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1. Introductive example
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Abstract

Abstract interpretation is a semantic approximation theory which has mainly been used for the de-
sign of static program analyzers. Our objective is to explain and illustrate the notion of abstrac-
tion/concretization and its numerous variants which are commonly used in abstract interpretation to
formalize the loss of information. We also explain how the concrete model can be transformed into an
abstract semantic model, and inversely for refinement.

Several examples are given for the design of programming language semantics as well as
model-checking and program analysis algorithms. To illustrate the notions of relative completeness
and of existence of a best abstraction, we show that transitional, demonic, natural and angelic deno-
tational, predicate transformer and axiomatic semantics are all relatively complete, best abstractions
of a maximal trace semantics (or equivalently that the maximal trace semantics is a refinement of all
these semantics). To illustrate incompleteness, we consider model-checking of finite transition systems
for a temporal logic, both with maximal trace semantics. The logic can be restricted to ensure relative
completeness at the expense of expressiveness. To illustrate inexistence of best approximations, we
consider several abstract domains for the abstraction of sets of vectors of numbers and sets of graphs
(for so-called set-based analysis).
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Abstract interpretation

e Abstract interpretation is a semantic approximation theory [2];

)

e Mainly used for the design of semantics [3] and static program ana-
lyzers [1].
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Abstraction in abstract interpretation

e Abstraction is understood as an approximation:

abstract

A program analyzer is an approximate implementation of the
program (collecting) semantics.

interpretation
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Properties as sets

e A property is the set of objects which have this property;
e Example (properties of integers):

- Positive: {1,2,3,4,...}

- 0dd: {1,3,5,7,...}

e There is often a confusion on the fact that abstract interpretation
does not deal with abstract objects but with abstract properties of
objects;

e This is because the two notions sometime coincide;

e The view of abstract interpretation as abstraction of properties is
more powerful that pseudo-evaluation on abstract objects .
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Objects and their properties

e Programming is relative to objects:

. finement .
Refined object MO  Abgtract object

abstraction

e Program proof/analysis to object properties:

Concrete concretization Abstract
object property abstraction object property
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Example: rule of signs
standard semantics

e Standard semantics:

- Operational: what are the steps of evaluation of the expression
when knowing an assignment of values to the free variables;

- Example (p = [z : 5,y : =3]):

[ X 2 +y X ylp

= ([z]p x [z]p) + (ylp > [¥lp)
— (5x5)+ (=3 x-3))
— 2549
— 34
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e Denotational: what is the value of the expression when knowing an
assignment of values to the free variables:

le] €« X—2Z)—Z

[n]p =n

[x]p = p(x)
fer x eap = [e1]-Te]
ler + ealp = [e1] + [ed]
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e Example (p = [z : +1,y : —1]):
[x X x4y X y]p
— ([=]p x []p) + (Tylp < [ylp)
— (+1 x +1) 4+ (=1 x —1))
— 1+ +1
— +1
e Correctness: the rule of signs is a step by step simulation of the
standard semantics (inconclusive when no rule applies e.g. +1 4+ —1
=7);

e Same idea in “subject reduction” of type theory.
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Example: rule of signs
1 — the abstract object point of view
e Objective: determine the sign of an expression;
e Pscudo-evaluation method:
- replace values by their signs;
- interpret arithmetic operators on signs:
+14+1 =41,
+1x —1=—-1, etc.

e Abstraction:
concrete object  abstract object

- integer +—— sign

concrete operation abstract operation

- integer X integer — integer —— sign X sign +— sign ]
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Example: rule of signs
2 — the abstract property point of view

e Property of an expression: set of its possible semantics;
e Collecting semantics: the strongest program property:
{el} € p(X—Z)— 7Z)

\ (1)
{el = {[el}
e Abstract semantics: a computable approximation of the collecting
semantics.
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Approximation

e Two alternatives:
- Universal /from above: consider a superset of the possible cases,
- Existential /from below: consider a subset of the possible cases;
e By duality, only universal approximation need to be formely studied;

e The rule of signs is a universal approximation (i.e. +1 + 41 = +1
is valid whether 342 = 5 or 3 +2 = 1789!) since more cases are
considered than possible.
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__ Reference

