and e! cient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) usingForAll quantiÞers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. !"

The semantics of code is formalized in Sect.2 and that of speciÞcations by runtime
assertions in Sect.3. The contract precondition inference problem is deÞned in Sect.4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect.5 and used in Sect.6 to provide a Þxpoint solution to
the contract precondition inference problem. Several e" ective contract precondition
inference are then proposed, by data ßow analysis in Sect.7, for scalar variables both
by forward symbolic analysis in Sect.8 and by backward symbolic analysis in Sect.9,
for collections by forward analysis in Sect.10. Sect.11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by atransition system #! , " , I $where ! is a

2

(A[i] != null) is
checked while A[i]

unmodiÞed since code
entry

!!!!!!!!!!!!!!!!!!Example : (IIb) modiÞcation analysis

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

= {0} d{i}e{A.length}? - {0}c{i}n{A.length}?
segmentwise joine! e= e, e! d = d, n ! n = n, n ! c = c

(i) 4: {0} d{i}e{A.length} - {0}c{i}n{A.length} last segment not empty
(j) 5: {0} d{i}e{A.length} - {0}c{i}c{i+1}n{A.length}?

A[i] checked while unmodiÞed
(k) 6: {0} d{i}d{i+1}e{A.length}? - {0}c{i}c{i+1}n{A.length}?

A[i] has been modiÞed
(l) 7: {0} d{i-1}d{i}e{A.length}? - {0}c{i-1}c{i}n{A.length}?

invertible assignment iold = inew " 1
(m) 3: {0} d{i}e{A.length}? ! {0}d{i-1}d{i}e{A.length}? - join

{0} c{i}n{A.length}? ! {0}c{i-1}c{i}n{A.length}?
= {0} d{i}e{A.length}? ! {0}d{i}e{A.length}? - segment uniÞcation

{0} c{i}n{A.length}? ! {0}c{i}n{A.length}?
= {0} d{i}e{A.length}? - {0}c{i}n{A.length}?

segmentwise join, convergence
(m) 8: {0} d{i,A.length}? - {0}c{i,A.length}?

i ! A.length in segmentation and" in test negation soi = A.length.

To generate code for the precondition, the information{0}c{i,A.length}? in (m) is
valid at program 8: dominating the end of the program, soassert(A[i] != null)
has been checked on all the elements of the array before they where changed in the
program. Hence the generated precondition isForall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic
bounds in a collection can change from one program point to another. So these
expressions in the Þnal segmentation must be expressed in terms of values on entry,
a problem solved in Sect.8. #!

Abstract domain for collections. The abstract properties are

! $ " % X $ X &%S(M) ' A (X) % S(C)

At program point c $ " , the collection X $ X has the collection segmentation ab-
stract property ! (c)(X) which is a pair (! (c)(X)M , ! (c)(X)C). The abstract relational
invariance property ! (c)(X)M speciÞes which elements of the collection are for sure
equal to their initial values. For each assertion in (c, b(X,i)) $ A (X) (where c is
a program point designating anassert(b) and b(X,i) is a side e! ect free Boolean
expression checking a property of elementX[i] of collection X (9)), the abstract trace-
based property ! (c)(X)C(c, b(X,i)) speciÞes which elements of the collection have
been checked for sure byb at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization #X
S of a seg-

mentation B1A1B2[?2]A2 . . . An−1Bn [?n] $ S(A) for a collection X is the set of
preÞxes$s = $s0 . . . $s! of the program run describing how the elementsA[k], k $
[0, A.count) of the collection X have been organized into consecutive, non-overlapping
segments, covering the whole collection.

(b) All the elements of the collection in each segmentBk Ak Bk+1 [?k] have the
property described by Ak . The values of expressions in segment boundsB1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]) ,
the modification analysis must check that the array A has not been modified for all these indexes.

12

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

void AllNotNull(Ptr[] A) {
/* 1: */ int i = 0;
/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {
/* 4: */ assert((A != null) && (A[i] != null));
/* 5: */ A[i].f = new Object();
/* 6: */ i++;
/* 7: */ }
/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. !"

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that e! cient code can be generated to check it.
Moreover this is stronger than strictly required (e.g.the code x = random(); assert(x
==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side e" ect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;
while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))
{ return false };

i++ }
return true }

Modifications of i have no visible side e" ects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. !"

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and e! cient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. !"

The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several e" ective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by a transition system #! , " , I $where ! is a

2

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?
segmentwise joine! e= e, e! d = d, n ! n = n, n ! c = c

(i) 4: {0} d{i} e{A.length} - {0} c{i} n{A.length} last segment not empty
(j) 5: {0} d{i} e{A.length} - {0} c{i} c{i+1} n{A.length}?

A[i] checked while unmodiÞed
(k) 6: {0} d{i} d{i+1} e{A.length}? - {0} c{i} c{i+1} n{A.length}?

A[i] has been modiÞed
(l) 7: {0} d{i-1} d{i} e{A.length}? - {0} c{i-1} c{i} n{A.length}?

invertible assignment i old = i new " 1
(m) 3: {0} d{i} e{A.length}? ! {0} d{i-1} d{i} e{A.length}? - join

{0} c{i} n{A.length}? ! {0} c{i-1} c{i} n{A.length}?
= {0} d{i} e{A.length}? ! {0} d{i} e{A.length}? - segment uniÞcation

{0} c{i} n{A.length}? ! {0} c{i} n{A.length}?
= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?

segmentwise join, convergence
(m) 8: {0} d{i,A.length}? - {0} c{i,A.length}?

i ! A.length in segmentation and" in test negation so i = A.length .

To generate code for the precondition, the information{0} c{i,A.length}? in (m) is
valid at program 8: dominating the end of the program, soassert(A[i] != null)
has been checked on all the elements of the array before they where changed in the
program. Hence the generated precondition isForall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic
bounds in a collection can change from one program point to another. So these
expressions in the Þnal segmentation must be expressed in terms of values on entry,
a problem solved in Sect.8. #!

Abstract domain for collections. The abstract properties are

! $ " % X$ X &%S(M) ' A (X) % S(C)

At program point c $ " , the collection X $ X has the collection segmentation ab-
stract property ! (c)(X) which is a pair (! (c)(X)M , ! (c)(X)C). The abstract relational
invariance property ! (c)(X)M speciÞes which elements of the collection are for sure
equal to their initial values. For each assertion in (c, b(X,i)) $ A (X) (where c is
a program point designating anassert(b) and b(X,i) is a side e! ect free Boolean
expression checking a property of elementX[i] of collection X(9)), the abstract trace-
based property ! (c)(X)C(c, b(X,i)) speciÞes which elements of the collection have
been checked for sure byb at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization #X
S of a seg-

mentation B1A1B2[?2]A2 . . . An ! 1Bn [?n] $ S(A) for a collection X is the set of
preÞxes$s = $s0 . . . $s! of the program run describing how the elementsA[k], k $
[0, A.count) of the collection Xhave been organized into consecutive, non-overlapping
segments, covering the whole collection.

