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Static Analysis by Abstract Interpretation

Static analysis: analyse the program at compile-time to
verify a program runtime property (e.g. the absence
of some categories of bugs)

Undecidability —

Abstract interpretation: effectively compute an abstraction/
sound approximation of the program semantics,

e which is precise enough to imply the desired
property, and

e coarse enough to be efficiently computable.

Abstract Interpretation,
Informally
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Operational Semantics
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Test/Debugging is Unsafe Abstract Interpretation
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Soundness: Erroneous Abstraction — Il

Interval Abstraction = False Alarms
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Abstract Interpretation,
formal sketch

__ Reference

[POPL'77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In 4th ACM POPL.

[Thesis'78] P. Cousot. Méthodes itératives de construction et d’approximation de points fixes d’opérateurs
monotones sur un treillis, analyse sémantique de programmes. Thése és sci. math. Grenoble, march 1978.

[POPL'79] P. Cousot & R. Cousot. Systematic design of program analysis frameworks. In 6th ACM POPL.
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Syntax of Programs

X variables X € X
T types T € T
E arithmetic expressions E € E
B boolean expressions B € B
D =TX; declarations D € D, vars(D) = {X}
| TX ;D X ¢ vars(D'), vars(D) = {X} U vars(D’)
C = X =FE; commands C € C (E < C)
| while B C' (B<C,C' <C)
| if BC' (B<C,C'<C)
| if B C' else C” (B<C,C'<C,C"<C)
| {C1...Ch} (n>0) (c,<C,...,C,<0C)
P:=DC program PP (C < P)
The Computer Lab., Cambridge U., Oct. 20th, 2004 — 18 — ©FP. Cousovr_s"_ﬁ;a_

Concrete Semantic Domain of Programs

Reachability properties:

S[D c] € 5[D] states p
[T X;] d:ef{X}l—>T (p(X) is the value
def

Y[T X, D] = {X}— T)u X[D] of X)

def

D[P] = p(X[P]) sets of states/

program properties where C is implication, 0 is false, U
is disjunction.

— 19 —

Concrete Reachability Semantics of Programs

S[X = B;]R = {p[X « E[E]p] | p € RN dom(E)}
plX —v)(X) v,  p[X «v](Y) = p(Y)
S[if B C']R & S[C'|(B[B]R) U B[-B]R
B[B]R £ {p € Rndom(B) | B holds in p}
S[if B C' else C"]|R ¥ S[C'|(B[B]R) U S[C"](B[~B]R)
S[while B C']R £ let W = |fp§ AX.RUS[C'|(B[B]X)

in (B[-B]W)

SI3IR= R
S[{C1...ChY]R E S[Cn]o...oS[C1] n >0

def

S[D C]R = S[C](¥[D]) (uninitialized variables)
Not computable (undecidability).

th y T 2o
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Example: Abstract Semantic Domain of Programs

(DV[P], C, L, L)
such that:

Y
a

(D, C) (D[P, ©)

hence (DI[P], C, L, L) is a complete lattice such that
1 =a(0) and UX = a(Uy(X))
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Approximate Fixpoint Abstraction
[ Abstract domain
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Abstract Reachability Semantics of Programs

SUx = B;]R = o({p[X « E[E]p] | p € 7(R) Ndom(E)})
Silit B ¢'|R & st[c'|(B[B]R) L B![-B]R
B'B]R £ o({p € 7(R) Ndom(B) | B holds in p})
Sl[if B C' else C"|R £ SHC'|(B'[B]R) L S![C"](B[-B]R)
Stwhile B C'|R £ let W = |fpf AX . RUSH[C(BY[B]x)
in (BI[-B]W)
S'{}IR< R
SM{C1...CR}IR & SM[Cp] o .

