Automatic Verification of Avionic Synchronous
Safety Critical Embedded Software

Motivation

Patrick COUSOT

Ecole Normale Supérieure
45 rue d’Ulm

75230 Paris cedex 05, France

Patrick.Cousot@ens.fr

www.di.ens.fr/~cousot

Wednesday Seminar Series, The Computer Laboratory
University of Cambridge, UK, Oct. 20th, 2004

All Computer Scientists Have Experienced Bugs

Talk Outline
e Motivation (1 mn)ooiniiiiiiii i, 4
e Abstract interpretation, informally (8 mn) 8
e Abstract interpretation, formal sketch (8 mn) 20
e Applications of abstract interpretation (2 mn) 28

e Application to the verification of embedded,
real-time, synchronous, safety super-critical

control-command software (12 mn) 32
e Examples of abstractions (12 mn) 44 . . o
e Conclusion (2 mn)c.oiiiuiiiiiiiiiiia.. 56 It is preferable to verify that safety-critical programs do

not go wrong before running them.

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 2 — @© P. Cousor ,‘?& Oct. 20th, 2004 R — @© P. Cousor ,‘?&

Static Analysis by Abstract Interpretation

Static analysis: analyse the program at compile-time to
verify a program runtime property (e.g. the absence
of some categories of bugs)

Undecidability —

Abstract interpretation: effectively compute an abstraction/
sound approximation of the program semantics,

e which is precise enough to imply the desired
property, and

e coarse enough to be efficiently computable.

Abstract Interpretation,
Informally

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 6 — © P. CousoT é‘;’-

Operational Semantics

3 2(t)

Possible
trajectories
> 1
Safety property
z(t)
Forbidden zone
Possible
trajectories

O
I

Oct. 20th, 2004 — 8 —

@) 1
(© P. Cousor .m},‘."_

Test/Debugging is Unsafe Abstract Interpretation

z(t)

Forbidden zone

::3333:"’"}—"":‘3'"333:.: | Possible Possible
‘ trajectories trajectories
Test of a few trajectories - N Abstraction of the trajectories
I :
— 9 — — 11 —
Bounded Model Checking is Unsafe Soundness: Erroneous Abstraction — |
z(t) z(t)

Forbidden zone Error !l! Forbidden zone Error !I!
— —
;\/ .':;j::;f::"jjf Possible Possible

a \ AN ‘ o »<_.. [trajectories trajectories
,/_ . I o e
T e T
Bounded model-checking of trajectory prefixes Erroneous trajectory abstraction
I :

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 10 — ©FP. Cousmﬁji Oct. 20th, 2004 19 — @© P. Cousor gk

Soundness: Erroneous Abstraction — Il

Interval Abstraction = False Alarms

z(t)

Forbidden zone

Ealse alarms

Possible Possible
trajectories r/ trajectories

Erroneous trajectory abstraction Imprecise trajectory abstraction by intervals

t t

Imprecision = False Alarms Refinement by Partitionning
z(t) z(t)
Forbidden zone False alarm Forbidden zone

1 Possible Possible
‘ D trajectories trajectories
\
Imprecise trajectory abstraction Refinement of intervals

t t

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 14 — © P. CousoT &

Oct. 20th, 2004 — 16 — © P. Cousor &

Abstract Interpretation,
formal sketch

__ Reference

[POPL'77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In 4th ACM POPL.

[Thesis'78] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. Thése és sci. math. Grenoble, march 1978.

[POPL'79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th ACM POPL.

— 17 —

Syntax of Programs

X variables X € X
T types T € T
E arithmetic expressions E € E
B boolean expressions B € B
D =TX; declarations D € D, vars(D) = {X}
| TX ;D X ¢ vars(D'), vars(D) = {X} U vars(D’)
C = X =FE; commands C € C (E < C)
| while B C' (B<C,C' <C)
| if BC' (B<C,C'<C)
| if B C' else C” (B<C,C'<C,C"<C)
| {C1...Ch} (n>0) (c,<C,...,C,<0C)
P:=DC program PP (C < P)
The Computer Lab., Cambridge U., Oct. 20th, 2004 — 18 — ©FP. Cousovr_s"_ﬁ;a_

Concrete Semantic Domain of Programs

Reachability properties:

S[D c] € 5[D] states p
[T X;] d:ef{X}l—>T (p(X) is the value
def

Y[T X, D] = {X}— T)u X[D] of X)

def

D[P] = p(X[P]) sets of states/

program properties where C is implication, 0 is false, U
is disjunction.

