
Abstract Interpretation

and Static Analysis

Patrick COUSOT
École Normale Supérieure, 45 rue d’Ulm

75230 Paris cedex 05, France

mailto:cousot@ens.fr
http://www.di.ens.fr/˜cousot

IFIP WG 10.4, 40th Meeting on Formal Methods, Stenungsund,
Sweden, July 4–8, 2001

Introductory Motivations
on Software Reliability

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 1 — © P. Cousot

The Software Reliability Problem

• The evolution of hardware by a factor of 106 over the past
25 years has lead to the explosion of the program sizes;

• The scope of application of very large software is likely to
widen rapidly in the next decade;

• These big programs will have to be modified and maintained
during their lifetime (often over 20 years);

• The size and efficiency of the programming and maintenance
teams in charge of their design and follow-up cannot grow up
in similar proportions;

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 2 — © P. Cousot

The Software Reliability Problem (Cont’d)

• At a not so uncommon (and often optimistic) rate of one bug
per thousand lines such huge programs might rapidly become
hardly manageable in particular for safety critical systems;

• Therefore in the next 10 years, the software reliability problem
is likely to become a major concern and challenge to modern
highly computer-dependent societies.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 3 — © P. Cousot

What Can We Do About It?

• Use our intelligence (thinking/intellectual tools: abstract in­
terpretation);

• Use our computer (mechanical tools : static program analy­
sis/checking/testing , the early idea of using computers to
reason about computer).

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 4 — © P. Cousot

Software Verification
and Validation

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 5 — © P. Cousot

The Verification/Validation Problem

Computer
program

Formal
specification

Programming
language
semantics

Specification
language
semantics

Program semantics
=

model of actual
program executions
in all environments

Specification semantics
 =

model of required
program executions

in allowed environments

Satisfaction

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 6 — © P. Cousot

Example: Model Checking

Computer
program

Formal
specification

Programming
language
semantics

Specification
language
semantics

Program semantics
=

model of actual
program executions
in all environments

Specification semantics
 =

model of required
program executions

in allowed environments

Satisfaction

Temporal
specification

Program
model

Checking
!

? ?

?

Model checking

?

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 7 — © P. Cousot

Other Examples of Software
Verification/Validation Techniques

• Software testing;
• Simulation and prototyping;
• Technical reviews;
• Requirements tracing;
• Formal correctness proofs;
• Etc.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 8 — © P. Cousot

Practical Limitations

• Testing:
• Testing all data on all paths is impossible;

• Formal methods:
• No formal specification perfectly reflects informal human

expectations;
• Proofs grow exponentially in the size of programs/specifi-

cations which is incompatible with friendly user interaction
and full automation;

• etc.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 9 — © P. Cousot

Fundamental Theoretical Limitations

• Undecidability: full automation of software verification/vali-
dation is impossible;

• Examples of undecidable questions:
• Is my program bug-free? (i.e. correct with respect to a

given specification);
• Can a program variable take two different values during

execution?

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 10 — © P. Cousot

Undecidability and Approximation

• Since program verification is undecidable, computer aided pro­
gram verification methods are all partial/incomplete;

• They all involve some form of approximation:
• restricted specifications or programs (e.g. finiteness),
• decidable questions or semi-algorithms,
• practical time/memory complexity limitations,
• require user interaction;

• Most of these approximations are formalized by Abstract
Interpretation.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 11 — © P. Cousot

Examples of approximations

• Testing: coverage is partial (so errors are frequently found
until the end of the software lifetime);

• Proofs: specifications are often partial, debugging proofs is
often harder that testing programs (so only parts of very large
software can be formally proved correct);

• Model checking: the model must fit machine limitations (so
some facets of program execution must be left out) and be
redesigned after program modifications;

• Typing: types are weak program properties (so type verifica­
tion cannot be generalized to complex specifications).

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 12 — © P. Cousot

Content

• Introductory motivations on software reliability . 1
• Software verification and validation . 5
• Semantics . 14
• Abstract Interpretation. .19
• Abstraction . 23
• Conservative approximation & information loss 37
• Static program analysis . 69
• Static program checking . 92
• Static program testing . 98
• Conclusion . 109

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 13 — © P. Cousot

Semantics

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 14 — © P. Cousot

Semantics: intuition

• The semantics of a language defines the semantics of any
program written in this language;

• The semantics of a program provides a formal mathematical
model of all possible behaviors of a computer system execut­
ing this program (interacting with any possible environment);

• Any semantics of a program can be defined as the solution
of a fixpoint equation;

• All semantics of a program can be organized in a hierarchy
by abstraction.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 15 — © P. Cousot

Example: trace semantics

Initial states
Final states of the
 finite tracesIntermediate states

Infinite
traces

0 1 2 3 4 5 6 7 8 9 discrete time …

a b c
d

e f

g h

i j

k

!













IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 16 — © P. Cousot

Examples of computation traces
• Finite (C1+1=):

• Erroneous (C1+1+1+1…):

… …

• Infinite (C+0+0+0…):

… …

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 17 — © P. Cousot

Least Fixpoints: intuition

Behaviors = {• | • is a final state}
∪ {•−−−•−−−. . .−−−• | •−−−• is an elementary step &

•−−−. . .−−−• ∈ Behaviors+}

∪ {•−−−•−−−. . .−−−. . . | •−−−• is an elementary step &

•−−−. . .−−−. . . ∈ Behaviors∞}

• In general, the equation has multiple solutions.
• Choose the least one for the partial ordering:

« more finite traces & less infinite traces ».

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 18 — © P. Cousot

Abstract Interpretation

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 19 — © P. Cousot

Abstract Interpretation [1]

• Formalizes the idea of approximation of sets and set opera­
tions as considered in set (or category) theory;

• A theory of approximation of the semantics of programming
languages;

• Main application: formal method for inferring general runtime
properties of programs.

Reference

[1] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In Conf. Record of the 4th Annual ACM SIGPLAN-SIGACT Symp.
on Principles of Programming Languages POPL’77 , Los Angeles, CA, 1977. ACM Press, pp. 238–252.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 20 — © P. Cousot

The Theory of Abstract Interpretation

• Abstract interpretation is a theory of conservative approx­
imation of the semantics of computer systems.
Approximation: observation of the behavior of a com­

puter system at some level of abstraction, ignoring irrele­
vant details;

Conservative: the approximation cannot lead to any erro­
neous conclusion.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 21 — © P. Cousot

Usefulness of Abstract Interpretation

• Thinking tools: the idea of abstraction is central to reason­
ing (in particular on computer systems);

• Mechanical tools: the idea of effective approximation leads
to automatic semantics-based program manipulation tools.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 22 — © P. Cousot

Abstraction

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 23 — © P. Cousot

Abstraction: intuition

• Abstract interpretation formalizes the intuitive idea that a
semantics is more or less precise according to the considered
observation level of the program executions;

• Abstract interpretation theory formalizes this notion of ap­
proximation/abstraction in a mathematical setting which is
independent of particular applications.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 24 — © P. Cousot

Intuition behind abstraction

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 25 — © P. Cousot

Approximations of an [in]finite set of points;

x

y {. . . , 〈19, 78〉, . . . ,
〈20, 01〉, . . .}

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 26 — © P. Cousot

Approximations of an [in]finite set of points:
From Below

x

y {. . . , 〈19, 78〉, . . . ,
. . .}

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 27 — © P. Cousot

Approximations of an [in]finite set of points:
From Above

x

y

?

?

?
?

?

?

?
?

?

?

{. . . , 〈19, 78〉, . . . ,

〈20, 01〉, 〈?, ?〉, . . .}

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 28 — © P. Cousot

Intuition Behind
Effective Computable Abstraction

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 29 — © P. Cousot

Effective computable approximations of an
[in]finite set of points; Signs [2]

x

y
{

x ≥ 0
y ≥ 0

Reference

[2] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6th POPL , pages 269–282,
San Antonio, TX, 1979. ACM Press.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 30 — © P. Cousot

Effective computable approximations of an
[in]finite set of points; Intervals [3]

x

y
{

x ∈ [19, 78]
y ∈ [20, 01]

Reference

[3] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In 2nd Int. Symp. on
Programming , pages 106–130. Dunod, 1976.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 31 — © P. Cousot

Effective computable approximations of an
[in]finite set of points; Octagons [4]

x

y






1 ≤ x ≤ 9
x + y ≤ 78
1 ≤ y ≤ 9
x − y ≤ 99

Reference

[4] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. Proc. 2nd Symp. on Programs
as Data Objects PADO’2001 , 0. Danvy & A. Filinski (Eds.), LNCS 2053, Springer, 2001, pp. 155–172.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 32 — © P. Cousot