(b) All the elements of the collection in each segmentBk Ak Bk+1 [?k] have the
property described by Ak . The values of expressions in segment boundsB1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]) ,
the modiÞcation analysis must check that the array A has not been modiÞed for all these indexes.

12

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modiÞed
at program point 5: . !"

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposede.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that e! cient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the codex = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side e" ect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

ModiÞcations of i have no visible side e" ects while those of elements ofA do have,
so the assignmentA[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. !"

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and e! cient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) usingForAll quantiÞers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. !"

The semantics of code is formalized in Sect.2 and that of speciÞcations by runtime
assertions in Sect.3. The contract precondition inference problem is deÞned in Sect.4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect.5 and used in Sect.6 to provide a Þxpoint solution to
the contract precondition inference problem. Several e" ective contract precondition
inference are then proposed, by data ßow analysis in Sect.7, for scalar variables both
by forward symbolic analysis in Sect.8 and by backward symbolic analysis in Sect.9,
for collections by forward analysis in Sect.10. Sect.11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by atransition system #! , " , I $where ! is a

2

(A[i] != null) is
checked while A[i]

unmodiÞed since code
entry

!!!!!!!!!!!!!!!!!!Example : (III) result

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

= {0} d{i}e{A.length}? - {0}c{i}n{A.length}?
segmentwise joine! e= e, e! d = d, n ! n = n, n ! c = c

(i) 4: {0} d{i}e{A.length} - {0}c{i}n{A.length} last segment not empty
(j) 5: {0} d{i}e{A.length} - {0}c{i}c{i+1}n{A.length}?

A[i] checked while unmodiÞed
(k) 6: {0} d{i}d{i+1}e{A.length}? - {0}c{i}c{i+1}n{A.length}?

A[i] has been modiÞed
(l) 7: {0} d{i-1}d{i}e{A.length}? - {0}c{i-1}c{i}n{A.length}?

invertible assignment iold = inew " 1
(m) 3: {0} d{i}e{A.length}? ! {0}d{i-1}d{i}e{A.length}? - join

{0} c{i}n{A.length}? ! {0}c{i-1}c{i}n{A.length}?
= {0} d{i}e{A.length}? ! {0}d{i}e{A.length}? - segment uniÞcation

{0} c{i}n{A.length}? ! {0}c{i}n{A.length}?
= {0} d{i}e{A.length}? - {0}c{i}n{A.length}?

segmentwise join, convergence
(m) 8: {0} d{i,A.length}? - {0}c{i,A.length}?

i ! A.length in segmentation and" in test negation soi = A.length.

To generate code for the precondition, the information{0}c{i,A.length}? in (m) is
valid at program 8: dominating the end of the program, soassert(A[i] != null)
has been checked on all the elements of the array before they where changed in the
program. Hence the generated precondition isForall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic
bounds in a collection can change from one program point to another. So these
expressions in the Þnal segmentation must be expressed in terms of values on entry,
a problem solved in Sect.8. #!

Abstract domain for collections. The abstract properties are

! $ " % X $ X &%S(M) ' A (X) % S(C)

At program point c $ " , the collection X $ X has the collection segmentation ab-
stract property ! (c)(X) which is a pair (! (c)(X)M , ! (c)(X)C). The abstract relational
invariance property ! (c)(X)M speciÞes which elements of the collection are for sure
equal to their initial values. For each assertion in (c, b(X,i)) $ A (X) (where c is
a program point designating anassert(b) and b(X,i) is a side e! ect free Boolean
expression checking a property of elementX[i] of collection X (9)), the abstract trace-
based property ! (c)(X)C(c, b(X,i)) speciÞes which elements of the collection have
been checked for sure byb at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization #X
S of a seg-

mentation B1A1B2[?2]A2 . . . An−1Bn [?n] $ S(A) for a collection X is the set of
preÞxes$s = $s0 . . . $s! of the program run describing how the elementsA[k], k $
[0, A.count) of the collection X have been organized into consecutive, non-overlapping
segments, covering the whole collection.

(b) All the elements of the collection in each segmentBk Ak Bk+1 [?k] have the
property described by Ak . The values of expressions in segment boundsB1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]) ,
the modification analysis must check that the array A has not been modified for all these indexes.

12

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

void AllNotNull(Ptr[] A) {
/* 1: */ int i = 0;
/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {
/* 4: */ assert((A != null) && (A[i] != null));
/* 5: */ A[i].f = new Object();
/* 6: */ i++;
/* 7: */ }
/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modified
at program point 5:. !"

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposed e.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that e! cient code can be generated to check it.
Moreover this is stronger than strictly required (e.g.the code x = random(); assert(x
==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side e" ect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;
while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))
{ return false };

i++ }
return true }

Modifications of i have no visible side e" ects while those of elements of A do have,
so the assignment A[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. !"

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and e! cient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) using ForAll quantifiers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. !"

The semantics of code is formalized in Sect. 2 and that of specifications by runtime
assertions in Sect. 3. The contract precondition inference problem is defined in Sect. 4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect. 5 and used in Sect. 6 to provide a fixpoint solution to
the contract precondition inference problem. Several e" ective contract precondition
inference are then proposed, by data flow analysis in Sect. 7, for scalar variables both
by forward symbolic analysis in Sect. 8 and by backward symbolic analysis in Sect. 9,
for collections by forward analysis in Sect. 10. Sect. 11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by a transition system #! , " , I $where ! is a

2

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?
segmentwise joine! e= e, e! d = d, n ! n = n, n ! c = c

(i) 4: {0} d{i} e{A.length} - {0} c{i} n{A.length} last segment not empty
(j) 5: {0} d{i} e{A.length} - {0} c{i} c{i+1} n{A.length}?

A[i] checked while unmodiÞed
(k) 6: {0} d{i} d{i+1} e{A.length}? - {0} c{i} c{i+1} n{A.length}?

A[i] has been modiÞed
(l) 7: {0} d{i-1} d{i} e{A.length}? - {0} c{i-1} c{i} n{A.length}?

invertible assignment i old = i new " 1
(m) 3: {0} d{i} e{A.length}? ! {0} d{i-1} d{i} e{A.length}? - join

{0} c{i} n{A.length}? ! {0} c{i-1} c{i} n{A.length}?
= {0} d{i} e{A.length}? ! {0} d{i} e{A.length}? - segment uniÞcation

{0} c{i} n{A.length}? ! {0} c{i} n{A.length}?
= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?

segmentwise join, convergence
(m) 8: {0} d{i,A.length}? - {0} c{i,A.length}?

i ! A.length in segmentation and" in test negation so i = A.length .

To generate code for the precondition, the information{0} c{i,A.length}? in (m) is
valid at program 8: dominating the end of the program, soassert(A[i] != null)
has been checked on all the elements of the array before they where changed in the
program. Hence the generated precondition isForall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic
bounds in a collection can change from one program point to another. So these
expressions in the Þnal segmentation must be expressed in terms of values on entry,
a problem solved in Sect.8. #!

