Verification of Safety-Critical Control-Command
Sofware by Abstract Interpretation

Patrick COUSOT

Ecole Normale Supérieure
45 rue d’Ulm

75230 Paris cedex 05, France

Patrick.Cousot@ens.fr

Radhia COUSOT
Ecole Polytechnique
91128 Palaiseau cedex
France
Radhia.Cousot@polytechnique.fr

www.di.ens.fr/~cousot stix.polytechnique.fr/~rcousot

Deficiencies of Formal Methods

CS Dept., Courant Inst. of Math. Sci., NYU
New York, NY, 13 May 2004

Talk Outline
e Deficiencies of formal methods (2 mn) 4
e A few elements of abstract interpretation
(20 IOI) oot e 8
e Applications of abstract interpretation (2 mn) 32
e Application to the verification of embedded,

real-time, synchronous, safety super-critical

control-command software (10 mn) 36
e Examples of abstractions (20 mn) 52
e Conclusion (1 mn)coovuiiiiiiiiiiiinaan.. 68

© P. Cou 501!;\&

HNYU, — 2 —

Automated Verification of Infinite-State Systems

e The automated verification of infinite-sate systems has
made considerable progress these last ten years

e It is yet far from being a common industrial practice

e This might be that most available prototypes and tools
are inappropriate

e These prototypes and tools aim at debugging whereas
we need automated verification

13 May 2004 — 4 — @© P. Cousor ﬂ@ﬁ

mailto:Patrick.Cousot@ens.fr
http://www.di.ens.fr/~cousot
mailto:rcousot@polytechnique.fr
http://stix.polytechnique.fr/~radhia
http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Defects of Available Prototypes and Tools

e Manual (e.g. require end-users to provide manually a
simple-enough model of the complex system), and /or

e User-unfriendly (e.g. require complex interactions with
end-users), and/or

e Trivial (e.g. consider immediate essentially syntactic
program properties) and/or

e Incorrect/unsound (e.g. do not explore the complete

space of executions and so may forget about potential
problems at run-time), and/or

e Inefficient (some may not terminate at all but by ex-
haustion of time/memory resources), and/or

e Imprecise (leading to too many false alarms that is
spurious warnings on potential problems that can never
occur at run-time).

Can we do better?

©) P. Comoaé%ﬁ

A Few Elements
of Abstract Interpretation

Reference

[POPL'79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6t POPL, pages
269-282, San Antonio, TX, 1979. ACM Press.

— 7 —

A Model of Computer Programs

e Syntax : a well-founded set of programs (P, <) where

< 1s the “strict immediate subcomponent” relation ;
e Semantics of P € P :

- Semantic domain : a complete lattice/cpo (D[P], C, L, L)

- Compositional Fixpoint Semantics :

stP1 w7171 J1 st
P'<P

ifp, f is the limit of X0 = 1, X01 = f(x%), X =
LgaaX)‘, A limit ordinal, if any. Existence e.g. monotony
(by Tarski constructive [PACIM '79]).

13 May 2004 — 8 — ©FP COUSO"E@?‘%

http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Example: Syntax of Programs

X variables X € X
T types T € T
E arithmetic expressions E € E
B boolean expressions B € B
D :=TX; declarations D € D, vars(D) = {X}
| TX ;D X & vars(D'), vars(D) = {X} U vars(D’)
C = X =FE; commands C € C (E < C)
| while B C' (B<C,C'<C)
| if BC' (B<C,C'<C)
| if B C' else C” (B<C,C'<C,C"<C)
| {C1...Ch} (n>0) (¢, <C,...,Ch<C)
P :=DC

program P e P (C < P)

— 9 —

Example: Concrete Semantic Domain of Programs

Reachability properties:

XD C] ¥ 3[D] states p
JTX;]E¥{X}—>T (p(X) is the value
J[T X; D] ¥ ({X}— T)u Z[D] of X)

D[P] € p(Z[P]) sets of states

C ¥ C implication

) false

L&y disjunction
n NYU, — 10 — ©FP COUSOT/@E&:

Example: Concrete Semantics of Programs (Reachability)
S[X = B;]R = {p[X + E[E]p] | p € RN dom(E)}
X —o)(X) E o, X —o)(Y) & p(Y)
S[if B C'|R ¥ S[C'|(B[B]R) U B[~B]R
B[B]R ¥ {p € RNndom(B) | B holds in p}
S[if B C’' e1se C"|R ¥ S[C'|(B[B]R) U S[C"](B[~B]R)
S[while B C']|R & let W = |fp§ AX . RUS[C'](B[B]X)
S[{}HR =R
S[{C1...CR}]R ¥ S[Cp]o...oS[C1] n >0
S[D C]R = S[C)(Z[D])
Not computable (undecidability).

