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Abstraction in Program Analysis &
Model Checking

Abstract interpretation has been successfully applied in:
e static program analysis (by approximation of the semantics);

e model checking (state explosion & infinite state models).
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Motivations & Results
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Abstraction in Model Checking

Main abstractions in model checking:

e Implicit abstraction: to design the model of reference;

e Polyhedral abstraction (with widening): synchronous, real-time
& hybrid system verification;

e Finitary abstraction (without widening): hardware & proto-
cole verification ';

1 Abstracting concrete transition systems to abstract transition systems so as to reuse existing model checkers in the
abstract.
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Abstraction in Program Analysis &
Model Checking

e The abstraction must always be sound;

e For completeness:
- in static program analysis: not required (possible uncer-
tainty);
- in model checking: required * (formal verification method *).

2 allowing only for yes/no answers, all uncertainty resulting only from getting out of computer resources.
3 otherwise model-checking would be a mere debugging method or equivalent to program/model analysis.
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Informal Objective of the Talk

e Understand the logical nature of the problem of finding an
appropriate abstraction (for proving safety properties).
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Discovery of Abstractions

e in static program analysis:
- task of the program analyzer designer,
- find a sound abstraction providing useful information for all programs,
- essentially manual ,
- partially automated e.g. by combination & refinement of abstract

domains;

e in model checking:
- task of the user,
- find a sound & complete abstraction required to verify one model,
- looking for automation (e.g. starting from a trivial or user provided
guess and refining by trial and error).
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Formalization of the Problem
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Fixpoint Checking
e Model-checking safety properties of transition systems:

o AX. IV F(X)<8?

e Program static analysis by abstract interpretation:

<

A" AXaIV F(7(X))) < § 7
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Soundness / Completeness

Soundness: a positive abstract answer implies a positive con-
crete answer. So no error is possible when reasoning in the
abstract;

Completeness: a positive concrete answer can always be
found in the abstract;
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Soundness

Soundness: a positive abstract answer implies a positive con-
crete answer. So no error is possible when reasoning in the
abstract;
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Soundness / (Partial) Completeness

Soundness: a positive abstract answer implies a positive con-
crete answer. So no error is possible when reasoning in the
abstract;

Completeness: a positive concrete answer can always be
found in the abstract;

Partial completeness: in case of termination of the ab-
stract fixpoint checking algorithm, no positive answer can
be missed.
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Soundness / (Partial) Completeness

Soundness: a positive abstract answer implies a positive con-
crete answer. So no error is possible when reasoning in the
abstract;

Completeness: a positive concrete answer can always be
found in the abstract;

Partial completeness: in case of termination of the ab-
stract fixpoint checking algorithm, no positive answer can
be missed.

Termination/resource limitation is therefore considered a sepa-
rate problem (widening/narrowing, etc.).
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Objective of the Talk (Formally)

Constructively characterize the abstractions («, =) for
which abstract fixpoint algorithms are partially com-
plete.
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Practical Question

Is it possible to automatize the discovery of complete
abstractions?
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Concrete Fixpoint Checking
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Concrete Fixpoint Checking Problem

e Complete lattice (L, <, 0, 1, V, A);

e Monotonic transformer ' € L —— L;:
e Specification (I, S) € L

oo AX.IV F(X)<S?
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Example (contd.)

e Safety specification: S C X

e Reachable states from I:
post[T*|(I) = /fpS AX. T U post[7)(X) ;
e Satisfaction of the safety specification (post[7*](I) C S):

<

Ifp~ AX. 1V post[t|(X) < S 7
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Example

e Set of states: X;
e |nitial states: [ C >;
e Transition relation: 7 C X x X:
e Transition system: (X, 7, [);
e Complete lattice: (p(X), C, 0, X, U, N);
e Right-image of X C X by 7:
post|T)(X) 2 {s' | Is € X : (s, §') € 7};

e Reflexive transitive closure of 7: 7*
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Concrete Fixpoint Checking

Algorithm
Algorithm 1

X =1 Go:=(X<S9);
while Go do

X'=1vF(X)

