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Motivations & Results
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Abstraction in Program Analysis &
Model Checking

Abstract interpretation has been successfully applied in:
• static program analysis (by approximation of the semantics);
• model checking (state explosion & infinite state models).
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Abstraction in Model Checking
Main abstractions in model checking:
• Implicit abstraction: to design the model of reference;
• Polyhedral abstraction (with widening): synchronous, real-time

& hybrid system verification;
• Finitary abstraction (without widening): hardware & proto­

cole verification 1;

1 Abstracting concrete transition systems to abstract transition systems so as to reuse existing model checkers in the
abstract.
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Abstraction in Program Analysis &
Model Checking

• The abstraction must always be sound;
• For completeness:

-- in static program analysis: not required (possible uncer­
tainty);

-- in model checking: required 2 (formal verification method 3).

2 allowing only for yes/no answers, all uncertainty resulting only from getting out of computer resources.
3 otherwise model-checking would be a mere debugging method or equivalent to program/model analysis.
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Discovery of Abstractions

• in static program analysis:
-- task of the program analyzer designer ,
-- find a sound abstraction providing useful information for all programs,
-- essentially manual ,
-- partially automated e.g. by combination & refinement of abstract
domains;

• in model checking:
-- task of the user ,
-- find a sound & complete abstraction required to verify one model,
-- looking for automation (e.g. starting from a trivial or user provided
guess and refining by trial and error).
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Informal Objective of the Talk

• Understand the logical nature of the problem of finding an
appropriate abstraction (for proving safety properties).
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Formalization of the Problem
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Fixpoint Checking

• Model-checking safety properties of transition systems:

lfp
≤

λX . I ∨ F (X) ≤ S ?

• Program static analysis by abstract interpretation:

γ(lfp
≤

λX . α(I ∨ F (γ(X)))) ≤ S ?
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Soundness / (Partial) Completeness

Soundness: a positive abstract answer implies a positive con­
crete answer. So no error is possible when reasoning in the
abstract;

Completeness: a positive concrete answer can always be
found in the abstract;

Partial completeness: in case of termination of the ab­
stract fixpoint checking algorithm, no positive answer can
be missed.

Termination/resource limitation is therefore considered a sepa­
rate problem (widening/narrowing, etc.).
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Practical Question

Is it possible to automatize the discovery of complete
abstractions?
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Objective of the Talk (Formally)

Constructively characterize the abstractions 〈α, γ〉 for
which abstract fixpoint algorithms are partially com-
plete.
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Concrete Fixpoint Checking
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Concrete Fixpoint Checking Problem

• Complete lattice 〈L, ≤, 0, 1, ∨, ∧〉;
• Monotonic transformer F ∈ L

mon'−→ L;
• Specification 〈I, S〉 ∈ L2;

lfp
≤

λX . I ∨ F (X) ≤ S ?
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Example

• Set of states: #;
• Initial states: I ⊆ #;
• Transition relation: τ ⊆ #× #;
• Transition system: 〈#, τ, I〉;
• Complete lattice: 〈℘(#), ⊆, ∅, #, ∪, ∩〉;
• Right-image of X ⊆ # by τ :

post[τ ](X) /= {s′ | ∃s ∈ X : 〈s, s′〉 ∈ τ};
• Reflexive transitive closure of τ : τ&
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Example (contd.)

• Safety specification: S ⊆ #

• Reachable states from I :

post[τ&](I) = lfp
≤

λX . I ∪ post[τ ](X) ;

• Satisfaction of the safety specification (post[τ&](I) ⊆ S):

lfp
≤

λX . I ∨ post[τ ](X) ≤ S ?
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Concrete Fixpoint Checking
Algorithm 4

Algorithm 1

X := I ; Go := (X ≤ S);
while Go do

X ′ := I ∨ F (X);
Go := (X 2= X ′) & (X ′ ≤ S);
X := X ′;

od;
return (X ≤ S);

4 P. Cousot & R. Cousot, POPL’77
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Partial correctness of Alg. 1
Alg. 1 is partially correct: if it ever terminates then it returns
lfp
≤

λX . I ∨ F (X) ≤ S.
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Concrete Invariants