— 19 —

Concrete Reachability Semantics of Programs

S[X = B;]R = {p[X « E[E]p] | p € RN dom(E)}
plX —v)(X) v, p[X «v](Y) = p(Y)
S[if B C']R & S[C'|(B[B]R) U B[-B]R
B[B]R £ {p € Rndom(B) | B holds in p}
S[if B C' else C"]|R ¥ S[C'|(B[B]R) U S[C"](B[~B]R)
S[while B C']R £ let W = |fp§ AX.RUS[C'|(B[B]X)

in (B[-B]W)

SI3IR= R
S[{C1...ChY]R E S[Cn]o...oS[C1] n >0

def

S[D C]R = S[C](¥[D]) (uninitialized variables)
Not computable (undecidability).

th y T 2o
Oct. 20th, 2004 © P. COUSOLI&._,_)_

Example: Abstract Semantic Domain of Programs

(DV[P], C, L, L)
such that:

Y
a

(D, C) (D[P, ©)

hence (DI[P], C, L, L) is a complete lattice such that
1 =a(0) and UX = a(Uy(X))

— 21 —

Approximate Fixpoint Abstraction
[Abstract domain

i i
D)
i

N N "": ~y ;: y Y Approximation
_ ; : ' : N relation C

Concrete domain}

FoyL yoF! = ifpF C y(ifp FY)

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 22 —

P~ [
© P. COUSOT.‘:H‘_

Abstract Reachability Semantics of Programs

SUx = B;]R = o({p[X « E[E]p] | p € 7(R) Ndom(E)})
Silit B ¢'|R & st[c'|(B[B]R) L B![-B]R
B'B]R £ o({p € 7(R) Ndom(B) | B holds in p})
Sl[if B C' else C"|R £ SHC'|(B'[B]R) L S![C"](B[-B]R)
Stwhile B C'|R £ let W = |fpf AX . RUSH[C(BY[B]x)
in (BI[-B]W)
S'{}IR< R
SM{C1...CR}IR & SM[Cp] o .

: oSl n>o0
SD C]R &

SHC)(T) (uninitialized variables)

— 23 —

Convergence Acceleration with Widening

Abstract domain v

Approximation

i —
o 5 1 relation C

-~ 3.4
J

th — — @) s
Oct. 20th, 2004 24 © P. COUSOT.‘H‘_

Example: Abstract Semantics with Convergence Acceleration' Applications of Abstract Interpretation

def

Sﬁﬁ[[X) E;/HR N g{p[/X Tt E1E1Al | F; SR ndem(E)}) o static Program Analysis [POPL '77], [POPL '78], [POPL '79]
§lit B Clr = STUCY(BIB]R) U B[~B] & including Dataflow Analysis [POPL *79], [POPL00], Set-

BHBIR = a({p € 7(R) Ndom(B) | B holds in p}) based Analysis [FPCA '95], Predicate Abstraction

St B C' else C"|R = SHC|(B[B]R) U S'[C"|(B'[~B]R) [Manna’s festschrift’03], ...
SM[while B C'|R ¥ let Ff = AX .let Y = RU SH[C|(BI[B]X) ’
in if Y C X then X else X VY e Syntax Analysis [TCS 290(1) 2002]
C
and W =fp 74 in (BI[-B]W) e Hierarchies of Semantics (including Proofs) [POPL '92],
SR = R [TCS 277(1-2) 2002]

SH{C1...Ci}]R E SHCp]o...oSMCi] n>0

s n[Cﬂ(T) (uninitialized variables)

Si[D)R & e Typing & Type Inference [POPL ’97]

— 27 —

— 25 —

Applications of Abstract Interpretation (Cont’d)

e (Abstract) Model Checking [POPL '00]