(uninitialized variables)

— 11 —

Abstraction

A reasoning/computation which is restricted in that:
e only some properties can be used;
e the properties that can be used are called “abstract”;

e so, the (other concrete) properties must be approx-
imated by the abstract ones;

13 May 2004 — 12 —

©FP Cousom‘/g@@

http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Abstract Properties Moore Family

e Abstract Properties: a set A C p(X) of properties of e This hypothesis that any concrete property P € p(X)

interest (the only one which can be used to approxi- has a best abstraction P € A implies that:
mate others). A is a Moore family
Direction of Approximation i.e. it is closed under intersection [):
e Approximation from above: approximate P by P such VSCA:MNSeA
that P C P;

e Approximation from below: approximate P by P such * In particular (10 = 2 € A is “I don’t know”.

that P C P (dual).

— 15 —

— 13 —

Best Abstraction

Example of Moore Family-Based Abstraction
e We require that all concrete property P € p(X) have
a best abstraction P € A:

PCP
VP e A: (PCP)= (PC P

e S0, by definition of the greatest lower bound /meet N:

P=({P cA|PCP}YcA

(Otherwise see [JLC ’92].)

Reference

[JLC'92] P. Cousot & R. Cousot. Abstract interpretation frameworks. J. Logic and Comp., 2(4):511-547,
1992.

¢ B — 1 — ©FP Cousom‘i@& 13 May 2004 — 16 — © P. COUSOTi@Fﬁ

http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Closure Operator Induced by an Abstraction
The map p ;7 mapping a concrete property P € p(X) to
its best abstraction p 7(P) in A:

pa(P)=MN{PecA|PCP}

1s a closure operator:
e extensive,
e idempotent,
e isotone/monotonic;

suchth&tPEfT & P=p;(P)
hence A = p z(p(%)).

— 17 —

The Lattice of Abstract Interpretations

e The set of all possible abstractions that is of all upper
closure operators on the complete lattice

(D[P], G, L, T, u, M)
is a complete lattice

(uco(D[P] ~ D[P]), C, Az .z, Az. T, AR.uco(LUR), ')

e The meet of abstractions called the reduced product
(. Ie_l p; 1s that most abstract abstraction more precise

than all p;, 1 € A)

— 19 —

Example of Closure Operator-Based Abstraction

NYU, _ 15—

© P Cousou"é@}”

Galois Connection Between Concrete and Abstract Properties

e For closure operators p, we have:

p(P) C p(P) & P Cp(P)
written:
(p(2), C) ==
where 1 is the identity and
(p(2), C) & (D, C)
means that (o,) is a Galois connection:
VP e p(X),PeD:a(P)C P < P Cy(P);
e A Galois connection defines a closure operator p = o ©
v, hence a best abstraction.

(p(p(2)), ©)

13 May 2004 — 20 —

© P. Cousom‘g@}”

http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Example of Galois Connection-Based Abstraction

— 21 —

Example: abstract semantic domain of programs

(DI[P], C, L, L)
such that:
(D, C) &= (DI[P], C)

hence (D![P], C, L, L) is a complete lattice such that
1 =a(0) and UX = a(Uy(X))

NYU, — 22 — ©FP. Couso’rg@]g
oo

Abstract domain Function Abstraction

,}'X

fy o Fﬂ —oao Fo ¥
ie. Fl=poF
"

Concrete domain
(P,C) == (@, E) =
mon, . AF! yoFloq on, .
(P&=% P, C) ¢ 5 (@7 Q, §)
AF . qoFoy

— 23 —

Approximate Fixpoint Abstraction

Abstract domain
. gt B LR

! F
v v ’Y g 7 Approximation
— ; relation C
¥
?
14 F
L ‘/F' F o Concrete domain

FoyL yoFl = 1ipF C y(ifp FY)

13 May 2004 — 24 —

©P. Couso’rg@&’
oo

http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Example: abstract semantics of programs (reachability)

SNX = B;]R ¥ a({p|X « E[E]p] | p € ¥(R) N dom(E)})

Silit B ¢'|R © st[c'|(BYB]R)u B'[-B]R
BUB]R ¥ o({p € 7(R) N dom(B) | B holds in p})
Sllif B C' else C"|R ¥ SH[C'|(B'[B]R) L SI[C"](B![~B]R)

SM[while B C'|R ¥ let W = 1o AX . R SH[C|(BI[B] X)
in (BY[-B]W)

S{}IR ¥ R
S'{C1...CR}IR ¥ SM[Cp] o ...

oSi[c] n>o0

SHD C)rR & SYC](T) (uninitialized variables)

— 25 —

Convergence Acceleration with Widening

Abstract domain v F

Approximation

relation C

— 26 —

©P. Cousor Gy

Widening Operator

A widening operator V € I x L — L is such that:
e Correctness:
-Vz,y € L:vy(z)
-Vz,y € L:(y)
e Convergence:

C y(zVy)
C y(zVy)

- for all increasing chains 2% C z! C ..., the in-

creasing chain defined by Y0 =20 ... yiftl=
y* V't . is not strictly increasing.