• A ∈ L an invariant for 〈F, I, S〉 if and only if I ≤ A &
F (A) ≤ A & A ≤ S;

Note 1 (Floyd’s proof method): lfp
≤

λX . I ∨ F (X) ≤ S if
and only if there exists an invariant A ∈ L for 〈F, I, S〉;

Note 2: if Alg. 1 terminates successfully, then it has computed
an invariant (X = lfp

≤
λX ′. I ∨ F (X ′)).
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Galois connection
A Galois connection , written

〈L, ≤〉 −−−→←−−−
f

g
〈M, 4〉,

is such that:
• 〈L, ≤〉 and 〈M, 4〉 are posets;
• the maps f ∈ L '→M and g ∈M '→ L satisfy

∀x ∈ L : ∀y ∈M :f(x) 4 y if and only if x ≤ g(y) .
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Concrete Adjoinedness

In general, F has an adjoint F̃ such that 〈L, ≤〉 −−−→←−−−
F

F̃ 〈L, ≤〉.
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Example of Concrete Adjoinedness

• τ−1 is the inverse of τ ;
• pre[τ ] /= post[τ−1];

• Set complement ¬X
/= # \ X;

• p̃re[τ ](X) /= ¬pre[τ ](¬X);

〈℘(#), ⊆〉 −−−−−−→←−−−−−−
post [τ ]

p̃re[τ ]
〈℘(#), ⊆〉 .
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Fixpoint Concrete Adjoinedness

〈L, ≤〉 −−−−−−−−−−−−−−−−→←−−−−−−−−−−−−−−−−
λI . lfp

≤
λX . I∨F (X)

λS . gfp
≤

λX . S∧F̃ (X)
〈L, ≤〉

Proof:

lfp
≤

λX . I ∨ F (X) ≤ S
⇐⇒ ∃A ∈ L : I ≤ A & F (A) ≤ A & A ≤ S (1)
⇐⇒ ∃A ∈ L : I ≤ A & A ≤ F̃ (A) & A ≤ S

⇐⇒ I ≤ gfp
≤

λX . S ∧ F̃ (X) .

#
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The Complete Lattice of Concrete
Invariants

• The set I of invariants for 〈F, I, S〉 is a complete lattice
〈I, ≤ , lfp

≤
λX . I ∨ F (X) , gfp

≤
λX . S ∧ F̃ (X) , ∨ , ∧〉.
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Dual Concrete Fixpoint Checking
Algorithm 5

Algorithm 2
Y := S; Go := (I ≤ Y );
while Go do

Y ′ := S ∧ F̃ (Y );
Go := (Y 2= Y ′) & (I ≤ Y ′);
Y := Y ′;

od;
return (I ≤ Y );

5 P. Cousot, 1981; E.M. Clarke & E.A. Emerson, 1981; J.-P. Queille and J. Sifakis, 1982.
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Partial correctness of Alg. 2
Alg. 2 is partially correct: if it ever terminates then it returns
lfp
≤

λX . I ∨ F (X) ≤ S.
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On (Dual) Fixpoint Checking

lfp
≤

λX . I ∨ F (X) ≤ S

if and only if
I ≤ gfp

≤
λX . S ∧ F̃ (X).

if and only if
lfp
≤

λX . I ∨ F (X) ≤ gfp
≤

λX . S ∧ F̃ (X)
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The Adjoined Concrete Fixpoint
Checking Algorithm

Algorithm 3

X := I ; Y := S; Go := (X ≤ Y );
while Go do

X ′ := I ∨ F (X); Y ′ := S ∧ F̃ (Y );
Go := (X 2= X ′) & (Y 2= Y ′) & (X ′ ≤ Y ′);
X := X ′; Y := Y ′;

od;
return (X ≤ Y );
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Partial correctness of Alg. 3
Alg. 3 is partially correct: if it ever terminates then it returns
lfp
≤

λX . I ∨ F (X) ≤ S.
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Abstract Fixpoint Checking
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Abstract Interpretation

• Concrete complete lattice: 〈L, ≤, 0, 1, ∨, ∧〉;
• Abstract complete lattice: 〈M, 4, ⊥, 9, :, ;〉;
• Abstraction/concretization pair 〈α, γ〉;
• Galois connection:

〈L, ≤〉 −−−→←−−−α
γ
〈M, 4〉.
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Example: the Recurrent Abstraction
in Abstract Model-Checking

• State abstraction: h ∈ # '→ #;
• Property abstraction: αh(X) /= {h(x) | x ∈ X} = post[h] 6;

• Property concretization: γh(Y ) /= {x | h(x) ∈ Y } = p̃re[h];
• Galois connection:

〈℘(#), ⊆〉 −−−→←−−−
αh

γh 〈℘(#), ⊆〉.