Effective computable approximations of an
[in]finite set of points; Polyhedra [5]

x

y
{

19x + 78y ≤ 2000
20x + 01y ≥ 0

Reference

[5] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In 5th

POPL , pages 84–97, Tucson, AZ, 1978. ACM Press.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 33 — © P. Cousot

Effective computable approximations of an
[in]finite set of points; Simple congruences [6]

x

y
{

x = 19 mod 78
y = 20 mod 99

Reference

[6] P. Granger. Static analysis of arithmetical congruences. Int. J. Comput. Math. , 30:165–190, 1989.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 34 — © P. Cousot

Effective computable approximations of an
[in]finite set of points; Linear congruences [7]

x

y
{

1x + 9y = 7 mod 8
2x − 1y = 9 mod 9

Reference

[7] P. Granger. Static analysis of linear congruence equalities among variables of a program. CAAP ’91 , LNCS
493, pp. 169–192. Springer, 1991.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 35 — © P. Cousot

Effective computable approximations of an
[in]finite set of points; Trapezoidal linear con-

gruences [8]

x

y {
1x + 9y ∈ [0, 78] mod 10
2x − 1y ∈ [0, 99] mod 11

Reference

[8] F. Masdupuy. Array operations abstraction using semantic analysis of trapezoid congruences. In ACM Int. Conf.
on Supercomputing, ICS ’92 , pages 226–235, 1992.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 36 — © P. Cousot

Conservative Approximation
and Information Loss

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 37 — © P. Cousot

Intuition Behind
Sound/Conservative Approximation

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 38 — © P. Cousot

Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Concrete semantics: yes

x

y



IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 39 — © P. Cousot

Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Testing : You never know!

x

y



?

x

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 40 — © P. Cousot

Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 1: I don’t know

x

y



IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 41 — © P. Cousot

Conservative Approximation

• Is the operation 1/(x+1-y) well defined at run-time?
• Abstract semantics 2: yes

x

y



IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 42 — © P. Cousot

Intuition Behind
Information Loss

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 43 — © P. Cousot

Information Loss

• All answers given by the abstract semantics are always correct
with respect to the concrete semantics;

• Because of the information loss, not all questions can be
definitely answered with the abstract semantics;

• The more concrete semantics can answer more questions;
• The more abstract semantics are more simple.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 44 — © P. Cousot

Basic Elements of
Abstract Interpretation Theory

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 45 — © P. Cousot

Abstraction α

x

y

1 99

2

77

{x:[1,99], y:[2,77]}α

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 46 — © P. Cousot

Concretization γ

x

y

1 99

2

77

{x:[2,77], y:[2,99]}

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 47 — © P. Cousot

The Abstraction α is Monotone

x

y

1 99

2

77

{x:[1,99], y:[2,99]}α

{x:[33,89], y:[48,61]}
α

8933

61

48

*

X ⊆ Y ⇒ α(X) * α(Y)

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 48 — © P. Cousot

The Concretization γ is Monotone

x

y

1 99

2

77

{x:[1,99], y:[2,99]}

{x:[33,89], y:[48,61]}

8933

61

48

*

X * Y ⇒ γ(X) ⊆ γ(Y)

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 49 — © P. Cousot

The γ ◦ α Composition

α

x

y

1 99

2

77

{x:[1,99], y:[2,77]}

X ⊆ γ ◦ α(X)

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 50 — © P. Cousot

The α ◦ γ Composition

α

x

y

1 99

2

77
{x:[1,99], y:[2,77]}
{x:[1,99], y:[2,77]}

=

α ◦ γ(Y) = Y

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 51 — © P. Cousot

Galois Connection 1

〈P, ⊆〉 −−−→←−−−
α

γ
〈Q, *〉

iff

• α is monotone
• γ is monotone
• X ⊆ γ ◦ α(X)
• α ◦ γ(Y) * Y

1 formalizations using closure operators, ideals, etc. are equivalent.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 52 — © P. Cousot

Function Abstraction

F

F

Concrete domain

Abstract domain
$

α F $ = α ◦ F ◦ γ

〈P, ⊆〉 −−−→←−−−
α

γ
〈Q, *〉 ⇒

〈P mon0−→ P, ⊆̇〉 −−−−−−−−−−→←−−−−−−−−−−
λF . α◦F ◦γ

λF $. γ◦F $◦α
〈Q mon0−→ Q, *̇〉

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 53 — © P. Cousot

Exact/Approximate Fixpoint Abstraction

F

F
$

Concrete domain

Abstract domain

F F F F F
F

F
$ F

$ F
$

F
$

Approximation
relation *

⊥

⊥$

F $ = α ◦ F ◦ γ ⇒ lfp F * γ(lfp F $)