— 27 —

Fixpoint Approximation with Widening

Concergence Theorem:
The upward iteration sequence with widening:
e X0 =1 (infimum)
o xitl _ xi
= x*V Fl(X?)
is ultimately stationary and its limit A is a sound upper
approximation of prf £
i, FIC A

if Fi(X?) C X*

otherwise

13 May 2004 — 28 —

©P. COUSO'I‘(Q@E.

http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Example: Abstract Semantics with Convergence Acceleration*

S'[X = B;]R ¥ a({p[X « E[E]p] | p € 7(R) N dom(E)})
Si[it B 'R « St[c'(BY[B]R) u BI[-B]R
B'[B]R ¥ o({p € 7(R) N dom(B) | B holds in p})
Si[if B C’ else C"|R ¥ SH[c'|(B'[B]R) L SI[C"](B![~B]R)
Slwhile B C'|R © let Ff = Ax .let Y = RUSH[C'|(BY[B]X)
inif Y C X then X else X VY
and W = prE Fhin (B[-B]W)
S'{}|r “ R
SH{C1...Ca}]R ¥ SHCp]o...o8MC] n>0
Sﬁ[[D C]JR ¥ Sﬁ[[C'ﬂ(T) (uninitialized variables)

— 29 —

Extrapolation by Widening is Essentially Not Monotone

Proof by contradiction:
e Let V be a widening operator
e Define zV'y = if y C z then z else z V y

o Assume z [y = F(z) (during iteration)

then: z V' y=zVyJy (soundness)
C C C (monotony hypothesis)

!/ . .
yVy= gy (termination)

z V y =y, by antisymmetry!

¢l

z V F(z) = F(z) during iteration = convergence cannot be
enforced with monotone widening (so widening by finite ab-
straction is less powerful!)

1 Note: F! not monotonic!

— 30 —

© P. CousoT i@fﬁ

Soundness Theorem
e Convergence by extensivity (no longer monotone)
e Improvement by narrowing [POPL '77]

e Soundness Corollary: any abstract safety proof is
valid in the concrete in that:

SIPIC Q = S[P] C1(Q)

e Example: 7(Q) expresses the absence of run-time er-
rors.

_ Reference

[POPL’77] P. Cousot & R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In 4th POPL, pages 238-252, Los Angeles, CA,
1977. ACM Press.

— 31 —

Applications of Abstract Interpretation

13 May 2004 — 32 —

(© P. CousoT i@fﬁ

http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Applications of Abstract Interpretation

e Static Program Analysis [POPL '77], [POPL '78], [POPL '79]
including Dataflow Analysis [POPL *79], [POPL '00], Set-
based Analysis [FPCA ’95], Predicate Abstraction
[Manna'’s festschrift '03]

e Syntax Analysis [TCS 290(1) 2002]

e Hierarchies of Semantics (including Proofs) [POPL '92],
[TCS 277(1-2) 2002]

e Typing [TCS 277(1-2) 2002]

— 33 —

Applications of Abstract Interpretation (Cont’d)
e (Abstract) Model Checking [POPL '00]
e Program Transformation [POPL '02]
e Software Watermarking [POPL '04]

e Bisimulations [RT-ESOP ’04]

All these techniques involve sound approximations that
can be formalized by abstract interpretation

¢ IS — 34 — © P. Cousor 1‘1@&

A Practical Application of Abstract
Interpretation to the Verification

of Safety Critical Embedded
Control-Command Software

Reference

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Design
and implementation of a special-purpose static program analyzer for safety-critical real-time embedded
software. The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, LNCS 2566, pages 85-108. Springer, 2002.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static
analyzer for large safety-critical software. PLDI’03, San Diego, June 7-14, ACM Press, 2003.

— 35 —

Static Program Analysis

Program [Specification}
~

#~

Generator

i

System of fixpoint equations/constraints

Solver

1

(Approximate) solution
Program

Diagnoser checker

;

[Diagnosis @ }

13 May 2004 — 36 — © P. Cousot 1‘1@&

http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

ASTREE: A Sound, Automatic, Specializable, Domain-Aware,
Parametric, Modular, Efficient and Precise Static Program
Analyzer

wWww.astree.ens.fr

e C programs:
- structured C programs;
- no dynamic memory allocation;
- 1O recursion.
e Application Domain: safety critical embedded real-time

synchronous software for non-linear control of very
complex control/command systems.

