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Automated Verification of Infinite-State Systems

e The automated verification of infinite-sate systems has
made considerable progress these last ten years

e It is yet far from being a common industrial practice

e This might be that most available prototypes and tools
are inappropriate

e These prototypes and tools aim at debugging whereas
we need automated verification
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Defects of Available Prototypes and Tools

e Manual (e.g. require end-users to provide manually a
simple-enough model of the complex system), and /or

e User-unfriendly (e.g. require complex interactions with
end-users), and/or

e Trivial (e.g. consider immediate essentially syntactic
program properties) and/or

e Incorrect/unsound (e.g. do not explore the complete

space of executions and so may forget about potential
problems at run-time), and/or

e Inefficient (some may not terminate at all but by ex-
haustion of time/memory resources), and/or

e Imprecise (leading to too many false alarms that is
spurious warnings on potential problems that can never
occur at run-time).

Can we do better?

©) P. Comoaé%ﬁ

A Few Elements
of Abstract Interpretation

Reference

[POPL'79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6t POPL, pages
269-282, San Antonio, TX, 1979. ACM Press.
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A Model of Computer Programs

e Syntax : a well-founded set of programs (P, <) where

< 1s the “strict immediate subcomponent” relation ;
e Semantics of P € P :

- Semantic domain : a complete lattice/cpo (D[P], C, L, L)

- Compositional Fixpoint Semantics :

stP1 w7171 J1 st
P'<P

ifp, f is the limit of X0 = 1, X01 = f(x%), X =
LgaaX )‘, A limit ordinal, if any. Existence e.g. monotony
(by Tarski constructive [PACIM '79]).
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Example: Syntax of Programs

X variables X € X
T types T € T
E arithmetic expressions E € E
B boolean expressions B € B
D :=TX; declarations D € D, vars(D) = {X}
| TX ;D X & vars(D'), vars(D) = {X} U vars(D’)
C = X =FE; commands C € C (E < C)
| while B C' (B<C,C'<C)
| if BC' (B<C,C'<C)
| if B C' else C” (B<C,C'<C,C"<C)
| {C1...Ch} (n>0) (¢, <C,...,Ch<C)
P :=DC

program P e P (C < P)

— 9 —

Example: Concrete Semantic Domain of Programs

Reachability properties:

XD C] ¥ 3[D] states p
JTX;]E¥{X}—>T (p(X) is the value
J[T X; D] ¥ ({X}— T)u Z[D] of X)

D[P] € p(Z[P]) sets of states

C ¥ C implication

) false

L&y disjunction
n NYU, — 10 — ©FP COUSOT/@E&:

Example: Concrete Semantics of Programs (Reachability)
S[X = B;]R = {p[X + E[E]p] | p € RN dom(E)}
X —o)(X) E o, X —o)(Y) & p(Y)
S[if B C'|R ¥ S[C'|(B[B]R) U B[~B]R
B[B]R ¥ {p € RNndom(B) | B holds in p}
S[if B C’' e1se C"|R ¥ S[C'|(B[B]R) U S[C"](B[~B]R)
S[while B C']|R & let W = |fp§ AX . RUS[C'](B[B]X)
S[{}HR =R
S[{C1...CR}]R ¥ S[Cp]o...oS[C1] n >0
S[D C]R = S[C)(Z[D])
Not computable (undecidability).

(uninitialized variables)

— 11 —

Abstraction

A reasoning/computation which is restricted in that:
e only some properties can be used;
e the properties that can be used are called “abstract”;

e so, the (other concrete) properties must be approx-
imated by the abstract ones;

13 May 2004 — 12 —
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Abstract Properties Moore Family

e Abstract Properties: a set A C p(X) of properties of e This hypothesis that any concrete property P € p(X)

interest (the only one which can be used to approxi- has a best abstraction P € A implies that:
mate others). A is a Moore family
Direction of Approximation i.e. it is closed under intersection [ ):
e Approximation from above: approximate P by P such VSCA:MNSeA
that P C P;

e Approximation from below: approximate P by P such * In particular (10 = 2 € A is “I don’t know”.

that P C P (dual).

