Abstract Interpretation

and Static Analysis

Patrick COUSOT
Ecole Normale Supérieure, 45 rue d'Ulm
75230 Paris cedex 05, France

mailto:cousot@ens.fr
http://www.di.ens.fr/ cousot
IFIP WG 10.4, 40th Meeting on Formal Methods, Stenungsund,
Sweden, July 4-8, 2001

The Software Reliability Problem

e The evolution of hardware by a factor of 100 over the past
25 years has lead to the explosion of the program sizes;

e The scope of application of very large software is likely to
widen rapidly in the next decade;

e These big programs will have to be modified and maintained
during their lifetime (often over 20 years);

e The size and efficiency of the programming and maintenance
teams in charge of their design and follow-up cannot grow up
in similar proportions;

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —2— © P. Cousor j‘@\&

Introductory Motivations
on Software Reliability

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —1— © P. Cousor j‘@\&

The Software Reliability Problem (Cont’d)

e At a not so uncommon (and often optimistic) rate of one bug
per thousand lines such huge programs might rapidly become
hardly manageable in particular for safety critical systems;

e Therefore in the next 10 years, the software reliability problem
is likely to become a major concern and challenge to modern
highly computer-dependent societies.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —3— © P. Cousor j‘@\&

What Can We Do About It?

e Use our intelligence (thinking/intellectual tools: abstract in-
terpretation);

e Use our computer (mechanical tools : static program analy-
sis/checking/testing, the early idea of using computers to
reason about computer).

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —4—

@ P Cousor
© P. CousoT ﬁﬁh

The Verification/Validation Problem

Computer
program

l

Programming
language
semantics

! Satis faction

Program semantics

Formal
specification

l

Specification
language
semantics

l

-

4

model of actual
program executions
in all environments

IFIP WG 10.4, 40th Meeting, July 4-8, 2001

Specification semantics
model of required
program executions
in allowed environments

@ P Cousor
© P. CousoT ﬁﬁh

Software Verification
and Validation

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —5—

@ P Cousor
© P. CousoT ﬁﬁh

Example: Model Checking

Computer |
program

Program semantics

[

model of actual
program executions
in all environments

IFIP WG 10.4, 40th Meeting, July 4-8, 2001

Model checking . 7

Checking ’

Programming | Specification
]':1:\11-10(\ “ | | Program Temporal | I']‘; o
GHEHAS e : ' anguage
- g model specification |: >k
semantics ||~~~ | |22 ‘ semantics

Formal
| specification

—p

Specification semantics
model of required
program executions
in allowed environments

@ P Cousor
© P. CousoT ﬁﬁh

Other Examples of Software
Verification/Validation Techniques

e Software testing;

e Simulation and prototyping;
e Technical reviews;

e Requirements tracing;

e Formal correctness proofs;

Fundamental Theoretical Limitations

e Undecidability: full automation of software verification /vali-
dation is impossible;
e Examples of undecidable questions:
o Is my program bug-free? (i.e. correct with respect to a
given specification);

o Can a program variable take two different values during

execution?
e Etc.
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —8— © P. CousoT ﬁt IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 10— © P. CousoT ﬁt
Practical Limitations Undecidability and Approximation
o Testing: e Since program verification is undecidable, computer aided pro-

« Testing all data on all paths is impossible;

e Formal methods:
e No formal specification perfectly reflects informal human
expectations;
« Proofs grow exponentially in the size of programs/specifi-
cations which is incompatible with friendly user interaction
and full automation;

e etc.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —9— © P. CousoT ﬁ&

gram verification methods are all partial /incomplete;
e They all involve some form of approximation:
« restricted specifications or programs (e.g. finiteness),
« decidable questions or semi-algorithms,
« practical time/memory complexity limitations,
e require user interaction;
e Most of these approximations are formalized by Abstract
Interpretation.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 11— © P. CousoT ﬁ&

Examples of approximations

e Testing: coverage is partial (so errors are frequently found
until the end of the software lifetime);

e Proofs: specifications are often partial, debugging proofs is

often harder that testing programs (so only parts of very large Semantics

software can be formally proved correct);
e Model checking: the model must fit machine limitations (so

some facets of program execution must be left out) and be

redesigned after program modifications;
e Typing: types are weak program properties (so type verifica-

tion cannot be generalized to complex specifications).
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 12 © P. Cousor 7‘%\@ IFIP WG 10.4, 40th Meeting, July 4-8, 2001 14 © P. Cousor 7‘%\@

Content Semantics: intuition

e Introductory motivations on software reliability 1 e The semantics of a language defines the semantics of any
e Software verification and validation............................... 5 program written in this language;
@ S EMaANTICS . ottt 14 e The semantics of a program provides a formal mathematical
e Abstract Interpretation....................... 19 model of all possible behaviors of a computer system execut-
® ABSEraction ... 23 ing this program (interacting with any possible environment);
e Conservative approximation & information loss 37 e Any semantics of a program can be defined as the solution
e Static program analysis............ 69 of a fixpoint equation;
e Static program checking 92) .))
o Static program teSting ...+ v 08 o All semantics of a program can be organized in a hierarchy
@ Conclusion i 109 by abstraction.
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 13 © P. Cousor 7‘%\@ IFIP WG 10.4, 40th Meeting, July 4-8, 2001 15 © P. Cousor 7‘%\@