• Example (rule of signs): # = Z so choose h(z) to be the
sign of z.

6 Considering the function h as a relation.
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Abstract Fixpoint Checking
Algorithm 7

Algorithm 4
X := α(I); Go := (γ(X) ≤ S);
while Go do

X ′ := α(I ∨ F (γ(X)));
Go := (X 2= X ′) & (γ(X ′) ≤ S);
X := X ′;

od;
return if (γ(X) ≤ S) then true else I don’t know;

7 In P. Cousot & R. Cousot, POPL’77, (γ(X) ≤ S) is X 4 S ′ where S ′ = α(S).
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Partial correctness of Alg. 4
Alg. 4 is partially correct: if it terminates and returns “true ”
then lfp

≤
λX . I ∨ F (X) ≤ S.
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Dual Abstraction

〈L, ≥〉 −−−→←−−−
α̃

γ̃
〈M, =〉.
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Example of Dual Abstraction (Contd.)
If

• 〈L, ≤, 0, 1, ∨, ∧, ¬〉 is a complete boolean lattice;

• 〈M, 4, ⊥, 9, :, ;, $〉 is a complete boolean lattice;

• 〈L, ≤〉 −−−→←−−−α
γ
〈M, 4〉;

• α̃
/= $ ◦ α ◦ ¬ and γ̃

/= ¬ ◦ γ ◦ $
then

〈L, ≥〉 −−−→←−−−
α̃

γ̃
〈M, =〉
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Example of Dual Abstraction (Contd.)
For the recurrent abstraction in abstract model-checking αh(X)
/= {h(x) | x ∈ X} = post[h] we have:

• 〈℘(#), ⊆〉 −−−−−−→←−−−−−−
post[h]

p̃re[h]
〈℘(#), ⊆〉;

• p̃re[h](X) = ¬pre[h](¬X) and p̃ost[h](X) = ¬post[h](¬X) ,
so:

• 〈℘(#), ⊇〉 −−−−−−→←−−−−−−
p̃ost[h]

pre[h]
〈℘(#), ⊇〉.
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Abstract Adjoinedness

〈L, ≤〉 −−−→←−−−α
γ
〈M, 4〉 , 〈L, ≤〉 −−−→←−−−

F

F̃ 〈L, ≤〉 and 〈L, ≥〉 −−−→←−−−
α̃

γ̃

〈M, =〉 imply:

〈M, 4〉 −−−−−−→←−−−−−−
α◦F ◦γ̃

α̃◦F̃ ◦γ
〈M, 4〉.
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The Dual Abstract Fixpoint
Checking Algorithm

Algorithm 5
Y := α̃(S); Go := (I ≤ γ̃(Y ));
while Go do

Y ′ := α̃(S ∧ F̃ (γ̃(Y )));
Go := (Y 2= Y ′) & (I ≤ γ̃(Y ′));
Y := Y ′;

od;
return if (I ≤ γ̃(Y )) then true else I don’t know;

Réunion Workshop on Implementation of Logics , November 11-12, 2000 """" — 38 — [] ! — !!!# © P. Cousot

Partial correctness of Alg. 5
Alg. 5 is partially correct: if it terminates and returns “true ”
then lfp

≤
λX . I ∨ F (X) ≤ S.
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The Particular Case of Complement
Abstraction

1. 〈L, ≤, 0, 1, ∨, ∧, ¬〉 is a complete boolean lattice;
2. 〈M, 4, ⊥, 9, ;, :, $〉 is a complete boolean lattice;
3. 〈L, ≤〉 −−−→←−−−α

γ
〈M, 4〉;