— _ e Program Transformation [POPL '02]
Applications of Abstract Interpretation

e Software Watermarking [POPL '04]

e Bisimulations [RT-ESOP ’04]

All these techniques involve sound approximations that
can be formalized by abstract interpretation

1 Note: ! not monotonic!

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 26 — © P. Cousor ‘i;‘ Oct. 20th, 2004 — 28 — © P. Cousor ‘i;‘

A Practical Application of Abstract
Interpretation to the Verification

of Safety Critical Embedded
Control-Command Software

__ Reference

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Design
and implementation of a special-purpose static program analyzer for safety-critical real-time embedded
software. The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, LNCS 2566, pages 85-108. Springer, 2002.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static
analyzer for large safety-critical software. PLDI’03, San Diego, June 7-14, ACM Press, 2003.

ASTREE: A Sound, Automatic, Specializable, Domain-Aware,
Parametric, Modular, Efficient and Precise Static Program
Analyzer

www.astree.ens.fr
e C programs:
- with
* pointers (including on functions), structures and
arrays

x floating point computations
x tests, loops and function calls
* limited branching (forward goto, break, continue)

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 30 — © P. CousoT g‘:;j

e without

- union

- dynamic memory allocation
- recursive function calls

- backward branching

- conflict side effects

- C libraries

e Application Domain: safety critical embedded real-time

synchronous software for non-linear control of very
complex control/command systems.

— 31 —

Oct. 20th, 2004 — 32 —

Concrete Operational Semantics

International norm of C (ISO/IEC 9899:1999)

restricted by implementation-specific behaviors depend-
ing upon the machine and compiler (e.g. representa-
tion and size of integers, IEEE 754-1985 norm for floats
and doubles)

restricted by user-defined programming guidelines (such
as no modular arithmetic for signed integers, even
though this might be the hardware choice)

restricted by program specific user requirements (e.g.
assert)

© P. Cousor &,,

Abstract Semantics

e Reachable states for the concrete operational seman-
tics

e Volatile environment is specified by a trusted configu-
ration file.

— 33 —

Implicit Specification: Absence of Runtime Errors

e No violation of the norm of C (e.g. array index out of
bounds)

e No implementation-specific undefined behaviors (e.g.
maximum short integer is 32767)

e No violation of the programming guidelines (e.g. static
variables cannot be assumed to be initialized to 0)

e No violation of the programmer assertions (must all
be statically verified).

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 34 — © P. Cousor &,,

Example application

e Primary flight control software of the Airbus A340/A380
fly-by-wire system

e C program, automatically generated from a propri-
etary high-level specification (a la Simulink/SCADE)

e A340 family: 132,000 lines, 75,000 LOCs after pre-
processing, 10,000 global variables, over 21,000 after
expansion of small arrays

e A380: x 3

— 35 —

The Class of Considered Periodic Synchronous Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever
- read volatile input variables,
- compute output and state variables,
- write to volatile output variables;
wait _for clock ();
end loop

e Requirements: the only interrupts are clock ticks;

e Execution time of loop body less than a clock tick [3].

Reference

[3] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing, and R. Wil-
helm. Reliable and precise WCET determination for a real-life processor. ESOP (2001), LNCS 2211,
469-485.

th . . @ ()
Oct. 20th, 2004 36 © P. COUSOT.S‘H’_

Characteristics of the ASTREE Analyzer

Static: compile time analysis (# run time analysis Rational
Purify, Parasoft Insure++)

Program Analyzer: analyzes programs not micromodels of
programs (# PROMELA in SPIN or Alloy in the
Alloy Analyzer)

Automatic: no end-user intervention needed (# ESC Java,
ESC Java 2)

Sound: covers the whole state space (# MAGIC, CBMC)
so never omit potential errors (# UNO, CMC from
coverity.com) or sort most probable ones (# Splint)

— 37 —

Characteristics of the ASTREE Analyzer (Cont’d)

Multiabstraction: uses many numerical /symbolic abstract
domains (# symbolic constraints in Bane or the
canonical abstraction of TVLA)

Infinitary: all abstractions use infinite abstract domains
with widening/narrowing (# model checking based
analyzers such as VeriSoft, Bandera, Java PathFinder)

