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APPLICATION TO GENERIC 


PREDICATE ABSTRACTION

(3)2.3

3.1 Generic Predicate Abstraction
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Generic Abstract Domains

› A generic abstract domain is parameterized.
› A particular abstract domain instantiation: bind the formal pa-
rameters to program dependent actual parameters (constants,
variables, control points, etc.)
› Example: Kildall [9]’s generic abstract domain for constant
propagation D(C; V ) is:

D(C; V ) = Y

‘2C

Y

X2V (‘)
L :

› L is Kildall’s complete lattice. Given a command C, it is in-
stantiated to D(lab[[C]]; var[[C]]) where
-- lab[[C]] is the set of labels of command C
-- var[[C]](‘) is the set of program variables X which are visible
at this program point ‘ of command C.
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Generic Comparison Abstract Domain

We let Drel(X) be a generic relational integer abstract domain pa-
rameterized by a set X of program and auxiliary variables (such
as octagons [12, 13] or polyhedra [7]). This abstract domain is
assumed to have abstract operations on r; r1; r2 2 Drel(X) such
as:
› the projection or variable elimination 9x 2 X : r,
› disjunction r1 _ r2,
› conjunction r1 ^ r2,
› abstract predicate transformers for assignments and tests, etc.
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Generic Comparison Abstract Domain

Then we define the generic comparison abstract domain:

Dlt(X) = fhlt(t; a; b; c; d); ri j t 2 X ^ a; b; c; d 62 X ^
r 2 Drel(X [ fa; b; c; dg)g :
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Concretization of the Generic Comparison Abstract
Domain

The meaning ‚(hlt(t; a; b; c; d); ri) of an abstract predicate
hlt(t; a; b; c; d); ri

is informally that all elements of t between indices a and b are
less than any element of t between indices c and d and moreover
r holds:

‚(hlt(t; a; b; c; d); ri) = 9a; b; c; d : t:‘ » a » b » t:h
^ t:‘ » c » d » t:h
^ 8i 2 [a; b] : 8j 2 [c; d] : t[i] » t[j] ^ r

where t:‘ is the lower bound and t:h is the upper bound of the
indices i of the array t with elements t[i].

An Introduction to Abstract Interpretation, ľ P. Cousot, 25/3/03— 3:6/58 —!!! """J []¨˜?I Idx, Toc

Concretization of the Generic Comparison Abstract
Domain (cont’d)

More formally, there should be a declaration t : array[‘; h] of int

so that ‚(hlt(t; a; b; c; d); ri) defines a set of environments  map-
ping program and auxiliary variables X to their value (X) for
which the above concrete predicate holds:
‚(hlt(t; a; b; c; d); ri) = f j 9a; b; c; d : (t):‘ » a » b » (t):h

^ (t):‘ » c » d » (t):h
^ 8i 2 [a; b] : 8j 2 [c; d] : (t)[i] » (t)[j]
^  2 ‚(r)g

where the domain of the  is X [ fa; b; c; dg and ‚(r) is the con-
cretization of the abstract predicate r 2 Drel(X[fa; b; c; dg) spec-
ifying the possible values of the variables in X and the auxiliary
variables a, b, c, d.
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Abstract Logical Operations of the Generic
Comparison Abstract Domain

Then the abstract domain must be equipped with abstract oper-
ations such as
› implication ),
› conjunction ^,
› disjunction _, etc.
We simply provided a few examples.
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Abstract Implication

We have hlt(t; a; b; c; d); ri ) r. If r ) r0 and a » b » c » d and
e » f » g » h then:

hlt(t; a; d; e; h); ri ) hlt(t; b; c; f; g); r0i (1)

as shown below:
t.!

t

a b c d e f g h t.h

!

!
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Abstract Conjunction

If t; i; j; k; ‘ 62 var[[r]], then:

r ^ hlt(t; a; c; f; h); r0i = hlt(t; a; c; f; h); r ^ r0i (2)
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Abstract Conjunction (Cont’d)

If a » b » c » d and e » f » g » h then we have:

hlt(t; a; c; f; h); ri ^ hlt(t; b; d; e; g); r0i
= hlt(t; b; c; f; g); 9a; d; e; h : r ^ r0i

as shown below:

t.!

t

a b c d e f g h t.h

!