Go:= (X #X") & (X' < 8);

X =X
od,;
return (X < 9);

4 P. Cousot & R. Cousot, POPL'77
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Partial correctness of Alg. 1

Alg. 1 is partially correct: if it ever terminates then it returns
<
Ifo~ AX. IV F(X)<S§S.
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Galois connection
A Galois connection, written

(L, <) == (M, ),

is such that:
e (L, <) and (M, C) are posets;
e the maps f € L — M and g € M +— L satisfy

VeeL:Vye M :f(x) Cyifandonly if z < g(y) .
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Concrete Invariants

e A € L an invariant for (F, I, S) if andonly if | < A&
FA)SALALS,

Note 1 (Floyd's proof method): /fp AX.IVF(X)<S
and only if there exists an invariant A € L for (F, I, S)

Note 2: if Alg. 1 terminates successfully, then it has computed
<
an invariant (X = ifp. AX'. TV F(X")).
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Concrete Adjoinedness

In general, F' has an adjothsuch that (L, <) ]]:: (L, <).
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Example of Concrete Adjoinedness

Lis the inverse of 7

o7
e pre[T] 2 post[T™1];
e Set complement =X 2y \ X;

o pre[r](X) £ —pre[r)(—X);

pre[r]
{(p(X), € p(X), ©)
post[T]
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The Complete Lattice of Concrete
Invariants

e The set Z of invariants for (F, I, S) is a complete lattice
< < ~
(Z,<,ip AX.-IVF(X), gl AX-SAF(X),V, A).
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Fixpoint Concrete Adjoinedness

AS.gfo~ AX.SAF(X
(L <) gfp (X) (L <)

A Ifp~ AX.IVF(X)

Proof:

<

o~ AX. IV F(X)<S
< JAceL: I<A&LFA)<ALA<LSS (1)
— JAeL: I<ALA<FA&ALS
— I <gh AX.SAFX).
O

Réunion Workshop on Implementation of Logics, November 11-12, 2000 4L ]—22—ID->IB» © P. Cousor

Dual Concrete Fixpoint Checking

Algorithm °
Algorithm 2

Y =S5, Go:=(I<Y);
while Go do

Y =S A ﬁ(Y)

Go=(Y Y& (I <Y'),

Y =Y
od;
return ([ <Y);

5p, Cousot, 1981; E.M. Clarke & E.A. Emerson, 1981; J.-P. Queille and J. Sifakis, 1982.
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Partial correctness of Alg. 2

Alg. 2 is partially correct: if it ever terminates then it returns
<
Ifo~ AX. IV F(X)<S§S.
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The Adjoined Concrete Fixpoint

Checking Algorithm
Algorithm 3

X=0LY: =5, Go=(X<Y);

while Go do
X' =IVFX) Y =SAFY);
Go:= (X #X)& (Y £V & (X' <Y,
X=Xy =Y

od;

return (X <Y);
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On (Dual) Fixpoint Checking

ifoo AX.IV F(X)< S
if and only if
[ <gfo~ AX.S A F(X).
if and only if
< < ~
o~ AX. IV F(X)<gp AX.SAF(X)
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Partial correctness of Alg. 3

Alg. 3 is partially correct: if it ever terminates then it returns
<
Ifo- AX. IV F(X)<S§S.
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Abstract Fixpoint Checking
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Example: the Recurrent Abstraction
in Abstract Model-Checking

e State abstraction: h € ¥ +— X;

e Property abstraction: aj,(X) 2 {h(z) | x € X} = post|h] °
e Property concretization: ~y;,(Y) 2 {z | h(z) € Y} = pre[h];
e Galois connection:

(%), C) =2 (p(S), ).

ap

e Example (rule of signs): 3 = 7Z so choose h(z) to be the
sign of z.