Abstract domain for collections. The abstract properties are

! $ " % X$ X &%S(M) ' A (X) % S(C)

At program point c $ " , the collection X $ X has the collection segmentation ab-
stract property ! (c)(X) which is a pair (! (c)(X)M , ! (c)(X)C). The abstract relational
invariance property ! (c)(X)M speciÞes which elements of the collection are for sure
equal to their initial values. For each assertion in (c, b(X,i)) $ A (X) (where c is
a program point designating anassert(b) and b(X,i) is a side e! ect free Boolean
expression checking a property of elementX[i] of collection X(9)), the abstract trace-
based property ! (c)(X)C(c, b(X,i)) speciÞes which elements of the collection have
been checked for sure byb at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization #X
S of a seg-

mentation B1A1B2[?2]A2 . . . An ! 1Bn [?n] $ S(A) for a collection X is the set of
preÞxes$s = $s0 . . . $s! of the program run describing how the elementsA[k], k $
[0, A.count) of the collection Xhave been organized into consecutive, non-overlapping
segments, covering the whole collection.

(b) All the elements of the collection in each segmentBk Ak Bk+1 [?k] have the
property described by Ak . The values of expressions in segment boundsB1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]) ,
the modiÞcation analysis must check that the array A has not been modiÞed for all these indexes.

12

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

void AllNotNull(Ptr[] A) {

/* 1: */ int i = 0;

/* 2: */ while /* 3: */

(assert(A != null); i < A.length) {

/* 4: */ assert((A != null) && (A[i] != null));

/* 5: */ A[i].f = new Object();

/* 6: */ i++;

/* 7: */ }

/* 8: */ }

The language assertion
A[i] != null for a given
value of i is intermittent
at program point 4: but
not invariant since the
array content is modiÞed
at program point 5: . !"

On one hand, a solution to the contract inference problem could be to infer the
precondition as a set of states, logical formula, or abstract property ensuring proper
termination without any language or programmer assertion failure (as proposede.g.
in [10, Sect. 10-4.6]) or [9, Sect. 3.4.5]). But this does not guarantee the precondition
to be easily understandable and that e! cient code can be generated to check it.
Moreover this is stronger than strictly required (e.g. the codex = random(); assert(x

==0) is not guaranteed to terminate properly, but has at least one execution without
failure, so should not be rejected). On the other hand, the precondition checking code
could be a copy of the method body where all code with random or visible side e" ect
(including input) as well as all further dependent code is removed.

Example 2 Continuing Ex. 1, we get
bool CheckAllNotNull(Ptr[] A) {

int i = 0;

while (if (A == null) { return false }; i < A.length) {

if ((A == null) || (0 > i) || (i >= A.length) || (A[i] == null))

{ return false };

i++ }

return true }

ModiÞcations of i have no visible side e" ects while those of elements ofA do have,
so the assignmentA[i].f is dropped. There is no code that depends on this value,
so no other code needs to be removed. !"

However, this simple solution may not provide a simple precondition both easily un-
derstandable by the programmer, easily reusable for separate modular static analysis,
and e! cient.

Example 3 Continuing Ex. 1 and 2, we would like to automatically infer the precon-
dition ForAll(0,A.length,i => A[i] != null) usingForAll quantiÞers [4] over integer
ranges and collections. Iterative checking code is then easy to generate. !"

The semantics of code is formalized in Sect.2 and that of speciÞcations by runtime
assertions in Sect.3. The contract precondition inference problem is deÞned in Sect.4
and compared with weakest preconditions computation. Elements of abstract inter-
pretation are recalled in Sect.5 and used in Sect.6 to provide a Þxpoint solution to
the contract precondition inference problem. Several e" ective contract precondition
inference are then proposed, by data ßow analysis in Sect.7, for scalar variables both
by forward symbolic analysis in Sect.8 and by backward symbolic analysis in Sect.9,
for collections by forward analysis in Sect.10. Sect.11 has a comparison with related
work, suggestions for future work, and concludes.

2 Program semantics
Small-step operational semantics. Following [9], the small-step operational se-
mantics of code is assumed to be given by atransition system #! , " , I $where ! is a

2

all A[i] have been
checked in (A[i] !=
null) while unmodiÞed

since code entry

!!!!!!!!!!!!!!!!!!Details of the analysis

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

Ð E is a set of symbolic expressions in normal form depending on variables. Here, the
abstract expressionsE are restricted to the normal form v+ k wherev ! x " { v0} is
an integer variable plus an integer constantk ! Z (an auxiliary variable v0 #!x is
assumed to be always 0 and is used to represent the integer constantk asv0 + k);

Ð the segment bounds{ ei
1 ... ei

m i } ! B, i ! [1, n], n > 1, are Þnite non-empty sets of
symbolic expressions in normal formei

j ! E;
Ð the abstract predicatesAi ! A denote properties that are valid for all the elements

in the collection between the bounds; and
Ð the optional question mark [?i] follows the upper bound of a segment. Its presence

? means that the segment might be empty. Its absence means that the segment
cannot be empty. Because this information is attached to the segment upper bound
(which is also the lower bound of the next segment), the lower bound{ e1

1 . . . e1
m 1}

of the Þrst segment never has a question mark.${ , ?} , ! , " , # %is a complete
lattice with & ?.

Segmentation modiÞcation and checking analyses. We consider a segmen-
tation modiÞcation analysis with abstract domain S(M) where M $ { e, d} with
e ' e ! d ' d. The abstract property e states that all the elements in the segment
must be equal to their initial value (so ! (e) $ { $v, v%| v ! V}) and the abstract
property d means that some element in the segment might have been modiÞed hence
might be different from its initial value (in which case we deÞne! (d) $ ().

For each assert in the program, we also use asegmentation checking analysis
with abstract domain C $ { n, c} where n ' n ! c ' c to collect the set of elements of
a collection that have been checked by thisassert. The abstract property c states
that all the elements in the segment have deÞnitely been checked by the relevant
assert and n when some element in the segment may not have been checked.

Example 22 The analysis of Ex. 1 proceeds as follows (the Þrst segmentation in
S(M) collects element modiÞcations forA while the second in segmentationS(C)
collects the set of elementsA[i] of A checked by the assertion at program point4:
while equal to its initial value. The classical analyses forA (not null whenever used)
and i are not shown.).

(a) 1: {0}e{A.length}? - {0}n{A.length}?
no element yet modiÞed (e) and none checked (n), array may be empty

(b) 2: {0,i}e{A.length}? - {0,i}n{A.length}? i = 0
(c) 3: ! " ({0,i}e{A.length}? - {0,i}n{A.length}?) join

= {0,i}e{A.length}? - {0,i}n{A.length}?
(d) 4: {0,i}e{A.length} - {0,i}n{A.length}

last and only segment hence array not empty (sinceA.length > i = 0)
(e) 5: {0,i}e{A.length} - {0,i}c{1,i+1}n{A.length}?

A[i] checked while unmodiÞed
(f) 6: {0,i}d{1,i+1}e{A.length}? - {0,i}c{1,i+1}n{A.length}?