— 15 —
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Best Abstraction

Example of Moore Family-Based Abstraction
e We require that all concrete property P € p(X) have
a best abstraction P € A:

PCP
VP e A: (PCP)= (PC P

e S0, by definition of the greatest lower bound /meet N:

P=({P cA|PCP}YcA

(Otherwise see [JLC ’92].)

Reference

[JLC'92] P. Cousot & R. Cousot. Abstract interpretation frameworks. J. Logic and Comp., 2(4):511-547,
1992.
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Closure Operator Induced by an Abstraction
The map p ;7 mapping a concrete property P € p(X) to
its best abstraction p 7(P) in A:

pa(P)=MN{PecA|PCP}

1s a closure operator:
e extensive,
e idempotent,
e isotone/monotonic;

suchth&tPEfT & P=p;(P)
hence A = p z(p(%)).

— 17 —

The Lattice of Abstract Interpretations

e The set of all possible abstractions that is of all upper
closure operators on the complete lattice

(D[P], G, L, T, u, M)
is a complete lattice

(uco(D[P] ~ D[P]), C, Az .z, Az. T, AR.uco(LUR), ')

e The meet of abstractions called the reduced product
(. Ie_l p; 1s that most abstract abstraction more precise

than all p;, 1 € A)

— 19 —

Example of Closure Operator-Based Abstraction

NYU, _ 15—
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Galois Connection Between Concrete and Abstract Properties

e For closure operators p, we have:

p(P) C p(P) & P Cp(P)
written:
(p(2), C) ==
where 1 is the identity and
(p(2), C) & (D, C)
means that (o, ) is a Galois connection:
VP e p(X),PeD:a(P)C P < P Cy(P);
e A Galois connection defines a closure operator p = o ©
v, hence a best abstraction.

(p(p(2)), ©)

13 May 2004 — 20 —
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Example of Galois Connection-Based Abstraction

— 21 —

Example: abstract semantic domain of programs

(DI[P], C, L, L)
such that:
(D, C) &= (DI[P], C)

hence (D![P], C, L, L) is a complete lattice such that
1 =a(0) and UX = a(Uy(X))

NYU, — 22 — ©FP. Couso’rg@]g
oo

Abstract domain Function Abstraction

,}'X

fy o Fﬂ —oao Fo ¥
ie. Fl=poF
"

Concrete domain
(P,C) == (@, E) =
mon, . AF! yoFloq on, .
(P&=% P, C) ¢ 5 (@7 Q, §)
AF . qoFoy

— 23 —

Approximate Fixpoint Abstraction

Abstract domain
. gt B LR

! F
v v ’Y g 7 Approximation
— ; relation C
¥
?
14 F
L ‘/F' F o Concrete domain

FoyL yoFl = 1ipF C y(ifp FY)

13 May 2004 — 24 —
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Example: abstract semantics of programs (reachability)

SNX = B;]R ¥ a({p|X « E[E]p] | p € ¥(R) N dom(E)})

Silit B ¢'|R © st[c'|(BYB]R)u B'[-B]R
BUB]R ¥ o({p € 7(R) N dom(B) | B holds in p})
Sllif B C' else C"|R ¥ SH[C'|(B'[B]R) L SI[C"](B![~B]R)

SM[while B C'|R ¥ let W = 1o AX . R SH[C|(BI[B] X)
in (BY[-B]W)

S{}IR ¥ R
S'{C1...CR}IR ¥ SM[Cp] o ...

oSi[c] n>o0

SHD C)rR & SYC](T) (uninitialized variables)

— 25 —

Convergence Acceleration with Widening

Abstract domain v F

Approximation

relation C

— 26 —
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Widening Operator

A widening operator V € I x L — L is such that:
e Correctness:
-Vz,y € L:vy(z)
-Vz,y € L:(y)
e Convergence:

C y(zVy)
C y(zVy)

- for all increasing chains 2% C z! C ..., the in-

creasing chain defined by Y0 =20 ... yiftl=
y* V't . is not strictly increasing.