!

!
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Abstract Conjunction (End)

The same way:

t.!

t

a b c d e f g h t.h

!

!

!

we have:

hlt(t; a; b; c; e); ri ^ hlt(t; d; f; g; h); r0i
= hlt(t; a; b; g; h); 9c; e; d; f : r ^ r0i (3)

when (r ^ r0)) (c » d » e » f).
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Abstract Disjunction

We have:

hlt(t; a; b; c; d); ri _ hlt(t; e; f; g; h); r0i = (4)
hlt(t; i; j; k; ‘); (i9a; b; c; d : i = a ^ j = b ^ k = c ^ ‘ = d ^ r)

_ (9e; f; g; h : i = e ^ j = f ^ k = g ^ ‘ = h ^ r0)

An Introduction to Abstract Interpretation, ľ P. Cousot, 25/3/03— 3:13/58 —!!! """J []¨˜?I Idx, Toc

Abstract Disjunction (cont’d)

In case one of the terms does not refer to the array (t 62 var[[r]]), a
criterion must be used to force the introduction of an identically
true array term lt(t; i; i; i; i). For example if the auxiliary vari-
ables d, f , g, h in r0 depend upon one selectively chosen variable
I, then we have:

r _ hlt(t; d; f; g; h); r0i = (5)
hlt(t; i; j; k; ‘); (i = j = k = ‘ = I ^ r) _ (6)
(9d; f; g; h : i = d ^ j = f ^ k = g ^ ‘ = h ^ r0)i

This case appears typically in loops, which can also be handled
by unrolling, see 3.1.
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Abstract Predicate Transformers for the Generic
Comparison Abstract Domain

› Then the abstract domain must be equipped with abstract
predicate transformers for tests, assignments, etc.
› We consider forward strongest postconditions (although weak-
est preconditions, which avoid an existential quantifier in as-
signments, may sometimes be simpler [14]).
› We depart from traditional predicate abstraction which uses a
simplifier (or a theorem prover) to formally evaluate the ab-
stract predicate transformer ¸ ‹ F ‹ ‚ approximating the con-
crete predicate transformer F .
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› The alternative proposed below is traditional in static program
analysis and directly provides an over-approximation of the
best abstract predicate transformer ¸ ‹ F ‹ ‚ in the form of
an algorithm (which correctness must be established formally).
› The simplifier/prover/pattern-matcher is used only to reduce
the post-condition in the normal form (??) which is required
for the abstract predicates.
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Abstract Strongest Postconditions for Tests

f P1 g
if (t[I] > t[I+ 1]) then

f P1 ^ hlt(t; i; j; k; ‘); i = I ^ j = I+ 1 ^ k = I ^ ‘ = Ii g (7)
: : :
f P2 g

else

f P1 ^ hlt(t; i; j; k; ‘); i = I ^ j = k = ‘ = I+ 1i g (8)
: : :
f P3 g

fi

f P2 _ P3 g (9)
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Abstract Strongest Postconditions for Assignments

For assignment, assuming t 62 var[[r]] and r ) (i = I ^ j =
I+ 1 ^ k = I ^ ‘ = I), we have:

f hlt(t; i; j; k; ‘); rig
t[I] :=: t[I+ 1] (10)
f hlt(t;m; n; p; q); 9i; j; k; ‘ : r ^m = I ^ n = p = q = I+ 1i g :
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Abstract Strongest Postconditions for Assignments
(Cont’d)

The same way if t 62 var[[r]] and r ) (I 2 [i; j] ^ J 2 [i; j]) _ (J 2
[k; ‘] ^ I 2 [k; ‘]) then:

f hlt(t; i; j; k; ‘); rig
t[I] :=: t[J] (11)
f hlt(t; i; j; k; ‘); rig

since the swap of the array elements does not interfere with the
assertions.
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Generic Comparison Widening