A[i] has been modiÞed
(g) 7: {0,i-1}d{1,i}e{A.length}? - {0,i-1}c{1,i}n{A.length}?

invertible assignment iold = inew) 1
(h) 3: {0,i}e{A.length}? * {0,i-1}d{1,i}e{A.length}? - join

{0,i}n{A.length}? * {0,i-1}c{1,i}n{A.length}?
= {0}e{i}e{A.length}? * {0}d{i}e{A.length}? - segment uniÞcation

{0}n{i}n{A.length}? * {0}c{i}n{A.length}?

11

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?
segmentwise joine! e= e, e! d = d, n ! n = n, n ! c = c

(i) 4: {0} d{i} e{A.length} - {0} c{i} n{A.length} last segment not empty
(j) 5: {0} d{i} e{A.length} - {0} c{i} c{i+1} n{A.length}?

A[i] checked while unmodiÞed
(k) 6: {0} d{i} d{i+1} e{A.length}? - {0} c{i} c{i+1} n{A.length}?

A[i] has been modiÞed
(l) 7: {0} d{i-1} d{i} e{A.length}? - {0} c{i-1} c{i} n{A.length}?

invertible assignment i old = i new " 1
(m) 3: {0} d{i} e{A.length}? ! {0} d{i-1} d{i} e{A.length}? - join

{0} c{i} n{A.length}? ! {0} c{i-1} c{i} n{A.length}?
= {0} d{i} e{A.length}? ! {0} d{i} e{A.length}? - segment uniÞcation

{0} c{i} n{A.length}? ! {0} c{i} n{A.length}?
= {0} d{i} e{A.length}? - {0} c{i} n{A.length}?

segmentwise join, convergence
(m) 8: {0} d{i,A.length}? - {0} c{i,A.length}?

i ! A.length in segmentation and" in test negation so i = A.length .

To generate code for the precondition, the information{0} c{i,A.length}? in (m) is
valid at program 8: dominating the end of the program, soassert(A[i] != null)
has been checked on all the elements of the array before they where changed in the
program. Hence the generated precondition isForall(0,A.length,k => A[k] !=
null) where k is a dummy variable from which iterative code follows immediately.

Notice that the size of a collection can change and that the values of the symbolic
bounds in a collection can change from one program point to another. So these
expressions in the Þnal segmentation must be expressed in terms of values on entry,
a problem solved in Sect.8. #!

Abstract domain for collections. The abstract properties are

! $ " % X$ X &%S(M) ' A(X) % S(C)

At program point c $ " , the collection X $ X has the collection segmentation ab-
stract property ! (c)(X) which is a pair (! (c)(X)M , ! (c)(X)C). The abstract relational
invariance property ! (c)(X)M speciÞes which elements of the collection are for sure
equal to their initial values. For each assertion in (c, b(X,i)) $ A(X) (where c is
a program point designating anassert(b) and b(X,i) is a side e! ect free Boolean
expression checking a property of elementX[i] of collection X(9)), the abstract trace-
based property ! (c)(X)C(c, b(X,i)) speciÞes which elements of the collection have
been checked for sure byb at point c while equal to their initial values.

Collection segmentation concretization. (a) The concretization #X
S of a seg-

mentation B1A1B2[?2]A2 . . . An−1Bn [?n] $ S(A) for a collection X is the set of
preÞxes$s = $s0 . . . $s! of the program run describing how the elementsA[k], k $
[0, A.count) of the collection Xhave been organized into consecutive, non-overlapping
segments, covering the whole collection.

(b) All the elements of the collection in each segmentBk Ak Bk+1 [?k] have the
property described by Ak . The values of expressions in segment boundsB1, . . . , Bn

(9) If more than one index is used, like in assert(A[i]<A[i+1]) or assert(A[i]<A[A.length-i]) ,
the modification analysis must check that the array A has not been modified for all these indexes.

12

[56.$.'$6"'A$
."/.$."#$

/-/)?616$16$
B#&?$+/6.f

Code generated for the precondition

¥Y#65).$'+$."#$,"#,81-4$/-/)?616$;/.$/-?$%'1-.$
0'*1-/2-4$."#$,'0#$#=1.>$+'&$/-$assert(b(X,i))
'-$,'))#,2'-$ X /.$/$%&'4&/*$%'1-.$c

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

π�sj = c ! ! i "�sj = i ! !X"�s0[i] = !X"�sj [i])} .

The modiÞcation analysis must be used to determine that!X"�s0[i] = !X"�sj [i].

Segmented modiÞcation and checking analysis concretization. The con-
cretization is

γ " (Γ # X" X $# S(M) %A (X) # S(C)) $# �Σ +

γ(ξ) !
!
�s " �Σ +

"
" &j < |�s| : &X" X : &'c, b(X,i) (" A (X) :

�s0 . . . " �sj " γX
C

#
ξ(π�sj)(X)C(' c, b(X,i) ()

$%

The soundness of the resultξ " Γ # X " X $# S(M) %A (X) # S(C) of collection
segmentation modiÞcation and checking static analysis is stated by�τ +) γ(ξ). The
details of the segmentation analysis are those of [16] for the speciÞc abstract domains
M and C.

Precondition generation. Let f be the exit program point (assumed to be unique
for simplicity and corresponding to a blocking state &s " Σ : πs = f * s " B).
Let X " X be any of the collection variables in the program. Let' c, b(X,i) (" A (X)
by any assertion check for elementX[i] of collection X. let ξ(f)(X)C(' c, b(X,i) () =
B1C1B2[?2]C2 . . . Cn ! 1Bn [?n] " S(C) be the information collected by the checking
analysis (using the modiÞcation analysis no longer useful for the precondition gener-
ation). Let ∆) [1, n) be the set of indicesk " ∆ for which Ck = c. The precondition
code is

&&
X" X

&&
#c, b(X,i)$" A (X)

&&
k" !

ForAll (l k , hk , i = > b(X, i)) (4)

where +ek " Bk , e%
k " Bk+1 such that the value of ek (resp. e%

k) at program point f
is always equal to that of l k (resp. hk) on program entry and is less that the size of
the collection on program entry.

Theorem 23 The precondition (4) based on a sound modification and checking static
analysis ξ is sound.

11 Related work, future work, and conclusion

The problem of calculating (weakest)-preconditions has been intensively studied since
[17]. In the context of static analysis by abstract interpretation, the problem can be
handled by backward analysis [14, Sect. 3.2], a combination of forward and back-
ward analyzes [9] (see also [15]), and overapproximation of negated properties to get
underapproximations [10] followed by [6,25]. Most often the precondition inference
problem is considered in the context of partial or total correctness, including for pro-
cedure summary [8,13,19] or contract inference [1], where no bad behavior is allowed
at all [17] so one has to consider underapproximations. For example, the precondi-
tions computed by [24,26] ensure that any assertions that exist in the code will hold
when they are reached. Our point of view for non-deterministic programs is di! erent
and, to our knowledge, our formalization of the precondition inference problem is
the Þrst in the context of design by contracts. The derived precondition never ex-
cludes a bad run when a non-deterministic choice could alternatively yield a good
run. So the program is not checked for partial/total correctness, but the intentions
of the programmer, as only expressed by his code and assertions within this code,
are preserved, since only deÞnite failures are prohibited. Future work includes the
implementation, the study of the relation between forward and backward analyzes

14

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

! !sj = c ! ! i "!sj = i ! !X"!s0[i] = !X"!sj [i])}.