Efficient: always terminate (# counterexample-driven au-
tomatic abstraction refinement BLAST, SLAM)

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 38 — © P. Cousor !;_.;q

Characteristics of the ASTREE Analyzer (Cont’d)

Specializable: can easily incorporate new abstractions (and
reduction with already existing abstract domains)
(# general-purpose analyzers PolySpace Verifier)

Domain-Aware: knows about control/command (e.g. dig-
ital filters) (as opposed to specialization to a mere
programming style in C Global Surveyor)

Parametric: the precision/cost can be tailored to user needs
by options and directives in the code

— 39 —

Characteristics of the ASTREE Analyzer (Cont’d)

Automatic Parametrization: the generation of parametric
directives in the code can be programmed (to be
specialized for a specific application domain)

Modular: an analyzer instance is built by selection of O-
CAML modules from a collection each implement-
ing an abstract domain

Precise: very few or no false alarm when adapted to an
application domain — it is a VERIFIER!

Oct. 20th, 2004 — 40 — © P. Cousor g‘_.;ﬁ,_

Example of Analysis Session
(Airbus A380 Primary Flight Control Software)

CIEE] Wausirater
x B ¢ S e 2
.] T |

= = e 350,000 lines
o 0 alarms (last week!),

7h’ on 2.8 GHz PC,

1 Gigabyte

= - — A world grand premiére!

— 43 —

— 41 —

Benchmarks (Airbus A340 Primary Flight Control Software)

Examples of Abstractions

e 132,000 lines, 75,000 LOCs after preprocessing
e Comparative results (commercial software):
4,200 (false?) alarms,
3.5 days;
e Our results:
Q alarms,

40mn on 2.8 GHz PC,
300 Megabytes
2 We are still in a phase where we favour precision rather than computation costs, and this should go down.
For example, the A340 analysis went up to 5 h, before being reduced by requiring less precision while still

— A world premiére!
getting no false alarm.
©FP. COUSOT.‘Z;.;‘_

— 44 —

© P. Cousor ‘i;‘ Oct. 20th, 2004

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 42 —

General-Purpose Abstract Domains: Intervals and Octagons

Y Intervals:
+ ‘ 1<z<9
LA 1<y<20
+

+ + + Octagons [4]:
et t 1<z<9

i " T+y <77

0 X 1<y<20
> z—y <04

Difficulties: many global variables, arrays (smashed or not), IEEE
754 floating-point arithmetic (in program and analyzer) [5]

__ Reference

[4] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. In PADO’2001,
LNCS 2053, Springer, 2001, pp. 155-172.

[6] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In ESOP’04,
Barcelona, LNCS 2986, pp. 1—17, Springer, 2004.

— 45 —

Floating-Point Computations

e Code Sample:
/* float-error.c */
int main () { int main () {

float x, y, z, r; double x; float y, z, r;

x = 1.000000019e+38; /* x = ldexp(1l.,50)+1dexp(1l.,26); */

/* double-error.c *x/

y = x + 1.0e21; x = 1125899973951488.0;
z =x - 1.0e21; y=x+1;
r=y - z z=x-1;
printf ("%f\n", r); r=y -z
} % gcec float-error.c printf ("%f\n", r);
% ./a.out }
0.000000 % gcc double-error.c

% ./a.out
134217728 .000000

(z+a)—(z—a)#2a

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 46 — © P. Cousor l!"

Symbolic abstract domain

e Interval analysis: if z € [a,b] and y € [c,d] thenz—y €
[a—c,b—d] soif z € [0,100] then z—z € [—100, 100]!!!
e The symbolic abstract domain propagates the sym-
bolic values of variables and performs simplifications;

e Must maintain the maximal possible rounding error
for float computations (overestimated with intervals);

% cat -n x-x.c
1 void main () { int X, Y;

2 __ASTREE _known_fact (((0 <= X) && (X <= 100)));
3 Y=&-X);

4 __ASTREE_log_vars((Y));