Finally the abstract domain must be equipped with a widening
(and optionally a narrowing to improve precision) to speed up the
convergence of iterative fixpoint computations [4]. We choose to
define the widening

!
as:

hlt(t; i; j; k; ‘); ri
!
hlt(t;m; n; p; q); r0i = (12)

let hlt(t; r; s; t; u); r00i = hlt(t; i; j; k; ‘); ri _ hlt(t;m; n; p; q); r0i in
hlt(t; r; s; t; u); r

!
r00i :

An Introduction to Abstract Interpretation, ľ P. Cousot, 25/3/03— 3:20/58 —!!! """J []¨˜?I Idx, Toc



Generic Comparison Widening (Cont’d)
Typically, when handling loops, one encounters widenings of the
form r

!
hlt(t;m; n; p; q); r0i where r corresponds to the loop

entry condition while the term lt(t;m; n; p; q) appears during the
analysis of the loop body. There are several ways to handle this
situation:

1. Incorporate the term lt(t; i; j; k; ‘) in the form of a tautol-
ogy, as already described in (5) for the abstract disjunction;

2. Use disjunctive completion (see ??) to preserve the disjunc-
tion within the loop (which may ultimately lead to infinite
disjunctions) or better allow only abstract predicates of the
more restricted form r _ hlt(t;m; n; p; q); r0i (which defini-
tively avoids the previous potential explosion);
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3. Use semantically loop unrolling (as in [2, Sec. 6.5]) so that
the loop:

while B do C od

is handled in the abstract semantics as if written in the
form:

if B then C; while B do C od fi

which is equivalent in the concrete semantics. More gen-
erally, if several abstract terms of different kinds are con-
sidered (like lt(t; i; j; k; ‘) and s(t;m; n) in the forthcoming
17), a further semantic unrolling can be performed each
time a term of a new kind does appear, while all terms of
the same king are merged by the widening.
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Refined Generic Comparison Abstract Domains

› The generic comparison abstract domain Dlt(X) of 3.1 may be
imprecise since it allows only for one term hlt(t; a; b; c; d); ri.
› First we could consider several arrays, with one such term per
array.
› Second, we could consider the conjunction of such terms for a
given array, which is more precise but may potentially lead to
infinite conjunctions within loops (e.g. for which termination
cannot be established).
› So we will consider this alternative within tests only, then ap-
plying the above abstract domain operators term by term 1.
1 For short we avoid to resort to semantical loop unrolling which is better adapted to automatization but would yield to lengthy
handmade calculations in this section. This technique will be illustrated anyway in the forthcoming 17.
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› The same way we could the disjunctive completion of this do-
main, that is terms of the form W

i
V

j hlt(t; aij; bij; cij; dij); riji.
This would introduce an exponential complexity factor, which
we prefer to avoid. If necessary, we will use local trace parti-
tioning [2, Sec. 6.6] instead.
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Generic Comparison Static Program Analysis

Let us consider the following program (where a » b) which is
similar to the inner loop of bubble sort [10]:

var t : array [a; b] of int;
1 :

I := a;
2 :

while (I < b) do
3 :

if (t[I] > t[I+ 1]) then
4 :

t[I] :=: t[I+ 1]
5 :

fi;
6 :

I := I+ 1
7 :

od
8 :
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Generic Choice of the Generic Relational Integer
Abstract Domain

› We let Pip be the value of the local predicate attached to the
program point p = 1; :::; 8 at the ith iteration.
› Initially, P 01 = (a » b) while P 0p = false for p = 2; :::; 8.
› We choose the octagonal abstract domain [12, 13] as the generic
relational integer abstract domain Drel(X) parameterized by
the set X of program variables I, J,. . . and auxiliary variables
i, j, etc.
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Fixpoint Iterates

The fixpoint iterates are as follows:

P 11 = (a » b) "initialization to P 01 #
P 12 = (I = a » b) "assignment (I := a)#
P 13 = (I = a < b) "loop condition I < b#
P 14 = hlt(t; i; j; k; l); i = k = ‘ = I = a < b ^ j = I+ 1i "by

(7) for test condition (t[I] > t[I+ 1])#
P 15 = hlt(t;m; n; p; q); 9i; j; k; ‘ : i = k = ‘ = I = a < b ^ j = I+ 1 ^m

"by assignment (10) which, by octagonal projection,
simplifies into:#

= hlt(t;m; n; p; q); m = I = a < b ^ n = p = q = I+ 1i
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P 16 = (P 13^hlt(t; i; j; k; ‘); i = I = a < b ^ j = k = ‘ = I+ 1i)_
P 15

"by (8) for test condition (t[I] > t[I+ 1]) and join
(9)#

= (hlt(t; i; j; k; ‘); i = I = a < b ^ j = k = ‘ = I+ 1i) _
(hlt(t;m; n; p; q); m = I = a < b ^ n = p = q = I+ 1i)

"by def. P 13 and (2) as well as by def. of P 15 #
= hlt(t; a; b; c; d); (9i; j; k; ‘ : a = i ^ b = j ^ c = k ^ d = ‘ ^ i = I =

"by def. (4) of the abstract union _#
= hlt(t; a; b; c; d); (a = I = a < b ^ b = c = d = I+ 1) _ (a = I = a

"by octagonal projection#
= hlt(t; a; b; c; d); a = I = a < b ^ b = c = d = I+ 1i "by
octagonal disjunction#
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P 17 = hlt(t; a; b; c; d); a = I` 1 = a < b ^ b = c = d = Ii "by
invertible assignment I := I+ 1#

= hlt(t; a; b; c; d); I = a+ 1 = a+ 1 » b ^ b = c = d = Ii
"octagonal simplification#

P 23 = (P 12 _ P
1
7 )^ (I < b) "loop condition I < b and absence of

widening on first iterate#
= ((I = a » b)_(hlt(t; a; b; c; d); I = a+ 1 = a+ 1 » b ^ b = c = d
(I < b) "def. P 12 and P 17 #

= (hlt(t; i; j; k; ‘); (i = j = k = ‘ = I = a » b) _ (9a; b; c; d : i = a ^
(I < b)

"def. (5) of abstract disjunction, the octagonal
predicate depending only on I; a and b which
leads to the selection of I, the only of these
variables which is modified within the loop
body#

(13)
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= (hlt(t; i; j; k; ‘); (i = j = k = ‘ = I = a » b) _ (I = i+ 1 = a+ 1
(I < b) "by octagonal projection#

= (hlt(t; i; j; k; ‘); (i = j = k = ‘ = I = a < b) _ (I = i+ 1 = a+ 1
"by octagonal conjunction#

= hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I » a+ 1 » bi "by
octagonal disjunction#

P 33 = P 23
!
hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I » a+ 2 » bi

"in absence of stabilization of the iterates, by a similar
computation at the next iteration#

= hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I < bi "by def. (12)
of the widening

!
#

P 34 = P 33 ^ hlt(t;m; n; p; q); m = p = q = I ^ n = I+ 1i "by
(7) for test condition (t[I] > t[I+ 1])#
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= hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I < bi ^
hlt(t;m; n; p; q); m = p = q = I ^ n = I+ 1i "by def.
P 34 , the conjunction being left symbolic since it cannot
be simplified, see 3.1#

P 35 = hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I < bi ^
hlt(t; i; j; k; ‘); 9m;n; p; q : m = p = q = I ^ n = I+ 1 ^ i = I ^
"by (11) and (10) where t 62 var[[d]] and d ) m = p =
q = I ^ n = I+ 1#

= hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I < bi ^
hlt(t; i0; j0; k0; ‘0); i0 = I ^ j0 = k0 = ‘0 = I+ 1i "by
octagonal projection#

= hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I+ 1 » bi "by def.
(3), of conjunction and octagonal projection#
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P 36 = (hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I < bi ^
hlt(t; i0; j0; k0; ‘0); i0 = I ^ j0 = k0 = ‘0 = I+ 1i) _
hlt(t; i00; j00; k00; ‘00); i00 = a » j00 = k00 = ‘00 = I+ 1 » bi
"by P 36 = (P 33 ^ (t[I] » t[I+ 1])) _ P 35 and (8)#

= hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I+ 1 » bi _
hlt(t; i00; j00; k00; ‘00); i00 = a » j00 = k00 = ‘00 = I+ 1 » bi
"by def. (3), of conjunction and octagonal projection#

= hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I+ 1 » bi "by
P _ P = P #

P 37 = hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I » bi "by
assignment I := I+ 1#

Now the iterates have stabilized since:

(P 32 _ P
3
7 ) ^ (I < b)

= (P 12 _ P
3
7 ) ^ (I < b) "since P 32 = P 12 is stable#
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= ((I = a » b)_hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I » bi)^
(I < b) "def. P 12 and P 37 #

= (hlt(t; i; j; k; ‘); (i = j = k = ‘ = I = a » b) _ (9a; b; c; d : i = a ^
(I < b) "def. (5) of abstract disjunction with selection of
I as in (??)#

= (hlt(t; i; j; k; ‘); (i = j = k = ‘ = I = a » b) _ (j = k = ‘ = I =
(I < b) "by octagonal projection#

= (hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I » b ^ a » bi) ^
(I < b) "by octagonal disjunction#

= hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I < bi "by abstract
conjunction (2)#

) P 33 "by def. (1) of abstract implication#

It remains to compute the loop exit invariant:

(P 32 _ P
3
7 ) ^ (I – b)
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= (hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I » b ^ a » bi) ^
(I – b) "by octagonal disjunction#

= hlt(t; i; j; k; ‘); i = a » j = k = ‘ = I = bi "by abstract
conjunction (2)#

The static analysis has therefore discovered the following invari-
ants:
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var t : array [a; b] of int;
1 : fa » bg

I := a;
2 : fI = a » bg

while (I < b) do
3 : flt(t; a; I; I; I) ^ I < bg

if (t[I] > t[I+ 1]) then
4 : flt(t; a; I; I; I) ^ I < b ^ lt(t; I; I + 1; I; I)g

t[I] :=: t[I+ 1]
5 : flt(t; a; I+ 1; I+ 1; I+ 1) ^ I+ 1 » bg

fi;
6 : flt(t; a; I+ 1; I+ 1; I+ 1) ^ I+ 1 » bg

I := I+ 1
7 : flt(t; a; I; I; I) ^ I » bg

od
8 : flt(t; a; I; I; I) ^ I = bg
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Generic Sorting Abstract Domain

Then we define the generic sorting abstract domain:

Ds(X) = fhs(t; a; b); ri j t 2 X ^ a; b 62 X ^ r 2 Drel(X [ fa; bg)g :

The meaning ‚(hs(t; a; b); ri) of an abstract predicate hs(t; a; b); ri
is, informally that the elements of t between indices a and b are
sorted:

‚(hs(t; a; b); ri) = 9a; b : t:‘ » a » b » t:h ^
8i; j 2 [a; b] : (i » j)) (t[i] » t[j]) ^ r :
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Generic Comparison and Sorting Abstract Domain

The analysis of sorting algorithms involves the reduced product
[5] of the generic comparison abstract domain of 3.1 and sorting
abstract domain of 14, that is triples of the form:

hlt(t; a; b; c; d); s(t; e; f); ri :
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Reduction

The reduction involves interactions between terms such as, e.g.:

lt(t; a; b` 1; b` 1; b` 1) ^ lt(t; a; b; b; b) (15)
) s(t; b` 1; b) ^ lt(t; a; b` 1; b` 1; b)

s(t; b+ 1; c) ^ lt(t; a; b + 1; b+ 1; c) ^ lt(t; a; b; b; b) (16)
) s(t; b; c) ^ lt(t; a; b; b; c)

lt(t; a; a+ 1; a+ 1; b) ^ s(t; a+ 1; b) ) s(t; a; b) (17)