Abstraction in abstract interpretation

e The lattice of signs [1]:

]

[4] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6" POPL, pages 269-282,
San Antonio, Texas, 1979. ACM Press.
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Approximation for the rule of signs

eqay:Z—S where S={+1,0,—1} (2)
ap(n ):—11ffn<0
apg(n) =0 iff n=0
ap(n) = +1 iff n >0
ay € p(Z) = p(S) (3)
a1(N) = {ag(n) [ n € N}
7 € p(S) = p(Z)

1(S) = {n | ag(n) € S}

Example:
0,17} 5 {0, +1} 5 {0,1,...,17,...}
]
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Abstraction in abstract interpretation

°ay € p(X— Z) — (X p(Z))
as(R) = XX -{p(X) | p € R}
12 € (X p(Z) = p(X + Z) (4)
r)={p| VX € X: p(X) € r(X)}

Example:
{[X:0,Y:0,[X:5Y:5}
AL (X {0,5), Y 1 {0,5)]
L X0,V 0, [X 0,V 5, [X 5 Y 0, [X:5Y 5}

]
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o a3: (X p(Z) = (X = p(S))
ag(p) = A X - ai(p(X))

* a5 € (9(X = Z) = p(Z))— (X = 0(8)) = 0(8)) (7)
) =

as(s) =ajosoyy
(X' 9(S)) = p(S)) —

€ (p(X = Z) — p(Z))
Y5(S) =108 0 ay

75

13 (X 9(8)) = (X p(Z)) (5)
73(p) = AX -1 (p(X))
Intuition:
Example: S
pX = Z) ———» p(Z)
(X : {0,5},Y : {0,5}]
@3 . .
? [X : {O>+1}7Y . {07 +1}] (7] Y4 o 71
— [X N, Y : N]
X= p(S) ————— 0(5)
5 /.
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o ay: p(X—Z)— (X p(S)) e a5 € p((X—Z) = Z) — (p(X — Z) — p(Z)) (8)

Q) = (3 © (9
Y1 (X= 9(S) = (X — Z)
Y4 =72°73

Example:
{[X:0,Y:0,[X:5Y:5}

HS X {0,411, Y 1 {0, +1}]
— {[X :n,Y :m]|neNAmeN}
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)
ag(S) =AR-{s(p) | s€ SAp€E R}
Y6 € (p(X— Z) = p(Z)) — (X — Z) — Z)
16(S) = {s | Vp € X Z:5(p) € S({p})}

Intuition:

T6(s({s}))

(S |V € X o 2 S() € {1) | 8" € {5} A 4 € A1)
={s' | Vo' e X=Z:5(p) € {s(p')}}

={s'|Vp' e X = Z:5(p) = s(p")}

={s|s =s}

= {s}

]
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* a7 €p(X = Z) = Z) — (X = p(8)) = 0(8)) (9)
7 = Q5 © O
17 €(X=p(8) = pS) — p(X = Z) — Z)

V7 =6° 5
Intuition: (X > Z) — 7)
Oéﬁl I’YG
(X'+— Z) — p(Z)
OZ{ I’%
(X'—= p(S)) — p(S)
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Calculational design of the abstract semantics

(e)

= ar({el)

= as o ag({el}) by def. (9) of az
=aq o ag({el) ey by def. (7) of a5
=AR-a1({s(p) | s € {e} A p € 1(R)}) by (8)
=AR-a1({[e]p | p € u(R)}) by def. (1) of [e]
=AR-aq({[e]p | p € 20 73(R)}) by (6)
=AR-a1({[elp | p € V(ANY -1 (R(Y)))}) by def. (5) of v3
=AR-ar1({[elp [ p e {p' | VY € X p/(Y) € i(R(Y))}})

by def. (4) of

= AR-aq({[e]p | VY € X: p(Y) € 1 (R(Y))}) by def. €
We go on by structural induction on e.