5)

astree -exec-fn main x-x.c
Call main@x-x.c:1:5-x-x.c:1:9:
<interval: Y in {0}> <symbolic: Y = (X -i X)>

astree -exec-fn main -no-relational x-x.c
Call main@x-x.c:1:5-x-x.c:1:9:
<interval: Y in [-100, 100]>

— 47 —

Clock Abstract Domain for Counters
e Code Sample:

R =0; - Output T is true iff the volatile input I has
while (1) { been true for the last n clock ticks.
1 [(I)_ . - The clock ticks every s seconds for at most
Ro= Rl) h hours, thus R is bounded.
else
{R=0;} - To prove that R cannot overflow, we must
T = (R>=n) ; prove that R cannot exceed the elapsed
wait_for_clock () clock ticks (impossible using only inter-
} vals).
e Solution:

- We add a phantom variable clock in the concrete user semantics to track
elapsed clock ticks.

- For each variable X, we abstract three intervals: X, X+clock, and X-clock.

- If X+clock or X-clock is bounded, so is X.

Oct. 20th, 2004 — 48 — © P. Cousor gl

Boolean Relations for Boolean Control Ellipsoid Abstract Domain for Filters

24 Order Digital Filter:
e Code Sample:

X Xn o+4Y,
/* boolean.c */ @ e Computes X, :{? n-1+BXn2+Y,
typedef enum {F=0,T=1} BOOL; EN-he n
BOOL B: e The concrete computation is bounded, which
void main O { must be proved in the abstract.
unsigned int X, Y; e There is no stable interval or octagon.
while (1) { v Y Y I e The simplest stable surface is an ellipsoid.
N T T T T T T T T |
= (X == O) 5 X X X 3 \ ‘\‘
it <'B> { | |
1/X The boolean relation abstract do-
} main is parameterized by the height /P FX) /| ,
o of the decision tree (an analyzer 7 X (,
} option) and the abstract domain at i OXUFRX) N~ xUFX
¥ the leafs execution trace unstable interval stable ellipsoid
T — 51 —
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN; Filter Example [6]
Control Partitionning for Case Analysis BOOLEAN INIT; float P, X;
e Code Sample: void filter () {
/% trace_partitionning.c */ Control point partitionning: static float E[2], S[2];
void main() { . - Y. - Y. - Y.
float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0}; (O) if (INIT) { s[0] = X; P = X; E[0] = X; }
float c[4] = {0.0, 2.0, 2.0, 0.0}; ol lellellellollollollollelle else { P = ((((€0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))
float d[4] = {-20.0, -20.0, 0.0, 20.0}; ol leol lel lol lel lal lol le!l lelle + (S[0] * 1.5)) - (S[1] * 0.7)); }
fl:aF):{,Of; RINIRINIRININININIR E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] =
int 1 ; A N N N N N AN AN AN
o /* S[0], S[1] in [-1327.02698354, 1327.02698354] */
. found invariant —100 < x < 100 ... Trace partitionning: }
while ((1 < 3) && (x >= t[i+1])) { OOQ/Dﬂﬂ AVANANA void main () { X = 0.2 * X + 5: INIT = TRUE:
i=1+1; ’ ’
1 NI ININEAAMEMEMEN while (1) {
r= (x - t[iD) * c[i] + dlil; TSt ST X=0.9 %X+ 35;
’ CACACNORCRCNCRORURL filter (); INIT = FALSE; }
t Fork t Join t }
Delaying abstract unions in tests and loops is more precise for non-distributive et
____ nelerence
abstract domains (and much less expensive than diSqulCtiVG completion). [6] J. Feret. Static analysis of digital filters. In ESOP’04, Barcelona, LNCS 2986, pp. 33—-48, Springer, 2004.

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 50 — @© P. Cousor gl Oct. 20th, 2004 — 52 — @© P. Cousor gl

(Automatic) Parameterization

e All abstract domains of ASTREE are parameterized,
e.g.
- variable packing for octagones and decision trees,
- partition/merge program points,
- loop unrollings,
- thresholds in widenings, ...;

e End-users can either parameterize by hand (analyzer
options, directives in the code), or

e choose the automatic parameterization (default op-
tions, directives for pattern-matched predefined pro-
gram schemata).