The reduction [5] also involves the refinement of abstract pred-
icate transformers (see a.o. [3, 11]) which would be performed
automatically e.g. if the abstract predicate transformers are ob-
tained by automatic simplification of the formula ¸ ‹ F ‹ ‚
(where F is the concrete semantics) by the simplifier of a theo-
rem prover.
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Generic Comparison & Sorting Static Program Analysis
Let us consider the bubble sort [10]:
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var t : array [a; b] of int;1 :
J := b;

2 : while (a < J) do3 :
I := a;4 : while (I < J) do5 : if (t[I] > t[I+ 1]) then

6 :
t[I] :=: t[I+ 1]7 : fi;8 :

I := I+ 19 : od;
10 :

J := J` 111 : od12 :
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Fixpoint Approximation

The fixpoint approximation is as follows (Pi;kp denotes the local

assertion attached to program point p at the ith iteration and kth

loop unrolling, Pip = P
i;0
p where k = 0 means that the decision

to semantically unroll the loop is not yet taken):

P 01 = (a » b) "initialization#
P 0i = false; i = 2; : : : ; 8

P 11 = P 01

= (a » b) "def. P 01 #
P 12 = (a » b = J) "assignment J := b#
P
1;0
3 = (a < b = J) "test (a < J)#
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. . .

P
1;0
10 = lt(t; a; I; I; I) ^ a < b = I = J 2 "as in 3.1 since the

inner loop does not modify a, b or I#
) lt(t; a; J; J; b) ^ a < b = J "by

elimination (octagonal projection) of program variable
I which is no longer live at program point 10#

P
1;0
11 = lt(t; a; J + 1; J+ 1; b)^a < b^J = b`1 "postcondition

for assignment J := J` 1#
P
1;1
3 = lt(t; a; J + 1; J+ 1; b) ^ a < J = b` 1 "by

semantical loop unrolling (since a new symbolic “lt”
term has appeared, see 3.1,) and test (a < J)#

. . .

P
1;1
10 = lt(t; a; J + 1; J+ 1; J+ 1) ^ a < J = b ` 1 ^

lt(t; a; I; I; I) ^ I = J
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"as in 3.1 since the inner loop does
not modify a, b or I and the swap
t[I] :=: t[I+ 1] does not interfere with
lt(t; a; J + 1; J+ 1; J+ 1) according to a »
I < I+1 » J < J+1 so I; I+1 2 [a; J+1]
and (11)#

(18)

) lt(t; a; J + 1; J+ 1; J+ 1)^lt(t; a; J; J; J)^a < J = b`1
"by elimination of I is dead at program point 10#

) s(t; J; b) ^ lt(t; a; J; J; b) ^ a < J = b` 1 "by reduction
(15)#

P
1;1
11 = s(t; J+1; b)^ lt(t; a; J+1; J+1; b)^ a » J = b` 2 "by

assignment J := J` 1#
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P
1;2
3 = s(t; J + 1; b) ^ lt(t; a; J + 1; J + 1; b) ^ a < J = b ` 2

"by semantical loop unrolling (since a new symbolic “s”
term has appeared, see 3.1,) and test (a < J)#

. . .

P
1;2
10 = s(t; J + 1; b) ^ lt(t; a; J + 1; J + 1; b) ^ a < J = b ` 2 ^

lt(t; a; I; I; I) ^ I = J "by 3.1 and non interference, see
(18)#

) s(t; J + 1; b) ^ lt(t; a; J + 1; J + 1; b) ^ a < J = b ` 2 ^
lt(t; a; J; J; J) "since I is dead#

) s(t; J; b) ^ lt(t; a; J; J; b) ^ a < J = b` 2 "by reduction
(16)#

P
1;2
11 = s(t; J+1; b)^ lt(t; a; J+1; J+1; b)^ a » J = b` 3 "by

assignment J := J` 1#
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P
2;2
3 = (P 1;23