4. 〈L, ≤〉 −−−→←−−−
F

F̃ 〈L, ≤〉;

5. F̃
/= ¬ ◦ F ◦ ¬ , α̃

/= $ ◦ α ◦ ¬ and γ̃
/= ¬ ◦ γ ◦ $.
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The Contrapositive Abstract
Fixpoint Checking AlgorithmAlg. 5 becomes:

Algorithm 6

Z := α(¬S); Go := (I ∧ γ(Z) = 0);
while Go do

Z ′ := α(¬S ∨ F (γ(Z)));
Go := (Z 2= Z ′) & (I ∧ γ(Z ′) = 0);
Z := Z ′;

od;
return if (I ∧ γ(Z) = 0) then true else I don’t know;
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Partial correctness of Alg. 6
Alg. 6 is partially correct: if it terminates and returns “true ”
then lfp

≤
λX . I ∨ F (X) ≤ S.
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The Adjoined Abstract Fixpoint
Checking Algorithm

Algorithm 7

X := α(I); Y := α̃(S); Go := (γ(X) ≤ S) & (I ≤ γ̃(Y ));
while Go do

X ′ := α(I ∨ F ◦ γ(X)); Y ′ := α̃(S ∧ F̃ ◦ γ̃(Y ));
Go := (X 2= X ′) & (Y 2= Y ′) & (γ(X ′) ≤ S) & (I ≤ γ̃(Y ′));
X := X ′; Y := Y ′;

od;
return if (γ(X) ≤ S) | (I ≤ γ̃(Y )) then true

else I don’t know;
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Partial correctness of Alg. 7
Alg. 7 is partially correct: if it terminates and returns “true ”
then lfp

≤
λX . I ∨ F (X) ≤ S.
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Further Requirements for
Program Static Analysis

• In program static analysis, one cannot compute γ , γ̃ and ≤
and sometimes neither I nor S may even be machine repre­
sentable;

• So Alg. 7 , which can be useful in model-checking, is of limited
interest in program static analysis;

• Such problems do no appear in abstract model checking since
the concrete model is almost always machine-representable
(although sometimes too large).
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Additional Hypotheses
In order to be able to check termination in the abstract, we
assume:

1. ∀X ∈ L : γ ◦ α̃(X) ≤ X;
2. ∀X ∈ L : X ≤ γ̃ ◦ α(X).
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Example: the Recurrent Abstraction
in Abstract Model-Checking

Continuing with the abstraction of p. 31 with

α
/= post[h] γ

/= p̃re[h]
and α̃

/= p̃ost[h] γ̃
/= pre[h],

we have:
1. ∀X ∈ L : γ ◦ α̃(X) ⊆ X;
2. ∀X ∈ L : X ⊆ γ̃ ◦ α(X).
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The Adjoined Abstract Fixpoint
Abstract Checking Algorithm

Algorithm 8

X := α(I); Y := α̃(S); Go := (X 4 Y );
while Go do

X ′ := α(I) ; α ◦ F ◦ γ(X); Y ′ := α̃(S) : α̃ ◦ F̃ ◦ γ̃(Y );
Go := (X 2= X ′) & (Y 2= Y ′) & (X ′ 4 Y ′);
X := X ′; Y := Y ′;

od;
return if X 4 Y then true else I don’t know;

Réunion Workshop on Implementation of Logics , November 11-12, 2000 """" — 48 — [] ! — !!!# © P. Cousot



Partial correctness of Alg. 8
Alg. 8 is partially correct: if it ever terminates and returns
“true ” then lfp

≤
λX . I ∨ F (X) ≤ S.
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Partially complete abstraction
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Partially Complete Abstraction
(definition) 8

Definition 9 The abstraction 〈α, γ〉 is partially complete
if, whenever Alg. 4 terminates and lfp

≤
λX . I ∨ F (X) ≤ S

then the returned result is “true ”.