6 Considering the function h as a relation.
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Abstract Interpretation

e Concrete complete lattice: (L, <, 0, 1, V, A);
e Abstract complete lattice: (M, =, L, T, M, U);
e Abstraction/concretization pair (v, );
e Galois connection:

(L, <) = (M, ©).
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Abstract Fixpoint Checking

Algorithm ’
Algorithm 4

X :=a(l); Go:=(y(X) <9);
while Go do

X'=a(IV F(y(X)));

Go = (X # X') & (4(X") < S);

X =X
od;
return if (y(X) < S) then true else I don't know;

7 In P. Cousot & R. Cousot, POPL'77, (v(X) < 9)is X C 5" where 5" = a(S).
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Partial correctness of Alg. 4

Alg. 4 |s partially correct: if it terminates and returns “true”
then /fp AX. IV F(X)<S.
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Example of Dual Abstraction

If
o (L, <, 0,1, V, A, —)isa complete boolean lattice;

o (M, C, J_ T, MM, U, «) is a complete boolean lattice;
o (L, <) == (M, O)

~ A ~ A
ea=wvoqo-andy=-07vy0w

then
(L, >) == (M, J)

a
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Dual Abstraction

(L, >) == (M, J).
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Example of Dual Abstraction (Contd.)

For the recurrent abstraction in abstract model-checking a,(X)

= {h(z) | z € X} = post|h| we have:

. (p(5), ©) <;’:f{’;> o(%), C)
o pre[h)(X) = —pre[h)(=X) and post[l](X) = —post[h](—X),
e (o(), 2) =2 1o(5), D).

post[h]
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Abstract Adjoinedness

(L, <) Z (M, C), (L, <) == — (L, <)and (L, >) o
«
(M, 3) imply:
aoﬁo’y
aoFofy
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Partial correctness of Alg. 5

Alg. 5 is partially correct: if it terminates and returns “true”
<
then ifp~ AX. IV F(X)<S.
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The Dual Abstract Fixpoint

Checking Algorithm
Algorithm 5

Y= a(S); Go:= (I <7(Y));
while Go do

Y = a(S A FF(Y))

Go= (Y #Y) & (I <F(Y));

Y =Y’
od;
return if (I <75(Y)) then true else | don't know;
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The Particular Case of Complement
Abstraction
(L, <, 0,1, vV, A, =) is a complete boolean lattice;

(M, C, L, T, U, T, «) is a complete boolean lattice;
(L. <) = (M. ©)

w N o=

o

AL, <) % (L, <);

A ~ A ~ A
5, F=-o0oFo—-,a=woqo-andy =070,
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The Contrapositive Abstract
Alg. 5 becomes: Fixpoint ChECking Algorlthm
Algorithm 6

Z = a(=S); Go:=(IN~(Z)=0),
while Go do
Z" = a(=SV F((2)));
Go:=(Z#+Z& (I Ny(Z')=0);
Z =7
od;
return if (I Ay(Z) = 0) then true else | don't know;
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The Adjoined Abstract Fixpoint

Checking Algorithm

Algorithm 7
X =al) Y :=a(S); Go:=X)<9)& I <H(Y)),
while Go do

X' =a(IVFory(X)): Y =a(SAFoFY));

Go= (X ZX) & (Y 2Y) & (4(X) < 8) & (I <F(Y));

X=X"Y =Y
od;
return if (y(X) < S5)| (I <7(Y)) then true

else [ don't know;
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Partial correctness of Alg. 6

Alg. 6 is partially correct: if it terminates and returns “true”
<
then ifp~ AX. IV F(X)<S.
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Partial correctness of Alg. 7

Alg. 7 is partially correct: if it terminates and returns “true”
<
then ifp~ AX. IV F(X)<S.
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Further Requirements for
Program Static Analysis

e In program static analysis, one cannot compute v, 7 and <
and sometimes neither I nor S may even be machine repre-
sentable;

e So Alg. 7, which can be useful in model-checking, is of limited
interest in program static analysis;

e Such problems do no appear in abstract model checking since
the concrete model is almost always machine-representable
(although sometimes too large).
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Example: the Recurrent Abstraction
in Abstract Model-Checking

