
Motivation (1 mn) . 3
Abstract interpretation, reminder (10 mn) 6
Applications of abstract interpretation (2 mn) 21
A practical application to the ASTRÉE static analyzer (15 mn) 24
Examples of abstractions in ASTRÉE (15 mn) 40
Conclusion (2 mn) . 56

xx§x!xxx§x!xx

IBM Research January 20, 2006 — 2 — ľ P. Cousot

IBM Research January 20, 2006 — 3 — ľ P. Cousot

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding) (unit error)

It is preferable to verify that mission/safety-critical pro-
grams do not go wrong before running them.

IBM Research January 20, 2006 — 4 — ľ P. Cousot

analyze the program at compile-time to
verify a program runtime property (e.g. the absence
of some categories of bugs)

Undecidability !̀

effectively compute an abstraction/
sound approximation of the program semantics,

which is precise enough to imply the desired
property, and
coarse enough to be efficiently computable.

IBM Research January 20, 2006 — 5 — ľ P. Cousot

Reference

[POPL ’77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In 4th ACM POPL.

[Thesis ’78] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. Thèse ès sci. math. Grenoble, march 1978.

[POPL ’79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th ACM POPL.

IBM Research January 20, 2006 — 6 — ľ P. Cousot

X variables X 2 X
T types T 2 T
E arithmetic expressions E 2 E
B boolean expressions B 2 B
D ::= T X
j T X D0

C ::= X E; commands C 2 C
j B C 0

j B C 0 C 00

j C1 . . . Cn , (n – 0)
P ::= D C program P 2 P

IBM Research January 20, 2006 — 7 — ľ P. Cousot

x(t)

t

!"##$%&'(
)*+,'-)"*$'#

R

S!P"R

IBM Research January 20, 2006 — 8 — ľ P. Cousot

Values of given type:

V"T # : values of type T 2 T
V"int# def= fz 2 Z j min_int » z » max_intg

Program states ˚"P # 1:

˚"D C# def= ˚"D#
˚"T X # def= fXg 7! V"T #

˚"T X D# def= (fXg 7! V"T #) [˚"D#

1 States  2 ˚"P # of a program P map program variables X to their values (X)

IBM Research January 20, 2006 — 9 — ľ P. Cousot

Concrete semantic domain for reachability properties:

D"P # def= }(˚"P #) sets of states

i.e. program properties where „ is implication, ; is false,
[is disjunction.

IBM Research January 20, 2006 — 10 — ľ P. Cousot

S"X E; #R def
= f[X E"E#] j  2 R \ dom(E)g

[X v](X) def= v; [X v](Y) def= (Y)

S"if B C 0#R def
= S"C 0#(B"B#R) [B":B#R

B"B#R def
= f 2 R \ dom(B) j B holds in g

S"if B C 0 else C 00#R def
= S"C 0#(B"B#R) [S"C 00#(B":B#R)

S"while B C 0#R def
= let W = „

; –X R [S"C 0#(B"B#X)
in (B":B#W)

S"fg#R def
= R

S"fC1 : : : Cng#R
def
= S"Cn# ‹ : : : ‹ S"C1# n > 0

S"D C#R def
= S"C#(˚"D#) (uninitialized variables)

Not computable (undecidability).
IBM Research January 20, 2006 — 11 — ľ P. Cousot

hD]"P #; v; ?; ti

such that:

hD"P #; „i `̀`!̀! ̀`̀`
¸

‚
hD]"P #; vi

i.e.

8X 2 D"P #; Y 2 D]"P # : ¸(X) v Y () X „ ‚(Y)

hence hD]"P #; v; ?; ti is a complete lattice such that
? = ¸(;) and tX = ¸([‚(X))

IBM Research January 20, 2006 — 12 — ľ P. Cousot

Traces: set of finite or infinite maximal sequences of
states for the operational transition semantics

¸! Strongest liberal postcondition: final states s reachable
from a given precondition P
¸(X) = –P fs j 9ff0ff1 : : :ffn 2 X : ff0 2 P ^ s = ffng

We have (˚: set of states, _„ pointwise):

h}(˚1); „i `̀`!̀! ̀`̀`
¸

‚
h}(˚) [7 !̀ }(˚); _„i

IBM Research January 20, 2006 — 13 — ľ P. Cousot

Traces: set of finite or infinite maximal sequences of
states for the operational transition semantics

¸1! Set of reachable states: set of states appearing at least
once along one of these traces (global invariant)
¸1(X) = fffi j ff 2 X ^ 0 » i < jffjg