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 54 — © P. Cousot

Exact/Approximate Fixpoint Abstraction

F

F
$

Concrete domain

Abstract domain

α

F F F F F
FF

F

F
$ F

$ F
$

F
$

F
F

α α α α Approximation
relation *

⊥

⊥$

F $ = α ◦ F ◦ γ ⇒ lfp F * γ(lfp F $)

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 55 — © P. Cousot

Exact/Approximate Fixpoint Abstraction

Exact Abstraction:

α(lfp F) = lfp F $

Approximate Abstraction:

α(lfp F) !$ lfp F $

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 56 — © P. Cousot

Exact/ApproximateExact Fixpoint Abstraction

F

F
$

Concrete domain

Abstract domain

α

F F F F F
F

F
$ F

$ F
$

F
$

α α α α Approximation
relation *

⊥

⊥$

α α

α ◦ F = F $ ◦ α ⇒ α(lfp F) = lfp F $

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 57 — © P. Cousot

A Few References on Foundations

[9] P. Cousot and R. Cousot. Abstract interpretation: a uni­
fied lattice model for static analysis of programs by con­
struction or approximation of fixpoints. In 4th POPL ,
pages 238–252, Los Angeles, CA, 1977. ACM Press.

[10] P. Cousot and R. Cousot. Systematic design of program
analysis frameworks. In 6th POPL , pages 269–282, San
Antonio, TX, 1979. ACM Press.

[11] P. Cousot and R. Cousot. Abstract interpretation frame­
works. J. Logic and Comp. , 2(4):511–547, 1992.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 58 — © P. Cousot

Applications of
Abstract Interpretation

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 59 — © P. Cousot

(1) Exact Abstractions

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 60 — © P. Cousot

Abstractions of Semantics [12]

Reference

[12] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation. To
appear in Theoretical Computer Science , (2001).

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 61 — © P. Cousot

Trace Semantics (Once Again)

Initial states
Final states of the
 finite tracesIntermediate states

Infinite
traces

0 1 2 3 4 5 6 7 8 9 discrete time …

a b c
d

e f

g h

i j

k

!













IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 62 — © P. Cousot

Example 1 of Semantics Abstraction

a d

e f

g h

i j

k

!











⊥
⊥

a d

e f

g h

i j











α α

0 1 2 3 4 5 6 7 8 9 discrete time

a b c d

e f

g h

i j

k

!













Initial states
Intermediate states Final states of

 finite traces

Infinite
traces

Final states
Initial states

Trace semantics Denotational
semantics

Natural
semantics

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 63 — © P. Cousot

Example 2 of Semantics Abstraction

Transitions





































Initial states Final states

a b c d

e f

g h

i j

k

!

a

e

g

i

k

!

d

f

h

j

b

(Small-Step) Operational Semantics

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 64 — © P. Cousot

Example 3 of Semantics Abstraction

Reachable states





































Initial states Final states

a

e

g

i

k

!

d

f

h

j

a b c d

e f

g h

i j

k

!

Partial Correctness / Invariance Semantics

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 65 — © P. Cousot

Lattice of Semantics
Hoare logics

Weakest precondition
semantics

Denotational semantics

Relational semantics

Trace semantics

equivalence
abstraction!

restriction
infinite

demoniac
determinist
naturalangelic

τ!!

τ ∂

τ EM

τD

τ"τ S τ♦τ $τ (

τ2
τwp

τ tHτ pH

τwlp

τ)+

τ+ τω

τ)ω

τ gH

τ gwp

τ!?

τ +

τ∞

τ)∞

τ

"""# !

!!!!!!!!!!!!!" !

!

!

$
$

$
$$%

! ! ! !
!

&

& &'''(

!

!

!""""""#

""""""#

""""""#

))))))*

))))))*

))))))*

))))))*

))))))* !

!!

!

!

!!

!

!

!

!
##########

''''''''''(

''''''(!

!