)

© P. Cousot, Nov 16, 1999
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Specification of the rule of signs abstract semantics

e Standard semantics: [e]]
e Collecting semantics: {ef} = {[e]}

e Abstract semantics: (e) = a7({ef}) best approximation
(e) D as({e}) suboptimal approximation
e Example of suboptimal abstract semantics:
- as(§X — XPIX - {+1)
= ar({OH)[X : {+1}]
= {0}
- (X = X)X {+1}]
= (X)X {+1} = (XDIX - {+1}]

={+1} — {+1}
={1,0,+1}
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AR-a({[n]p [ VY € X: p(Y) € n(R(Y))})
=AR-a1({n}) by def. [n]p = n
=AR-{ap(n)} by def. (3) of aq

_AR-{-1} it n<0
AR-{0}  if n=0
AR-{+1} if n>0

by def. (2) of ay

e c=X:

AR-ai({[X]p | VY € X:p(Y) € (R(Y))})
=AR-a1({p(X) | VY € X:p(Y) € n(R(Y))})
by def. [X]p = p(X)
=AR-a1({p(X) | p(X) € 1(R(X))})
=AR-a(m(R(X)))
— AR-R(X) )
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e c=¢1+ e

AR-a1({[e1 +ea]p | p € 1u(R)})
=AR-aq({[er]p+ [ealp | p € 1u(R)})
by def. [e; + es]lp = [er]p + [ealp

CAR-a1({[ea]p + [eadp’ | p € 1a(R) A p' € u(R)})
=AR-ai({z+y |z e{[ei]p | p€n(R)} A

y € {leadp | 0" € 1u(R)}})
CAR-aq({z+y |z ey ear({fedp|peralR)}) A

yemoar({[eadp | o' € u(R)}})
CAR-ai({z+y|zemnllel)R) Ay € nlle)R)}) by ind. hyp.
=AR-((e1)R + (ea) R) where + is calculated by cases:

]
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Abstraction in abstract interpretation,

Summary of the abstract semantics

e(n)R=1{-1} if n<0
{0} if n=0
{+1} if n>0

o (X)R = R(x)

o (erte)R=(e)R+ (e2) R

where the “rule of signs™or addition + is:

+ 0 {-1} {0} {+1} {-1,0} {-L+1} {0,+1} {-1,0,+1}
0 0 0 0 0 0 0 0 {-1,0,+1}
{-1} 0 {-1} {-1} {-1,0,+1} {-1} {-1,0,+1} {-1,0,+1} {-1,0,+1}
{0} 0 {-1} {0} {+1} {-1,0} {-1,+1} {0,+1}  {-1,0,+1}
{+1} 0 {-1,0,+1} {+1} {+1} {-1,0,+1} {-1,0,+1} {+1} {-1,0,+1}
{-1,0} 0 {-1} {-1,0} {-1,0,+1} {-1,0} {-1,0,+1} {-1,0,+1} {-1,0,+1}
{—1,+1} 0 {-1,0,+1} {-1,+1} {-1,0,+1} {-1,0,+1} {-1,0,+1} {—1,0,+1} {—1,0,+1}
{0,+1} 0 {-1,0,+1}  {0,+1} {+1} {-1,0,+1} {-1,0,4+1} {-1,0,+1} {—1,0,+1}
{-1,0,4+1} | {-1,0,+1} {-1,0,+1} {-1,0,+1} {-1,0,+1} {-1,0,+1} {-1,0,+1} {-1,0,+1} {-1,0,+1}
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- oz tylzen+) Ay en(+)})
=oa({z+y|reN"Aye Nt}
= a(NF)
= {+1} so that {+1} + {+1} = {+1}
- a{ztylren(=)Ayen(+)})
=o({z+y|reNTAye N}
= a1(Z)
={-1,0,+1}

- ete.

so that {—1} + {+1} = {-1,0,+1}

__ Reference

[5] P. Cousot. The calculational design of a generic abstract interpreter. In M. Broy and R. Steinbriiggen, edi-
tors, Calculational System Design, volume 173, pages 421-505. NATO Science Series, Series F: Computer and
Systems Sciences. I0S Press, 1999.
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2. Formalization of abstraction/concretization
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Galois connection — 1

The paire {a, ) is a Galois connection:

e v is C-monotone
= abstraction preserve implication;

e v is C-monotone

= concretization preserves implication;
e v o o is C-extensive

= an abstraction introduces a loss of information;
e o o v is C-reductive

= a concretization can only be more precise.