Example: trace semantics

Initial states

lIntermediate states

0

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 16

Final states of the

finite traces

1 23 45 6 7 8 9 ... discrete time

© P. Cousor ﬁ{g

Least Fixpoints: intuition

Behaviors = {¢ | ¢ is a final state}

U { —=——.——=| —= is an clementary step &

—— . —— € Behaviors™}

U {——=—.——..| ——= is an elementary step &

—— . —— .. € Behaviors™}

e In general, the equation has multiple solutions.
e Choose the least one for the partial ordering:

« more finite traces & less infinite traces >.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 18 © P. Cousor i_gg

Examples of computation traces

e Finite (C1+1=):

Sams o
B B
DEE O
2. o= 2
e Erroneous . (CL+1+1+1...):

FECLC[]
[
2
Iam/aj

e Infinite

ulato

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 17

© P. Cousor ﬁ{g

Abstract Interpretation

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 19 © P. Cousor i_gg

Abstract Interpretation [1]

e Formalizes the idea of approximation of sets and set opera-
tions as considered in set (or category) theory;

o A theory of approximation of the semantics of programming
languages;

e Main application: formal method for inferring general runtime
properties of programs.

Reference

[1] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Conf. Record of the 4th Annual ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages POPL'77, Los Angeles, CA, 1977. ACM Press, pp. 238-252.

Usefulness of Abstract Interpretation

e Thinking tools: the idea of abstraction is central to reason-
ing (in particular on computer systems);

e Mechanical tools: the idea of effective approximation leads
to automatic semantics-based program manipulation tools.

IFIP WG 10.4, 40th Mesting, July 4-8, 2001 —20— © P. Cousor 1‘@& IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —2— © P. Cousor 1‘@&
The Theory of Abstract Interpretation
e Abstract interpretation is a theory of conservative approx-
imation of the semantics of computer systems.
Approximation: observation of the behavior of a com-
puter system at some level of abstraction, ignoring irrele- Abstraction
vant details;
Conservative: the approximation cannot lead to any erro-
neous conclusion.
IFIP WG 10.4, 40th Meeting,, July 4-8, 2001 —21— © P. Cousor 1‘@& IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —23— © P. Cousor 1‘@&

Abstraction: intuition

e Abstract interpretation formalizes the intuitive idea that a
semantics is more or less precise according to the considered
observation level of the program executions;

e Abstract interpretation theory formalizes this notion of ap-
proximation/abstraction in a mathematical setting which is
independent of particular applications.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 24— © P. Cousor ﬁ@\h
il

Approximations of an [in]finite set of points;

/'y
-
+
& + +
& & +
rrrrrrrrrrrr + + +
Y ; + {...,(19, 78),...,
& ' & +
‘ (20, 01),...}
&
£
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 26— © P. Cousor jﬂ@ﬁ

Intuition behind abstraction

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 25— © P. Cousor ﬁ@\h
il

Approximations of an [in]finite set of points:
From Below

4

y e ! {...,(19; 78>=""

xr

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 27— © P. Cousor ﬁ@\h
il

Approximations of an [in]finite set of points:

From Above

4

” (..., (10, 78),. ..,
(20, 01), (7, 7),...}
i
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 28— © P. CousoT @

Effective computable approximations of an
[in]finite set of points; Signs [2]

X
__ Reference

[2] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6" POPL, pages 269-282,
San Antonio, TX, 1979. ACM Press.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 30— © P. Cousor ﬁ

Intuition Behind
Effective Computable Abstraction

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 29— © P. Cousor ﬁ

Effective computable approximations of an
[in]finite set of points; Intervals [3]

xr

__ Reference

[3] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In 2"’ Int. Symp. on
Programming, pages 106-130. Dunod, 1976.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 31— © P. Cousor ﬁ

Effective computable approximations of an
[in]finite set of points; Octagons [4]

1<x<9
Yy r+y <78
l<y<9
r—1y <99
T
— Reference

[4] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. Proc. 2 Symp. on Programs
as Data Objects PAD0O’2001, 0. Danvy & A. Filinski (Eds.), LNCS 2053, Springer, 2001, pp. 155-172.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —3— © P. Cousor ﬁh

Effective computable approximations of an
[in]finite set of points; Simple congruences [6]

00,0 000000000000 000
celeccccceccsccssss
celecccccscccccccces
eeoe0o 00000000000
VIIITITIIIIIIIIIIII fa=19mod T8
eoj0e0oso000e00000s000
ecojle0eo0oo00000000000 y:20m0d99
celecccccccccccscsns
| S SN
oooooo:ocooooooooooo

___ Reference

[6] P. Granger. Static analysis of arithmetical congruences. Int. J. Comput. Math., 30:165-190, 1989.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 34— © P. Cousor ﬁh

Effective computable approximations of an
[in]finite set of points; Polyhedra [5]

19z + 78y < 2000
20 + 01y > 0

xr

__ Reference

[5] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In 5%
POPL, pages 84-97, Tucson, AZ, 1978. ACM Press.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —33— © P. Cousor ﬁh

Effective computable approximations of an
[in]finite set of points; Linear congruences [7]

o, © o o o o o o o
o (6 o o o o o o o

ol o e o o o o o o
e (6 o o e o o o o

o o o o o o o o o
o |o

[]
L]
[]
L
L]
[]
[]

e © o o e o e o o
Y et et e e et e e e [1lo+ 9y ="Tmod8
.o.o.o,o.o.o.o.o.o 2x—1y:9m0d9

RIPSILIRIRIRITIR

Reference

[7] P. Granger. Static analysis of linear congruence equalities among variables of a program. CAAP ‘91, LNCS
493, pp. 169-192. Springer, 1991.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —35— © P. Cousor ﬁh