— 27 —

Fixpoint Approximation with Widening

Concergence Theorem:
The upward iteration sequence with widening:
e X0 =1 (infimum)
o xitl _ xi
= x*V Fl(X?)
is ultimately stationary and its limit A is a sound upper
approximation of prf £
i, FIC A

if Fi(X?) C X*

otherwise

13 May 2004 — 28 —
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Example: Abstract Semantics with Convergence Acceleration*

S'[X = B;]R ¥ a({p[X « E[E]p] | p € 7(R) N dom(E)})
Si[it B 'R « St[c'(BY[B]R) u BI[-B]R
B'[B]R ¥ o({p € 7(R) N dom(B) | B holds in p})
Si[if B C’ else C"|R ¥ SH[c'|(B'[B]R) L SI[C"](B![~B]R)
Slwhile B C'|R © let Ff = Ax .let Y = RUSH[C'|(BY[B]X)
inif Y C X then X else X VY
and W = prE Fhin (B[-B]W)
S'{}|r “ R
SH{C1...Ca}]R ¥ SHCp]o...o8MC] n>0
Sﬁ[[D C]JR ¥ Sﬁ[[C'ﬂ(T) (uninitialized variables)

— 29 —

Extrapolation by Widening is Essentially Not Monotone

Proof by contradiction:
e Let V be a widening operator
e Define zV'y = if y C z then z else z V y

o Assume z [ y = F(z) (during iteration)

then: z V' y=zVyJy (soundness)
C C C (monotony hypothesis)

!/ . .
yVy= gy (termination)

z V y =y, by antisymmetry!

¢l

z V F(z) = F(z) during iteration = convergence cannot be
enforced with monotone widening (so widening by finite ab-
straction is less powerful!)

1 Note: F! not monotonic!

— 30 —
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Soundness Theorem
e Convergence by extensivity (no longer monotone)
e Improvement by narrowing [POPL '77]

e Soundness Corollary: any abstract safety proof is
valid in the concrete in that:

SIPIC Q = S[P] C1(Q)

e Example: 7(Q) expresses the absence of run-time er-
rors.

_ Reference

[POPL’77] P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In 4th POPL, pages 238-252, Los Angeles, CA,
1977. ACM Press.
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Applications of Abstract Interpretation
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Applications of Abstract Interpretation

e Static Program Analysis [POPL '77], [POPL '78], [POPL '79]
including Dataflow Analysis [POPL *79], [POPL '00], Set-
based Analysis [FPCA ’95], Predicate Abstraction
[Manna'’s festschrift '03]

e Syntax Analysis [TCS 290(1) 2002]

e Hierarchies of Semantics (including Proofs) [POPL '92],
[TCS 277(1-2) 2002]

e Typing [TCS 277(1-2) 2002]

— 33 —

Applications of Abstract Interpretation (Cont’d)
e (Abstract) Model Checking [POPL '00]
e Program Transformation [POPL '02]
e Software Watermarking [POPL '04]

e Bisimulations [RT-ESOP ’04]

All these techniques involve sound approximations that
can be formalized by abstract interpretation

¢ IS — 34 — © P. Cousor 1‘1@&

A Practical Application of Abstract
Interpretation to the Verification

of Safety Critical Embedded
Control-Command Software

Reference

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Design
and implementation of a special-purpose static program analyzer for safety-critical real-time embedded
software. The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, LNCS 2566, pages 85-108. Springer, 2002.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static
analyzer for large safety-critical software. PLDI’03, San Diego, June 7-14, ACM Press, 2003.
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Static Program Analysis

Program [Specification}
~

#~

Generator

i

System of fixpoint equations/constraints

Solver

1

(Approximate) solution
Program

Diagnoser checker

;

[ Diagnosis @ }
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ASTREE: A Sound, Automatic, Specializable, Domain-Aware,
Parametric, Modular, Efficient and Precise Static Program
Analyzer

wWww.astree.ens.fr

e C programs:
- structured C programs;
- no dynamic memory allocation;
- 1O recursion.
e Application Domain: safety critical embedded real-time

synchronous software for non-linear control of very
complex control/command systems.

