
Automatic Verification of Avionic Synchronous
Safety Critical Embedded Software

Patrick Cousot
Jerome C. Hunsaker Visiting Professor

Department of Aeronautics and Astronautics, MIT
cousot mit edu www.mit.edu/~cousot

École normale supérieure, Paris
cousot ens fr www.di.ens.fr/~cousot

Programming Languages Seminar, College of Computer and
Information Science, Northeastern University, Boston, June 1st, 2005

Talk Outline

--- Motivation (1 mn) . 3
--- Abstract interpretation, reminder (10 mn) 6
--- Applications of abstract interpretation (2 mn) 18
--- Application to the verification of embedded,
real-time, synchronous, safety super-critical
control-command software (15 mn) . 21

--- Examples of abstractions (15 mn) . 37
--- Conclusion (2 mn) . 51
xx§x�xxx§x�xx

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 2 — ľ P. Cousot

Motivation

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 3 — ľ P. Cousot

All Computer Scientists Have Experienced Bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding) (unit error)

It is preferable to verify that mission/safety-critical pro-
grams do not go wrong before running them.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 4 — ľ P. Cousot

Static Analysis by Abstract Interpretation

Static analysis: analyse the program at compile-time to
verify a program runtime property (e.g. the absence
of some categories of bugs)

Undecidability !̀
Abstract interpretation: effectively compute an abstraction/

sound approximation of the program semantics,

--- which is precise enough to imply the desired
property, and

--- coarse enough to be efficiently computable.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 5 — ľ P. Cousot

Abstract Interpretation, Reminder

Reference

[POPL ’77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In 4th ACM POPL.

[Thesis ’78] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. Thèse ès sci. math. Grenoble, march 1978.

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th ACM POPL.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 6 — ľ P. Cousot

Syntax of programs

X variables X 2 X
T types T 2 T
E arithmetic expressions E 2 E
B boolean expressions B 2 B
D ::= T X;
j T X ; D0

C ::= X = E; commands C 2 C
j while B C 0
j if B C 0 else C 00
j { C1 . . . Cn }, (n – 0)

P ::= D C program P 2 P
Programming Languages Seminar, Northeastern U. June 1st, 2005 — 7 — ľ P. Cousot

Postcondition semantics
x(t)

t

���������
	
���
	�
���

R

S�P�R

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 8 — ľ P. Cousot

States

Values of given type:

V�T � : values of type T 2 T
V�int� def= fz 2 Z j min_int » z » max_intg

Program states ˚�P � 1:
˚�D C� def= ˚�D�
˚�T X;� def= fXg 7! V�T �

˚�T X; D� def= (fXg 7! V�T �) [˚�D�
1 States  2 ˚�P � of a program P map program variables X to their values (X)
Programming Languages Seminar, Northeastern U. June 1st, 2005 — 9 — ľ P. Cousot

Concrete Semantic Domain of Programs

Concrete semantic domain for reachability properties:

D�P � def= }(˚�P �) sets of states

i.e. program properties where „ is implication, ; is false,
[is disjunction.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 10 — ľ P. Cousot

Concrete Reachability Semantics of Programs

S�X = E; �R def
= f[X E�E�] j  2 R \ dom(E)g

[X v](X) def= v; [X v](Y) def= (Y)
S�if B C 0�R def

= S�C 0�(B�B�R) [B�:B�R
B�B�R def

= f 2 R \ dom(B) j B holds in g
S�if B C 0 else C 00�R def

= S�C 0�(B�B�R) [S�C 00�(B�:B�R)
S�while B C 0�R def

= let W = lfp
„
; –X .R [S�C 0�(B�B�X)

in (B�:B�W)
S�fg�R def

= R

S�fC1 : : : Cng�R def
= S�Cn� ‹ : : : ‹ S�C1� n > 0

S�D C�R def
= S�C�(˚�D�) (uninitialized variables)

Not computable (undecidability).
Programming Languages Seminar, Northeastern U. June 1st, 2005 — 11 — ľ P. Cousot

Abstract Semantic Domain of Programs

hD]�P �; v; ?; ti
such that:

hD; „i `̀`!̀! ̀`̀`
¸

‚ hD]�P �; vi
hence hD]�P �; v; ?; ti is a complete lattice such that
? = ¸(;) and tX = ¸([‚(X))