8 Observe that this notion of partial completeness is different from the notions of fixpoint completeness (α(lfp≤
G) =

lfp
"

α ◦ G ◦ γ) and the stronger one of local completeness (α ◦ G = α ◦ G ◦ γ ◦ α) considered in P. Cousot & R.
Cousot, POPL’79.
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Characterization of Partially Com-
plete Abstractions for Algorithm 4

Theorem 10 The abstraction 〈α, γ〉 is partially complete
for Alg. 4 if and only if α(L) contains an abstract value A such
that γ(A) is an invariant for 〈F, I, S〉.

Intuition: finding a partially complete abstraction is logically
equivalent to making an invariance proof.
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The Most Abstract Partially
Complete Abstraction (Definition)

Definition 11 The most abstract partially complete abstrac­
tion 〈α, γ〉 , if it exists, is defined such that:
1. The abstract domain M = α(L) has the smallest possible

cardinality;
2. If another abstraction 〈α′, γ′〉 is a partially complete abstrac­

tion with the same cardinality, then there exists a bijection
β such that ∀x ∈M : γ′(β(x)) ≤ γ(x) 9.

9 Otherwise stated, the abstract values in α(L) are more approximate than the corresponding elements in α′(L).
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Characterization of the Most
Abstract Complete Abstraction

Theorem 12 The most abstract partially complete abstrac­
tion for Alg. 4 is such that:
• if S = 1 then M = {9} where α

/= λX .9 and γ
/= λY . 1;

• if S 2= 1 then M = {⊥,9} where ⊥ 4 ⊥ % 9 4 9 with
〈α, γ〉 such that:

α(X) /= if X ≤ gfp
≤

λX . S ∧ F̃ (X) then ⊥ else 9
γ(⊥) /= gfp

≤
λX . S ∧ F̃ (X) (2)

γ(9) /= 1
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The Least Abstract Partially
Complete Abstraction (Definition)

Definition 13 Dually, the least abstract partially complete
abstraction 〈α, γ〉 , if it exists, is defined such that:
1. The abstract domain M = α(L) has the smallest possible

cardinality;
2. If another abstraction 〈α′, γ′〉 is a partially complete abstrac­

tion with the same cardinality, then there exists a bijection
β such that ∀x ∈M : γ(x) ≤ γ′(β(x)) 10.

10 Otherwise stated, the abstract values in α(L) are less approximate than the corresponding elements in α′(L).
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Characterization of the Least
Abstract Complete Abstraction

Theorem 14 Dually, the least abstract partially complete
abstraction for Alg. 4 is such that:
• if I = 1 then M = {9} where α

/= λX .9 and γ
/= λY . 1;

• if I 2= 1 then M = {⊥,9} where ⊥ 4 ⊥ % 9 4 9 with
〈α, γ〉 such that:

α(X) /= if X ≤ lfp
≤

λX . I ∨ F (X) then ⊥ else 9
γ(⊥) /= lfp

≤
λX . I ∨ F (X) (3)

γ(9) /= 1
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The Minimal Partially Complete
Abstractions for Algorithm 4

Theorem 15
• The set A of partially complete abstractions of minimal cardi­

nality for Alg. 4 is the set of all abstract domains 〈M, 4, α, γ〉
such that M = {⊥,9} with⊥ 4 ⊥ 4 9 4 9 , 〈L, ≤〉 −−−→←−−−α

γ

〈M, 4〉 , γ(⊥) ∈ I and ⊥ = 9 if and only if γ(9) ∈ I.

Réunion Workshop on Implementation of Logics , November 11-12, 2000 """" — 57 — [] ! — !!!# © P. Cousot

The Complete Lattice of Minimal
Complete Abstractions for Alg. 4

Theorem 16
• The relation 〈{⊥,9}, 4, α, γ〉 @ 〈{⊥′,9′}, 4′, α′, γ′〉

if and only if γ(⊥) ≤ γ′(⊥′) is a pre-ordering on A.
• Let 〈{⊥,9}, 4, α, γ〉 ∼= 〈{⊥′,9′}, 4′, α′, γ′〉 if and only

if γ(⊥) = γ′(⊥′) be the corresponding equivalence.
• The quotient A/∼=

is a complete lattice 11 for @ with infimum
class representative 〈M, 4, α, γ〉 and supremum 〈M, 4, α, γ〉.