The modiÞcation analysis must be used to determine that!X"!s0[i] = !X"!sj [i].

Segmented modiÞcation and checking analysis concretization. The con-
cretization is

" " (# # X" X $#S(M) %A (X) # S(C)) $# !$ +

" (%) !
!
!s " !$ +

"
" &j < |!s | : &X" X : &'c, b(X,i) (" A (X) :

!s0 . . . " !sj " " X
C

#
%(! !sj)(X)C(' c, b(X,i) ()

$%

The soundness of the result%" # # X " X $# S(M) %A (X) # S(C) of collection
segmentation modiÞcation and checking static analysis is stated by!& +) " (%). The
details of the segmentation analysis are those of [14] for the speciÞc abstract domains
M and C.

Precondition generation. Let f be the exit program point (assumed to be unique
for simplicity and corresponding to a blocking state &s " $: ! s = f * s " B).
Let X " X be any of the collection variables in the program. Let' c, b(X,i) (" A (X)
by any assertion check for elementX[i] of collection X. let %(f)(X)C(' c, b(X,i) () =
B1C1B2[?2]C2 . . . Cn ! 1Bn [?n] " S(C) be the information collected by the checking
analysis (using the modiÞcation analysis no longer useful for the precondition gener-
ation). Let ') [1, n) be the set of indicesk " ' for which Ck = c. The precondition
code is

&&
X" X

&&
#c, b(X,i)$" A (X)

&&
k" !

ForAll (l k , hk , i = > b(X, i)) (4)

where +ek " Bk , e%
k " Bk+1 such that the value of ek (resp. e%

k) at program point f
is always equal to that of l k (resp. hk) on program entry and is less that the size of
the collection on program entry.

Theorem 23 The precondition (4) based on a sound modiÞcation and checking static
analysis %is sound.

11 Related work, future work, and conclusion
The problem of calculating (weakest)-preconditions has been intensively studied since
[15]. In the context of static analysis by abstract interpretation, the problem can be
handled by backward analysis [12, Sect. 3.2], a combination of forward and backward
analyzes [8] (see also [13]), and overapproximation of negated properties to get under-
approximations [9] followed by [6,23]. Most often the precondition inference problem
is considered in the context of partial or total correctness, including for procedure
summary [7,11,17] or contract inference [1], where no bad behavior is allowed at all
[15] so one has to consider underapproximations. For example, the preconditions com-
puted by [22,24] ensure that any assertions that exist in the code will hold when they
are reached. Our point of view for non-deterministic programs is di! erent and, to our
knowledge, our formalization of the precondition inference problem is the Þrst in the
context of design by contracts. The derived precondition never excludes a bad run
when a non-deterministic choice could alternatively yield a good run. So the program
is not checked for partial/total correctness, but the intentions of the programmer,
as only expressed by his code and assertions within this code, are preserved, since
only deÞnite failures are prohibited. Future work includes the implementation, the
study of the relation between forward and backward analyzes (using [9, Th. 10.13]),

14

!

! !"#$%&#,'-012'-$16

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

! !sj = c ! ! i "!sj = i ! !X"!s0[i] = !X"!sj [i])} .

The modiÞcation analysis must be used to determine that!X"!s0[i] = !X"!sj [i].

Segmented modiÞcation and checking analysis concretization. The con-
cretization is

" " (# # X" X $# S(M) %A (X) # S(C)) $# !$ +

" (%) !
�
!s " !$ +

�� &j < |!s | : &X" X : &'c, b(X,i) (" A (X) :

!s0 . . . " !sj " " X
C

�
%(! !sj)(X)C(' c, b(X,i) ()

��

The soundness of the result%" # # X " X $# S(M) %A (X) # S(C) of collection
segmentation modiÞcation and checking static analysis is stated by!& +) " (%). The
details of the segmentation analysis are those of [16] for the speciÞc abstract domains
M and C.

Precondition generation. Let f be the exit program point (assumed to be unique
for simplicity and corresponding to a blocking state &s " $: ! s = f * s " B).
Let X " X be any of the collection variables in the program. Let' c, b(X,i) (" A (X)
by any assertion check for elementX[i] of collection X. let %(f)(X)C(' c, b(X,i) () =
B1C1B2[?2]C2 . . . Cn! 1Bn[?n] " S(C) be the information collected by the checking
analysis (using the modiÞcation analysis no longer useful for the precondition gener-
ation). Let ') [1, n) be the set of indicesk " ' for which Ck = c. The precondition
code is
&&
X" X

&&
#c, b(X,i)$" A(X)

&&
k" !

ForAll (l k, hk, i = > b(X, i)) (4)

where +ek " Bk, e%
k " Bk+1 such that the value of ek (resp. e%

k) at program point f
is always equal to that of l k (resp. hk) on program entry and is less that the size of
the collection on program entry.

Theorem 23 The precondition (4) based on a sound modiÞcation and checking static
analysis %is sound.

11 Related work, future work, and conclusion
The problem of calculating (weakest)-preconditions has been intensively studied since
[17]. In the context of static analysis by abstract interpretation, the problem can be
handled by backward analysis [14, Sect. 3.2], a combination of forward and back-
ward analyzes [9] (see also [15]), and overapproximation of negated properties to get
underapproximations [10] followed by [6,25]. Most often the precondition inference
problem is considered in the context of partial or total correctness, including for pro-
cedure summary [8,13,19] or contract inference [1], where no bad behavior is allowed
at all [17] so one has to consider underapproximations. For example, the precondi-
tions computed by [24,26] ensure that any assertions that exist in the code will hold
when they are reached. Our point of view for non-deterministic programs is different
and, to our knowledge, our formalization of the precondition inference problem is
the Þrst in the context of design by contracts. The derived precondition never ex-
cludes a bad run when a non-deterministic choice could alternatively yield a good
run. So the program is not checked for partial/total correctness, but the intentions
of the programmer, as only expressed by his code and assertions within this code,
are preserved, since only deÞnite failures are prohibited. Future work includes the
implementation, the study of the relation between forward and backward analyzes

14

Related work

Related work (contÕd) (cotnÕd)

! T./2,$,'-.&/,.$,"#,81-4$
<<<

! :(6.&/,.$1-.#&%&#./2'-
<<<

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

(using [10, Th. 10.13]), the consideration of inÞnite behaviors and the use of more
expressive abstract domains than segmentation to express relations between values
of components of data structures inasserts and on code entry while preserving
scalability.