— 37 —

Concrete Operational Semantics

e International norm of C (ISO/IEC 9899:1999)

e restricted by implementation-specific behaviors depend-
ing upon the machine and compiler (e.g. representa-
tion and size of integers, IEEE 754-1985 norm for floats
and doubles)

e restricted by user-defined programming guidelines (such
as no modular arithmetic for signed integers, even
though this might be the hardware choice)

e restricted by program specific user requirements (e.g.
assert)

— 38 —

© P. CousoT ﬂ@\fﬁ

Abstract Semantics

e Reachable states for the concrete operational seman-
tics

e Volatile environment is specified by a trusted configu-
ration file.

— 39 —

Implicit Specification: Absence of Runtime Errors

e No violation of the norm of C (e.g. array index out of
bounds)

e No implementation-specific undefined behaviors (e.g.
maximum short integer is 32767)

e No violation of the programming guidelines (e.g. static
variables cannot be assumed to be initialized to 0)

e No violation of the programmer assertions (must all
be statically verified).

13 May 2004 — 40 —

© P. CousoT ﬂ@\fﬁ

www.astree.ens.fr
http://www.astree.ens.fr/
http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Example application

e Primary flight control software of the Airbus A340/A380

fly-by-wire system

e C program, automatically generated from a propri-
etary high-level specification

e A340: 132,000 lines, 75,000 LOCs after preprocessing,
10,000 global variables, over 21,000 after expansion of
small arrays.

— 41 —

The Class of Considered Periodic Synchronous Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever
- read volatile input variables,
- compute output and state variables,
- write to volatile output variables;
wait_for clock ();
end loop

e Requirements: the only interrupts are clock ticks;

e Execution time of loop body less than a clock tick [3].

__ Reference

[3] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing, and R. Wil-
helm. Reliable and precise WCET determination for a real-life processor. ESOP (2001), LNCS 2211,
469-485.

NYU, — 42 — © P. Cousot ,@&

Characteristics of the ASTREE Analyzer

Static: compile time analysis (# run time analysis Rational
Purify, Parasoft Insure++)

Program Analyzer: analyzes programs not micromodels of
programs (# PROMELA in SPIN or Alloy in the
Alloy Analyzer)

Automatic: no end-user intervention needed (# ESC Java,
ESC Java 2)

Sound: covers the whole state space (# MAGIC, CBMC)
so never omit potential errors (# UNO, CMC from
coverity.com) or sort most probable ones (# Splint)

— 43 —

Characteristics of the ASTREE Analyzer (Cont'd)

Multiabstraction: uses many numerical/symbolic abstract
domains (# symbolic constraints in Bane)

Infinitary: all abstractions use infinite abstract domains
with widening/narrowing (# model checking based
analyzers such as VeriSoft, Bandera, Java PathFinder)

Efficient: always terminate (# counterexample-driven au-
tomatic abstraction refinement BLAST, SLAM)

Specializable: can easily incorporate new abstractions (and
reduction with already existing abstract domains)
(# general-purpose analyzers PolySpace Verifier)

13 May 2004 — 44— © P. Cousot ,@&

http://www-106.ibm.com/developerworks/rational/library/811.html
http://www-106.ibm.com/developerworks/rational/library/811.html
http://www.parasoft.com/jsp/home.jsp
http://www.parasoft.com/jsp/products/quick_facts.jsp?product=Insure
http://spinroot.com/spin/Man/promela.html
http://spinroot.com/spin/whatispin.html
http://sdg.lcs.mit.edu/alloy/reference-manual.pdf
http://sdg.lcs.mit.edu/alloy/index.html
http://sdg.lcs.mit.edu/alloy/index.html
http://research.compaq.com/SRC/esc/
http://www.cs.kun.nl/sos/research/escjava/index.html
http://www.cs.kun.nl/sos/research/escjava/index.html
http://www.cs.kun.nl/sos/research/escjava/index.html
http://www-2.cs.cmu.edu/~chaki/magic/
http://www-2.cs.cmu.edu/~modelcheck/cbmc/
http://cm.bell-labs.com/cm/cs/what/uno/index.html
http://www.stanford.edu/~engler/
http://coverity.com/main.html
http://www.splint.org/
http://www.cs.berkeley.edu/Research/Aiken/bane.html
http://cm.bell-labs.com/who/god/verisoft/
http://bandera.projects.cis.ksu.edu/
http://ase.arc.nasa.gov/visser/jpf/
http://ase.arc.nasa.gov/visser/jpf/
http://www-cad.eecs.berkeley.edu/~rupak/blast/
http://www.research.microsoft.com/slam/
http://www.polyspace.com/
http://www.polyspace.com/
http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Characteristics of the ASTREE Analyzer (Cont'd)