— 53 —

The main loop invariant for the A340
A textual file over 4.5 Mb with

6,900 boolean interval assertions (z € [0;1])

9,600 interval assertions (z € [a;b])
25,400 clock assertions (z+clk € [a;b|Az—clk € [a;b])
19,100 additive octagonal assertions (a < z + y < b)

19,200 subtractive octagonal assertions (a < z—y < b)
e 100 decision trees
e 60 ellipse invariants, etc ...

involving over 16,000 floating point constants (only 550
appearing in the program text) x 75,000 LOCs.

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 54 —

Possible origins of imprecision and how to fix it

In case of false alarm, the imprecision can come from:

e Abstract transformers (not best possible) — improve
algorithm,;

e Automatized parametrization (e.g. variable packing)
— improve pattern-matched program schemata;

e [teration strategy for fixpoints — fix widening °;

e Inexpressivity i.e. indispensable local inductive invari-
ant are inexpressible in the abstract — add a new
abstract domain to the reduced product (e.g. filters).

— B —

(© P. Cousor ag'_-_a-h_

Conclusion

3 This can be very hard since at the limit only a precise infinite iteration might be able to compute the
proper abstract invariant. In that case, it might be better to design a more refined abstract domain.

Oct. 20th, 2004 — 56 — © P. Cousor g‘_.;_h_

Conclusion

e Most applications of abstract interpretation tolerate a small

rate (typically 5 to 15%) of false alarms:
- Program transformation — do not optimize,
- Typing — reject some correct programs, etc,
- WCET analysis — overestimate;
e Some applications require no false alarm at all:
- Program verification.

e Theoretically possible [SARA ’00], practically feasible [PLDI 03|

Reference

[SARA’00] P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In 4% Int. Symp.
SARA ’2000, LNAI 1864, Springer, pp. 1-25, 2000.

[PLDI’03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mingé, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. PLDI’03, San Diego, June 7-14, ACM Press, 2003.

— B7 —

THE END, THANK YOU

More references at URL www.di.ens.fr/ cousot
www.astree.ens.fr.

— 59 —

The Future & Grand Challenges

Future (5 years):

e Asynchronous concurrency (for less critical software)

e Functional properties (reactivity)

e Industrialization

Grand challenge:

e Verification from specifications to machine code (veri-
fying compiler)

e Verification of systems (quasi-synchrony, distribution)

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 58 —

©) P. Cousow.ﬂ'_.-_d'_)_

References

[POPL’77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In Conference Record of the Fourth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages 238-252, Los Angeles,
California, 1977. ACM Press, New York, NY, USA.

[PACIM’79] P. Cousot and R. Cousot. Constructive versions of Tarski’s fixed point theorems. Pacific Journal
of Mathematics 82(1):43-57 (1979).

[POPL’78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a pro-
gram. In Conference Record of the Fifth Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84-97, Tucson, Arizona, 1978. ACM Press, New York, NY, U.S.A.

[POPL'79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In Conference Record
of the Sixth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
269-282, San Antonio, Texas, 1979. ACM Press, New York, NY, U.S.A.

[POPL'92] P. Cousot and R. Cousot. Inductive Definitions, Semantics and Abstract Interpretation. In Con-
ference Record of the 19" ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Programming
Languages, pages 83-94, Albuquerque, New Mexico, 1992. ACM Press, New York, U.S.A.

Oct. 20th, 2004 — 60 — © P. Cousor ﬂ‘_j;;)

[FPCA’95] P. Cousot and R. Cousot. Formal Language, Grammar and Set-Constraint-Based Program Analysis
by Abstract Interpretation. In SIGPLAN/SIGARCH/WG2.8 7" Conference on Functional Programming
and Computer Architecture, FPCA’95. La Jolla, California, U.S.A., pages 170-181. ACM Press, New York,
U.S.A., 25-28 June 1995.

[POPL’97] P. Cousot. Types as Abstract Interpretations. In Conference Record of the 24" ACM SIGACT-
SIGMOD-SIGART Symposium on Principles of Programming Languages, pages 316—331, Paris, France,
1997. ACM Press, New York, U.S.A.