¸2! Partitionned set of reachable states: project along each
control point (local invariant)
¸2(fhci; ii j i 2 ´g) = –c fi j i 2 ´ ^ c = cig

IBM Research January 20, 2006 — 14 — ľ P. Cousot

¸3! Partitionned cartesian set of reachable states: project
along each program variable (relationships between vari-
ables are now lost)
¸3(–c fi j i 2 ´cg) = –c –X fi(X) j i 2 ´cg

¸4! Partitionned cartesian interval of reachable states: take
min and max of the values of the variables 2

¸4(–c –X fvi j i 2 ´c;Xg =
–c –X hminfvi j i 2 ´c;Xg; maxfvi j i 2 ´c;Xgi

¸1, ¸2, ¸3 and ¸4, whence ¸4 ‹ ¸3 ‹ ¸2 ‹ ¸1 are lower-
adjoints of Galois connections

2 assuming these values to be totally ordered.

IBM Research January 20, 2006 — 15 — ľ P. Cousot

To combine abstractions
hD; „i `̀ !̀ ̀ `̀

¸1

‚1 hD]1; v1i and hD; „i `̀ !̀ ̀ `̀
¸2

‚2 hD]2; v2i
the reduced product is

¸(X)
def
= ufhx; yi j X „ ‚1(x) ^X „ ‚2(y)g

such that v def= v1 ˆv2 and
hD; „i `̀`̀ `̀ !̀! ̀ `̀ `̀ `̀

¸

‚1ˆ‚2 h¸(D); vi

Example: x 2 [1; 9] ^ xmod 2 = 0 reduces to x 2 [2; 8] ^
xmod 2 = 0

IBM Research January 20, 2006 — 16 — ľ P. Cousot

F

F

Concrete domain

Abstract domain

F F F F F
F

F
! F

! F
!

F
!

Approximation
relation

⊥

⊥!

"

]

!

F ‹ ‚ v ‚ ‹ F]) F v ‚(F])

IBM Research January 20, 2006 — 17 — ľ P. Cousot

S]"X E; #R def
= ¸(f[X E"E#] j  2 ‚(R) \ dom(E)g)

S]"if B C 0#R def
= S]"C 0#(B]"B#R) t B]":B#R

B]"B#R def
= ¸(f 2 ‚(R) \ dom(B) j B holds in g)

S]"if B C 0 else C 00#R def
= S]"C 0#(B]"B#R) t S]"C 00#(B]":B#R)

S]"while B C 0#R def
= let W = v

? –X R t S
]"C 0#(B]"B#X)

in (B]":B#W)
S]"fg#R def

= R

S]"fC1 : : : Cng#R
def
= S]"Cn# ‹ : : : ‹ S]"C1# n > 0

S]"D C#R def
= S]"C#(>) (uninitialized variables)

IBM Research January 20, 2006 — 18 — ľ P. Cousot

F Concrete domain

Abstract domain

F F F F F
F

Approximation
relation

⊥

⊥!

"

]

!
#

F

#

F
!

#

F
!

F
!

IBM Research January 20, 2006 — 19 — ľ P. Cousot

3

S]"X E; #R def
= ¸(f[X E"E#] j  2 ‚(R) \ dom(E)g)

S]"if B C 0#R def
= S]"C 0#(B]"B#R) t B]":B#R

B]"B#R def
= ¸(f 2 ‚(R) \ dom(B) j B holds in g)

S]"if B C 0 else C 00#R def
= S]"C 0#(B]"B#R) t S]"C 00#(B]":B#R)

S]"while B C 0#R def
= let F] = –X let Y = R t S]"C 0#(B]"B#X)

in if Y v X then X else X
$
Y

and W = v
? F
] in (B]":B#W)

S]"fg#R def
= R

S]"fC1 : : : Cng#R
def
= S]"Cn# ‹ : : : ‹ S]"C1# n > 0

S]"D C#R def
= S]"C#(>) (uninitialized variables)

3 Note: F] not monotonic!

IBM Research January 20, 2006 — 20 — ľ P. Cousot

IBM Research January 20, 2006 — 21 — ľ P. Cousot

[POPL ’77], [POPL ’78], [POPL ’79]
including [POPL ’79], [POPL ’00],

[FPCA ’95],
[Manna’s festschrift ’03], . . .