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 12 — ľ P. Cousot

Reduced Product of Abstract Domains

To combine abstractions
hD; „i `̀ !̀ ̀ `̀

¸1

‚1 hD]1; v1i and hD; „i `̀ !̀ ̀ `̀
¸2

‚2 hD]2; v2i
the reduced product is

¸(X)
def
= ufhx; yi j X „ ‚1(X) ^X „ ‚2(X)g

such that v def= v1 ˆv2 and
hD; „i `̀`̀ `̀ !̀! ̀ `̀ `̀ `̀

¸

‚1ˆ‚2 h¸(D); vi

Example: x 2 [1; 9] ^ xmod 2 = 0 reduces to x 2 [2; 8] ^
xmod 2 = 0

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 13 — ľ P. Cousot

Approximate Fixpoint Abstraction

F

F

Concrete domain

Abstract domain

F F F F F
F

F
� F

� F
�

F
�

Approximation
relation

⊥

⊥�

�

]

�

F ‹ ‚ v ‚ ‹ F]) lfpF v ‚(lfpF])
Programming Languages Seminar, Northeastern U. June 1st, 2005 — 14 — ľ P. Cousot

Abstract Reachability Semantics of Programs

S]�X = E; �R def
= ¸(f[X E�E�] j  2 ‚(R) \ dom(E)g)

S]�if B C 0�R def
= S]�C 0�(B]�B�R) t B]�:B�R

B]�B�R def
= ¸(f 2 ‚(R) \ dom(B) j B holds in g)

S]�if B C 0 else C 00�R def
= S]�C 0�(B]�B�R) t S]�C 00�(B]�:B�R)

S]�while B C 0�R def
= let W = lfp

v
? –X .R t S]�C 0�(B]�B�X)

in (B]�:B�W)
S]�fg�R def

= R

S]�fC1 : : : Cng�R def
= S]�Cn� ‹ : : : ‹ S]�C1� n > 0

S]�D C�R def
= S]�C�(>) (uninitialized variables)

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 15 — ľ P. Cousot

Convergence Acceleration with Widening

F Concrete domain

Abstract domain

F F F F F
F

Approximation
relation

⊥

⊥�

�

]

�

�

F

�

F
�

�

F
�

F
�

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 16 — ľ P. Cousot

Abstract Semantics with Convergence Acceleration 2

S]�X = E; �R def
= ¸(f[X E�E�] j  2 ‚(R) \ dom(E)g)

S]�if B C 0�R def
= S]�C 0�(B]�B�R) t B]�:B�R

B]�B�R def
= ¸(f 2 ‚(R) \ dom(B) j B holds in g)

S]�if B C 0 else C 00�R def
= S]�C 0�(B]�B�R) t S]�C 00�(B]�:B�R)

S]�while B C 0�R def
= let F] = –X . let Y = R t S]�C 0�(B]�B�X)

in if Y v X then X else X � Y
and W = lfp

v
? F] in (B]�:B�W)

S]�fg�R def
= R

S]�fC1 : : : Cng�R def
= S]�Cn� ‹ : : : ‹ S]�C1� n > 0

S]�D C�R def
= S]�C�(>) (uninitialized variables)

2 Note: F] not monotonic!
Programming Languages Seminar, Northeastern U. June 1st, 2005 — 17 — ľ P. Cousot

Applications of Abstract Interpretation

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 18 — ľ P. Cousot

Applications of Abstract Interpretation (Cont’d)

--- Static Program Analysis [POPL ’77], [POPL ’78], [POPL ’79]
including Dataflow Analysis [POPL ’79], [POPL ’00], Set-
based Analysis [FPCA ’95], Predicate Abstraction
[Manna’s festschrift ’03], . . .