[POPL’'00] P. Cousot and R. Cousot. Temporal abstract interpretation. In Conference Record of the Twen-
tyseventh Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, pages
12-25, Boston, Mass., January 2000. ACM Press, New York, NY.

[POPL’02] P. Cousot and R. Cousot. Systematic Design of Program Transformation Frameworks by Abstract
Interpretation. In Conference Record of the Twentyninth Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 178-190, Portland, Oregon, January 2002. ACM Press, New
York, NY.

[TCS 277(1-2) 2002] P. Cousot. Constructive Design of a Hierarchy of Semantics of a Transition System
by Abstract Interpretation. Theoretical Computer Science 277(1-2):47-103, 2002.

[TCS 290(1) 2002] P. Cousot and R. Cousot. Parsing as abstract interpretation of grammar semantics. Theo-
ret. Comput. Sci., 290:531-544, 2003.

[Manna’s festschrift’03] P. Cousot. Verification by Abstract Interpretation. Proc. Int. Symp. on Verification —
Theory & Practice — Honoring Zohar Manna’s 64th Birthday, N. Dershowitz (Ed.), Taormina, Italy, June
29 — July 4, 2003. Lecture Notes in Computer Science, vol. 2772, pp. 243-268. (C) Springer-Verlag, Berlin,
Germany, 2003.

— 61 —

[POPL’'04] P. Cousot and R. Cousot. An Abstract Interpretation-Based Framework for Software Watermarking.

In Conference Record of the Thirtyfirst Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 173-185, Venice, Italy, January 14-16, 2004. ACM Press, New York, NY.

[RT-ESOP’04] F. Ranzato and F. Tapparo. Strong Preservation as Completeness in Abstract Interpretation.
Proc. Programming Languages and Systems, 13th European Symposium on Programming, ESOP 2004, Held
as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2004, Barcelona,
Spain, March 29 - April 2, 2004, D.A. Schmidt (Ed), Lecture Notes in Computer Science 2986, Springer,
2004, pp. 18-32.

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 62 — ©) P. CousoT &d,

Oct. 20th, 2004

	Talk Outline
	MOTIVATION
	All computer scientists have experienced bugs
	Static analysis by abstract interpretation
	ABSTRACT INTERPRETATION, INFORMALLY
	Operational semantics
	Safety property
	Test/debugging is unsafe
	Bounded model checking is unsafe
	Abstract interpretation
	Soundness: erroneous abstraction --- I
	Soundness: erroneous abstraction --- II
	Imprecision implies false alarms
	Interval abstraction implies false alarms
	Refinement by partitionning
	ABSTRACT INTERPRETATION, FORMAL SKETCH
	Syntax of programs
	Concrete semantic domain of programs
	Concrete reachability semantics of programs
	Abstract semantic domain of programs
	Approximate fixpoint abstraction
	Abstract reachability semantics of programs
	Convergence acceleration with widening(/narrowing)
	Example: abstract semantics with convergence acceleration
	APPLICATIONS OF ABSTRACT INTERPRETATION
	Applications of abstract interpretation
	Applications of abstract interpretation
	A PRACTICAL APPLICATION OF ABSTRACT INTERPRETATION TO THE VERIFICATION OF SAFETY CRITICAL EMBEDDED SOFTWARE
	ASTRÉE: a sound, automatic, specializable, domain-aware, parametric, modular, efficient and precise static program analyzer
	Concrete operational semantics
	Abstract semantics
	Implicit specification: absence of runtime errors
	Example application
	The class of considered periodic synchronous programs
	Characteristics of the ASTRÉE analyzer
	Example of analysis session
	Benchmarks
	Benchmarks
	EXAMPLES OF ABSTRACTION
	General-purpose abstract domains: intervals and octagons
	Floating-point computations
	Symbolic abstract domain
	Clock abstract domain for counters
	Boolean relations for boolean control
	Control partitionning for case analysis
	Ellipsoid abstract domain for digital filters
	Filter example
	(Automatic) Parameterization
	The main loop invariant for the A340
	Possible origins of imprecision
	CONCLUSION
	Conclusion
	The future and grand challenges
	THE END
	References