[TCS 290(1) 2002]

[POPL ’92],
[TCS 277(1–2) 2002]

[POPL ’97]

IBM Research January 20, 2006 — 22 — ľ P. Cousot

[POPL ’00]

[POPL ’02]

[POPL ’04]

[RT-ESOP ’04]

All these techniques involve sound approximations that
can be formalized by abstract interpretation

IBM Research January 20, 2006 — 23 — ľ P. Cousot

Reference

[1]

IBM Research January 20, 2006 — 24 — ľ P. Cousot

Application Domain: large safety critical embedded real-
time synchronous software for non-linear control of very
complex control/command systems.
C programs:
with
basic numeric datatypes, structures and arrays
pointers (including on functions),
floating point computations
tests, loops and function calls
limited branching (forward , ,)

IBM Research January 20, 2006 — 25 — ľ P. Cousot

without

dynamic memory allocation
recursive function calls
backward branching
conflicting side effects
C libraries, system calls (parallelism)

IBM Research January 20, 2006 — 26 — ľ P. Cousot

International norm of C (ISO/IEC 9899:1999)
restricted by implementation-specific behaviors depend-
ing upon the machine and compiler (e.g. representation
and size of integers, IEEE 754-1985 norm for floats and
doubles)
restricted by user-defined programming guidelines (such
as no modular arithmetic for signed integers, even though
this might be the hardware choice)
restricted by program specific user requirements (e.g.

, execution stops on first runtime error 4)
4 semantics of C unclear after an error, equivalent if no alarm

IBM Research January 20, 2006 — 27 — ľ P. Cousot

Reachable states for the concrete trace operational se-
mantics
Volatile environment is specified by a trusted configu-
ration file.
Requirements:

Soundness: absolutely essential

Precision: few or no false alarm 5 (full certification)

Efficiency: rapid analyses and fixes during develop-
ment

5 Potential runtime error signaled by the analyzer due to overapproximation but impossible in any actual
program run.

IBM Research January 20, 2006 — 28 — ľ P. Cousot

No violation of the norm of C (e.g. array index out of
bounds, division by zero)
No implementation-specific undefined behaviors (e.g.
maximum short integer is 32767, NaN)
No violation of the programming guidelines (e.g. static
variables cannot be assumed to be initialized to 0)
No violation of the programmer assertions (must all be
statically verified).

IBM Research January 20, 2006 — 29 — ľ P. Cousot

Primary flight control software of the Airbus A340 fam-
ily/A380 fly-by-wire system

C program, automatically generated from a proprietary
high-level specification (à la Simulink/Scade)
A340 family: 132,000 lines, 75,000 LOCs after preprocess-
ing, 10,000 global variables, over 21,000 after expansion
of small arrays
A380: ˆ 3

IBM Research January 20, 2006 — 30 — ľ P. Cousot

;

Task scheduling is static:
Requirements: the only interrupts are clock ticks;
Execution time of loop body less than a clock tick
[EMSOFT ’01].

IBM Research January 20, 2006 — 31 — ľ P. Cousot

Size: > 100 kLOC, > 10 000 variables
Floating point computations
including interconnected networks of filters, non linear
control with feedback, interpolations...
Interdependencies among variables:
Stability of computations should be established
Complex relations should be inferred among nu-
merical and boolean data
Very long data paths from input to outputs

IBM Research January 20, 2006 — 32 — ľ P. Cousot

compile time analysis (6= run time analysis Rational
Purify, Parasoft Insure++)

analyzes programs not micromodels of
programs (6= PROMELA in SPIN or Alloy in the
Alloy Analyzer)

no end-user intervention needed (6= ESC Java,
ESC Java 2)

covers the whole state space (6= MAGIC, CBMC)
so never omit potential errors (6= UNO, CMC from
coverity.com) or sort most probable ones (6= Splint)
IBM Research January 20, 2006 — 33 — ľ P. Cousot

uses many numerical/symbolic abstract
domains (6= symbolic constraints in Bane or the
canonical abstraction of TVLA)

all abstractions use infinite abstract domains
with widening/narrowing (6= model checking based
analyzers such as VeriSoft, Bandera, Java PathFinder)

always terminate (6= counterexample-driven au-
tomatic abstraction refinement BLAST, SLAM)

IBM Research January 20, 2006 — 34 — ľ P. Cousot

can easily incorporate new abstractions (and
reduction with already existing abstract domains)
(6= general-purpose analyzers PolySpace Verifier)

knows about control/command (e.g. dig-
ital filters) (as opposed to specialization to a mere
programming style in C Global Surveyor)

the precision/cost can be tailored to user needs
by options and directives in the code

IBM Research January 20, 2006 — 35 — ľ P. Cousot

the generation of parametric
directives in the code can be programmed (to be
specialized for a specific application domain)

an analyzer instance is built by selection of O-
CAML modules from a collection each implement-
ing an abstract domain

very few or no false alarm when adapted to an
application domain !̀ it is a VERIFIER!