Domain-Aware: knows about control/command (e.g. dig-
ital filters) (as opposed to specialization to a mere
programming style in C Global Surveyor)

Parametric: the precision/cost can be tailored to user needs
by options and directives in the code

Automatic Parametrization: the generation of parametric
directives in the code can be programmed (to be
specialized for a specific application domain)

— 45 —

Example of Analysis Session

xxxxxxxxxxx

5[5

— 47 —

Characteristics of the ASTREE Analyzer (Cont'd)

Modular: an analyzer instance is built by selection of O-
CAML modules from a collection each implement-
ing an abstract domain

Precise: few or no false alarm when adapted to an appli-
cation domain — VERIFIER!

© P Cousowg@&

— 46 —

Benchmarks for the Primary Flight Control Software of the
Airbus A340

e Comparative results (commercial software):
4,200 (false?) alarms,
3.5 days;
e Our results:
Q alarm,
1h20 on 2.8 GHz PC,
300 Megabytes
— A world premiére!

13 May 2004 — 48 — © P. Cousor q@fﬁ

http://ase.arc.nasa.gov/brat/cgs/
http://www.ocaml.org
http://www.ocaml.org
http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Examples of Abstractions

— 49 —

General-Purpose Abstract Domains: Intervals and Octagons

Intervals:
1<z<9
1<y<20

Octagons [4]:

1<z<9

z+y <77
1<y <20

z—y <04

Difficulties: many global variables, arrays (smashed or not), IEEE
754 floating-point arithmetic (in program and analyzer) [5]

__ Reference

Ya

0 X

[4] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. In PADO’2001,
LNCS 2053, Springer, 2001, pp. 155-172.

[5] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In ESOP’04,
Barcelona, LNCS 2986, pp. 1—17, Springer, 2004.

NYU, — 50 — © P. Couso’fﬁg
et

Floating-Point Computations
e Code Sample:
/* float-error.c */
int main () {
float x, y, z, r;

/* double-error.c */
int main O {
double x; float y, z, r;

x = 1.000000019e+38; /* x = ldexp(l.,50)+1dexp(1.,26); */
y = x + 1.0e21; x = 1125899973951488.0;

z = x - 1.0e21; y=x+1;

r=y -z z=x-1;

printf("%f\n", r); r=y -z
} % gecc float-error.c printf ("%f\n", 1);
% ./a.out }
0.000000 % gcc double-error.c
% ./a.out
134217728.000000

(z+a)—(z—a)+#2a

— 51 —

Symbolic abstract domain

e Interval analysis: if z € [a,b] and y € [c,d] thenz—y €
[a—c,b—d] soif z € [0,100] then z—z € [—100, 100]!!!
e The symbolic abstract domain propagates the sym-
bolic values of variables and performs simplifications;

e Must maintain the maximal possible rounding error
for float computations (overestimated with intervals);

% cat -n x-x.c
1 void main () { int X, Y;
2 __ASTREE_known_fact (((0 <= X) && (X <= 100)));
3 Y= (X-3X;
4 __ASTREE_log_vars((Y));
5 }
astree -exec-fn main -no-relational x-x.c
Call main@x-x.c:1:5-x-x.c:1:9:
<interval: Y in [-100, 100]>

astree -exec-fn main x-x.c
Call main@x-x.c:1:5-x-x.c:1:9:
<interval: Y in {0}> <symbolic: Y = (X -i X)>

13 May 2004 — 52 —

© P. Couso’rﬁg
et

http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Clock Abstract Domain for Counters
e Code Sample:

R =0; - Output T is true iff the volatile input I has
while (1) { been true for the last n clock ticks.
i c (PI{)_ Rt} - The clock ticks every s seconds for at most
- ’ h hours, thus R is bounded.
else
{R=0;} - To prove that R cannot overflow, we must
T = (R>=n); prove that R cannot exceed the elapsed
wait_for_clock (); clock ticks (impossible using only inter-
} vals).
e Solution:

- We add a phantom variable clock in the concrete user semantics to track
elapsed clock ticks.

- For each variable X, we abstract three intervals: X, X+clock, and X-clock.

- If X+clock or X-clock is bounded, so is X.