: oSl n>o0
SD C]R &

SHC)(T) (uninitialized variables)
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Convergence Acceleration with Widening

Abstract domain v

Approximation

i —
o 5 1 relation C
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J
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Example: Abstract Semantics with Convergence Acceleration' Applications of Abstract Interpretation

def

Sﬁﬁ[[X ) E;/HR N g{p[/X Tt E1E1Al | F; SR ndem(E)}) o static Program Analysis [POPL '77], [POPL '78], [POPL '79]
§lit B Clr = STUCY(BIB]R) U B[~B] & including Dataflow Analysis [POPL *79], [POPL00], Set-

BHBIR = a({p € 7(R) Ndom(B) | B holds in p}) based Analysis [FPCA '95], Predicate Abstraction

St B C' else C"|R = SHC|(B[B]R) U S'[C"|(B'[~B]R) [Manna’s festschrift’03], ...
SM[while B C'|R ¥ let Ff = AX .let Y = RU SH[C|(BI[B]X) ’
in if Y C X then X else X VY e Syntax Analysis [TCS 290(1) 2002]
C
and W =fp 74 in (BI[-B]W) e Hierarchies of Semantics (including Proofs) [POPL '92],
SR = R [TCS 277(1-2) 2002]

SH{C1...Ci}]R E SHCp]o...oSMCi] n>0

s n[Cﬂ(T) (uninitialized variables)

Si[D )R & e Typing & Type Inference [POPL ’97]

— 27 —
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Applications of Abstract Interpretation (Cont’d)

e (Abstract) Model Checking [POPL '00]

— _ e Program Transformation [POPL '02]
Applications of Abstract Interpretation

e Software Watermarking [POPL '04]

e Bisimulations [RT-ESOP ’04]

All these techniques involve sound approximations that
can be formalized by abstract interpretation

1 Note: ! not monotonic!
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A Practical Application of Abstract
Interpretation to the Verification

of Safety Critical Embedded
Control-Command Software

__ Reference

[1] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. Design
and implementation of a special-purpose static program analyzer for safety-critical real-time embedded
software. The Essence of Computation: Complexity, Analysis, Transformation. Essays Dedicated to Neil D.
Jones, LNCS 2566, pages 85-108. Springer, 2002.

[2] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and X. Rival. A static
analyzer for large safety-critical software. PLDI’03, San Diego, June 7-14, ACM Press, 2003.

ASTREE: A Sound, Automatic, Specializable, Domain-Aware,
Parametric, Modular, Efficient and Precise Static Program
Analyzer

www.astree.ens.fr
e C programs:
- with
* pointers (including on functions), structures and
arrays

x floating point computations
x tests, loops and function calls
* limited branching (forward goto, break, continue)
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e without

- union

- dynamic memory allocation
- recursive function calls

- backward branching

- conflict side effects

- C libraries

e Application Domain: safety critical embedded real-time

synchronous software for non-linear control of very
complex control/command systems.

— 31 —
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Concrete Operational Semantics

International norm of C (ISO/IEC 9899:1999)

restricted by implementation-specific behaviors depend-
ing upon the machine and compiler (e.g. representa-
tion and size of integers, IEEE 754-1985 norm for floats
and doubles)

restricted by user-defined programming guidelines (such
as no modular arithmetic for signed integers, even
though this might be the hardware choice)

restricted by program specific user requirements (e.g.
assert)

© P. Cousor &,,



Abstract Semantics

e Reachable states for the concrete operational seman-
tics

e Volatile environment is specified by a trusted configu-
ration file.

— 33 —

Implicit Specification: Absence of Runtime Errors

e No violation of the norm of C (e.g. array index out of
bounds)

e No implementation-specific undefined behaviors (e.g.
maximum short integer is 32767)

e No violation of the programming guidelines (e.g. static
variables cannot be assumed to be initialized to 0)

e No violation of the programmer assertions (must all
be statically verified).
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Example application

e Primary flight control software of the Airbus A340/A380
fly-by-wire system

e C program, automatically generated from a propri-
etary high-level specification (a la Simulink/SCADE)

e A340 family: 132,000 lines, 75,000 LOCs after pre-
processing, 10,000 global variables, over 21,000 after
expansion of small arrays

e A380: x 3

— 35 —

The Class of Considered Periodic Synchronous Programs

declare volatile input, state and output variables;
initialize state and output variables;
loop forever
- read volatile input variables,
- compute output and state variables,
- write to volatile output variables;
wait _for clock ();
end loop

e Requirements: the only interrupts are clock ticks;

e Execution time of loop body less than a clock tick [3].