--- Syntax Analysis [TCS 290(1) 2002]

--- Hierarchies of Semantics (including Proofs) [POPL ’92],
[TCS 277(1–2) 2002]

--- Typing & Type Inference [POPL ’97]

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 19 — ľ P. Cousot

Applications of Abstract Interpretation (Cont’d)

--- (Abstract) Model Checking [POPL ’00]

--- Program Transformation [POPL ’02]

--- Software Watermarking [POPL ’04]

--- Bisimulations [RT-ESOP ’04]

All these techniques involve sound approximations that
can be formalized by abstract interpretation

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 20 — ľ P. Cousot

A Practical Application of Abstract
Interpretation to the Verification

of Safety Critical Embedded
Control-Command Software

Reference

[1] http://www.astree.ens.fr/

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 21 — ľ P. Cousot

ASTRÉE: A Sound, Automatic, Specializable, Domain-Aware,
Parametric, Modular, Efficient and Precise Static Program

Analyzer

www.astree.ens.fr

--- C programs:
-- with

- pointers (including on functions), structures and
arrays

- floating point computations
- tests, loops and function calls
- limited branching (forward goto, break, continue)

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 22 — ľ P. Cousot

--- without
-- union

-- dynamic memory allocation
-- recursive function calls
-- backward branching
-- conflict side effects
-- C libraries

--- Application Domain: safety critical embedded real-time
synchronous software for non-linear control of very com-
plex control/command systems.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 23 — ľ P. Cousot

Concrete Operational Semantics

--- International norm of C (ISO/IEC 9899:1999)
--- restricted by implementation-specific behaviors depend-
ing upon the machine and compiler (e.g. representation
and size of integers, IEEE 754-1985 norm for floats and
doubles)

--- restricted by user-defined programming guidelines (such
as no modular arithmetic for signed integers, even though
this might be the hardware choice)

--- restricted by program specific user requirements (e.g.
assert)

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 24 — ľ P. Cousot

Abstract Semantics

--- Reachable states for the concrete trace operational se-
mantics

--- Volatile environment is specified by a trusted configu-
ration file.
Requirements:

--- Soundness: absolutely essential

--- Precision: few or no false alarm (full certification)

--- Efficiency: rapid analyses and fixes during develop-
ment

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 25 — ľ P. Cousot

Implicit Specification: Absence of Runtime Errors

--- No violation of the norm of C (e.g. array index out of
bounds, division by zero)

--- No implementation-specific undefined behaviors (e.g.
maximum short integer is 32767, NaN)

--- No violation of the programming guidelines (e.g. static
variables cannot be assumed to be initialized to 0)

--- No violation of the programmer assertions (must all be
statically verified).

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 26 — ľ P. Cousot

Example application
--- Primary flight control software of the Airbus A340 fam-
ily/A380 fly-by-wire system

--- C program, automatically generated from a proprietary
high-level specification (à la Simulink/Scade)

--- A340 family: 132,000 lines, 75,000 LOCs after preprocess-
ing, 10,000 global variables, over 21,000 after expansion
of small arrays

--- A380: ˆ 3
Programming Languages Seminar, Northeastern U. June 1st, 2005 — 27 — ľ P. Cousot

The Class of Considered Periodic Synchronous Programs
declare volatile input, state and output variables;
initialize state and output variables;
loop forever

- read volatile input variables,
- compute output and state variables,
- write to volatile output variables;

wait_for_clock ();
end loop

--- Requirements: the only interrupts are clock ticks;
--- Execution time of loop body less than a clock tick
[EMSOFT ’01].

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 28 — ľ P. Cousot

Challenging aspects

--- Size: > 100 kLOC, > 10 000 variables
--- Floating point computations
including filtering, non linear control with feedback, in-
terpolations...

--- Interdependencies among variables:
-- Stability of computations should be established
-- Complex relations should be inferred among nu-
merical and boolean data

-- Very long data paths from input to outputs

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 29 — ľ P. Cousot

Characteristics of the ASTRÉE Analyzer (Cont’d)

Static: compile time analysis (6= run time analysis Rational
Purify, Parasoft Insure++)

Program Analyzer: analyzes programs not micromodels of
programs (6= PROMELA in SPIN or Alloy in the
Alloy Analyzer)

Automatic: no end-user intervention needed (6= ESC Java,
ESC Java 2)

Sound: covers the whole state space (6= MAGIC, CBMC)
so never omit potential errors (6= UNO, CMC from
coverity.com) or sort most probable ones (6= Splint)

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 30 — ľ P. Cousot

Characteristics of the ASTRÉE Analyzer (Cont’d)

Multiabstraction: uses many numerical/symbolic abstract
domains (6= symbolic constraints in Bane or the
canonical abstraction of TVLA)