Continuing with the abstraction of p. 31 with

and @ = postlh] 5 2 pre[hl,

we have:
1LVXelL:yoa(X)CX;
2¥X eL: X CFoalX).
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Additional Hypotheses

In order to be able to check termination in the abstract, we

assume:
LVXelL:yoa(X)<X;

2.VX e L: X <7oa(X).
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The Adjoined Abstract Fixpoint
Abstract Checking Algorithm
Algorithm 8

X =a(); Y :=aS), Go:= );

while Go do
X' =a(l)UaoFony(X); Y =a&(S)NaocFoF(Y);
Go=(X#XN& (Y £AY)& (X' TY),
X=X"Y =Y

od;

return if X T Y then true else | don’t know;

X

]
~
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Partial correctness of Alg. 8

Alg. 8 is partially correct: if it ever terminates and returns
<
“true” then Ifp- AX. TV F(X)<S.
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Partially Complete Abstraction
(definition)®

Definition 9  The abstraction («, 7) is partially complete

if, whenever Alg. 4 terminates and lfpS AX. ITVFX)<S
then the returned result is “true”.

8 Observe that this notion of partial completeness is different from the notions of fixpoint completeness (a(ifp™ G) =
Ifp- a o G © 7) and the stronger one of local completeness (o> G = a o G o 7 ° a) considered in P. Cousot & R.
Cousot, POPL'79.
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Partially complete abstraction
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Characterization of Partially Com-
plete Abstractions for Algorithm 4

Theorem 10  The abstraction («, ) is partially complete
for Alg. 4 if and only if a(L) contains an abstract value A such
that y(A) is an invariant for (F, I, S).
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Characterization of Partially Com-
plete Abstractions for Algorithm 4

Theorem 10  The abstraction («, ) is partially complete
for Alg. 4 if and only if a(L) contains an abstract value A such
that (A) is an invariant for (F, I, S).

Intuition: finding a partially complete abstraction is logically
equivalent to making an invariance proof.
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Characterization of the Most
Abstract Complete Abstraction

Theorem 12  The most abstract partially complete abstrac-

tion for Alg. 4 is such that:

oif S=1then M ={T} where @ 2 AX. T and 7é AY. 1,

oif S#1then M ={L, T}where L C L = TLCT with
(@, %) such that:

a(X) 2if X < gf- AX.SAF(X) then Lelse T
T(L) £ gfo” AX.S AF(X) @
_ A
7(T) =1
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The Most Abstract Partially
Complete Abstraction (Definition)

Definition 11 The most abstract partially complete abstrac

tion (@, ), if it exists, is defined such that:

1. The abstract domain M = @(L) has the smallest possible
cardinality;

2. If another abstraction {a/, 7/} is a partially complete abstrac-
tion with the same cardinality, then there exists a bijection
(3 such that Vo € M : +/(B(x)) < F(z) °.

9 Otherwise stated, the abstract values in (L) are more approximate than the corresponding elements in o/(L).
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The Least Abstract Partially
Complete Abstraction (Definition)

Definition 13  Dually, the least abstract partially complete

abstraction (@, ), if it exists, is defined such that:

1. The abstract domain M = @(L) has the smallest possible
cardinality;

2. If another abstraction {a/, 7/} is a partially complete abstrac-

tion with the same cardinality, then there exists a bijection
3 such that Vo € M : 5(z) < +/(8(x)) ®.

10 Otherwise stated, the abstract values in a(L) are less approximate than the corresponding elements in /(L)
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Characterization of the Least
Abstract Complete Abstraction
Theorem 14  Dually, the least abstract partially complete

abstraction for Alg. 4 is such that:
oif [ =1then M = {T} where Qé AX.T and “_/é AY. 1,

oif I #1then M = {1, T} where L C 1 C T LC T with
(@, 7) such that:

a(X ) = |fX< /fp AX. IV F(X) then L else T
V(L) £ i~ AX. TV F(X) (3)
A(T) £ 1
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The Complete Lattice of Minimal
Complete Abstractions for Alg. 4

Theorem 16
e The relation ({1, T}, C, a, v) =< {L', T}, ) o/, )
if and only if v(L) <~ (J_') is a pre- ordermg on A.
elet({L,TH C, o, )= {L, T}, ) o, 7/)ifand only
if v(L)=+/(L ) be the corresponding equwalence.
e The quotient .A/g is a complete lattice ' for < with infimum
class representative (M, C, «, ) and supremum (M, C, @, 7).