Reference

[3] C. Ferdinand, R. Heckmann, M. Langenbach, F. Martin, M. Schmidt, H. Theiling, S. Thesing, and R. Wil-
helm. Reliable and precise WCET determination for a real-life processor. ESOP (2001), LNCS 2211,
469-485.

th . . @ ()
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Characteristics of the ASTREE Analyzer

Static: compile time analysis (# run time analysis Rational
Purify, Parasoft Insure++)

Program Analyzer: analyzes programs not micromodels of
programs (# PROMELA in SPIN or Alloy in the
Alloy Analyzer)

Automatic: no end-user intervention needed (# ESC Java,
ESC Java 2)

Sound: covers the whole state space (# MAGIC, CBMC)
so never omit potential errors (# UNO, CMC from
coverity.com) or sort most probable ones (# Splint)

— 37 —

Characteristics of the ASTREE Analyzer (Cont’d)

Multiabstraction: uses many numerical /symbolic abstract
domains (# symbolic constraints in Bane or the
canonical abstraction of TVLA)

Infinitary: all abstractions use infinite abstract domains
with widening/narrowing (# model checking based
analyzers such as VeriSoft, Bandera, Java PathFinder)

Efficient: always terminate (# counterexample-driven au-
tomatic abstraction refinement BLAST, SLAM)
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Characteristics of the ASTREE Analyzer (Cont’d)

Specializable: can easily incorporate new abstractions (and
reduction with already existing abstract domains)
(# general-purpose analyzers PolySpace Verifier)

Domain-Aware: knows about control/command (e.g. dig-
ital filters) (as opposed to specialization to a mere
programming style in C Global Surveyor)

Parametric: the precision/cost can be tailored to user needs
by options and directives in the code

— 39 —

Characteristics of the ASTREE Analyzer (Cont’d)

Automatic Parametrization: the generation of parametric
directives in the code can be programmed (to be
specialized for a specific application domain)

Modular: an analyzer instance is built by selection of O-
CAML modules from a collection each implement-
ing an abstract domain

Precise: very few or no false alarm when adapted to an
application domain — it is a VERIFIER!
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Example of Analysis Session
(Airbus A380 Primary Flight Control Software)

CIEE] Wausirater
x B ¢ S e 2
. ] T |

= = e 350,000 lines
o 0 alarms (last week!),

7h’ on 2.8 GHz PC,

1 Gigabyte

= - — A world grand premiére!
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Benchmarks (Airbus A340 Primary Flight Control Software)

Examples of Abstractions

e 132,000 lines, 75,000 LOCs after preprocessing
e Comparative results (commercial software):
4,200 (false?) alarms,
3.5 days;
e Our results:
Q alarms,

40mn on 2.8 GHz PC,
300 Megabytes
2 We are still in a phase where we favour precision rather than computation costs, and this should go down.
For example, the A340 analysis went up to 5 h, before being reduced by requiring less precision while still

— A world premiére!
getting no false alarm.
©FP. COUSOT.‘Z;.;‘_
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General-Purpose Abstract Domains: Intervals and Octagons

Y Intervals:
+ ‘ 1<z<9
LA 1<y<20
+

+ + + Octagons [4]:
et t 1<z<9

i " T+y <77

0 X 1<y<20
> z—y <04

Difficulties: many global variables, arrays (smashed or not), IEEE
754 floating-point arithmetic (in program and analyzer) [5]

__ Reference

[4] A. Miné. A New Numerical Abstract Domain Based on Difference-Bound Matrices. In PADO’2001,
LNCS 2053, Springer, 2001, pp. 155-172.