— 53 —

Control Partitionning for Case Analysis
e Code Sample:

Boolean Relations for Boolean Control
e Code Sample:

/* boolean.c */
typedef enum {F=0,T=1} BOOL;
BOOL B;
void main () {
unsigned int X, Y;
while (1) {
= (X ==0); \ I .
1f ('B) {
1/X The boolean relation abstract do-
} main is parameterized by the height
of the decision tree (an analyzer
¥ option) and the abstract domain at
} the leafs

n NYU, — 54 —

© P. Cou 501!;\&

/* trace_partitionning.c */ Control point partitionning:
void main() { AN ANANANATANATATANA
float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0};
float c[4] = {0.0, 2.0, 2.0, 0.0}; R e e e e e Rt
float d[4] = {-20.0, -20.0, 0.0, 20.0}; ol lel lel lol lollel lel le!l lelle
float x, r;
int i = 0; NTANTATATEG AT AT AT AT NG/
. found invariant —100 < x <100 ... Trace partitionning:
while ((i < 3) && (x >= t[i+1])) { (&) (o) (o) (o) (o) (o) (o) (o) (o) (o)
imiey JL L,
¥ NN
r= (x - tlil) * cli] + dlil; oo oo (9L o) ke fotte
¥ ol le f\ f\ (o) (o) (o) f\ ol lo
NN, OO0 OO O
? Fork ? T Join T

Delaying abstract unions in tests and loops is more precise for non-distributive

abstract domains (and much less expensive than disjunctive completion).

— 55 —

29 Order Digital Filter:
& Ellipsoid Abstract Domain for Filters

E e Computes X, = ?X" 1+ BXn2+ Y
== F "
“(Y) < e The concrete computation is bounded, which
| EE 'U must be proved in the abstract.
@vi ‘ - e There is no stable interval or octagon.
wBe O [e : . -
e The simplest stable surface is an ellipsoid.
PN T ! .
3 F) /| |
x | |
T " xureo

unstable interval st able ellipsoid

_ Reference

[6] J. Feret. Static analysis of digital filters. In ESOP’04, Barcelona, LNCS 2986, pp. 33—-48, Springer, 2004.

13 May 2004 — 56 —

©FP Cousom‘/g@@

http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

(Automatic) Parameterization

e All abstract domains of ASTREE are parameterized,
e.g.
- variable packing for octagones and decision trees,
- partition/merge program points,
- loop unrollings,
- thresholds in widenings, ...;

e End-users can either parameterize by hand (analyzer
options, directives in the code), or

e choose the automatic parameterization (default op-
tions, directives for pattern-matched predefined pro-
gram schemata).

— 57 —

Why finite abstractions will not do?

Theoretical reasons on finite abstraction:
e If an abstraction works, then the abstact domain must contain
an inductive invariant, so [7]:
- No finite domain can represent all such necessary inductive
invariants for a programming language
- Finite abstractions will fail on infinitely many programs (un-
decidability)
- Whereas well-chosen widenings will always do better or at
least as well as any given finite domain

Reference

[7] P. Cousot and R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches to
Abstract Interpretation. In M. Bruynooghe and M. Wirsing, (Eds), Proc. 4% Int. Symp. PLILP 92,
Louvain, BE, 26-28 august 1992, LNCS 631, pp. 269-295. Springer, 1992.

— 59 —

The main loop invariant
A textual file over 4.5 Mb with

e 6,900 boolean interval assertions (z € [0;1])

e 9,600 interval assertions (z € [a;b])

e 25,400 clock assertions (z+clk € [a;b|Az—clk € [a;b])
e 19,100 additive octagonal assertions (a < z +y < b)
e 19,200 subtractive octagonal assertions (a < z—y < b)
e 100 decision trees

e 60 ellipse invariants, etc ...

involving over 16,000 floating point constants (only 550
appearing in the program text) x 75,000 LOCs.

n NYU, — 58 —

©FP COUsmdi;fﬁ

Why finite abstractions will not do? (Cont'd)

Theoretical reasons on abstraction refinement:

e Refinement (e.g. counter-example driven) aims at [8]:
- Computing the most abstract inductive invariant
- By an iterative fixpoint computation
- In the concrete

- Which does not converge/terminate in general (by
undecidability)

Reference

[8] P. Cousot. Partial Completeness of Abstract Fixpoint Checking. In B.Y. Choueiry and T. Walsh (Eds),
Proc. 4" Int. Symp. SARA ’2000, Horseshoe Bay, TX, USA, LNAI 1864, pp. 1-25. Springer, 26-29 jul.
2000.

13 May 2004 — 60 — © P. Cousor d‘;;fﬁ

http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Why finite abstractions will not do? (Cont’d)

Practical reasons on abstraction:
e The adequate abstract domain must be guessed from
the program before starting the analysis [9]:
- BE.g. in the form of a finite model
- Impossible since most abtract predicates do not ap-
pear at all in the program text
- BE.g. polyhedral analysis, filter analysis, congruence
analysis, etc.