Effective computable approximations of an

[in]finite set of points; Trapezoidal linear con-

- o o
gruences [8]
—

o\

| 4 A
L py— ! 1z + 9y € [0, 78] mod 10
-y el { 2z — 1y € [0,99] mod 11
> ‘ - 4
§ -
Y Y

xr

__ Reference

[8] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid congruences. In ACM Int. Conf.
on Supercomputing, ICS '92, pages 226-235, 1992.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 36— © P. Cousor ﬁf\&
il

Intuition Behind
Sound/Conservative Approximation

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 38— © P. Cousor ﬁ?&

Conservative Approximation
and Information Loss

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 37— © P. Cousor ﬁf\&
il

Conservative Approximation

e |s the operation 1/ (x+1-y) well defined at run-time?

e Concrete semantics: yes

+
+
+ + +
+ + +
y o | + + +
+
+ : + +
+
X
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —39— © P. Cousor ﬁf\&
il

Conservative Approximation

e |s the operation 1/ (x+1-y) well defined at run-time?
e Testing : You never know!

Conservative Approximation

e |s the operation 1/ (x+1-y) well defined at run-time?

e Abstract semantics 2: yes

° [] ¢ [] ° [4 ¢ [] ¢ [] ° [] ¢ [] S [] ¢ []
[] [] [] [] [] [] [] [] []
[° [] ¢ [] ° * ¢ [] ° * ° * ° [] ° [] ¢
[] [] [] [2 [J [] * [] []
y y. [] '.. [] p [] ° [] ¢ [] ¢ [] ¢ []
° e o e o o e o
o [] N [] . [] o [] o [] o [] N [] o []
[] [] [] [] [] [] [] []
} S [] [] < [] < [] < [] < [] < [] < [] < []
T T
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 40— © P. Cousor 4@ IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — © P. Cousor 4@
Conservative Approximation
e |s the operation 1/ (x+1-y) well defined at run-time?
e Abstract semantics 1: | don’t know
Intuition Behind
Information Loss
Yy
T
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —1— © P. Cousor 4@ IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 3 © P. Cousor 4@

Information Loss

e All answers given by the abstract semantics are always correct
with respect to the concrete semantics;

e Because of the information loss, not all questions can be
definitely answered with the abstract semantics;

e The more concrete semantics can answer more questions;

e The more abstract semantics are more simple.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 44 — © P. CousoT 1‘%‘\&

Abstraction

Y {2:[1,99], v:[2,77]}

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 46 — © P. CousoT 1‘%‘\&

Basic Elements of
Abstract Interpretation Theory

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 45 — © P. CousoT 1‘%‘\&

Concretization ~

Yy
77
T T e, 2,99}
|
1 g9
e 104t e oy 46 2001 e oF conor By

The Abstraction « is Monotone

The v o « Composition

Y
7] N
{z:[33,89], y:[48,61]} . . . -
Im! * ...: ol {:][1,99], v:[2,77]}
{2:[1,99], v:[2,99]} o /‘/ «
2 - :
1 99 "¢
XCY?CK(X)EOL(Y) ngyoa(X>
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 48 — © P. Cousor @ IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —50 — © P. Cousor @
The Concretization ~ is Monotone The o o v Composition
Y Y
T vird N
[- i €T:)|, v: R *
6 Y :’/{I [33789}5(9 [48,61]} | R ~ {2:[1,99], v:[2,77]}
L + l . + 0% . + II/
8 -t *\{17:[1,99], y:[2,99]} + " o {2:[1,99], v:[2,77]}
21 L+ 21 +]
1 33 89 99 ~* 1 99 "
XEY:>")/(X)Q’)/(Y) ao*y(Y):Y
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 49 — © P. Cousor @ IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 51— © P. Cousor @

Galois Connection'

(P, C) == (@, E)
iff
e (v is monotone

® 7y is monotone
e X Cvyoa(X)
caon(Y)CY

1 formalizations using closure operators, ideals, etc. are equivalent.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —52— © P. Cousor ﬁ
el

Fixpoint Abstraction

Abstract domain
§ Fj F .//)‘QF
.7/4'

Jf ° ’i)./—'

’Y Approximation

}/ relation T

~/’/’/Q/./@F
F F
.TV F

Concrete domain

I F C y(ifp F¥)

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 54 — © P. Cousor ﬁ
el

Abstract domain Function Abstraction

i
o}j
7 Oé Ft:(XOFO’}/
. F_.e
g £ -

Concrete domain

(P, C) == (Q O) =

mon pVas W/OFﬁoa
(P& P C)

AF . aoF oy

(@~ Q. E)

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 53— © P. Cousor ﬁ
il

Fixpoint Abstraction

Abstract domdm ﬁQF
F /'g/' X’/

a ’y a 7 Oz 7 a “/ a ’y Approximation
relation C

F
F Concrete domain
Ff=qo Foy = IpF C 7</prﬁ)
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 55— © P. Cousor ﬂgf&

Exact/Approximate Fixpoint Abstraction

Exact Abstraction:
a(ifpF) = Ifp F*

Approximate Abstraction:

a(ifp F) T% ifp F*

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 56 — © P. Cousor ﬁ@\h
il

A Few References on Foundations

[9] P. Cousot and R. Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by con-
struction or approximation of fixpoints. In 4th POPL,
pages 238-252, Los Angeles, CA, 1977. ACM Press.

[10] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In 6th POPL, pages 269-282, San
Antonio, TX, 1979. ACM Press.