!
(P 1;211 ^ (a < J))) ^ (a < J) "loop

unrolling stops in absence of new abstract term and
widening speeds-up convergence#

= ((s(t; J + 1; b) ^ lt(t; a; J + 1; J + 1; b) ^ a < J = b `
2)

!
(s(t; J + 1; b) ^ lt(t; a; J + 1; J + 1; b) ^ a » J =

b` 3 ^ (a < J))) ^ (a < J) "def. P 1;23 and P 1;211 #
= s(t; J+1; b)^ lt(t; a; J+1; J+1; b)^ ((a < J = b`2)

!

(a < J = b` 3)) ^ (a < J) "by def. widening#
= s(t; J+1; b)^ lt(t; a; J+1; J+1; b)^ a < J » b` 2 "by

def. octagonal widening and conjunction#
. . .

P
2;2
10 = s(t; J + 1; b) ^ lt(t; a; J + 1; J + 1; b) ^ a < J » b ` 2 ^

lt(t; a; I; I; I) ^ I = J "by 3.1 and non interference, see
(18)#
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= s(t; J + 1; b) ^ lt(t; a; J + 1; J + 1; b) ^ a < J » b ` 2 ^
lt(t; a; J; J; J) "by elimination of the dead variable I#

) s(t; J; b) ^ lt(t; a; J; J; b) ^ a < J » b` 2 "by reduction
(16)#

P
2;2
11 = s(t; J+1; b)^ lt(t; a; J+1; J+1; b)^ a » J » b` 3 "by

assignment J := J` 1#

Now (P 2;211 ^ a < J) ) P 1;23 so that the loop iterates stabilize to

a post-fixpoint. On loop exit, we must collect all cases following

from semantic unrolling:

P 212 = (P 12 ^ a – J) "no entry in the loop#
_ (P 1;011 ^ a – J) "loop exit after one iteration#

2 Notice that this notation is a shorthand for the more explicit notation 9i; j; k; ‘ : lt(t; i; j; k; ‘)^i = a^j = I^k = I^‘ = I)^a <
b ^ b = J ^ I = J as used in 3.1, so that, in particular, we freely replace i, j, k and ‘ in lt(t; i; j; k; ‘) by equivalent expressions.
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_ (P 1;111 ^ a – J) "loop exit after two iterations#
_ (P 2;211 ^ a – J) "loop exit after three iterations or
more#

= (a = J = b)_ (s(t; J+1; b)^ lt(t; a; J+1; J+1; b)^a =
J » b` 1) "def. abstract disjunction#

= (a = J = b)_(s(t; a+1; b)^lt(t; a; a+1; a+1; b)^a < b)
"elimination of dead variable J#

= (a = b) _ (s(t; a; b) ^ a < b) "by reduction (17)#
= s(t; a; b) ^ a » b "by definition of abstract disjunction

similar to (5)#
The sorting proof would proceed in the same way by proving that
the final array is a permutation of the original one.
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var t : array [a; b] of int;1 :
J := b;

2 : while (a < J) do3 :
I := a;4 : while (I < J) do5 : if (t[I] > t[I+ 1]) then

6 :
t[I] :=: t[I+ 1]7 : fi;8 :

I := I+ 19 : od;
10 :

J := J` 111 : od
12 : fs(t; a; b) ^ a » bg
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Conclusion

› Observe that generic predicate abstraction is defined for a
programming language as opposed to ground predicate ab-
straction which is specific to a program, a usual distinction
between abstract interpretation based static program analy-
sis (a generic abstraction for a set of programs) and abstract
model checking (an abstract model for a given program).
› Notice that the so-called polymorphic predicate abstraction
of [1] is an instance of symbolic relational separate procedural
analysis [6, Sec. 7] for ground predicate abstraction.
› The generalization to generic predicate abstraction is immedi-
ate since it only depends on the way concrete predicate trans-
formers are defined (see [6, Sec. 7]).
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THE END

More references at URL www.di.ens.fr/~cousot.
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