11 Observe however that it is not a sublattice of the lattice of abstract interpretations of P. Cousot & R. Cousot,
POPL'77, POPL'79 with reduced product as glb.
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The Minimal Partially Complete
Abstractions for Algorithm 4

Theorem 15

e The set A of partially complete abstractions of minimal cardi-
nality for Alg. 4 is the set of all abstract domains (M, C, «, )
such that M = {L, Twith LC LE TC T, (L, <) =
(M, C),v(L)eZand L =T ifand only if y(T) € Z.
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Intuition for Minimal Partially
Complete Abstractions

e There is a one to one correspondance between partially com-
plete abstractions of minimal cardmallty for Alg. 4 and the
set of invariants for proving /fp AX.IVF(X)<S,;

e Similar results hold for the other Algs. 6, 7 & 8.
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Conclusion
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On the Automatic Inference of
Partially Complete Abstractions

e The automatic inference/refinement of abstractions is an ac-
tive subject of research *;

e Automating the abstraction is logically equivalent to discov-
ering an invariant and checking a proof obligation (Th. 10);

12 Graf & Loiseaux, CAV'93; Loiseaux, Graf, Sifakis, Bouajjani & Bensalem FMSD(6:1)'95, Graf & Saidi, CAV'97;
Bensalem, Lakhnech & Owre CAV'98; Colon & Uribe, CAV'98; Abdulla, Annichini, Bensalem, Bouajjani, Habermehl
& Lakhnech, CAV'99; Das, Dill & Park, CAV'99; Saidi & Shankar, CAV'99; Saidi, SAS'00; Baumgartner, Tripp,
Aziz, Singhal & Andersen, CAV'00; Clarke, Grumberg, Jha, Lu & Veith, CAV'00; etc.
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On the Automatic Inference of
Partially Complete Abstractions

e The automatic inference/refinement of abstractions is an ac-
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On the Automatic Inference of
Partially Complete Abstractions

e The automatic inference/refinement of abstractions is an ac-
tive subject of research *;

e Automating the abstraction is logically equivalent to discov-
ering an invariant and checking a proof obligation (Th. 10);
e After immoderate hopes in the seventies, there was no break-
through for the last 20 years in automatic program proving;

12 Graf & Loiseaux, CAV'93; Loiseaux, Graf, Sifakis, Bouajjani & Bensalem FMSD(6:1)'95, Graf & Saidi, CAV'97;
Bensalem, Lakhnech & Owre CAV'98; Colon & Uribe, CAV'98; Abdulla, Annichini, Bensalem, Bouajjani, Habermehl
& Lakhnech, CAV'99; Das, Dill & Park, CAV'99; Saidi & Shankar, CAV'99; Saidi, SAS'00; Baumgartner, Tripp,
Aziz, Singhal & Andersen, CAV'00; Clarke, Grumberg, Jha, Lu & Veith, CAV'00; etc.
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On the Automatic Inference of

Partially Complete Abstractions (contd.)

Will the empirical methods (presently) used in ab-
stract model-checking be able to automatize the dis-
covery of partially complete abstractions? ”

May be not so abstract model-checking will eventually boils down to incomplete abstract interpretations as used in program analysis or program debugging using a simultaneous simulation
h the current per-exar o on for eve

of program executions (although the per-example reasoning can go on for ever
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THE END, THANK YOU.

Reference: P. Cousot. Partial Completeness of Abstract Fixpoint Check
ing. Proc. 4t Int. Symp. SARA’2000, LNAI 1864, pp. 1-25, Springer-
Verlag, Jul. 2000.
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THE END
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