— 37 —

Concrete Operational Semantics

e International norm of C (ISO/IEC 9899:1999)

e restricted by implementation-specific behaviors depend-
ing upon the machine and compiler (e.g. representa-
tion and size of integers, IEEE 754-1985 norm for floats
and doubles)

e restricted by user-defined programming guidelines (such
as no modular arithmetic for signed integers, even
though this might be the hardware choice)

e restricted by program specific user requirements (e.g.
assert)

— 38 —
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Abstract Semantics

e Reachable states for the concrete operational seman-
tics

e Volatile environment is specified by a trusted configu-
ration file.

— 39 —

Implicit Specification: Absence of Runtime Errors

e No violation of the norm of C (e.g. array index out of
bounds)

e No implementation-specific undefined behaviors (e.g.
maximum short integer is 32767)

e No violation of the programming guidelines (e.g. static
variables cannot be assumed to be initialized to 0)

e No violation of the programmer assertions (must all
be statically verified).

13 May 2004 — 40 —
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Example application

e Primary flight control software of the Airbus A340/A380

fly-by-wire system

e C program, automatically generated from a propri-
etary high-level specification

e A340: 132,000 lines, 75,000 LOCs after preprocessing,
10,000 global variables, over 21,000 after expansion of
small arrays.

— 41 —

The Class of Considered Periodic Synchronous Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever
- read volatile input variables,
- compute output and state variables,
- write to volatile output variables;
wait_for clock ();
end loop

e Requirements: the only interrupts are clock ticks;

e Execution time of loop body less than a clock tick [3].

__ Reference

[3] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing, and R. Wil-
helm. Reliable and precise WCET determination for a real-life processor. ESOP (2001), LNCS 2211,
469-485.
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Characteristics of the ASTREE Analyzer

Static: compile time analysis (# run time analysis Rational
Purify, Parasoft Insure++)

Program Analyzer: analyzes programs not micromodels of
programs (# PROMELA in SPIN or Alloy in the
Alloy Analyzer)

Automatic: no end-user intervention needed (# ESC Java,
ESC Java 2)

Sound: covers the whole state space (# MAGIC, CBMC)
so never omit potential errors (# UNO, CMC from
coverity.com) or sort most probable ones (# Splint)

— 43 —

Characteristics of the ASTREE Analyzer (Cont'd)

Multiabstraction: uses many numerical/symbolic abstract
domains (# symbolic constraints in Bane)

Infinitary: all abstractions use infinite abstract domains
with widening/narrowing (# model checking based
analyzers such as VeriSoft, Bandera, Java PathFinder)

Efficient: always terminate (# counterexample-driven au-
tomatic abstraction refinement BLAST, SLAM)

Specializable: can easily incorporate new abstractions (and
reduction with already existing abstract domains)
(# general-purpose analyzers PolySpace Verifier)

13 May 2004 — 44— © P. Cousot ,@&
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Characteristics of the ASTREE Analyzer (Cont'd)

Domain-Aware: knows about control/command (e.g. dig-
ital filters) (as opposed to specialization to a mere
programming style in C Global Surveyor)

Parametric: the precision/cost can be tailored to user needs
by options and directives in the code

Automatic Parametrization: the generation of parametric
directives in the code can be programmed (to be
specialized for a specific application domain)

— 45 —

Example of Analysis Session

xxxxxxxxxxx

5[5

— 47 —

Characteristics of the ASTREE Analyzer (Cont'd)

Modular: an analyzer instance is built by selection of O-
CAML modules from a collection each implement-
ing an abstract domain

Precise: few or no false alarm when adapted to an appli-
cation domain — VERIFIER!