11 Observe however that it is not a sublattice of the lattice of abstract interpretations of P. Cousot & R. Cousot,
POPL’77, POPL’79 with reduced product as glb.
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Intuition for Minimal Partially
Complete Abstractions

• There is a one to one correspondance between partially com­
plete abstractions of minimal cardinality for Alg. 4 and the
set of invariants for proving lfp

≤
λX . I ∨ F (X) ≤ S;

• Similar results hold for the other Algs. 6 , 7 & 8.
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Conclusion
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On the Automatic Inference of
Partially Complete Abstractions (contd.)

• The automatic inference/refinement of abstractions is an ac­
tive subject of research 12;

• Automating the abstraction is logically equivalent to discov­
ering an invariant and checking a proof obligation (Th. ;

• After immoderate hopes in the seventies, there was no break­
through for the last 20 years in automatic program proving;

12 Graf & Loiseaux, CAV’93; Loiseaux, Graf, Sifakis, Bouajjani & Bensalem FMSD(6:1)’95, Graf & Saïdi, CAV’97;
Bensalem, Lakhnech & Owre CAV’98; Colon & Uribe, CAV’98; Abdulla, Annichini, Bensalem, Bouajjani, Habermehl
& Lakhnech, CAV’99; Das, Dill & Park, CAV’99; Saïdi & Shankar, CAV’99; Saïdi, SAS’00; Baumgartner, Tripp,
Aziz, Singhal & Andersen, CAV’00; Clarke, Grumberg, Jha, Lu & Veith, CAV’00; etc.
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On the Automatic Inference of
Partially Complete Abstractions (contd.)

• The automatic inference/refinement of abstractions is an ac­
tive subject of research 12;

• Automating the abstraction is logically equivalent to discov­
ering an invariant and checking a proof obligation (Th. 10);

• After immoderate hopes in the seventies, there was no break­
through for the last 20 years in automatic program proving;

12 Graf & Loiseaux, CAV’93; Loiseaux, Graf, Sifakis, Bouajjani & Bensalem FMSD(6:1)’95, Graf & Saïdi, CAV’97;
Bensalem, Lakhnech & Owre CAV’98; Colon & Uribe, CAV’98; Abdulla, Annichini, Bensalem, Bouajjani, Habermehl
& Lakhnech, CAV’99; Das, Dill & Park, CAV’99; Saïdi & Shankar, CAV’99; Saïdi, SAS’00; Baumgartner, Tripp,
Aziz, Singhal & Andersen, CAV’00; Clarke, Grumberg, Jha, Lu & Veith, CAV’00; etc.
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On the Automatic Inference of
Partially Complete Abstractions (contd.)

• The automatic inference/refinement of abstractions is an ac­
tive subject of research 12;

• Automating the abstraction is logically equivalent to discov­
ering an invariant and checking a proof obligation (Th. 10);

• After immoderate hopes in the seventies, there was no break­
through for the last 20 years in automatic program proving;

12 Graf & Loiseaux, CAV’93; Loiseaux, Graf, Sifakis, Bouajjani & Bensalem FMSD(6:1)’95, Graf & Saïdi, CAV’97;
Bensalem, Lakhnech & Owre CAV’98; Colon & Uribe, CAV’98; Abdulla, Annichini, Bensalem, Bouajjani, Habermehl
& Lakhnech, CAV’99; Das, Dill & Park, CAV’99; Saïdi & Shankar, CAV’99; Saïdi, SAS’00; Baumgartner, Tripp,
Aziz, Singhal & Andersen, CAV’00; Clarke, Grumberg, Jha, Lu & Veith, CAV’00; etc.
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On the Automatic Inference of
Partially Complete Abstractions (contd.)

Will the empirical methods (presently) used in ab­
stract model-checking be able to automatize the dis­
covery of partially complete abstractions? 13

13 May be not so abstract model-checking will eventually boils down to incomplete abstract interpretations as used in program analysis or program debugging using a simultaneous simulation
of program executions (although the current per-example reasoning can go on for ever).
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THE END, THANK YOU.

Reference: P. Cousot. Partial Completeness of Abstract Fixpoint Check­
ing. Proc. 4th Int. Symp. SARA’2000, LNAI 1864, pp. 1–25, Springer-
Verlag, Jul. 2000.
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