[11] P. Cousot and R. Cousot. Abstract interpretation frame-
works. J. Logic and Comp., 2(4):511-547, 1992.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 58 — © P. Cousor ﬁ@\h
il

Exact Fixpoint Abstraction

Abstract domain 4 f
N A e "

a ol ol o adia

Concrete domain

aoF=Floa = allpF) = Ifp F*

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 57 — © P. Cousor ﬁ@\h
il

Applications of
Abstract Interpretation

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 59 — © P. Cousor ﬁ@\h
il

(1) Exact Abstractions

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 60 — © P. Cousor

Trace Semantics (Once Again)

Initial states
Final states of the

iIntermediate states finite traces

a
Ol oy Infinite
g0 oo he traces

01 23 45 6 7 8 9 ... discrete time

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 62 — © P. Cousor

Abstractions of Semantics [12]

__ Reference

[12] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in Theoretical Computer Science, (2001).

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 61 — © P. Cousor

Example 1 of Semantics Abstraction

Initial states Initial states

i Final states
i Intermediate states Final states of

finite traces . v

ta b te 0 dd a d
- - : : - : - , - p) D . @ @® | [@ .[
A AL Infinite ¢ a
T 9, | traces a a o.e I
O S N R N S —
*—0—0—0—0—0—0—0—0—0—0—0—0 . @
[D S g h
0006666000000 -"- -y
ko on iJ
%W . . > ; > : - - -
R A A
01234567829 discrete time

Trace semantics Denotational Natural

semantics semantics

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 63 — © P. Cousor

Example 2 of Semantics Abstraction

Initial states Transitions Final states
° —e o—o --- o—o
a a b bec d d
° —o 06— 0—0 o—0---0—0 ®
€ e f f
° —o 06— 0—90 --- o—o ®
g g h h
'y *—e o—0 o—0 o—o - -- Hj ®
1) J J
° i AH —o ¢—0 0—0 06— --- o—0---
° [' 10—0 e—9 690 06—90 690 069---0—0---

(Small-Step) Operational Semantics

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 64 — © P. Cousor ﬁ

Lattice of Semantics

Hoare logics
TP

Weakest precondition

A wlp
semantics T »
’
Denotational semantics p e _
T ™ 70 =
EM
Relational semantics
T+ <

Trace semantics .

__ abstraction

__ equivalence

angelic natural demoniac --- restriction
determinist infinite

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 66 — © P. Cousor ﬁ

Example 3 of Semantics Abstraction

Initial states Reachable states Final states
.. °,9, 0.0 0 0 0 o .d
. e, 0 00000 00 o f ° 1
., 0 0 00 00 0 00 ® b
.27 00000000000 .j .J,
.k o600 00000000000 ---
o[0000000000000 ---

Partial Correctness / Invariance Semantics

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 65 — © P. Cousor ﬁ

(2) Effective Approximate
Abstractions

Reference

[13] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. POPL'77, ACM Press, pp. 238-252.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 67 — © P. Cousor ﬁ

Effective Abstractions of Semantics

e If the approximation is rough enough, the abstraction of a
semantics can lead to a version which is less precise but is
effectively computable by a computer;

e The computation of this abstract semantics amounts to the
effective iterative resolution of fixpoint equations;

e By effective computation of the abstract semantics, the com-
puter is able to analyze the behavior of programs and of soft-
ware before and without executing them.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 68 — © P. CousoT ﬁ&

Objective of Static Program Analysis

e Program analysis is the automatic static determination of
dynamic run-time properties of programs;

e The principle is to compute an approximate semantics of the
program to check a given specification;

e Abstract interpretation is used to derive, from a standard
semantics, the approximate and computable abstract seman-
tics;

e This derivation is itself not (fully) mechanizable.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 70— © P. CousoT ﬁ&

Static Program Analysis

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 69 — © P. CousoT ﬁ&

Basic Idea of Static Program Analysis

e Basic idea: use effective computable approximations of the
program semantics;
Advantage: fully automatic, no need for error-prone user
designed model or costly user interaction;
Drawback: can only handle properties captured by the
approximation;
Remedy: ask the user to choose among a variety of
possible approximations (abstract algebras) at various
cost /precision ratio.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 71— © P. CousoT ﬁ&

Principle of a Static Program Analyzer

[Program] [Speciﬁcation}

S

System of fixpoint equations/constraints

(Approximate) solution

Program

analyzer

|
Y

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 72—

© P. Cousor ﬁ?&

Design of a Static Program Analyzer

by Abstract Interpretation

Abstract Static Program Analysis

Programming
language ABSTRACTION

semantics

l

Program semantics

model of actual
program executions
in all environments

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 74—

Computer |: Abstract Information about
'] program [r--® program f---- + actual program executions |:
v l 3 semantics in all environments

Abstract

i Interpretation

© P. Cousor ﬁ?&

Generic Static Program Analyzer

Abstract
algebra

Program

» Generator

il

> Solver

1

(Approximate) solution

System of fixpoint equations/constraints

Program
Inter facor analyzer

.

Information on
program executions

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 73—

© P. Cousor ﬁ?&

Effective Symbolic Abstractions

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 75—

© P. Cousor ﬁ?&

Effective Abstractions
of Symbolic Structures

e Most structures manipulated by programs are symbolic struc
tures such as control structures (call graphs), data structures
(search trees), communication structures (distributed & mo-
bile programs), etc;

e It is very difficult to find compact and expressive abstractions
of such sets of objects (languages, automata, trees, graphs,
etc.).