Infinitary: all abstractions use infinite abstract domains
with widening/narrowing (6= model checking based
analyzers such as VeriSoft, Bandera, Java PathFinder)

Efficient: always terminate (6= counterexample-driven au-
tomatic abstraction refinement BLAST, SLAM)

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 31 — ľ P. Cousot

Characteristics of the ASTRÉE Analyzer (Cont’d)

Specializable: can easily incorporate new abstractions (and
reduction with already existing abstract domains)
(6= general-purpose analyzers PolySpace Verifier)

Domain-Aware: knows about control/command (e.g. dig-
ital filters) (as opposed to specialization to a mere
programming style in C Global Surveyor)

Parametric: the precision/cost can be tailored to user needs
by options and directives in the code

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 32 — ľ P. Cousot

Characteristics of the ASTRÉE Analyzer (Cont’d)

Automatic Parametrization: the generation of parametric
directives in the code can be programmed (to be
specialized for a specific application domain)

Modular: an analyzer instance is built by selection of O-
CAML modules from a collection each implement-
ing an abstract domain

Precise: very few or no false alarm when adapted to an
application domain !̀ it is a VERIFIER!

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 33 — ľ P. Cousot

Example of Analysis Session

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 34 — ľ P. Cousot

Benchmarks (Airbus A340 Primary Flight Control Software)

--- 132,000 lines, 75,000 LOCs after preprocessing
--- Comparative results (commercial software):

4,200 (false?) alarms,
3.5 days;

--- Our results:
0 alarms,
40mn on 2.8 GHz PC,
300 Megabytes
!̀ A world première!

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 35 — ľ P. Cousot

(Airbus A380 Primary Flight Control Software)

--- 450,000 lines
--- 0 alarms (Nov. 2004),
7h 3 on 2.8 GHz a PC,
1 Gigabyte
!̀ A world grand première!

3 It would be possible to favour computation costs rather than precision, and this should go down. For
example, the A340 analysis went up to 5 h, before being reduced by requiring less precision while still
getting no false alarm.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 36 — ľ P. Cousot

Examples of Abstractions

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 37 — ľ P. Cousot

General-Purpose Abstract Domains: Intervals and Octagons

X

Y

0

Intervals:
1 » x » 9
1 » y » 20
Octagons [10]:8>><
>>:

1 » x » 9
x+ y » 77
1 » y » 20
x` y » 04

Difficulties: many global variables, arrays (smashed or not), IEEE
754 floating-point arithmetic (in program and analyzer) [10, 11]

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 38 — ľ P. Cousot

Floating-Point Computations

/* float-error.c */

int main () {

float x, y, z, r;

x = 1.000000019e+38;

y = x + 1.0e21;

z = x - 1.0e21;

r = y - z;

printf("%f\n", r);

}

% gcc float-error.c

% ./a.out

0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */

int main () {

double x; float y, z, r;

/* x = ldexp(1.,50)+ldexp(1.,26); */

x = 1125899973951488.0;

y = x + 1;

z = x - 1;

r = y - z;

printf("%f\n", r);

}

% gcc double-error.c

% ./a.out

134217728.000000

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 39 — ľ P. Cousot

Floating-Point Computations

/* float-error.c */

int main () {

float x, y, z, r;

x = 1.000000019e+38;

y = x + 1.0e21;

z = x - 1.0e21;

r = y - z;

printf("%f\n", r);

}

% gcc float-error.c

% ./a.out

0.000000

(x+ a)` (x` a) 6= 2a

/* double-error.c */

int main () {

double x; float y, z, r;

/* x = ldexp(1.,50)+ldexp(1.,26); */

x = 1125899973951487.0;

y = x + 1;

z = x - 1;

r = y - z;

printf("%f\n", r);

}

% gcc double-error.c

% ./a.out

0.000000

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 39 — ľ P. Cousot

Explanation of the huge rounding error

(1)
x

�����

������
x	
�

�

x

�

�
 x

��������

(2)
x

�������

�����

������

x	
x

x

��������

���
������

�

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 40 — ľ P. Cousot

Symbolic abstract domain

--- Interval analysis: if x 2 [a; b] and y 2 [c; d] then x`y 2
[a` d; b` c] so if x 2 [0; 100] then x`x 2 [`100; 100]!!!