[6] A. Miné. Relational abstract domains for the detection of floating-point run-time errors. In ESOP’04,
Barcelona, LNCS 2986, pp. 1—17, Springer, 2004.
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Floating-Point Computations

e Code Sample:
/* float-error.c */
int main () { int main () {

float x, y, z, r; double x; float y, z, r;

x = 1.000000019e+38; /* x = ldexp(1l.,50)+1dexp(1l.,26); */

/* double-error.c *x/

y = x + 1.0e21; x = 1125899973951488.0;
z =x - 1.0e21; y=x+1;
r=y - z z=x-1;
printf ("%f\n", r); r=y -z
} % gcec float-error.c printf ("%f\n", r);
% ./a.out }
0.000000 % gcc double-error.c

% ./a.out
134217728 .000000

(z+a)—(z—a)#2a
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Symbolic abstract domain

e Interval analysis: if z € [a,b] and y € [c,d] thenz—y €
[a—c,b—d] soif z € [0,100] then z—z € [—100, 100]!!!
e The symbolic abstract domain propagates the sym-
bolic values of variables and performs simplifications;

e Must maintain the maximal possible rounding error
for float computations (overestimated with intervals);

% cat -n x-x.c
1 void main () { int X, Y;

2 __ASTREE _known_fact (((0 <= X) && (X <= 100)));
3 Y=&-X);

4 __ASTREE_log_vars((Y));

5 )

astree -exec-fn main x-x.c
Call main@x-x.c:1:5-x-x.c:1:9:
<interval: Y in {0}> <symbolic: Y = (X -i X)>

astree -exec-fn main -no-relational x-x.c
Call main@x-x.c:1:5-x-x.c:1:9:
<interval: Y in [-100, 100]>

— 47 —

Clock Abstract Domain for Counters
e Code Sample:

R =0; - Output T is true iff the volatile input I has
while (1) { been true for the last n clock ticks.
1 [ (I)_ . - The clock ticks every s seconds for at most
Ro= Rl ) h hours, thus R is bounded.
else
{R=0;} - To prove that R cannot overflow, we must
T = (R>=n) ; prove that R cannot exceed the elapsed
wait_for_clock () clock ticks (impossible using only inter-
} vals).
e Solution:

- We add a phantom variable clock in the concrete user semantics to track
elapsed clock ticks.

- For each variable X, we abstract three intervals: X, X+clock, and X-clock.

- If X+clock or X-clock is bounded, so is X.
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Boolean Relations for Boolean Control Ellipsoid Abstract Domain for Filters

24 Order Digital Filter:
e Code Sample:

X Xn o+4Y,
/* boolean.c */ @ e Computes X, :{? n-1+BXn2+Y,
typedef enum {F=0,T=1} BOOL; EN-he n
BOOL B: e The concrete computation is bounded, which
void main O { must be proved in the abstract.
unsigned int X, Y; e There is no stable interval or octagon.
while (1) { v Y Y I e The simplest stable surface is an ellipsoid.
N T T T T T T T T |
= (X == O) 5 X X X 3 \ ‘\‘
it <'B> { | |
1/X The boolean relation abstract do-
} main is parameterized by the height /P FX) /| ,
o of the decision tree (an analyzer 7 X ( ,
} option) and the abstract domain at i OXUFRX) N~ xUFX
¥ the leafs execution trace unstable interval stable ellipsoid
T — 51 —
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN; Filter Example [6]
Control Partitionning for Case Analysis BOOLEAN INIT; float P, X;
e Code Sample: void filter () {
/% trace_partitionning.c */ Control point partitionning: static float E[2], S[2];
void main() { . - Y. - Y. - Y.
float t[5] = {-10.0, -10.0, 0.0, 10.0, 10.0}; (O ) if (INIT) { s[0] = X; P = X; E[0] = X; }
float c[4] = {0.0, 2.0, 2.0, 0.0}; ol lellellellollollollollelle else { P = ((((€0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))
float d[4] = {-20.0, -20.0, 0.0, 20.0}; ol leol lel lol lel lal lol le!l lelle + (S[0] * 1.5)) - (S[1] * 0.7)); }
fl:aF ):{,Of; RINIRINIRININININIR E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] =
int 1 ; A N N N N N AN AN AN
o /* S[0], S[1] in [-1327.02698354, 1327.02698354] */
. found invariant —100 < x < 100 ... Trace partitionning: }
while ((1 < 3) && (x >= t[i+1])) { OOQ/Dﬂﬂ AVANANA void main () { X = 0.2 * X + 5: INIT = TRUE:
i=1+1; ’ ’
1 NI ININEAAMEMEMEN while (1) {
r= (x - t[iD) * c[i] + dlil; TSt ST X=0.9 %X+ 35;
’ CACACNORCRCNCRORURL filter (); INIT = FALSE; }
t Fork t Join t }
Delaying abstract unions in tests and loops is more precise for non-distributive et
____ nelerence
abstract domains (and much less expensive than diSqulCtiVG completion). [6] J. Feret. Static analysis of digital filters. In ESOP’04, Barcelona, LNCS 2986, pp. 33—-48, Springer, 2004.