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 76 — © P. CousoT 1‘%‘\&

Example of Abstractions of Infinite Sets of
Infinite Trees

Binary Decision Graphs: [15]

0N D e N, D

z 1 1=z
Ol >< lo true \1 [y true
true false true
{0¥,1¢} infinite number of 0’s fair vectors ends by 0%
Reference

[15] L. Mauborgne. Binary decision graphs. SAS "99, LNCS 1694, pp. 101-116. Springer, 1999.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 78 — © P. CousoT 1‘%‘\&

Example of Abstractions of Infinite Sets of
«u Finite Trees

e Program : X
—le[eglo[eF= —{ple—{s]
]
Y := copy(X)
X
R T S R
R »
e Alias analysis: gty Y Lo
’ cogfiéurationzg.‘k‘.—‘_'{“.—‘*"' 4’{“.—‘_'“[\[
0 o
Y := copy(X)

{(X+ (t1—) = hd, Y — (t1+)/ > hd) | i = j}

Reference

[14] A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting. In PLDI’94, pp. 230-241, 1994.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 77— © P. CousoT 1‘%‘\&

Example of Abstractions of Infinite Sets of
Infinite Trees (Cont’d)

Tree Schemata: [16, 17]

I
R?OQR— -~ COééko El< >¢
b a true L b //\) c// z —)1false0<— z

{a"bln € N} {f(a"e;b e, c"e)|n € N}
Note that E is the equality relation.

__ Reference

[16] L. Mauborgne. Improving the representation of infinite trees to deal with sets of trees. ESOP ’'2000, LNCS
1782, pp. 275-289. Springer, 2000.
[17] L. Mauborgne. Tree schemata and fair termination. SAS 2000, LNCS 1824, pp. 302-321. Springer, 2000.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 79— © P. CousoT 1‘%‘\&

A Classical Example:
Interval Analysis

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —80 — © P. Cousor ﬁi@\h
il

Example: interval analysis (1975) °
Equations (abstract interpretation of the semantics):
X7 =[1,1]
Xy = (X7 U X3) N [—00,9999]
X3 =Xo®[1,1]
while x < 10000 do (X4 = (X1 U X3) N [10000,+o0]

2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 82— © P. Cousor ﬁi@\h
il

Example: interval analysis (1975) °
Program to be analyzed:

x :=1;
1:

while x < 10000 do
2:

x :=x +1

3:

od;
4:

2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 81— © P. Cousor ﬁi@\h
il

Example: interval analysis (1975) °
Constraints (abstract interpretation of the semantics):
X7 2 [1,1]
Xy D (X7 U X3) N [—00,9999]
X320 Xo®[1,1]
while x < 10000 do (X4 2 (X1 U X3) N [10000,+00]

2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 82— © P. Cousor ﬁi@\h
il N

Example: interval analysis (1975) °
Increasing chaotic iteration, initialization:
(X, = [1,1]
Xy = (X7 U X3) N [—00,9999]
X3 =Xo®[1,1]

1:
while x < 10000 do (X4 = (X1U X3) N [10000,+00]
2:
x :=x +1 (
od; X2 = @
4: X3 = 0
\X4 =0
2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 83— © P. Cousor ﬁgi

Example: interval analysis (1975) °
Increasing chaotic iteration:

(X, = [1,1]
)) Xy = (X7 U X3) N [—00,9999]
x =1
1. X3=Xo@[1,1]
while x < 10000 do (X4 = (X1U X3) N [10000, +00]
2:
x :=x +1 (
. Xy = [1,1]
od; Xo = [1,1]
4 X3 = @
\X4 - @
2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 83— © P. Cousor j‘@‘\i

Example: interval analysis (1975) °
Increasing chaotic iteration:

X, =[1,1]
1) X5 = (2, U Xg) 1 [0, 9999
x = 1;
1: X3 = Xo & [L1]
while x < 10000 do (X1 = (X1U X3) N [10000,+00]
2:
x :1=x +1 (
5 X, = [1,1]
od; X2 = (/)
4 X3 =
\X4 - @

2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 83— © P. Cousor j‘@\h
il

Example: interval analysis (1975) °
Increasing chaotic iteration:

X, =[1,1]
1) X5 = (21U Xg) 1 [0, 9999
x = 1;
1: X3 = Xo @ [L1]
while x < 10000 do (X1 = (X1U X3) N [10000, +00]
2:
x :1=x +1 (
5 X, = [1,1]
od; X9 = [1’ 1]
4 X3 = {2,2]
\X4 - @

2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 83— © P. Cousor j‘@\h
il

Example: interval analysis (1975) ° Example: interval analysis (1975) °
Increasing chaotic iteration: Increasing chaotic iteration: convergence??
(X} = [1,1] (X} = [1,1]
o1) Xy = (X7 U X3) N [—00,9999] o1) Xy = (X7 U X3) N [—00,9999]
1 ’ X3=X2@[1,1] 1: , X3:X2@[171]
while x < 10000 do (X4 = (X1U X3) N [10000,+00] while x < 10000 do (X4 = (X1U X3) N [10000, +00]
2 5.
.. x :=x +1 (Xlz[l,l] . x :=x +1 (Xlz[l,l]
od; X9 = {1’2] od; X9 = {1’3]
4 X3 = [2,2] 4 X3 = [2,3]
([Xa=10 ([Xa=10
2 P. Cousot & R. Cousot, ISOP'1976, POPL'77. 2 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
IFIP WG 10.4, 40th Mesting, July 4-8, 2001 — 83— © P. Cousor ﬁ@v\i IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —83— ©P. Cousor ﬁ@!
Example: interval analysis (1975) ° Example: interval analysis (1975) °
Increasing chaotic iteration: convergence? Increasing chaotic iteration: convergence???
(X} = [1,1] (X} = [1,1]
o1) Xy = (X7 U X3) N [—00,9999] o1) Xy = (X7 U X3) N [—00,9999]
1 ’ X3 =Xo®|1,1] 1 ’ X3 =Xo®[1,1]
while x < 10000 do (X1 = (X1U X3) N [10000,+00] while x < 10000 do (X1 = (X1U X3) N [10000, +00]
2 5.
.. x :=x +1 (Xlz[l,l] . x :=x +1 (Xlz[l,l]
od; X9 = [1’2] od; X9 = [1’3]
4 X3 =[2,3] 4 X3 = [2,4]
\X4 =0 \X4 =0
2 P. Cousot & R. Cousot, ISOP'1976, POPL'77. 2 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
IFIP WG 10.4, 40th Mesting, July 4-8, 2001 — 83— © P. Cousor ﬁ@v\i IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —83— ©P. Cousor ﬁ@!