--- The symbolic abstract domain propagates the symbolic
values of variables and performs simplifications;

--- Must maintain the maximal possible rounding error for
float computations (overestimated with intervals);

% cat -n x-x.c

1 void main () { int X, Y;

2 __ASTREE_known_fact(((0 <= X) && (X <= 100)));

3 Y = (X - X);

4 __ASTREE_log_vars((Y));

5 }

astree –exec-fn main –no-relational x-x.c

Call main@x-x.c:1:5-x-x.c:1:9:

<interval: Y in [-100, 100]>

astree –exec-fn main x-x.c

Call main@x-x.c:1:5-x-x.c:1:9:

<interval: Y in {0}> <symbolic: Y = (X -i X)>

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 41 — ľ P. Cousot

Clock Abstract Domain for Counters
--- Code Sample:

R = 0;

while (1) {

if (I)

{ R = R+1; }

else

{ R = 0; }

T = (R>=n);

wait_for_clock ();

}

-- Output T is true iff the volatile input I has
been true for the last n clock ticks.

-- The clock ticks every s seconds for at most
h hours, thus R is bounded.

-- To prove that R cannot overflow, we must
prove that R cannot exceed the elapsed
clock ticks (impossible using only inter-
vals).

--- Solution:
-- We add a phantom variable clock in the concrete user semantics to track
elapsed clock ticks.

-- For each variable X, we abstract three intervals: X, X+clock, and X-clock.
-- If X+clock or X-clock is bounded, so is X.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 42 — ľ P. Cousot

Boolean Relations for Boolean Control
--- Code Sample:

/* boolean.c */

typedef enum {F=0,T=1} BOOL;

BOOL B;

void main () {

unsigned int X, Y;

while (1) {

...

B = (X == 0);

...

if (!B) {

Y = 1 / X;

}

...

}

}

�

�
�

��
�

�
�

� � �

�

�

�

�

�

�

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 43 — ľ P. Cousot

Control Partitionning for Case Analysis
--- Code Sample:

/* trace_partitionning.c */

void main() {

float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0};

float c[4] = {0.0, 2.0, 2.0, 0.0};

float d[4] = {-20.0, -20.0, 0.0, 20.0};

float x, r;

int i = 0;

... found invariant `100 » x » 100 ...

while ((i < 3) && (x >= t[i+1])) {

i = i + 1;

}

r = (x - t[i]) * c[i] + d[i];

}

Control point partitionning:

Trace partitionning:

Fork Join

Delaying abstract unions in tests and loops is more precise for non-distributive

abstract domains (and much less expensive than disjunctive completion).

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 44 — ľ P. Cousot

Ellipsoid Abstract Domain for Filters2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
+
+

t

x(n)

Unit delay

Switch

Switch

--- Computes Xn =

¸Xn`1 + ˛Xn`2 + Yn
In

--- The concrete computation is bounded, which
must be proved in the abstract.

--- There is no stable interval or octagon.
--- The simplest stable surface is an ellipsoid.

X U F(X)

X
F(X)

F(X)
X

X U F(X)

execution trace unstable interval stable ellipsoid

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 45 — ľ P. Cousot

Filter Example [7]typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

BOOLEAN INIT; float P, X;

void filter () {

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; }

else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] * 1.5)) - (S[1] * 0.7)); }

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] */

}

void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X = 0.9 * X + 35; /* simulated filter input */

filter (); INIT = FALSE; }

}

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 46 — ľ P. Cousot

Arithmetic-geometric progressions
% cat retro.c

typedef enum {FALSE=0, TRUE=1} BOOL;

BOOL FIRST;

volatile BOOL SWITCH;

volatile float E;

float P, X, A, B;

void dev()

{ X=E;

if (FIRST) { P = X; }

else

{ P = (P - ((((2.0 * P) - A) - B)

* 4.491048e-03)); };

B = A;

if (SWITCH) {A = P;}

else {A = X;}

}

void main()

{ FIRST = TRUE;

while (TRUE) {

dev();

FIRST = FALSE;