Notation: (p((X +— Z) +— Z), C) ‘z——;> (X' p(S)) — p(S), C)
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Galois connection — 2

An equivalent definition of

(L, <) == (M, )

Is
e (L, <) and (M, C) are posets;
eVreL:Vye M:a(z) Cy <z <v(y).
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e Example of Galois connection based abstraction:

{'170} -

{-1}

Abstraction in abstract interpretation <A 30781 > «|H>

{o.13

© P. Cousot, Nov 16, 1999

A few properties of Galois connections

e One function uniquely determine the other:
afz) =y |z <~(y)}
) = Az | alz) E v}

e o has an adjoint iff it preserves existing lubs;

e ~v has an adjoint iff it preserves existing glbs;
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Surjections/injections

® ( is surjective < -y is injective <> aw o v = 1:

(L, <) == (M,E)

e Assuming « surjective simplifies the formal presentation (not always
possible in practice);
e Dually, «v is injective < 7 is surjective < v o a = 1:

(L, <) == (M, )
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e Example of closure operator based abstraction:
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Closure operators
If
(L, <) == (M,C)
e v o o represents the approximation of concrete properties by a con-
crete representation of the abstract properties;
e v o v is an upper closure operator:
- monotone,
- extensive,
- idempotent.
e A formally equivalent formalization of abstraction [0, Sections 6.2].

__ Reference

[6] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6" POPL, pages 269-282,
San Antonio, Texas, 1979. ACM Press.
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Moore family

If
(L, <) == (M, T)
e v o (M) represents the set of concrete representations of the ab-
stract properties;
e v o (M) is a Moore family:
- contains a top element (if M has a supremum),
- closed by arbitrary intersections.

e A formally equivalent formalization of abstraction [7, Sections 6.1].

__ Reference

[7] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6" POPL, pages 269-282,
San Antonio, Texas, 1979. ACM Press.
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e Example of Moore family based abstraction:
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In absence of best approximation?

The classical rule of signs has no {0} ":

)

L because in practice one makes the algebraic simplification 2 +0=0+2 = 0.
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Best approximation

e v o a(P) is the concrete representation of the best abstract approxi-
mation of P:
- Its an upper-approximation: P < o a(P);
- Its the best abstraction: if is another abstract approximation (i.e.
Q € voall)and P < @) then v o a(P) is more precise (in
that v o a(P) < Q).
e The best approximation does exists and is unique (by antisymmetry).
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In absence of best approximation (continued)

e The best choice must be determined during this analysis:
- a({0}) = {—1,0} is a better choice in (0 + —1)R = {—1,0}
- a({0}) = {+1,0} is a better choice in (0 + 1)R = {0,+1}
e In practice, one uses v only and widening/narrowing operators [3] as
e.g. in [9];

e Other alternatives (e.g. use a soundness relation) discussed in [10].

References
[8] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by

construction or approximation of fixpoints. In 4* POPL, pages 238-252, Los Angeles, Calif., 1977. ACM
Press.

[9] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program. In 5%
POPL, pages 84-97, Tucson, Ariz., 1978. ACM Press.
[10] P. Cousot and R. Cousot. Abstract interpretation frameworks. J. Logic and Comp., 2(4):511-547, Aug. 1992.
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Compound abstraction’

e The abstraction is designed by composition:
- of primitive abstractions;

- of abstraction composition operators.