IBM Research January 20, 2006 — 36 — ľ P. Cousot

IBM Research January 20, 2006 — 37 — ľ P. Cousot

132,000 lines, 75,000 LOCs after preprocessing
Comparative results (commercial software):
4,200 (false?) alarms,
3.5 days;

Our results:
alarms,

40mn on 2.8 GHz PC,
300 Megabytes
!̀ A world première!

IBM Research January 20, 2006 — 38 — ľ P. Cousot

350,000 lines
alarms (Nov. 2004),

7h 6 on 2.8 GHz PC,
1 Gigabyte
!̀ A world grand première!

6 We are still in a phase where we favour precision rather than computation costs, and this should go down.
For example, the A340 analysis went up to 5 h, before being reduced by requiring less precision while still
getting no false alarm.

IBM Research January 20, 2006 — 39 — ľ P. Cousot IBM Research January 20, 2006 — 40 — ľ P. Cousot

X

Y

0

Intervals:
1 » x » 9
1 » y » 20
Octagons [10]:8
>><

>>:

1 » x » 9
x+ y » 77
1 » y » 20
x` y » 04

Difficulties: many global variables, arrays (smashed or not), IEEE
754 floating-point arithmetic (in program and analyzer) [POPL ’77,
10, 11]

IBM Research January 20, 2006 — 41 — ľ P. Cousot

(x+ a)` (x` a) 6= 2a

IBM Research January 20, 2006 — 42 — ľ P. Cousot

(x+ a)` (x` a) 6= 2a

IBM Research January 20, 2006 — 42 — ľ P. Cousot

(1)
x

!"#$%

&$'#(%
x)*+

,*
x-*+

,* x

!'./01/2

(2)
x

3'.4$"%

!"#$%

&$'#(%

x)*x-*
x

!'./01/2

*56,*77,89+

,

IBM Research January 20, 2006 — 43 — ľ P. Cousot

Approximate arbitrary expressions in the form
[a0; b0] +

P
k([ak; bk]ˆ Vk)

Example:
is linearized as

Z = ([0:749 ´ ´ ´ ; 0:750 ´ ´ ´]ˆX)+(2:35 ´ ´ ´ 10`38ˆ[`1; 1])
Allows simplification even in the interval domain
if 2 [-1,1], we get jZj » 0:750 ´ ´ ´ instead of jZj » 1:25 ´ ´ ´

Allows using a relational abstract domain (octagons)
Example of good compromize between cost and preci-
sion

IBM Research January 20, 2006 — 44 — ľ P. Cousot

Interval analysis: if x 2 [a; b] and y 2 [c; d] then x`y 2
[a` d; b` c] so if x 2 [0; 100] then x`x 2 [`100; 100]!!!
The symbolic abstract domain propagates the symbolic
values of variables and performs simplifications;
Must maintain the maximal possible rounding error for
float computations (overestimated with intervals);

IBM Research January 20, 2006 — 45 — ľ P. Cousot

Code Sample:

!

!
!

"#
!

!
" # "

$

%

$

%

$

%

The boolean relation abstract do-
main is parameterized by the height
of the decision tree (an analyzer
option) and the abstract domain at
the leafs

IBM Research January 20, 2006 — 46 — ľ P. Cousot

Code Sample:

found invariant `100 » » 100

Control point partitionning:

Trace partitionning:

Fork Join

Delaying abstract unions in tests and loops is more precise for non-distributive

abstract domains (and much less expensive than disjunctive completion).

IBM Research January 20, 2006 — 47 — ľ P. Cousot

2d Order Digital Filter:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
+
+

t

x(n)

Unit delay

Switch

Switch

Computes Xn =

¸Xn`1 + ˛Xn`2 + Yn
In

The concrete computation is bounded, which
must be proved in the abstract.
There is no stable interval or octagon.
The simplest stable surface is an ellipsoid.