Example: interval analysis (1975) °
Increasing chaotic iteration: convergence????
X, =[1,1]
Xy = (X7 U X3) N [—00,9999]
X3 =Xo®[1,1]

1:
while x < 10000 do (X4 = (X1U X3) N [10000,+00]
2:
x :=x +1 (
.. X1 = [1,1]
od; XQ - [1’ 4]
4 X3 = [2a4]
\X4 - @
2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 83— © P. Cousor jﬂ@!

Example: interval analysis (1975) °

Increasing chaotic iteration: convergence???7777?
(X) = [1,1]
)) Xy = (X7 U X3) N [—00,9999]
x 1= 1;
. X3 =Xo@[1,1]
while x < 10000 do (X4 = (X1U X3) N [10000, +00]
2:
x :=x +1 (
3. X; =[1,1]
od; Xy = [1,9]
4 X3 = [2,5]
\X4 =0

2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 83— © P. Cousor ﬁ@\h
il

Example: interval analysis (1975) °

Increasing chaotic iteration: convergence???7?7?
(X = [1,1]
) < Xy = (X7 U X3) N [—00,9999]
x 1= 1;
1. X3=Xo@[1,1]
while x < 10000 do (X1 = (X1U X3) N [10000,+00]
2:
x :=x +1 (
3. X; =[1,1]
od; X2 = [1’4]
4 X3 = [2, 5]
\X4 - @

2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 83— © P. Cousor ﬁ@\h
il

Example: interval analysis (1975) °

Increasing chaotic iteration: convergence????777?
(X = [1,1]
) < Xy = (X7 U X3) N [—00,9999]
x 1= 1;
1 X3 =Xo®[1,1]
while x < 10000 do (X1 = (X1U X3) N [10000, +00]
2:
x :=x +1 (
3. X; =[1,1]
od; X2 = [1a5]
4 X3 = {2,6]
\X4 - @

2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 83— © P. Cousor ﬁ@\h
il

Example: interval analysis (1975) °
Convergence speed-up by extrapolation:

Example: interval analysis (1975) °
Decreasing chaotic iteration:

(X) = [1,1] (X) = [1,1]
o1) Xy = (X7 U X3) N [—00,9999] o1) X9 = (X7 U X3) N [—00,9999]
1 ’ X3 =Xo®[1,1] 1 ’ X3 =Xo®|1,1]
while x < 10000 do (X4 = (X1U X3) N [10000,+00] while x < 10000 do (X4 = (X1U X3) N [10000, +00]
2: 2:
x :=x+1 (x :=x+ 1 (
. X) = [1,1] . Xy = [1,1]
od: X9 = [1,+00| <= widening od: Xy = [1, +o0]
4 X3 = [2,6] 4 X3 = {2, +00]
\X4 =0 \X4 =
2 P. Cousot & R. Cousot, ISOP'1976, POPL'77. 2 P. Cousot & R. Cousot, ISOP'1976, POPL'77.
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 84— © P. Cousor f@! IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 86— © P. Cousor F@!
Widening Example: interval analysis (1975) °

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 85— © P. Cousor ﬁi@'\h

Decreasing chaotic iteration:

X, =[1,1]
oo 1) XQ = (Xl UXg) N [—00,9999]
1: , X3:X2@[171]
while x < 10000 do (X1 = (X1U X3) N [10000, +00]
2:
.. x =x +1 (Xlz[l,l]
od; Xy = [1,9999]
4: X3 [2, +OO]
\X4 =0

2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 86 — © P. Cousor ﬁi@'\h

Example: interval analysis (1975) °
Decreasing chaotic iteration:
X, =[1,1]
Xy = (X7 U X3) N [—00,9999]
X3 =Xo®|1,1]

1:
while x < 10000 do (X4 = (X1U X3) N [10000,+00]
2:
x :=x +1 (
. X = [1,1]
od: Xy = [1,9999]
4 X5 = [2,10000]
\X4 - @
2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 86 — © P. Cousor F@'\i

Example: interval analysis (1975) °
Result of the interval analysis:
X, =[1,1]
) J X2 = (31U X3) N[00, 9999]

x = 1;
10 {x=1} X3 = Xo @1, 1]

while x < 10000 do (X1 = (X1U X3) N [10000, +00]
2: {x € [1,9999]}

x :=x +1 (
3: {x € [2,10000]} Xy =[L1]
od: X5 = [1,9999]
4: {x = 10000} X3 = [2,10000]
X4 = [10000, 10000]

2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 88 — © P. Cousor ﬁ@\h
il

Example: interval analysis (1975) °
Final solution:
X, =[1,1]
Xy = (X1 U X3) N [—00,9999]

1:X - b <X3=X2@[1,1]
while x < 10000 do (X1 = (X1 U X3) N [10000, +00]
2:
. x :=x +1 fX1 _ []
o Xy = [1,9999]
4 X3 = [2,10000]
Xy = [10000 10000}

2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 87— © P. Cousor ﬁ@\h
il

A More Intriguing Example

program Variant_of_McCarthy_91_function;
var X, Y : integer;
function F(X : integer) : integer;
begin
if X > 100 then F == X — 10
else F = F(F(F(F(F(F(F(F(F(F(X + 90)))))))));
end;
begin
readln(X);
= F(X);
[{ Y € [91,+00] ¥

end.