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 66 — © P. Cousot

(2) Effective Approximate
Abstractions

Reference

[13] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by
construction or approximation of fixpoints. POPL’77 , ACM Press, pp. 238–252.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 67 — © P. Cousot

Effective Abstractions of Semantics

• If the approximation is rough enough, the abstraction of a
semantics can lead to a version which is less precise but is
effectively computable by a computer;

• The computation of this abstract semantics amounts to the
effective iterative resolution of fixpoint equations;

• By effective computation of the abstract semantics , the com­
puter is able to analyze the behavior of programs and of soft­
ware before and without executing them.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 68 — © P. Cousot

Static Program Analysis

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 69 — © P. Cousot

Objective of Static Program Analysis

• Program analysis is the automatic static determination of
dynamic run-time properties of programs;

• The principle is to compute an approximate semantics of the
program to check a given specification;

• Abstract interpretation is used to derive, from a standard
semantics, the approximate and computable abstract seman­
tics;

• This derivation is itself not (fully) mechanizable.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 70 — © P. Cousot

Basic Idea of Static Program Analysis

• Basic idea: use effective computable approximations of the
program semantics;

Advantage: fully automatic, no need for error-prone user
designed model or costly user interaction;

Drawback: can only handle properties captured by the
approximation;

Remedy: ask the user to choose among a variety of
possible approximations (abstract algebras) at various
cost/precision ratio.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 71 — © P. Cousot

Principle of a Static Program Analyzer

(Approximate) solution

Diagnoser

Diagnosis

Solver

Generator

Program Specification

Program
analyzer

System of fixpoint equations/constraints

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 72 — © P. Cousot

Generic Static Program Analyzer

(Approximate) solution

Interfacor

Information on
program executions

Solver

Generator

Program

Program
analyzer

System of fixpoint equations/constraints

Abstract
algebra

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 73 — © P. Cousot

Design of a Static Program Analyzer
by Abstract Interpretation

Information about
actual program executions

in all environments

Abstract
program
semantics

Abstract Static Program Analysis

Computer
program

Programming
language
semantics

Program semantics
=

model of actual
program executions
in all environments

ABSTRACTION
Abstract

Interpretation

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 74 — © P. Cousot

Effective Symbolic Abstractions

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 75 — © P. Cousot

Effective Abstractions
of Symbolic Structures

• Most structures manipulated by programs are symbolic struc­
tures such as control structures (call graphs), data structures
(search trees), communication structures (distributed & mo­
bile programs), etc;

• It is very difficult to find compact and expressive abstractions
of such sets of objects (languages, automata, trees, graphs,
etc.).

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 76 — © P. Cousot

Example of Abstractions of Infinite Sets of
Finite Trees• Program : !" #$

%%%

%%%&

''''() **+(

Y := copy(X)

%%%

%%%

%%%

&

,

''''() **+(

Example of
impossible
configuration:

• Alias analysis:
∅
Y := copy(X)
{(X 0→ (tl 0→)i 0→ hd, Y 0→ (tl 0→)j 0→ hd) | i = j}

Reference

[14] A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-limiting. In PLDI’94 , pp. 230–241, 1994.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 77 — © P. Cousot

Example of Abstractions of Infinite Sets of
Infinite Trees

Binary Decision Graphs: [15]

Reference

[15] L. Mauborgne. Binary decision graphs. SAS ’ 99 , LNCS 1694, pp. 101–116. Springer, 1999.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 78 — © P. Cousot

Example of Abstractions of Infinite Sets of
Infinite Trees (Cont’d)

Tree Schemata: [16 , 17]

Reference

[16] L. Mauborgne. Improving the representation of infinite trees to deal with sets of trees. ESOP ’ 2000 , LNCS
1782, pp. 275–289. Springer, 2000.

[17] L. Mauborgne. Tree schemata and fair termination. SAS ’ 2000 , LNCS 1824, pp. 302–321. Springer, 2000.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 79 — © P. Cousot

A Classical Example:
Interval Analysis

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 80 — © P. Cousot

Example: interval analysis (1975) 2

Program to be analyzed:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 81 — © P. Cousot

Example: interval analysis (1975) 2

Equations (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 82 — © P. Cousot

Example: interval analysis (1975) 2

Constraints (abstract interpretation of the semantics):

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 ⊇ [1, 1]
X2 ⊇ (X1 ∪ X3) ∩ [−∞, 9999]
X3 ⊇ X2 ⊕ [1, 1]
X4 ⊇ (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 82 — © P. Cousot

Example: interval analysis (1975) 2

Increasing chaotic iteration, initialization:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = ∅
X2 = ∅
X3 = ∅
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 83 — © P. Cousot

Example: interval analysis (1975) 2

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = ∅
X3 = ∅
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 83 — © P. Cousot

Example: interval analysis (1975) 2

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 1]
X3 = ∅
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 83 — © P. Cousot

Example: interval analysis (1975) 2

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 1]
X3 = [2, 2]
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 83 — © P. Cousot

Example: interval analysis (1975) 2

Increasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 2]
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 83 — © P. Cousot

Example: interval analysis (1975) 2

Increasing chaotic iteration: convergence?