© P Cousowg@&
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Benchmarks for the Primary Flight Control Software of the
Airbus A340

e Comparative results (commercial software):
4,200 (false?) alarms,
3.5 days;
e Our results:
Q alarm,
1h20 on 2.8 GHz PC,
300 Megabytes
— A world premiére!
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Examples of Abstractions

— 49 —

General-Purpose Abstract Domains: Intervals and Octagons

Intervals:
1<z<9
1<y<20

Octagons [4]:

1<z<9

z+y <77
1<y <20

z—y <04

Difficulties: many global variables, arrays (smashed or not), IEEE
754 floating-point arithmetic (in program and analyzer) [5]

__ Reference

Ya

0 X

[4] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. In PADO’2001,
LNCS 2053, Springer, 2001, pp. 155-172.

[5] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In ESOP’04,
Barcelona, LNCS 2986, pp. 1—17, Springer, 2004.
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Floating-Point Computations
e Code Sample:
/* float-error.c */
int main () {
float x, y, z, r;

/* double-error.c */
int main O {
double x; float y, z, r;

x = 1.000000019e+38; /* x = ldexp(l.,50)+1dexp(1.,26); */
y = x + 1.0e21; x = 1125899973951488.0;

z = x - 1.0e21; y=x+1;

r=y -z z=x-1;

printf("%f\n", r); r=y -z
} % gecc float-error.c printf ("%f\n", 1);
% ./a.out }
0.000000 % gcc double-error.c
% ./a.out
134217728.000000

(z+a)—(z—a)+#2a

— 51 —

Symbolic abstract domain

e Interval analysis: if z € [a,b] and y € [c,d] thenz—y €
[a—c,b—d] soif z € [0,100] then z—z € [—100, 100]!!!
e The symbolic abstract domain propagates the sym-
bolic values of variables and performs simplifications;

e Must maintain the maximal possible rounding error
for float computations (overestimated with intervals);

% cat -n x-x.c
1 void main () { int X, Y;
2 __ASTREE_known_fact (((0 <= X) && (X <= 100)));
3 Y= (X-3X;
4 __ASTREE_log_vars((Y));
5 }
astree -exec-fn main -no-relational x-x.c
Call main@x-x.c:1:5-x-x.c:1:9:
<interval: Y in [-100, 100]>

astree -exec-fn main x-x.c
Call main@x-x.c:1:5-x-x.c:1:9:
<interval: Y in {0}> <symbolic: Y = (X -i X)>

13 May 2004 — 52 —
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Clock Abstract Domain for Counters
e Code Sample:

R =0; - Output T is true iff the volatile input I has
while (1) { been true for the last n clock ticks.
i c (PI{)_ Rt} - The clock ticks every s seconds for at most
- ’ h hours, thus R is bounded.
else
{R=0;} - To prove that R cannot overflow, we must
T = (R>=n); prove that R cannot exceed the elapsed
wait_for_clock (); clock ticks (impossible using only inter-
} vals).
e Solution:

- We add a phantom variable clock in the concrete user semantics to track
elapsed clock ticks.

- For each variable X, we abstract three intervals: X, X+clock, and X-clock.

- If X+clock or X-clock is bounded, so is X.

