The AsSTREE Analyzer

P. CousoTt, R.CousoT, J.FERET, L.MAUBORGNE,
A. MINE, D.MoNNIAUX, X.RIVAL

Ecole Normale Supérieure

ESOP’ 05

The AsTREE Analyzer —p.1/23

Certification of Critical Software

Goal of ASTREE:
Prove the absence of runtime errors in embedded, C programs

e Situation: bugs are no longer acceptable in such systems
+ May cause human casualties: transportation, energy
+ Prohibitive financial cost: Ariane 501 failure

e Automatic certification of the code is required
+ Soundness: absolutely essential
+ Strong efficiency requirements:
» Keep analysis time low:
analyses and fixes possible during development
» Precision:
number of alarms should be reasonable (e.g. < 10)
+ No alarm = full certification (If possible)

The AsTREE Analyzer —p.2/23

Specialization of the Analyzer

e Specialization to a family of embedded programs:
Synchronous, real-time code:

declare and initialize state variabl es;

| oop forever
read vol atile input variables,
conpute output and state vari abl es,
wite to volatile output variables;
wait for next clock tick

end | oop

e Properties of interest: Absence of run-time errors
+ No Run-Time Error
e.g. division by 0, NaN, out-of-bound array access
+ No integer / floating point overflow
+ User-defined properties, e.g. architecture dependent

The AsTREE Analyzer —p.3/23

Specialization of the Analyzer

e Simplifying aspects:
+ Not full C: no malloc, no pointer arithmetic
+ No recursion
+ Data mostly static

e Challenging aspects:

¢ Size: > 100 KLOC, > 10000 variables

+ Floating point computations
including filtering, non linear control with feed-back,
interpolations...

+ Interdependencies among variables:
+ Stability of computations should be established
» Complex relations should be inferred among numerical,

boolean data

» Very long data paths from input to outputs

The AsTREE Analyzer —p.4/23

Principle

Compute an over-approximation of the reachable states
e Model of the language: semantics

[P] = set of runs (i.e. traces) of P

+ C99 norm

+ |IEEE 754-1985 Floating point norm

+ User/architecture defined assumptions:
o Size of integer data types
» Initialization of statically allocated variables
» Range of inputs; maximum program run-time

e Abstraction = approximation relying on abstract domains
¢ Derivation of an automatic, sound static analyzer

e Certification of a program:
+ Fully automatic computation of an invariant
+ Verification of the absence of runtime errors

The AsTREE Analyzer —p.5/23

Outline

v/ The AsTREE Abstract Interpreter
o Abstract Domains
o Practical Use and Benchmarks

o Conclusions and Perspectives

The AsTREE Analyzer —p.6/23

Development of ASTREE

e Fall 2001: demand for a high precision, fast analyzer
ASTREE project started:

+ Scalability ensured first (algorithms and data-structures)
+ Simple, non relational domains

+ First refinements

+ Analysis of 10 KLOCs, low number of alarms

e Then, real applications considered:

+ Investigation of an alarm:
= ource of imprecision
= true alarm or need for a refinement?
+ Implementation of new domains,
solve imprecisions and preserve scalability
+ Analysis of two families of real-world, large applications

The AsTREE Analyzer —p.7/23

Abstractions and Abstract Domains

e What ASTREE computes:

Invariant I ¢ D¥: approximation for the set of traces [P]
e Structure of the abstraction I € D¥:

+ For each control point

+ For each execution context « (e.g. calling stack)

= an approximation I(l,x) € Dﬁ for a set of memory states
e Layout of D}:

+ Reduced product of a collection of abstract domains

+ Each domain:

» Expresses a (generally infinite) family of predicates

+ Transfer functions: asségm guarcf , ... operators
» Approximations for U: LI and V (convergence acceleration)

The AsTREE Analyzer —p.8/23

The Abstract I nterpreter

Principle: play all executions in a single, abstract computation
e Analysis of a basic statement 2 = e:

+ Transfer function assign(z = ¢) : Dj — D

¢ Dﬁ: accounts for the new/removed constraints

e Analyzing compound programs, e.g. loops:

memorized abstract invariants

X o

a4

while () { ... }

/
/

h propagated abstract invariants ——

Program Iterative invariant computation

The AsTREE Analyzer —p.9/23

Outline

o The AsTREE Abstract Interpreter
v/ Abstract Domains
o Practical Use and Benchmarks

o Conclusions and Perspectives

The AsTREE Analyzer —p.10/23

A Simple Domain: Intervals

e Resolution of concrete cells:
+ 1 abstract cell = 1 or more concrete cells (smashed arrays)
+ Simple points-to information
e Interval abstraction:
¢ Constraints a < x < b (x abstract cell)
+ Very common abstraction
+ Implementation: sound approximation for floating point
(in all domains)
e Development of ASTREE: structure + intervals was the base:

+ Enough to express the absence of runtime-errors
(array bounds, overflows)

+ Not enough to express its proof

The AsTREE Analyzer —p.11/23

Octagons
assume(x € [-10,10]) e Interval analysis:
if(x ? Oy : —xi} ¢ At®, x€[-10,10]; y € [0, 10]
else{y = x;)
Dif(y < 5) s At®, xe[-10,10]; y €[0,5]
{@assert(—5 < z < 5); } + Alarm (assert not proved)

¢ A relation between x and y is required:
= We need a relational abstraction

e Octagons:

+ Express constraints of the form +z +y < c.
Above example:
GAtD, 0<y—x<20; 0<y+x<20
o At®, ye[0,5]; 0<y—x<20; 0<y+x<20,
so we derive x € [—5, 5]
+ Reasonable cost: O(n?) memory and O(n?) time
complexity

The AsTREE Analyzer —p.12/23

Using Octagons

Several issues should be addressed:
e Scalability: O(n?) time, n = 10000 will not scale:
= Use many small octagons instead of a big one
+ Packs: small group of variables relations are required for
«+ Strategy: determines packs, required relations represented
+ Complexity: linear in the number of packs
Size of packs: bounded by a constant

Number of packs: linear in the size of the code
= Linear complexity

e Floating point rounding errors in the concrete computations
solved by linearization of expressions:
+ Expressions approximated with real interval linear forms
+ Relational domain: semantics in terms of real numbers

+ Rounding errors in concrete computations accounted for at
linearization time

The AsTREE Analyzer —p.13/23

Analyzing Filters

Simplified 2nd Order Filter: e Computes | x, — { o B2 Y

L,

e The concrete computation is bounded,
which must be proved in the abstract

e No stable interval or octagon

Unstable interval

e Simplest stable surface is an ellipsoid

N UFX)

Stable ellipsoid

The ASTREE Analyzer —p.14/23

Bounding Slow Divergences

Lo e With real numbers: x = 1.0 at ©®
x = 1.0;
while(TRUE){® e Floating point computations
x = x/3.0; = rounding errors in the concrete
x=xx3.0; ¢ Rounding errors accumulate;
} possible cause of divergence

e Solution: an arithmetico-geometric progression domain,

aimed at bounding the rounding errors using the number of
iterations:

¢ Relation | z |< A-B" + C,
where A, B, C are constants, n is the iteration number
+ Number of iterations: bounded by N: = |z |[< A-BY +C
e Ellipsoids, progressions:
+ Domains based on external mathematical theorems
+ Beyond what automatic refinement could do

The AsTREE Analyzer —p.15/23

Deci

sion Trees

bp=x<0;
bn=x>0;
@if(bp && bn)
@y = 0.0;
elsey =1.0/x;

e Non relational analysis: alarm at @ (div. 0)
o Relations needed at @:
¢+ bp=FALSE=x#0
¢bn=FALSE=x#0

e Domain similar to BDDs:
+ Nodes labeled with booleans variables

+ Leaves: values in an underlying domain
e.g. interval in the example

e Scalability problems:
Packing, similar to octagons

The AsTREE Analyzer —p.16/23

Trace Partitioning

assume(x € [0, 15]);

float © = {0, 10,20, 30}; ¢ No partitioning, interval analysis, at @©:

inti=0; 016[072]
while(x < t[i]) ¢ (t[i] — t[i — 1]) € [-10,20]
{i++} + Alarm at @ (divide by 0)

Oy = 1.0/(¢[i] — £[i — 1]);

e We need to do case-by-case analysis:
+ Relate x and i
+ Relate x and the number of iterations in the loop

e General, control-based partitioning domain
e Partitioning strategy (choice of partitions)

e Subject of the previous talk...

The AsTREE Analyzer —p.17/23

Outline

o The AsTREE Abstract Interpreter
o Abstract Domains
v/ Practical Use and Benchmarks

o Conclusions and Perspectives

The ASsTREE Analyzer —p.18/23

Use of ASTREE

e The analyzer:

+ Full automatic mode:
Should do well for the families of programs ASTREE is
designed for

+ ~ 150 options, so as to set
» The input (one or many files...)
+ The iteration strategy, the packing strategy
» The domains to enable or disable, domain parameters
o The export of invariants to disk

+ Standard output: alarms, invariants

+ Can be run in parallel mode

e A graphical interface:
Navigation through invariants (saved invariants)

The AsTREE Analyzer —p.19/23

Main Practical Results

e Used on 2 families of synchronous embedded programs
e Results: 3 development versions in the second family

e 2.2 GHz bi-opteron, 1 processor used, 64-bit architecture

Nb of lines 70 000 226 000 400 000
Number of iterations 32 51 88
Memory (Gb) 0.6 1.3 2.2
Time 46mn 3h57mn 11h48mn
False alarms 0 0 0

The AsTREE Analyzer —p.20/23

Outline

o The AsTREE Abstract Interpreter

o Abstract Domains

o Practical Use and Benchmarks

v/ Conclusions and Perspectives

The AsTREE Analyzer —p.21/23

Main Project Results

e The proof of strong safety properties is amenable to static
analysis methods:

+ Very few or no false alarms
+ Reasonable resource usage
+ Thanks to a specialized abstract interpreter

e Many practical and theoretical advances:
+ Relational numerical domains and floating point
+ Packing, linearization and relational domains
+ Development of new, specialized domains

+ Implementation of symbolic domains, e.g. partitioning,
symbolic...

The ASTREE Analyzer —p.22/23

Per spectives

o Allow for the parallelization of the analysis:
It works, allows cutting down the analysis time

e Extension of the memory model (work in progress):
Unions, pointer arithmetic

¢ Analyze asynchronous programs

e Certify the assembly code (work in progress):
Validation of the translation (successful prototype)

e Prove formally some AsTREE components

e Tracking semi-automatically the source of alarms:
+ Either prove an alarm false

+ Or restrict the alarm context
(help to find a scenario or the imprecision)

Encouraging early results: alarms successfully diagnosed

The AsTREE Analyzer —p.23/23