X U F(X)

X

F(X)

F(X)
X

X U F(X)

execution trace unstable interval stable ellipsoid

IBM Research January 20, 2006 — 48 — ľ P. Cousot IBM Research January 20, 2006 — 49 — ľ P. Cousot

7

Abstract domain: (R+)5

Concretization:

‚ 2 (R+)5 7 !̀ }(N 7! R)

‚(M;a; b; a0; b0) =

ff j 8k 2 N : jf(k)j »
“
–x ax+ b ‹ (–x a0x+ b0)k

”
(M)g

i.e. any function bounded by the arithmetic-geometric
progression.

7 here in R

IBM Research January 20, 2006 — 50 — ľ P. Cousot

 potential overflow!

IBM Research January 20, 2006 — 51 — ľ P. Cousot

IBM Research January 20, 2006 — 52 — ľ P. Cousot

All abstract domains of ASTRÉE are parameterized,
e.g.
variable packing for octagones and decision trees,
partition/merge program points,
loop unrollings,
thresholds in widenings, . . . ;
End-users can either parameterize by hand (analyzer
options, directives in the code), or
choose the automatic parameterization (default options,
directives for pattern-matched predefined program schemata).

IBM Research January 20, 2006 — 53 — ľ P. Cousot

A textual file over 4.5 Mb with
6,900 boolean interval assertions (x 2 [0; 1])
9,600 interval assertions (x 2 [a; b])
25,400 clock assertions (x+ clk 2 [a; b]^x` clk 2 [a; b])
19,100 additive octagonal assertions (a » x+ y » b)
19,200 subtractive octagonal assertions (a » x` y » b)
100 decision trees
60 ellipse invariants, etc . . .
involving over 16,000 floating point constants (only 550
appearing in the program text) ˆ 75,000 LOCs.

IBM Research January 20, 2006 — 54 — ľ P. Cousot

In case of false alarm, the imprecision can come from:
Abstract transformers (not best possible) !̀ improve
algorithm;
Automatized parametrization (e.g. variable packing) !̀
improve pattern-matched program schemata;
Iteration strategy for fixpoints !̀ fix widening 8;
Inexpressivity i.e. indispensable local inductive invari-
ant are inexpressible in the abstract !̀ add a new
abstract domain to the reduced product (e.g. filters).
8 This can be very hard since at the limit only a precise infinite iteration might be able to compute the
proper abstract invariant. In that case, it might be better to design a more refined abstract domain.

IBM Research January 20, 2006 — 55 — ľ P. Cousot

IBM Research January 20, 2006 — 56 — ľ P. Cousot

Most applications of abstract interpretation tolerate a small rate
(typically 5 to 15%) of false alarms:

Program transformation ! do not optimize,
Typing ! reject some correct programs, etc,
WCET analysis ! overestimate;

Some applications require no false alarm at all:
Program verification.

Theoretically possible [SARA ’00], practically feasible [PLDI ’03]
Reference

[SARA ’00] P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In 4th Int. Symp.
SARA ’2000, LNAI 1864, Springer, pp. 1–25, 2000.

[PLDI ’03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. PLDI’03, San Diego, June 7–14, ACM Press, 2003.

IBM Research January 20, 2006 — 57 — ľ P. Cousot

Forthcoming (1 year):
More gereral memory model ()

Future (5 years):
Asynchronous concurrency (for less critical software)
Functional properties (reactivity)
Industrialization
Grand challenge:
Verification from specifications to machine code (verify-
ing compiler)

Verification of systems (quasi-synchrony, distribution)
IBM Research January 20, 2006 — 58 — ľ P. Cousot

More references at URL
.

IBM Research January 20, 2006 — 59 — ľ P. Cousot

[2] [4, 5, 6, 7, 8, 9, 10, 11, 12]

[3] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. Thèse d’État ès sciences mathéma-
tiques, Université scientifique et médicale de Grenoble, Grenoble, France, 21 March 1978.

[4] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Ri-
val. Design and implementation of a special-purpose static program analyzer for safety-critical real-time
embedded software. The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedi-
cated to Neil D. Jones, LNCS 2566, pp. 85–108. Springer, 2002.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. PLDI’03, San Diego, pp. 196–207, ACM Press, 2003.

[POPL ’77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 238–252, Los Angeles,
California, 1977. ACM Press, New York, NY, USA.

[PACJM ’79] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems. Pacific Journal
of Mathematics 82(1):43–57 (1979).

[POPL ’78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a pro-
gram. In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New York, NY, U.S.A.

IBM Research January 20, 2006 — 60 — ľ P. Cousot

[POPL ’79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record
of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
269–282, San Antonio, Texas, 1979. ACM Press, New York, NY, U.S.A.