References
[1] Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. IEEE Com-

puter 36(11), 48Ð55 (2003)
[2] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
[3] Barnett, M., F¬ahndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)

precise points-to analysis. In: IWACO Õ07. DSV Report series No. 07-010, Stockholm
University and KTH (2007)

[4] Barnett, M., F¬ahndrich, M., Logozzo, F.: Embedded contract languages. In: SACÕ10.
pp. 2103Ð2110. ACM Press (2010)

[5] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 118Ð149 (2003)

[6] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI Õ93.
pp. 46Ð55. ACM Press (1993)

[7] Calcagno, C., Distefano, D., OÕHearn, P., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: 36th POPL. pp. 289Ð300. ACM Press (2009)

[8] Cousot, P.: M«ethodes it«eratives de construction et dÕapproximation de points Þxes dÕop«e-
rateurs monotones sur un treillis, analyse s«emantique de programmes (in French). Thèse
dÕ«Etatès sciences math«ematiques, Universit«e scientiÞque et m«edicale de Grenoble (1978)

[9] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.)
Program Flow Analysis: Theory and Applications, chap. 10, pp. 303Ð342. Prentice-Hall
(1981)

[10] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1Ñ2), 47Ð103 (2002)

[11] Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive proce-
dures. In: Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Con-
cepts. pp. 237Ð277. North-Holland (1977)

[12] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL. pp. 269Ð282. ACM Press (1979)
[13] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.

Journal of Logic Programming 13(2Ð3), 103Ð179 (1992),
[14] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully au-

tomatic and scalable array content analysis. Tech. rep., MSR-TR-2009-194, MSR Red-
mond (Sep 2009)

[15] Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of programs.
CACM 18(8), 453Ð457 (1975)

[16] F¬ahndrich, M., Logozzo, F.: Clousot: Static contract checking with abstract interpre-
tation. In: FoVeOOS: Conference on Formal VeriÞcation of Object-Oriented software.
Springer-Verlag (2010)

[17] Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis.
In: ESOP Õ07, pp. 253Ð267. LNCS 4421, Springer (2007)

[18] Hecht, M.: Flow Analysis of Computer Programs. Elsevier North-Holland (1977)
[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385Ð394 (1976)
[20] Meyer, B.: Ei ! el: The Language. Prentice Hall (1991)
[21] Meyer, B.: Applying ÒDesign by ContractÓ. IEEE Computer 25(10), 40Ð51 (1992)
[22] Moy, Y.: Su " cient preconditions for modular assertion checking. In: VMCAI 08. pp.

188Ð202. LNCS 4905, Springer (2008)
[23] Rival, X.: Understanding the origin of alarms in Astr «ee. In: SAS Õ05, pp. 303Ð319.

LNCS 3672, Springer (2005)

15

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

(using [10, Th. 10.13]), the consideration of inÞnite behaviors and the use of more
expressive abstract domains than segmentation to express relations between values
of components of data structures in assert s and on code entry while preserving
scalability.

References
[1] Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. IEEE Com-

puter 36(11), 48–55 (2003)

[2] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

[3] Barnett, M., Fähndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)
precise points-to analysis. In: IWACO ’07. DSV Report series No. 07-010, Stockholm
University and KTH (2007)

[4] Barnett, M., Fähndrich, M., Logozzo, F.: Embedded contract languages. In: SAC’10.
pp. 2103–2110. ACM Press (2010)

[5] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 118–149 (2003)

[6] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI ’93.
pp. 46–55. ACM Press (1993)

[7] Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: 36th POPL. pp. 289–300. ACM Press (2009)

[8] Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opé-
rateurs monotones sur un treillis, analyse sémantique de programmes (in French). Thèse
d’État ès sciences mathématiques, Université scientifique et médicale de Grenoble (1978)

[9] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.)
Program Flow Analysis: Theory and Applications, chap. 10, pp. 303–342. Prentice-Hall
(1981)

[10] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1—2), 47–103 (2002)

[11] Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive proce-
dures. In: Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Con-
cepts. pp. 237–277. North-Holland (1977)

[12] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL. pp. 269–282. ACM Press (1979)

[13] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
Journal of Logic Programming 13(2–3), 103–179 (1992),

[14] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully au-
tomatic and scalable array content analysis. Tech. rep., MSR-TR-2009-194, MSR Red-
mond (Sep 2009)

[15] Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of programs.
CACM 18(8), 453–457 (1975)

[16] Fähndrich, M., Logozzo, F.: Clousot: Static contract checking with abstract interpre-
tation. In: FoVeOOS: Conference on Formal Verification of Object-Oriented software.
Springer-Verlag (2010)

[17] Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis.
In: ESOP ’07, pp. 253–267. LNCS 4421, Springer (2007)

[18] Hecht, M.: Flow Analysis of Computer Programs. Elsevier North-Holland (1977)

[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385–394 (1976)

[20] Meyer, B.: Ei! el: The Language. Prentice Hall (1991)

[21] Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40–51 (1992)

[22] Moy, Y.: Su" cient preconditions for modular assertion checking. In: VMCAI 08. pp.
188–202. LNCS 4905, Springer (2008)

[23] Rival, X.: Understanding the origin of alarms in Astr «ee. In: SAS ’05, pp. 303–319.
LNCS 3672, Springer (2005)

15

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

(using [10, Th. 10.13]), the consideration of inÞnite behaviors and the use of more
expressive abstract domains than segmentation to express relations between values
of components of data structures in assert s and on code entry while preserving
scalability.

References
[1] Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. IEEE Com-

puter 36(11), 48–55 (2003)

[2] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

[3] Barnett, M., Fähndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)
precise points-to analysis. In: IWACO ’07. DSV Report series No. 07-010, Stockholm
University and KTH (2007)

[4] Barnett, M., Fähndrich, M., Logozzo, F.: Embedded contract languages. In: SAC’10.
pp. 2103–2110. ACM Press (2010)

[5] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 118–149 (2003)

[6] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI ’93.
pp. 46–55. ACM Press (1993)

[7] Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: 36th POPL. pp. 289–300. ACM Press (2009)

[8] Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opé-
rateurs monotones sur un treillis, analyse sémantique de programmes (in French). Thèse
d’État ès sciences mathématiques, Université scientifique et médicale de Grenoble (1978)

[9] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.)
Program Flow Analysis: Theory and Applications, chap. 10, pp. 303–342. Prentice-Hall
(1981)

[10] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1—2), 47–103 (2002)

[11] Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive proce-
dures. In: Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Con-
cepts. pp. 237–277. North-Holland (1977)

[12] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL. pp. 269–282. ACM Press (1979)

[13] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
Journal of Logic Programming 13(2–3), 103–179 (1992),

[14] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully au-
tomatic and scalable array content analysis. Tech. rep., MSR-TR-2009-194, MSR Red-
mond (Sep 2009)

[15] Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of programs.
CACM 18(8), 453–457 (1975)

[16] Fähndrich, M., Logozzo, F.: Clousot: Static contract checking with abstract interpre-
tation. In: FoVeOOS: Conference on Formal Verification of Object-Oriented software.
Springer-Verlag (2010)

[17] Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis.
In: ESOP ’07, pp. 253–267. LNCS 4421, Springer (2007)

[18] Hecht, M.: Flow Analysis of Computer Programs. Elsevier North-Holland (1977)

[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385–394 (1976)

[20] Meyer, B.: Ei! el: The Language. Prentice Hall (1991)

[21] Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40–51 (1992)

[22] Moy, Y.: Su" cient preconditions for modular assertion checking. In: VMCAI 08. pp.
188–202. LNCS 4905, Springer (2008)

[23] Rival, X.: Understanding the origin of alarms in Astr «ee. In: SAS ’05, pp. 303–319.
LNCS 3672, Springer (2005)

15

!