Reference

[9] P. Cousot and R. Cousot. Comparing the Galois Connection and Widening/Narrowing Approaches to
Abstract Interpretation. In M. Bruynooghe and M. Wirsing, (Eds), Proc. 4" Int. Symp. PLILP 92,
Louvain, BE, 26-28 august 1992, LNCS 631, pp. 269-295. Springer, 1992.

— 61 —

Why finite abstractions will not do? (Cont'd)

Practical reasons on refinement:

e Since abstraction by refinement is done using concrete compu-
tations, it is unable to synthesize abstract invariants

e e.g. in polyhedral analysis, congruence analysis, filter analysis,
etc, the invariant will come out in the form of (infinitely) many
points:

- one by one (counter-example based)
- simultaneously (abstraction completion [10])

Reference

[10] R. Giacobazzi and E. Quintarelli, Incompleteness, Counterexamples and Refinements in Abstract
Model-Checking. In Proc. Eight International Symposium on Static Analysis, SAS 01, P. Cousot (Ed),
Paris, France, 16-18 July 2001. Lecture Notes in Computer Science 2126, Springer, pp. 356-373.

n NYU, — 62 —

© P Cousou',é%%

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN,
BOOLEAN INIT; float P, X;

void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P =X; E[0] = X; }
else { P = ((((€0.5 % X) - (E[0] * 0.7)) + (E[1] * 0.4))
+ (S[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */
}
void main () { X = 0.2 * X + 5; INIT = TRUE;
while (1) {
X=0.9 % X+ 35; /% simulated filter input */
filter (); INIT = FALSE; }

Example [11]

b

Reference

[11] J. Feret. Static analysis of digital filters. In ESOP’04, Barcelona, LNCS 2986, pp. 33—-48, Springer, 2004.

— 63 —

Possible origins of imprecision and how to fix it

In case of false alarm, the imprecision can come from:

e Abstract transformers (not best possible) — improve
algorithm;

e Automatized parametrization (e.g. variable packing)
— 1improve pattern-matched program schemata;

e Iteration strategy for fixpoints — fix widening °;

e Inexpressivity i.e. indispensable local inductive invari-
ant are inexpressible in the abstract — add a new
abstract domain to the reduced product (e.g. filters).

2 This can be very hard since at the limit only a precise infinite iteration might be able to compute the
proper abstract invariant. In that case, it might be better to design a more refined abstract domain.

13 May 2004 — 64 — © P. Cousor !@fﬁ

http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

Conclusion

— 65 —

Conclusion

e Most applications of abstract interpretation tolerate a small
rate (typically 5 to 15%) of false alarms:

- Program transformation — do not optimize,
- Typing — reject some correct programs, etc,
- WCET analysis — overestimate;
e Some applications require no false alarm at all:
- Program verification.
e Theoretically possible [SARA ’00], practically feasible [PLDI 03]

__ Reference

[SARA’00] P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In 4% Int. Symp.
SARA ’2000, LNAI 1864, Springer, pp. 1-25, 2000.

[PLDI’03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. PLDI’03, San Diego, June 7-14, ACM Press, 2003.

— 66 —

- R

© P. Cou sow, !@\&

The Future

e Short term (1 year):
- Backward analysis (help in locating the origin of alarms)
- Verification of compiled code (for a given compiler/ma-
chine)

- ADA interface

— 87 —

The Future (Cont’nd)

e Longer term:
- Asynchronous concurrency (for less critical software)
- Functional properties (reactivity)
- Verification of specifications (verification from specifica-

tions to machine code)

13 May 2004 — 68 — @© P. Cousor i@@fi

http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

THE END, THANK YOU

More references at URL www.di.ens.fr/ cousot
www.astree.ens.fr.

— 69 —

References

[POPL’77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 238-252, Los Angeles,
California, 1977. ACM Press, New York, NY, USA.

[PACIM’79] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems. Pacific Journal
of Mathematics 82(1):43-57 (1979).

[POPL’78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a pro-
gram. In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84-97, Tucson, Arizona, 1978. ACM Press, New York, NY, U.S.A.

[POPL’'79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record
of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
269-282, San Antonio, Texas, 1979. ACM Press, New York, NY, U.S.A.

[POPL'92] P. Cousot and R. Cousot. Inductive Definitions, Semantics and Abstract Interpretation. In Con-
ference Record of the 19" ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Programming
Languages, pages 83-94, Albuquerque, New Mexico, 1992. ACM Press, New York, U.S.A.

n NYU, — 70 —

[FPCA95] P. Cousot and R. Cousot. Formal Language, Grammar and Set-Constraint-Based Program Analysis
by Abstract Interpretation. In SIGPLAN/SIGARCH/WG2.8 7** Conference on Functional Programming
and Computer Architecture, FPCA’95. La Jolla, California, U.S.A., pages 170-181. ACM Press, New York,
U.S.A., 25-28 June 1995.