[POPL ’92] P. Cousot and R. Cousot. Inductive Definitions, Semantics and Abstract Interpretation. In Con-
ference Record of the 19th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Programming
Languages, pages 83–94, Albuquerque, New Mexico, 1992. ACM Press, New York, U.S.A.

[FPCA ’95] P. Cousot and R. Cousot. Formal Language, Grammar and Set-Constraint-Based Program Analysis
by Abstract Interpretation. In SIGPLAN/SIGARCH/WG2.8 7th Conference on Functional Programming
and Computer Architecture, FPCA’95. La Jolla, California, U.S.A., pages 170–181. ACM Press, New York,
U.S.A., 25-28 June 1995.

[POPL ’97] P. Cousot. Types as Abstract Interpretations. In Conference Record of the 24th ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Programming Languages, pages 316–331, Paris, France,
1997. ACM Press, New York, U.S.A.

[POPL ’00] P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record of the Twen-
tyseventh Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
12–25, Boston, Mass., January 2000. ACM Press, New York, NY.

[POPL ’02] P. Cousot and R. Cousot. Systematic Design of Program Transformation Frameworks by Abstract
Interpretation. In Conference Record of the Twentyninth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 178–190, Portland, Oregon, January 2002. ACM Press, New
York, NY.

[TCS 277(1–2) 2002] P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System
by Abstract Interpretation. Theoretical Computer Science 277(1–2):47–103, 2002.

IBM Research January 20, 2006 — 61 — ľ P. Cousot

[TCS 290(1) 2002] P. Cousot and R. Cousot. Parsing as abstract interpretation of grammar semantics. Theo-
ret. Comput. Sci., 290:531–544, 2003.

[Manna’s festschrift ’03] P. Cousot. Verification by Abstract Interpretation. Proc. Int. Symp. on Verification –
Theory & Practice – Honoring Zohar Manna’s 64th Birthday, N. Dershowitz (Ed.), Taormina, Italy, June
29 – July 4, 2003. Lecture Notes in Computer Science, vol. 2772, pp. 243–268.ľ Springer-Verlag, Berlin,
Germany, 2003.

[6] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. The ASTRÉE analyser.
ESOP 2005, Edinburgh, LNCS 3444, pp. 21–30, Springer, 2005.

[7] J. Feret. Static analysis of digital filters. ESOP’04, Barcelona, LNCS 2986, pp. 33—-48, Springer, 2004.

[8] J. Feret. The arithmetic-geometric progression abstract domain. In VMCAI’05, Paris, LNCS 3385, pp. 42–
58, Springer, 2005.

[9] Laurent Mauborgne & Xavier Rival. Trace Partitioning in Abstract Interpretation Based Static Analyzers.
ESOP’05, Edinburgh, LNCS 3444, pp. 5–20, Springer, 2005.

[10] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. PADO’2001, LNCS
2053, Springer, 2001, pp. 155–172.

[11] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. ESOP’04,
Barcelona, LNCS 2986, pp. 3—17, Springer, 2004.

[12] A. Miné. Weakly Relational Numerical Abstract Domains. PhD Thesis, École Polytechnique, 6 december
2004.

IBM Research January 20, 2006 — 62 — ľ P. Cousot

[POPL ’04] P. Cousot and R. Cousot. An Abstract Interpretation-Based Framework for Software Watermarking.
In Conference Record of the Thirtyfirst Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 173–185, Venice, Italy, January 14-16, 2004. ACM Press, New York, NY.

[DPG-ICALP ’05] M. Dalla Preda and R. Giacobazzi. Semantic-based Code Obfuscation
by Abstract Interpretation. In Proc. 32nd Int. Colloquium on Automata, Languages and Pro-
gramming (ICALP’05 – Track B). LNCS, 2005 Springer-Verlag. July 11-15, 2005, Lisboa, Portugal. To
appear.

[EMSOFT ’01] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing,
and R. Wilhelm. Reliable and precise WCET determination for a real-life processor. EMSOFT (2001),
LNCS 2211, 469–485.

[RT-ESOP ’04] F. Ranzato and F. Tapparo. Strong Preservation as Completeness in Abstract Interpretation.
ESOP 2004, Barcelona, Spain, March 29 - April 2, 2004, D.A. Schmidt (Ed), LNCS 2986, Springer, 2004,
pp. 18–32.

IBM Research January 20, 2006 — 63 — ľ P. Cousot