The Computer Lab., Cambridge U., Oct. 20th, 2004 — 50 — @© P. Cousor gl Oct. 20th, 2004 — 52 — @© P. Cousor gl



(Automatic) Parameterization

e All abstract domains of ASTREE are parameterized,
e.g.
- variable packing for octagones and decision trees,
- partition/merge program points,
- loop unrollings,
- thresholds in widenings, ...;

e End-users can either parameterize by hand (analyzer
options, directives in the code), or

e choose the automatic parameterization (default op-
tions, directives for pattern-matched predefined pro-
gram schemata).

— 53 —

The main loop invariant for the A340
A textual file over 4.5 Mb with

6,900 boolean interval assertions (z € [0;1])

9,600 interval assertions (z € [a;b])
25,400 clock assertions (z+clk € [a;b|Az—clk € [a;b])
19,100 additive octagonal assertions (a < z + y < b)

19,200 subtractive octagonal assertions (a < z—y < b)
e 100 decision trees
e 60 ellipse invariants, etc ...

involving over 16,000 floating point constants (only 550
appearing in the program text) x 75,000 LOCs.
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Possible origins of imprecision and how to fix it

In case of false alarm, the imprecision can come from:

e Abstract transformers (not best possible) — improve
algorithm,;

e Automatized parametrization (e.g. variable packing)
— improve pattern-matched program schemata;

e [teration strategy for fixpoints — fix widening °;

e Inexpressivity i.e. indispensable local inductive invari-
ant are inexpressible in the abstract — add a new
abstract domain to the reduced product (e.g. filters).

— B —
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Conclusion

3 This can be very hard since at the limit only a precise infinite iteration might be able to compute the
proper abstract invariant. In that case, it might be better to design a more refined abstract domain.
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Conclusion

e Most applications of abstract interpretation tolerate a small

rate (typically 5 to 15%) of false alarms:
- Program transformation — do not optimize,
- Typing — reject some correct programs, etc,
- WCET analysis — overestimate;
e Some applications require no false alarm at all:
- Program verification.

e Theoretically possible [SARA ’00], practically feasible [PLDI 03|

Reference

[SARA’00] P. Cousot. Partial Completeness of Abstract Fixpoint Checking, invited paper. In 4% Int. Symp.
SARA ’2000, LNAI 1864, Springer, pp. 1-25, 2000.

[PLDI’03] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Mingé, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. PLDI’03, San Diego, June 7-14, ACM Press, 2003.
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THE END, THANK YOU

More references at URL www.di.ens.fr/ cousot
www.astree.ens.fr.
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The Future & Grand Challenges

Future (5 years):

e Asynchronous concurrency (for less critical software)

e Functional properties (reactivity)

e Industrialization

Grand challenge:

e Verification from specifications to machine code (veri-
fying compiler)

e Verification of systems (quasi-synchrony, distribution)
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