— 53 —

Control Partitionning for Case Analysis
e Code Sample:

Boolean Relations for Boolean Control
e Code Sample:

/* boolean.c */
typedef enum {F=0,T=1} BOOL;
BOOL B;
void main () {
unsigned int X, Y;
while (1) {
= (X ==0); \ I .
1f ('B) {
1/X The boolean relation abstract do-
} main is parameterized by the height
of the decision tree (an analyzer
¥ option) and the abstract domain at
} the leafs
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/* trace_partitionning.c */ Control point partitionning:
void main() { AN ANANANATANATATANA
float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0};
float c[4] = {0.0, 2.0, 2.0, 0.0}; R e e e e e Rt
float d[4] = {-20.0, -20.0, 0.0, 20.0}; ol lel lel lol lollel lel le!l lelle
float x, r;
int i = 0; NTANTATATEG AT AT AT AT NG/
. found invariant —100 < x <100 ... Trace partitionning:
while ((i < 3) && (x >= t[i+1])) { (&) (o) (o) (o) (o) (o) (o) (o) (o) (o)
imiey JL L,
¥ NN
r= (x - tlil) * cli] + dlil; oo oo (9L o) ke fotte
¥ ol le f\ f\ (o) (o) (o) f\ ol lo
NN, OO0 OO O
? Fork ? T Join T

Delaying abstract unions in tests and loops is more precise for non-distributive

abstract domains (and much less expensive than disjunctive completion).
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29 Order Digital Filter:
& Ellipsoid Abstract Domain for Filters

E e Computes X, = ?X" 1+ BXn2+ Y
== F "
“(Y) < e The concrete computation is bounded, which
| EE 'U must be proved in the abstract.
@vi ‘ - e There is no stable interval or octagon.
wBe O [ e : . -
e The simplest stable surface is an ellipsoid.
PN T ! .
3 F) /| |
x | |
T " xureo

unstable interval st able ellipsoid

_ Reference

[6] J. Feret. Static analysis of digital filters. In ESOP’04, Barcelona, LNCS 2986, pp. 33—-48, Springer, 2004.
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(Automatic) Parameterization

e All abstract domains of ASTREE are parameterized,
e.g.
- variable packing for octagones and decision trees,
- partition/merge program points,
- loop unrollings,
- thresholds in widenings, ...;

e End-users can either parameterize by hand (analyzer
options, directives in the code), or

e choose the automatic parameterization (default op-
tions, directives for pattern-matched predefined pro-
gram schemata).
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Why finite abstractions will not do?

Theoretical reasons on finite abstraction:
e If an abstraction works, then the abstact domain must contain
an inductive invariant, so [7]:
- No finite domain can represent all such necessary inductive
invariants for a programming language
- Finite abstractions will fail on infinitely many programs (un-
decidability)
- Whereas well-chosen widenings will always do better or at
least as well as any given finite domain

Reference

[7] P. Cousot and R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches to
Abstract Interpretation. In M. Bruynooghe and M. Wirsing, (Eds), Proc. 4% Int. Symp. PLILP 92,
Louvain, BE, 26-28 august 1992, LNCS 631, pp. 269-295. Springer, 1992.
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The main loop invariant
A textual file over 4.5 Mb with

e 6,900 boolean interval assertions (z € [0;1])

e 9,600 interval assertions (z € [a;b])

e 25,400 clock assertions (z+clk € [a;b|Az—clk € [a;b])
e 19,100 additive octagonal assertions (a < z +y < b)
e 19,200 subtractive octagonal assertions (a < z—y < b)
e 100 decision trees

e 60 ellipse invariants, etc ...

involving over 16,000 floating point constants (only 550
appearing in the program text) x 75,000 LOCs.
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Why finite abstractions will not do? (Cont'd)

Theoretical reasons on abstraction refinement:

e Refinement (e.g. counter-example driven) aims at [8]:
- Computing the most abstract inductive invariant
- By an iterative fixpoint computation
- In the concrete

- Which does not converge/terminate in general (by
undecidability)

Reference

[8] P. Cousot. Partial Completeness of Abstract Fixpoint Checking. In B.Y. Choueiry and T. Walsh (Eds),
Proc. 4" Int. Symp. SARA ’2000, Horseshoe Bay, TX, USA, LNAI 1864, pp. 1-25. Springer, 26-29 jul.
2000.
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Why finite abstractions will not do? (Cont’d)

Practical reasons on abstraction:
e The adequate abstract domain must be guessed from
the program before starting the analysis [9]:
- BE.g. in the form of a finite model
- Impossible since most abtract predicates do not ap-
pear at all in the program text
- BE.g. polyhedral analysis, filter analysis, congruence
analysis, etc.