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 2]
X3 = [2, 3]
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 83 — © P. Cousot

Example: interval analysis (1975) 2

Increasing chaotic iteration: convergence??

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 3]
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 83 — © P. Cousot

Example: interval analysis (1975) 2

Increasing chaotic iteration: convergence???

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 3]
X3 = [2, 4]
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 83 — © P. Cousot

Example: interval analysis (1975) 2

Increasing chaotic iteration: convergence????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 4]
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 83 — © P. Cousot

Example: interval analysis (1975) 2

Increasing chaotic iteration: convergence?????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 4]
X3 = [2, 5]
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 83 — © P. Cousot

Example: interval analysis (1975) 2

Increasing chaotic iteration: convergence??????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 5]
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 83 — © P. Cousot

Example: interval analysis (1975) 2

Increasing chaotic iteration: convergence???????

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 5]
X3 = [2, 6]
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 83 — © P. Cousot

Example: interval analysis (1975) 2

Convergence speed-up by extrapolation:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, +∞] ⇐ widening
X3 = [2, 6]
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 84 — © P. Cousot

Widening

[-3,0]

[-2,0]

[-1,0]

[-3,-1]

[-2,-1]

[-2,1]

[-1,1]

[-1,2]

[0,2]

[0,1] [1,2]

[1,3]

[0,3]

[-2,-2] [-1,-1] [0,0] [1,1] [2,2] …

… …

[2,+]

…

… …

[1,+]

[0,+]

[– ,+]

[– ,0]

…

…

…

…

… ……… … … …

…… …
…

[– ,-1]

[– ,-2]
…

…

Ø

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 85 — © P. Cousot

Example: interval analysis (1975) 2

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, +∞]
X3 = [2, +∞]
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 86 — © P. Cousot

Example: interval analysis (1975) 2

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, +∞]
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 86 — © P. Cousot

Example: interval analysis (1975) 2

Decreasing chaotic iteration:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = ∅

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 86 — © P. Cousot

Example: interval analysis (1975) 2

Final solution:

x := 1;
1:

while x < 10000 do
2:

x := x + 1
3:

od;
4:






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 87 — © P. Cousot

Example: interval analysis (1975) 2

Result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2, 10000]}

od;
4: {x = 10000}






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






X1 = [1, 1]
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 88 — © P. Cousot

A More Intriguing Example
program Variant_of_McCarthy_91_function;

var X, Y : integer;
function F(X : integer) : integer;
begin

if X > 100 then F := X − 10
else F := F(F(F(F(F(F(F(F(F(F(X + 90))))))))));

end;
begin

readln(X);
Y := F(X);
{ Y ∈ [91, +∞] }

end.

Reference

[18] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Proc. FMPA , LNCS 735, pages 128–141.
Springer, 1993.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 89 — © P. Cousot

Probabilistic Program Analysis 4

double x, i;
assume (-1.0 < x < 0.0);
i = 0.0;
while (i < 3.0) {

x += uniform();
i += 1.0;

};
assert (x < 1.0);

With 99% safety:
• the probability of the outcome

(x < 1) is less than 0.859 ,
• assuming:

• worst-case nondeterministic
choices of the precondition
(−1.0 < x < 0.0) ,

• random choices uniform() cho­
sen in [0, 1] with the Lebesgue
uniform distribution.

2 D. Monniaux, SAS’00, POPL’01

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 90 — © P. Cousot

Communication Topology of Mobile Processes 3

1R�H[FKDQJH

A BS
Request

P

Request
A BS

Q

P

A BS

Q

P

Q

Data exchange

P

A BS

Q

P

Q
Data exchange

Data exchange 1R�H[FK
DQJH

1R�H[FKDQJH

...
...

...

3 J. Feret, SAS’00, ENTCS Vol. 39

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 91 — © P. Cousot

Static Program Checking

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 92 — © P. Cousot

Objective of Static Program Checking

Program checker

Program Specification

Diagnosis

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 93 — © P. Cousot

Principle of a Static Program Checker

(Approximate) solution

Diagnoser

Diagnosis

Solver

Generator

Program Specification

Program
checker

System of fixpoint equations/constraints

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 94 — © P. Cousot

Design of a Static Program Checker by
Abstract Interpretation

Abstract
semantics

specification

Abstract
program
semantics

Checking
!