__ASTREE_wait_for_clock(());

}}

% cat retro.config

__ASTREE_volatile_input((E [-15.0, 15.0]));

__ASTREE_volatile_input((SWITCH [0,1]));

__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39

/ 1.19209290217e-07) * (1 +

1.19209290217e-07)ˆclock -

5.87747175411e-39 / 1.19209290217e-07

<= 23.0393526881

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 47 — ľ P. Cousot

(Automatic) Parameterization
--- All abstract domains of ASTRÉE are parameterized,
e.g.
-- variable packing for octagones and decision trees,
-- partition/merge program points,
-- loop unrollings,
-- thresholds in widenings, . . . ;

--- End-users can either parameterize by hand (analyzer
options, directives in the code), or

--- choose the automatic parameterization (default options,
directives for pattern-matched predefined program schemata).

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 48 — ľ P. Cousot

The main loop invariant for the A340
A textual file over 4.5 Mb with
--- 6,900 boolean interval assertions (x 2 [0; 1])
--- 9,600 interval assertions (x 2 [a; b])
--- 25,400 clock assertions (x+ clk 2 [a; b]^x` clk 2 [a; b])
--- 19,100 additive octagonal assertions (a » x+ y » b)
--- 19,200 subtractive octagonal assertions (a » x` y » b)
--- 100 decision trees
--- 60 ellipse invariants, etc . . .
involving over 16,000 floating point constants (only 550
appearing in the program text) ˆ 75,000 LOCs.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 49 — ľ P. Cousot

Possible origins of imprecision and how to fix it

In case of false alarm, the imprecision can come from:
--- Abstract transformers (not best possible) !̀ improve
algorithm;

--- Automatized parametrization (e.g. variable packing) !̀
improve pattern-matched program schemata;

--- Iteration strategy for fixpoints !̀ fix widening 4;
--- Inexpressivity i.e. indispensable local inductive invari-
ant are inexpressible in the abstract !̀ add a new
abstract domain to the reduced product (e.g. filters).
4 This can be very hard since at the limit only a precise infinite iteration might be able to compute the
proper abstract invariant. In that case, it might be better to design a more refined abstract domain.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 50 — ľ P. Cousot

Conclusion

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 51 — ľ P. Cousot

Conclusion

--- Most applications of abstract interpretation tolerate a small rate
(typically 5 to 15%) of false alarms:

-- Program transformation ! do not optimize,
-- Typing ! reject some correct programs, etc,
-- WCET analysis ! overestimate;

--- Some applications require no false alarm at all:
-- Program verification.

--- Theoretically possible [SARA ’00], practically feasible [PLDI ’03]
Reference

[SARA ’00] P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In 4th Int. Symp.
SARA ’2000, LNAI 1864, Springer, pp. 1–25, 2000.

[PLDI ’03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. PLDI’03, San Diego, June 7–14, ACM Press, 2003.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 52 — ľ P. Cousot

The Future & Grand Challenges

Forthcoming (1 year):
--- More general memory model (union)

Future (5 years):
--- Asynchronous concurrency (for less critical software)
--- Functional properties (reactivity)
--- Industrialization
Grand challenge:
--- Verification from specifications to machine code (verify-
ing compiler)

--- Verification of systems (quasi-synchrony, distribution)
Programming Languages Seminar, Northeastern U. June 1st, 2005 — 53 — ľ P. Cousot

THE END, THANK YOU

More references at URL www.di.ens.fr/~cousot

www.astree.ens.fr.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 54 — ľ P. Cousot

References
[2] www.astree.ens.fr [4, 5, 6, 7, 8, 9, 10, 11]

[3] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathéma-
tiques, Université scientifique et médicale de Grenoble, Grenoble, France, 21 March 1978.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Ri-
val. Design and implementation of a special-purpose static program analyzer for safety-critical real-time
embedded software. The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedi-
cated to Neil D. Jones, LNCS 2566, pp. 85–108. Springer, 2002.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. PLDI’03, San Diego, pp. 196–207, ACM Press, 2003.

[POPL ’77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 238–252, Los Angeles,
California, 1977. ACM Press, New York, NY, USA.

[PACJM ’79] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems. Pacific Journal
of Mathematics 82(1):43–57 (1979).

[POPL ’78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a pro-
gram. In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New York, NY, U.S.A.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 55 — ľ P. Cousot

[POPL ’79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record
of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
269–282, San Antonio, Texas, 1979. ACM Press, New York, NY, U.S.A.