Reference

[9] P. Cousot and R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches to
Abstract Interpretation. In M. Bruynooghe and M. Wirsing, (Eds), Proc. 4" Int. Symp. PLILP 92,
Louvain, BE, 26-28 august 1992, LNCS 631, pp. 269-295. Springer, 1992.
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Why finite abstractions will not do? (Cont'd)

Practical reasons on refinement:

e Since abstraction by refinement is done using concrete compu-
tations, it is unable to synthesize abstract invariants

e e.g. in polyhedral analysis, congruence analysis, filter analysis,
etc, the invariant will come out in the form of (infinitely) many
points:

- one by one (counter-example based)
- simultaneously (abstraction completion [10])

Reference

[10] R. Giacobazzi and E. Quintarelli, Incompleteness, Counterexamples and Refinements in Abstract
Model-Checking. In Proc. Eight International Symposium on Static Analysis, SAS 01, P. Cousot (Ed),
Paris, France, 16-18 July 2001. Lecture Notes in Computer Science 2126, Springer, pp. 356-373.
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typedef enum {FALSE = 0, TRUE = 1} BOOLEAN,
BOOLEAN INIT; float P, X;

void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P =X; E[0] = X; }
else { P = ((((€0.5 % X) - (E[0] * 0.7)) + (E[1] * 0.4))
+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */
}
void main () { X = 0.2 * X + 5; INIT = TRUE;
while (1) {
X=0.9 % X+ 35; /% simulated filter input */
filter (); INIT = FALSE; }

Example [11]

b

Reference

[11] J. Feret. Static analysis of digital filters. In ESOP’04, Barcelona, LNCS 2986, pp. 33—-48, Springer, 2004.
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Possible origins of imprecision and how to fix it

In case of false alarm, the imprecision can come from:

e Abstract transformers (not best possible) — improve
algorithm;

e Automatized parametrization (e.g. variable packing)
— 1improve pattern-matched program schemata;

e Iteration strategy for fixpoints — fix widening °;

e Inexpressivity i.e. indispensable local inductive invari-
ant are inexpressible in the abstract — add a new
abstract domain to the reduced product (e.g. filters).

2 This can be very hard since at the limit only a precise infinite iteration might be able to compute the
proper abstract invariant. In that case, it might be better to design a more refined abstract domain.
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Conclusion
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Conclusion

e Most applications of abstract interpretation tolerate a small
rate (typically 5 to 15%) of false alarms:

- Program transformation — do not optimize,
- Typing — reject some correct programs, etc,
- WCET analysis — overestimate;
e Some applications require no false alarm at all:
- Program verification.
e Theoretically possible [SARA ’00], practically feasible [PLDI 03]

__ Reference

[SARA’00] P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In 4% Int. Symp.
SARA ’2000, LNAI 1864, Springer, pp. 1-25, 2000.

[PLDI’03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. PLDI’03, San Diego, June 7-14, ACM Press, 2003.
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The Future

e Short term (1 year):
- Backward analysis (help in locating the origin of alarms)
- Verification of compiled code (for a given compiler/ma-
chine)

- ADA interface
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The Future (Cont’nd)

e Longer term:
- Asynchronous concurrency (for less critical software)
- Functional properties (reactivity)
- Verification of specifications (verification from specifica-

tions to machine code)

13 May 2004 — 68 — @© P. Cousor i@@fi


http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

THE END, THANK YOU

More references at URL www.di.ens.fr/ cousot
www.astree.ens.fr.
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