!

!

!

Related work (contÕd) (cotnÕd)

! g+$,'5&6#F$;6#.I(/6#0F$A#/8#6.>$%&#,'-012'-$+'&$
,'&&#,.-#66$;/-0$.#&*1-/2'->M

! #.,F$#.,<

! R/-?$/-/)?X#6$.'$0#.#&*1-#$65Z,1#-.$,'-012'-6$+'&$
."#$,'0#$.'$6/26+?$."#$/66#&2'-6$;/-0$.#&*1-/.#>

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

(using [10, Th. 10.13]), the consideration of inÞnite behaviors and the use of more
expressive abstract domains than segmentation to express relations between values
of components of data structures in assert s and on code entry while preserving
scalability.

References
[1] Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. IEEE Com-

puter 36(11), 48Ð55 (2003)
[2] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
[3] Barnett, M., F¬ahndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)

precise points-to analysis. In: IWACO Õ07. DSV Report series No. 07-010, Stockholm
University and KTH (2007)

[4] Barnett, M., F¬ahndrich, M., Logozzo, F.: Embedded contract languages. In: SACÕ10.
pp. 2103Ð2110. ACM Press (2010)

[5] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 118Ð149 (2003)

[6] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI Õ93.
pp. 46Ð55. ACM Press (1993)

[7] Calcagno, C., Distefano, D., OÕHearn, P., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: 36th POPL. pp. 289Ð300. ACM Press (2009)

[8] Cousot, P.: M«ethodes it«eratives de construction et dÕapproximation de points Þxes dÕop«e-
rateurs monotones sur un treillis, analyse s«emantique de programmes (in French). Thèse
dÕ«Etatès sciences math«ematiques, Universit«e scientiÞque et m«edicale de Grenoble (1978)

[9] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.)
Program Flow Analysis: Theory and Applications, chap. 10, pp. 303Ð342. Prentice-Hall
(1981)

[10] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1Ñ2), 47Ð103 (2002)

[11] Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive proce-
dures. In: Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Con-
cepts. pp. 237Ð277. North-Holland (1977)

[12] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL. pp. 269Ð282. ACM Press (1979)
[13] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.

Journal of Logic Programming 13(2Ð3), 103Ð179 (1992),
[14] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully au-

tomatic and scalable array content analysis. Tech. rep., MSR-TR-2009-194, MSR Red-
mond (Sep 2009)

[15] Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of programs.
CACM 18(8), 453Ð457 (1975)

[16] F¬ahndrich, M., Logozzo, F.: Clousot: Static contract checking with abstract interpre-
tation. In: FoVeOOS: Conference on Formal VeriÞcation of Object-Oriented software.
Springer-Verlag (2010)

[17] Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis.
In: ESOP Õ07, pp. 253Ð267. LNCS 4421, Springer (2007)

[18] Hecht, M.: Flow Analysis of Computer Programs. Elsevier North-Holland (1977)
[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385Ð394 (1976)
[20] Meyer, B.: Ei ! el: The Language. Prentice Hall (1991)
[21] Meyer, B.: Applying ÒDesign by ContractÓ. IEEE Computer 25(10), 40Ð51 (1992)
[22] Moy, Y.: Su " cient preconditions for modular assertion checking. In: VMCAI 08. pp.

188Ð202. LNCS 4905, Springer (2008)
[23] Rival, X.: Understanding the origin of alarms in Astrée. In: SAS Õ05, pp. 303Ð319.

LNCS 3672, Springer (2005)

15

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

(using [10, Th. 10.13]), the consideration of inÞnite behaviors and the use of more
expressive abstract domains than segmentation to express relations between values
of components of data structures in assert s and on code entry while preserving
scalability.

References
[1] Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. IEEE Com-

puter 36(11), 48Ð55 (2003)
[2] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
[3] Barnett, M., F¬ahndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)

precise points-to analysis. In: IWACO Õ07. DSV Report series No. 07-010, Stockholm
University and KTH (2007)

[4] Barnett, M., F¬ahndrich, M., Logozzo, F.: Embedded contract languages. In: SACÕ10.
pp. 2103Ð2110. ACM Press (2010)

[5] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 118Ð149 (2003)

[6] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI Õ93.
pp. 46Ð55. ACM Press (1993)

[7] Calcagno, C., Distefano, D., OÕHearn, P., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: 36th POPL. pp. 289Ð300. ACM Press (2009)

[8] Cousot, P.: M«ethodes it«eratives de construction et dÕapproximation de points Þxes dÕop«e-
rateurs monotones sur un treillis, analyse s«emantique de programmes (in French). Thèse
dÕ«Etatès sciences math«ematiques, Universit«e scientiÞque et m«edicale de Grenoble (1978)

[9] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.)
Program Flow Analysis: Theory and Applications, chap. 10, pp. 303Ð342. Prentice-Hall
(1981)

[10] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1Ñ2), 47Ð103 (2002)

[11] Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive proce-
dures. In: Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Con-
cepts. pp. 237Ð277. North-Holland (1977)

[12] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL. pp. 269Ð282. ACM Press (1979)
[13] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.

Journal of Logic Programming 13(2Ð3), 103Ð179 (1992),
[14] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully au-

tomatic and scalable array content analysis. Tech. rep., MSR-TR-2009-194, MSR Red-
mond (Sep 2009)

[15] Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of programs.
CACM 18(8), 453Ð457 (1975)

[16] F¬ahndrich, M., Logozzo, F.: Clousot: Static contract checking with abstract interpre-
tation. In: FoVeOOS: Conference on Formal VeriÞcation of Object-Oriented software.
Springer-Verlag (2010)

[17] Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis.
In: ESOP Õ07, pp. 253Ð267. LNCS 4421, Springer (2007)

[18] Hecht, M.: Flow Analysis of Computer Programs. Elsevier North-Holland (1977)
[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385Ð394 (1976)
[20] Meyer, B.: Ei ! el: The Language. Prentice Hall (1991)
[21] Meyer, B.: Applying ÒDesign by ContractÓ. IEEE Computer 25(10), 40Ð51 (1992)
[22] Moy, Y.: Su " cient preconditions for modular assertion checking. In: VMCAI 08. pp.

188Ð202. LNCS 4905, Springer (2008)
[23] Rival, X.: Understanding the origin of alarms in Astrée. In: SAS Õ05, pp. 303Ð319.

LNCS 3672, Springer (2005)

15

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

(using [10, Th. 10.13]), the consideration of inÞnite behaviors and the use of more
expressive abstract domains than segmentation to express relations between values
of components of data structures in assert s and on code entry while preserving
scalability.