__ Reference

[18] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc. FMPA, LNCS 735, pages 128-141.
Springer, 1993.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —89 — © P. Cousor ﬁ@\h
il

Probabilistic Program Analysis*

double x, 1i;
assume (-1.0 < x < 0.0);
i=20.0;
while (i < 3.0) {
x += uniform();
i+=1.0;
};

assert (x < 1.0);

2D, Monniaux, SAS'00, POPL'01

IFIP WG 10.4, 40th Meeting, July 4-8, 2001

With 99% safety:

e the probability of the outcome
(z < 1) is less than 0.859,

® assuming:

nondeterministic
choices of the precondition
(—1.0 < z < 0.0),

« random choices uniform() cho-
sen in [0,1] with the Lebesgue
uniform distribution.

e Worst-case

— 90 — © P. Cousor
90 © P. Cousort ﬁ@v\h

Static Program Checking

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 92—

@ P CousoT
© P. Cousort ﬁ@\h

Communication Topology of Mobile Processes’

. Request

E Request ? _D
i

S
‘_$ Data exchange

S
[l % Data exchange

Dagt.
ata exchan ge

3 J. Feret, SAS'00, ENTCS Vol. 39

IFIP WG 10.4, 40th Meeting, July 4-8, 2001

Pa|-- No oxchansd

B

B
o
--| B
Q1

o @ P. Cousor
91 © P. Cousort ﬁ@v\h

Objective of Static Program Checking

[Speciﬁcation}

Program checker

|

[Diagnosis @]

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 93—

@ P CousoT
© P. Cousort ﬁ@\h

Principle of a Static Program Checker

Program [Speciﬁcation }

N

System of fixpoint equations/constraints

(Approximate) solution

Program

checker

|

Y

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 94 — © P. Cousor ﬁi@\h
il

Example: interval analysis (1975) °
Exploitation of the result of the interval analysis:

x :=1;
1: {x=1}

while x < 10000 do
2: {x € [1,9999]}

x :=x +1

3: {x € [2,10000]}

od;
4: {x = 10000}

«— no overflow

2 P, Cousot & R. Cousot, ISOP'1976, POPL'77.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 96 — © P. Cousor ﬁi@\h
il

Design of a Static Program Checker by
Abstract Interpretation

Computer Abstract Static Program Checking Formal
program Checking ' specification
i Abstract Abstract i
- program semantics |
I rogramming ‘| semantics spe(;jfjcation S])(‘('i['i(';ll ion

language

language

. t) :
semantics A_BSTRA_CTION semantics

i | | '

Program semantics Specification semantics

model of actual = > model of required
program executions program executions
in all environments in allowed environments

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 95 — © P. Cousor ﬁi@\h
il

Other Examples of Faultless Execution Checks

e Absence of runtime errors (array bounds violations, arithmetic
overflow, erroneous data accesses, etc.),

e Absence of memory leaks (dangling pointers, uninitialized
variables, etc.),

e Handling of all possible runtime exceptions (failures of 1/O
and system calls, etc.),

e No resource contention and race conditions in concurrent pro-
grams (deadlocks & livelocks),

e Termination / non termination conditions,
e Etc.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 97 — © P. Cousor ﬁi@\h
il N

Static Program Testing

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 98 — © P. CousoT 1‘%‘\&

Combining Empirical and Formal Methods

e The user provides local formal abstractions of the program
specifications using predefined abstractions *;

e The program is evaluated by abstract interpretation of the
formal semantics of the program?;

e If the local abstract specification cannot be proved correct, a
more precise abstract domain must be considered °;

e The process is repeated until appropriate coverage of the spec-
ification.

4 thus replacing infinitely many test data.
5 thus replacing program execution on the test data.

6 similarly to different test data.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 100 — © P. CousoT 1‘%‘\&

Abstract checking versus Abstract Testing

e Abstract checking: specification derived automatically from
the program (e.g. using the language specification for run-time
errors);

e Abstract testing: specification provided by the programmer.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —99 — © P. CousoT 1‘%‘\&

Abstract Program Testing

Debugging Abstract testing

Run the program Compute the abstract semantics

On test data Choosing a predefined abstraction

Checking if all right Checking user-provided abstract
assertions

Providing more tests With more refined abstractions

Until coverage Until enough assertions proved or

no predefined abstraction can do.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 101 — © P. CousoT 1‘%‘\&

Example of predefined abstraction

/'y
+
+
folo +
o+
+
+
+ .
+ .
++ .
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —102 — © P. Cousor ﬂﬁh

A Tiny Example

0: { n:[—00,400]?; f:i[—00,+00]|? } M static analyzer inference
read(n) diagnosis: M definite error

{ [0+oo] f:[—o0,+00]? }

{ [0 +oo]; f:[1,+00] }

while (n <> 0) do M no error

3: {n[1+oo] f:[1,4+00] }
f:=(0F*n I potential error

4 {n[1+oo] f:[1,4+00] }
n:=(n-1

5 {n[0+oo] f:[1,+00] }

{ :[0,0]; f:[1,+o0] } W user program

sometime true;; W user specification
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 104 — © P. Cousor ﬂﬁi