Abstract Static Program CheckingComputer
program

Formal
specification

Programming
language
semantics

Specification
language
semantics

Program semantics
=

model of actual
program executions
in all environments

Specification semantics
 =

model of required
program executions

in allowed environments

Satisfaction

ABSTRACTION

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 95 — © P. Cousot

Example: interval analysis (1975) 2

Exploitation of the result of the interval analysis:

x := 1;
1: {x = 1}

while x < 10000 do
2: {x ∈ [1, 9999]}

x := x + 1
3: {x ∈ [2, 10000]}

od;
4: {x = 10000}






X1 = [1, 1]
X2 = (X1 ∪ X3) ∩ [−∞, 9999]
X3 = X2 ⊕ [1, 1]
X4 = (X1 ∪ X3) ∩ [10000, +∞]






←− no overflow
X2 = [1, 9999]
X3 = [2, 10000]
X4 = [10000, 10000]

2 P. Cousot & R. Cousot, ISOP’1976, POPL’77.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 96 — © P. Cousot

Other Examples of Faultless Execution Checks

• Absence of runtime errors (array bounds violations, arithmetic
overflow, erroneous data accesses, etc.),

• Absence of memory leaks (dangling pointers, uninitialized
variables, etc.),

• Handling of all possible runtime exceptions (failures of I/O
and system calls, etc.),

• No resource contention and race conditions in concurrent pro­
grams (deadlocks & livelocks),

• Termination / non termination conditions,
• Etc.
IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 97 — © P. Cousot

Static Program Testing

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 98 — © P. Cousot

Abstract checking versus Abstract Testing

• Abstract checking: specification derived automatically from
the program (e.g. using the language specification for run-time
errors);

• Abstract testing: specification provided by the programmer.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 99 — © P. Cousot

Combining Empirical and Formal Methods

• The user provides local formal abstractions of the program
specifications using predefined abstractions 4;

• The program is evaluated by abstract interpretation of the
formal semantics of the program 5;

• If the local abstract specification cannot be proved correct, a
more precise abstract domain must be considered 6;

• The process is repeated until appropriate coverage of the spec­
ification.

4 thus replacing infinitely many test data.
5 thus replacing program execution on the test data.
6 similarly to different test data.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 100 — © P. Cousot

Abstract Program Testing

Debugging Abstract testing
Run the program Compute the abstract semantics
On test data Choosing a predefined abstraction
Checking if all right Checking user-provided abstract

assertions
Providing more tests With more refined abstractions
Until coverage Until enough assertions proved or

no predefined abstraction can do.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 101 — © P. Cousot

Example of predefined abstraction

n

f

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 102 — © P. Cousot

Example of predefined abstraction: intervals

n

f

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 103 — © P. Cousot

A Tiny Example
0: { n:[−∞ ,+∞]?; f:[−∞ ,+∞]? } static analyzer inference
read(n); diagnosis: definite error

1: { n:[0,+∞]; f:[−∞ ,+∞]? }
f := 1;

2: { n:[0,+∞]; f:[1,+∞] }
while (n <> 0) do no error

3: { n:[1,+∞]; f:[1,+∞] }
f := (f * n); potential error

4: { n:[1,+∞]; f:[1,+∞] }
n := (n - 1)

5: { n:[0,+∞]; f:[1,+∞] }
od;

6: { n:[0,0]; f:[1,+∞] } user program
sometime true;; user specification

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 104 — © P. Cousot

A Tiny Example (Cont’d)
0: { n:⊥; f:⊥ } static analyzer inference

initial (n < 0); user specification
1: { n:[−∞ ,-1]; f:[−∞ ,+∞]? }

f := 1; user program
2: { n:[−∞ ,-1]; f:[−∞ ,+∞] }

while (n <> 0) do diagnosis: no error
3: { n:[−∞ ,-1]; f:[−∞ ,+∞] }

f := (f * n); potential error
4: { n:[−∞ ,-1]; f:[−∞ ,+∞] }

n := (n - 1) potential error
5: { n:[−∞ ,-2]; f:[−∞ ,+∞] }

od
6: { n:⊥; f:⊥ } ⊥ unreachable code

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 105 — © P. Cousot

A More Intriguing Example
program Variant_of_McCarthy_91_function;

var X, Y : integer;
function F(X : integer) : integer;
begin

if X > 100 then F := X − 10
else F := F(F(F(F(F(F(F(F(F(F(X +

91
90))))))))));

end;
begin

readln(X);
{% X > 100 %}

Y := F(X);
{% sometime true %}

end.