[POPL’'00] P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record of the Twen-
tyseventh Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
12-25, Boston, Mass., January 2000. ACM Press, New York, NY.

[POPL'02] P. Cousot and R. Cousot. Systematic Design of Program Transformation Frameworks by Abstract
Interpretation. In Conference Record of the Twentyninth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 178-190, Portland, Oregon, January 2002. ACM Press, New
York, NY.

[TCS 277(1-2) 2002] P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System by
Abstract Interpretation. Theoretical Computer Science 277(1-2):47-103, 2002.

[TCS 290(1) 2002] P. Cousot and R. Cousot. Parsing as abstract interpretation of grammar semantics. Theoret.
Comput. Sci., 290:531-544, 2003.

[Manna’s festschrift 03] P. Cousot. Verification by Abstract Interpretation. Proc. Int. Symp. on Verification —
Theory & Practice — Honoring Zohar Manna’s 64th Birthday, N. Dershowitz (Ed.), Taormina, Italy, June
29 — July 4, 2003. Lecture Notes in Computer Science, vol. 2772, pp. 243-268. (C) Springer-Verlag, Berlin,
Germany, 2003.

[POPL’'04] P. Cousot and R. Cousot. An Abstract Interpretation-Based Framework for Software Watermarking.
In Conference Record of the Thirtyfirst Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 173-185, Venice, Italy, January 14-16, 2004. ACM Press, New York, NY.

— 71 —

[RT-ESOP’04] F. Ranzato and F. Tapparo. Strong Preservation as Completeness in Abstract Interpretation.
Porc. Programming Languages and Systems, 13th European Symposium on Programming, ESOP 2004, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona,
Spain, March 29 - April 2, 2004, D.A. Schmidt (Ed), Lecture Notes in Computer Science 2986, Springer,
2004, pp. 18-32.

13 May 2004 — 72 —

www.di.ens.fr/~cousot
http://www.di.ens.fr/~cousot/COUSOTpapers.html
www.astree.ens.fr
http://www.astree.ens.fr/
http://www.di.ens.fr/
http://cs.nyu.edu/csweb/index.html
http://www.cs.nyu.edu/csweb/index.html
http://www.di.ens.fr/

	Talk Outline
	INTRODUCTION
	Automated Verification of Infinite-State Systems
	Defects of available prototypes and tools
	A SHORT INTRODUCTION TO ABSTRACT INTERPRETATION
	A Model of Computer Programs
	Example: syntax of programs
	Example: concrete semantic domain of programs
	Example: concrete semantics of programs (reachability)
	Abstraction
	Abstract properties
	Direction of approximation
	Best abstraction
	Moore family
	Example of Moore family-based abstraction
	Closure Operator Induced by an Abstraction
	Example of closure operator-based abstraction
	The lattice of abstract interpretations
	Galois connection between concrete and abstract properties
	Example of Galois connection-based abstraction
	Example: abstract semantic domain of programs
	Function abstraction
	Approximate fixpoint abstraction
	Example: abstract semantics of programs (reachability)
	Convergence acceleration with widening(/narrowing)
	Widening operator
	Fixpoint approximation with widening
	Example: abstract semantics with convergence acceleration
	Extrapolation by widening is essentially not monotone
	Soundness theorem)
	APPLICATIONS OF ABSTRACT INTERPRETATION
	Applications of abstract interpretation
	Applications of abstract interpretation
	A PRACTICAL APPLICATION OF ABSTRACT INTERPRETATION TO THE VERIFICATION OF SAFETY CRITICAL EMBEDDED SOFTWARE
	Static program analysis
	ASTRÉE: a sound, automatic, specializable, domain-aware, parametric, modular, efficient and precise static program analyzer
	Concrete operational semantics
	Abstract semantics
	Implicit specification: absence of runtime errors
	Example application
	The class of considered periodic synchronous programs
	Characteristics of the ASTRÉE analyzer
	Example of analysis session
	Benchmarks
	EXAMPLES OF ABSTRACTION
	General-purpose abstract domains: intervals and octagons
	Floating-point computations
	Symbolic abstract domain
	Clock abstract domain for counters
	Boolean relations for boolean control
	Control partitionning for case analysis
	Ellipsoid abstract domain for digital filters
	(Automatic) Parameterization
	The main loop invariant
	Why finite abstractions will not do?
	Why finite abstractions will not do?
	Example
	Possible origins of imprecision
	CONCLUSION
	Conclusion
	The Future
	The Future
	THE END
	References