[POPL ’92] P. Cousot and R. Cousot. Inductive Definitions, Semantics and Abstract Interpretation. In Con-
ference Record of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Programming
Languages, pages 83–94, Albuquerque, New Mexico, 1992. ACM Press, New York, U.S.A.

[FPCA ’95] P. Cousot and R. Cousot. Formal Language, Grammar and Set-Constraint-Based Program Analysis
by Abstract Interpretation. In SIGPLAN/SIGARCH/WG2.8 7th Conference on Functional Programming
and Computer Architecture, FPCA’95. La Jolla, California, U.S.A., pages 170–181. ACM Press, New York,
U.S.A., 25-28 June 1995.

[POPL ’97] P. Cousot. Types as Abstract Interpretations. In Conference Record of the 24th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Programming Languages, pages 316–331, Paris, France,
1997. ACM Press, New York, U.S.A.

[POPL ’00] P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record of the Twen-
tyseventh Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
12–25, Boston, Mass., January 2000. ACM Press, New York, NY.

[POPL ’02] P. Cousot and R. Cousot. Systematic Design of Program Transformation Frameworks by Abstract
Interpretation. In Conference Record of the Twentyninth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 178–190, Portland, Oregon, January 2002. ACM Press, New
York, NY.

[TCS 277(1–2) 2002] P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System
by Abstract Interpretation. Theoretical Computer Science 277(1–2):47–103, 2002.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 56 — ľ P. Cousot

[TCS 290(1) 2002] P. Cousot and R. Cousot. Parsing as abstract interpretation of grammar semantics. Theo-
ret. Comput. Sci., 290:531–544, 2003.

[Manna’s festschrift ’03] P. Cousot. Verification by Abstract Interpretation. Proc. Int. Symp. on Verification –
Theory & Practice – Honoring Zohar Manna’s 64th Birthday, N. Dershowitz (Ed.), Taormina, Italy, June
29 – July 4, 2003. Lecture Notes in Computer Science, vol. 2772, pp. 243–268.ľ Springer-Verlag, Berlin,
Germany, 2003.

[6] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The ASTRÉE analyser.
ESOP 2005, Edinburgh, LNCS 3444, pp. 21–30, Springer, 2005.

[7] J. Feret. Static analysis of digital filters. ESOP’04, Barcelona, LNCS 2986, pp. 33—-48, Springer, 2004.

[8] J. Feret. The arithmetic-geometric progression abstract domain. In VMCAI’05, Paris, LNCS 3385, pp. 42–
58, Springer, 2005.

[9] Laurent Mauborgne & Xavier Rival. Trace Partitioning in Abstract Interpretation Based Static Analyzers.
ESOP’05, Edinburgh, LNCS 3444, pp. 5–20, Springer, 2005.

[10] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO’2001, LNCS
2053, Springer, 2001, pp. 155–172.

[11] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. ESOP’04,
Barcelona, LNCS 2986, pp. 3—17, Springer, 2004.

[POPL ’04] P. Cousot and R. Cousot. An Abstract Interpretation-Based Framework for Software Watermarking.
In Conference Record of the Thirtyfirst Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 173–185, Venice, Italy, January 14-16, 2004. ACM Press, New York, NY.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 57 — ľ P. Cousot

[DPG-ICALP ’05] M. Dalla Preda and R. Giacobazzi. Semantic-based Code Obfuscation
by Abstract Interpretation. In Proc. 32nd Int. Colloquium on Automata, Languages and Pro-
gramming (ICALP’05 – Track B). LNCS, 2005 Springer-Verlag. July 11-15, 2005, Lisboa, Portugal. To
appear.

[EMSOFT ’01] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing,
and R. Wilhelm. Reliable and precise WCET determination for a real-life processor. ESOP (2001), LNCS
2211, 469–485.

[RT-ESOP ’04] F. Ranzato and F. Tapparo. Strong Preservation as Completeness in Abstract Interpretation.
ESOP 2004, Barcelona, Spain, March 29 - April 2, 2004, D.A. Schmidt (Ed), LNCS 2986, Springer, 2004,
pp. 18–32.

Programming Languages Seminar, Northeastern U. June 1st, 2005 — 58 — ľ P. Cousot