Example of cycle: F(100) → F(190) → F(180) → F(170) → F(160) → F(150) →

F(140) → F(130) → F(120) → F(110) → F(100) → …

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 106 — © P. Cousot

Comparing with program debugging

• Similarity: user interaction, on the source code;
• Essential differences:

• user provided test data are replaced by abstract specifica­
tions;

• evaluation of an abstract semantics instead of program
execution/simulation;

• one can prove the absence of (some categories of) bugs ,
not only their presence;

• abstract evaluation can be forward and/or backward (re­
verse execution).

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 107 — © P. Cousot

Examples of Functional Specifications for
Abstract Testing

• Worst-case execution/response time in real-time systems run­
ning on a computer with pipelines and caches;

• Periodicity of some action over time/with respect to some
clock;

• Possible reactions to real-time event/message sequences;
• Compatibility with state/transition/sequence diagrams/charts;
• Absence of deadlock/livelock with different scheduling poli­

cies;

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 108 — © P. Cousot

Conclusion

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 109 — © P. Cousot

Concluding Remarks

• Program debugging is still the prominent industrial program
“verification” method. Complementary program verification
methods are needed;

• Fully mechanized program verification by formal methods is
either impossible (e.g. typing/program analysis) or extremely
costly since it ultimately requires user interaction (e.g. ab­
stract model checking/deductive methods for large programs);

• For program verification, semantic abstraction is mandatory
but difficult whence hardly automatizable , even with the help
of programmers;

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 110 — © P. Cousot

Concluding Suggestions

• Abstract interpretation introduces the idea of safe approxima­
tion within formal methods;

• So you might think to use it for partial verification of the
source specification/program code:
• Abstract checking (fully automatic and exhaustive diagno­

sis on run-time safety properties),
• Abstract testing (interactive/planned diagnosis on func­

tional, behavioural and resources-usage requirements),
using tools providing predefined abstractions. …/…

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 111 — © P. Cousot

• Does apply to any computer-related language with a well-
specified semantics describing computations (e.g. specifica­
tion languages, data base languages, sequential, concurrent,
distributed, mobile, logical, functional, object oriented, … pro­
gramming languages, etc.);

• Does apply to any property and combinations of properties
(such as safety, liveness, timing, event preconditions, …);

• Can follow up program modifications over time;
• Very cost effective , especially in early phases of program de­

velopment.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 112 — © P. Cousot

Industrialization of Static Analysis/Checking
by Abstract Interpretation

• Connected Components Corporation (U.S.A.),
L. Harrison, 1993 7;

• AbsInt Angewandte Informatik GmbH (Germany),
R. Wilhelm & C. Ferdinand, 1998;

• Polyspace Technologies (France),
A. Deutsch & D. Pilaud, 1999.

7 Internal use for compiler design.

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 113 — © P. Cousot

AE

DA D LUS European project on the verification of
critical real-time avionic software (oct. 2000 — sep. 2002):

• P. Cousot (ENS, France), scientific coordinator;

• R. Cousot (École polytechnique, France);

• A. Deutsch & D. Pilaud (Polyspace Technologies , France);

• C. Ferdinand (AbsInt , Germany);

• É. Goubault (CEA, France);

• N. Jones (DIKU, Denmark);

• F. Randimbivololona & J. Souyris (EADS Airbus, France), coord.;

• M. Sagiv (Univ. Tel Aviv, Israel);

• H. Seidel (Univ. Trier, Germany);

• R. Wilhelm (Univ. Sarrebrücken, Germany);

IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 114 — © P. Cousot

A reference (with a large bibliography)

P. Cousot.
Abstract interpretation based formal methods and future chal­
lenges.

In R. Wilhelm (editor), « Informatics — 10 Years Back,
10 Years Ahead ».
Volume 2000 of Lecture Notes in Computer Science ,
pages 138–156. Springer-Verlag, 2001.

An extended electroning version is also available on Springer-Verlag web
site together with a very long electroning version with a complete bibli­
ography.
IFIP WG 10.4, 40th Meeting , July 4–8, 2001 — 115 — © P. Cousot