References
[1] Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. IEEE Com-

puter 36(11), 48Ð55 (2003)
[2] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
[3] Barnett, M., F¬ahndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)

precise points-to analysis. In: IWACO Õ07. DSV Report series No. 07-010, Stockholm
University and KTH (2007)

[4] Barnett, M., F¬ahndrich, M., Logozzo, F.: Embedded contract languages. In: SACÕ10.
pp. 2103Ð2110. ACM Press (2010)

[5] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 118Ð149 (2003)

[6] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI Õ93.
pp. 46Ð55. ACM Press (1993)

[7] Calcagno, C., Distefano, D., OÕHearn, P., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: 36th POPL. pp. 289Ð300. ACM Press (2009)

[8] Cousot, P.: M«ethodes it«eratives de construction et dÕapproximation de points Þxes dÕop«e-
rateurs monotones sur un treillis, analyse s«emantique de programmes (in French). Thèse
dÕ«Etatès sciences math«ematiques, Universit«e scientiÞque et m«edicale de Grenoble (1978)

[9] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.)
Program Flow Analysis: Theory and Applications, chap. 10, pp. 303Ð342. Prentice-Hall
(1981)

[10] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1Ñ2), 47Ð103 (2002)

[11] Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive proce-
dures. In: Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Con-
cepts. pp. 237Ð277. North-Holland (1977)

[12] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL. pp. 269Ð282. ACM Press (1979)
[13] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.

Journal of Logic Programming 13(2Ð3), 103Ð179 (1992),
[14] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully au-

tomatic and scalable array content analysis. Tech. rep., MSR-TR-2009-194, MSR Red-
mond (Sep 2009)

[15] Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of programs.
CACM 18(8), 453Ð457 (1975)

[16] F¬ahndrich, M., Logozzo, F.: Clousot: Static contract checking with abstract interpre-
tation. In: FoVeOOS: Conference on Formal VeriÞcation of Object-Oriented software.
Springer-Verlag (2010)

[17] Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis.
In: ESOP Õ07, pp. 253Ð267. LNCS 4421, Springer (2007)

[18] Hecht, M.: Flow Analysis of Computer Programs. Elsevier North-Holland (1977)
[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385Ð394 (1976)
[20] Meyer, B.: Ei ffel: The Language. Prentice Hall (1991)
[21] Meyer, B.: Applying ÒDesign by ContractÓ. IEEE Computer 25(10), 40Ð51 (1992)
[22] Moy, Y.: Sufficient preconditions for modular assertion checking. In: VMCAI 08. pp.

188Ð202. LNCS 4905, Springer (2008)
[23] Rival, X.: Understanding the origin of alarms in Astr «ee. In: SAS Õ05, pp. 303Ð319.

LNCS 3672, Springer (2005)

15

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

(using [10, Th. 10.13]), the consideration of inÞnite behaviors and the use of more
expressive abstract domains than segmentation to express relations between values
of components of data structures in assert s and on code entry while preserving
scalability.

References
[1] Arnout, K., Meyer, B.: Uncovering hidden contracts: The .NET example. IEEE Com-

puter 36(11), 48–55 (2003)

[2] Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)

[3] Barnett, M., Fähndrich, M., Garbervetsky, D., Logozzo, F.: Annotations for (more)
precise points-to analysis. In: IWACO ’07. DSV Report series No. 07-010, Stockholm
University and KTH (2007)

[4] Barnett, M., Fähndrich, M., Logozzo, F.: Embedded contract languages. In: SAC’10.
pp. 2103–2110. ACM Press (2010)

[5] Biere, A., Cimatti, A., Clarke, E., Strichman, O., Zhu, Y.: Bounded model checking.
Advances in Computers 58, 118–149 (2003)

[6] Bourdoncle, F.: Abstract debugging of higher-order imperative languages. In: PLDI ’93.
pp. 46–55. ACM Press (1993)

[7] Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis by
means of bi-abduction. In: 36th POPL. pp. 289–300. ACM Press (2009)

[8] Cousot, P.: Méthodes itératives de construction et d’approximation de points fixes d’opé-
rateurs monotones sur un treillis, analyse sémantique de programmes (in French). Thèse
d’État ès sciences mathématiques, Université scientifique et médicale de Grenoble (1978)

[9] Cousot, P.: Semantic foundations of program analysis. In: Muchnick, S., Jones, N. (eds.)
Program Flow Analysis: Theory and Applications, chap. 10, pp. 303–342. Prentice-Hall
(1981)

[10] Cousot, P.: Constructive design of a hierarchy of semantics of a transition system by
abstract interpretation. TCS 277(1—2), 47–103 (2002)

[11] Cousot, P., Cousot, R.: Static determination of dynamic properties of recursive proce-
dures. In: Neuhold, E. (ed.) IFIP Conf. on Formal Description of Programming Con-
cepts. pp. 237–277. North-Holland (1977)

[12] Cousot, P., Cousot, R.: Systematic design of program analysis frameworks. In: 6th

POPL. pp. 269–282. ACM Press (1979)

[13] Cousot, P., Cousot, R.: Abstract interpretation and application to logic programs.
Journal of Logic Programming 13(2–3), 103–179 (1992),

[14] Cousot, P., Cousot, R., Logozzo, F.: A parametric segmentation functor for fully au-
tomatic and scalable array content analysis. Tech. rep., MSR-TR-2009-194, MSR Red-
mond (Sep 2009)

[15] Dijkstra, E.: Guarded commands, nondeterminacy and formal derivation of programs.
CACM 18(8), 453–457 (1975)

[16] Fähndrich, M., Logozzo, F.: Clousot: Static contract checking with abstract interpre-
tation. In: FoVeOOS: Conference on Formal Verification of Object-Oriented software.
Springer-Verlag (2010)

[17] Gulwani, S., Tiwari, A.: Computing procedure summaries for interprocedural analysis.
In: ESOP ’07, pp. 253–267. LNCS 4421, Springer (2007)

[18] Hecht, M.: Flow Analysis of Computer Programs. Elsevier North-Holland (1977)

[19] King, J.: Symbolic execution and program testing. CACM 19(7), 385–394 (1976)

[20] Meyer, B.: Ei! el: The Language. Prentice Hall (1991)

[21] Meyer, B.: Applying “Design by Contract”. IEEE Computer 25(10), 40–51 (1992)

[22] Moy, Y.: Su" cient preconditions for modular assertion checking. In: VMCAI 08. pp.
188–202. LNCS 4905, Springer (2008)

[23] Rival, X.: Understanding the origin of alarms in Astr «ee. In: SAS ’05, pp. 303–319.
LNCS 3672, Springer (2005)

15

!

!

!

!

!

Conclusion

Precondition inference from assertions

! g5&$%'1-.$'+$B1#A$."/.$'-)?$0#E-1.#$;/-0$-'.$
%'.#-2/)>$/66#&2'-$B1')/2'-6$6"'5)0$(#$,"#,8#0$1-$
%&#,'-012'-6$)''86$'&141-/)

! !"#$/-/)?X#6$+'&$6,/)/&$/-0$,'))#,2'-$B/&1/()#6$"/B#$
(##-$,"'6#-$.'$(#$61*%)#

! +'&$6,/)/(1)1.?$'+$."#$/-/)?X#6

! +'&$5-0#&6./-0/(1)1.?$'+$."#$/5.'*/2,$%&'4&/*$
/--'./2'-

! Y#*/1-6$.'$(#$1*%)#*#-.#0

Thanks to all for this
very nice visit