Example of predefined abstraction: intervals

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —103 — © P. Cousor ﬂ

A Tiny Example (Cont’d)

0:{nml; L} B static analyzer inference
initial (n < 0); W user specification

1: { n:[—o0 -1]; fi[—o0,+00]? }
f:=1; B user program

2: { n:[—00,-1]; fi[—00,+00] }

while (n <> 0) do diagnosis: M no error
3{n[ool]f[oo+oo]}
= (f * n); W potential error
4{n[00 ,-1]; fi[—00 ,400] }
n:=(n-1 W potential error
5:{ n:[-00,-2]; fi[—00,+0¢] }
od
6: {n:L; L} B L unreachable code
IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 105 — © P. Cousor ﬂﬁi

A More Intriguing Example

program Variant_of_McCarthy_91_function;

var X, Y : integer;

function F(X : integer) : integer;

begin

if X > 100 then F := X — 10 91

clse F = F(F(F(F(F(F(F(F(F(F(X + 95))))))))));
end;
begin

readln(X);

| {% X > 100 %} |

Y = F(X);

{% sometime true %}

end.
Example of cycle: F(100) — F(190) — F(180) — F(170) — F(160) — F(150) —
F(140) — F(130) — F(120) — F(110) — F(100) — ...

Examples of Functional Specifications for
Abstract Testing

e Worst-case execution/response time in real-time systems run-
ning on a computer with pipelines and caches;

e Periodicity of some action over time/with respect to some
clock;

e Possible reactions to real-time event/message sequences;

e Compatibility with state/transition /sequence diagrams/charts;

e Absence of deadlock/livelock with different scheduling poli-
cies;

IFIP WG 10.4, 40th Meeting,, July 4-8, 2001 —106 — © P. Cousor 1&@& IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —108 — © P. Cousor ﬁ@i
Comparing with program debugging
e Similarity: user interaction, on the source code;
e Essential differences:
« user provided test data are replaced by abstract specifica-
tions; Conclusion
« evaluation of an abstract semantics instead of program
execution /simulation;
« one can prove the absence of (some categories of) bugs,
not only their presence;
« abstract evaluation can be forward and/or backward (re-
verse execution).
IFIP WG 10.4, 40th Meeting,, July 4-8, 2001 — 107 — © P. Cousor 1&@& IFIP WG 10.4, 40th Meeting, July 4-8, 2001 —109 — © P. Cousor ﬁ@i

Concluding Remarks

e Program debugging is still the prominent industrial program
“verification” method. Complementary program verification
methods are needed:

e Fully mechanized program verification by formal methods is
either impossible (e.g. typing/program analysis) or extremely
costly since it ultimately requires user interaction (e.g. ab-
stract model checking/deductive methods for large programs);

e For program verification, semantic abstraction is mandatory
but difficult whence hardly automatizable, even with the help
of programmers;

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 110 © P. Cousor ,&%\i
R

e Does apply to any computer-related language with a well-
specified semantics describing computations (e.g. specifica-
tion languages, data base languages, sequential, concurrent,
distributed, mobile, logical, functional, object oriented, ... pro-
gramming languages, etc.);

e Does apply to any property and combinations of properties
(such as safety, liveness, timing, event preconditions, ...);

e Can follow up program modifications over time;

e Very cost effective, especially in early phases of program de-
velopment.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 112 © P. Cousor ,&%\i
R

Concluding Suggestions

e Abstract interpretation introduces the idea of safe approxima-
tion within formal methods;

e So you might think to use it for partial verification of the
source specification/program code:

o Abstract checking (fully automatic and exhaustive diagno-
sis on run-time safety properties),

o Abstract testing (interactive/planned diagnosis on func-
tional, behavioural and resources-usage requirements),

using tools providing predefined abstractions.]

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 111 © P. Cousor ,&%\i
R

Industrialization of Static Analysis/Checking
by Abstract Interpretation

e N Connected Components Corporation (U.S.A.),
L. Harrison, 1993 7;

o Abslnt Angewandte Informatik GmbH (Germany),
R. Wilhelm & C. Ferdinand, 1998;

e Pyspae Polyspace Technologies (France),
A. Deutsch & D. Pilaud, 1999.

7 Internal use for compiler design.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 113 © P. Cousor ,&%\i
R

DA3IDVLES European project on the verification of

critical real-time avionic software (oct. 2000 — sep. 2002):

e P. Cousot (ENS, France), scientific coordinator;

e R. Cousot (Ecole polytechnique, France);

e A. Deutsch & D. Pilaud (Polyspace Technologies, France);

e C. Ferdinand (AbsInt, Germany);

o E. Goubault (CEA, France);

e N. Jones (DIKU, Denmark);

e F. Randimbivololona & J. Souyris (EADS Airbus, France), coord.;
e M. Sagiv (Univ. Tel Aviv, Israel);

o H. Seidel (Univ. Trier, Germany);

o R. Wilhelm (Univ. Sarrebriicken, Germany);

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 114 — © P. Cousor j‘@\&

A reference (with a large bibliography)

P. Cousot.
Abstract interpretation based formal methods and future chal-
lenges.

In R. Wilhelm (editor), « Informatics — 10 Years Back,
10 Years Ahead ».

Volume 2000 of Lecture Notes in Computer Science,
pages 138-156. Springer-Verlag, 2001.

An extended electroning version is also available on Springer-Verlag web
site together with a very long electroning version with a complete bibli-

ography.

IFIP WG 10.4, 40th Meeting, July 4-8, 2001 — 115 — © P. Cousor j‘@\&