In french we would use the term “compositional”, which in the context of denotational semantics is already used to mean “by structural
induction on the abstract syntax”
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Examples of abstraction composition operators

. " . gl g
e Abstraction composition: if (L, <) — (M,C)and (M, C) e

a o Qs
(N, <) then:
(L, <) =2 (N, <)
Qo]

e Functional abstraction: if (L, <) &——= —= (Lﬁ <ﬁ> and (M, C) <L—2)
1

ay
(MF¥, C%) then:

. A * O [ O
(L M, E) Jragofoy
AF"leFOaQ

(LF s M )
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Example of primitive abstractions

e Elementwise abstraction: if @ € S — St then:

where:

Abstraction in abstract interpretation,

D] a2/81 - > «[H> © P. Cousot, Nov 16, 1999

Abstraction in abstract interpretation,

Fixpoint transfer and approximation
[11, p. 309]: If

- (L, <,0, \/)i‘%acpo
- (L, <) == (M, ),
SFeLs L,
-GeM— M
—aoF=/CGoa

local completeness/approximation
then

(M,C, 1,1)is a cpo where L = a(0) and UX = a(Vy(X)),
ao Fory :/E G,

< C
a(lfp” F)=/Clfp G.

_ Reference

[11] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D. Jones, editors, Program
Flow Analysis: Theory and Applications, chapter 10, pages 303-342. Prentice-Hall, 1981
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The lattice of abstract interpretations

e The abstract interpretations of a semantics are isomorphic to closure
operators;

e So the complete lattice of abstract interpretations [12] is isomorphic
to the complete lattice of closure operators on a complete lattice/cpo.

___ References

[12] P. Cousot and R. Cousot.
Systematic design of program analysis frameworks.
In 6" POPL, pages 269282, San Antonio, Texas, 1979. ACM Press.
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3. Abstraction/concretization in program analysis
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Soundness and completeness®

{P}: collecting semantics of P
(L, <) % (M, C): abstraction

(P): abstract semantics of P

Soundness:

VP a({P}) C (P)

(Global) completeness:

VP :a{P}) = (P)

3 We should say relative completeness to stress the fact that we reason in set theoretical terms, so that, in logical terms, an oracle is assumed
to exist for logical implication.
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Data flow analysis is an abstract interpretation

From [13, section 7.2.0.6.3]:

o7 = (S, A, t): transition system (S = C x M control x memory
states, actions A are assignments and tests)

o T: traces (sq, ag, $1)(S1, a1, $2) -+ (Sn—1, An_1,5n), Si €S, a; €
A

e M, C T program semantics (set of prefix closed finite traces gener-
ated by 7);

e [£: set of expressions appearing in actions A;

__ Reference

[13] P. Cousot and R. Cousot. Systematic design of program analysis frameworks. In 6 POPL, pages 269282,
San Antonio, Texas, 1979. ACM Press.
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e Static partitioning abstraction [1]:

QP(M) = H{OJ<S’ a, <£> m>> | 0/<S7 a, <£7 m>> € M}
teC

such that:

(p(T), ©) == (C ~ (D), &)

e Pointwise abstraction: If (p(T), C) % (L, C) then:
(€ ¢(T). &) == (€ L.T)

where: a(M) = Xl-a(M(0))

Reference

[14] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick and N.D. Jones, editors, Program
Flow Analysis: Theory and Applications, chapter 10, pages 303-342. Prentice-Hall, 1981.
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Program static analysis is an abstract interpretation

eS=CxZ" States (finite control states C)
o P = (S) Properties
ol ={[a,b]|a<blu{l} Interval abstract domains
e (0(Z),C) 2:11 (I, <) Interval abstraction

a1(Z) = (Z=07 L :[minZ max Z]) (minZ = —o0, maxZ = )

o (P, C) e (Cr ([1,n] = T), <) State abstraction
«

2
n
a(S) = [ [Tz | 321, mic i,
leCi=1 <€7 <~T1,...,I’Z’71,Z,xi+1,...,In>> GS})
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e gen(a): expressions e € E generated by assignment/test a € A;
e fill(a): expressions e € E killed by assignment/test a € A;
e Definition of availability at exit of a path o

avail(o) = (0 = d'(s,a,s') ? (avail(c") N =kill(a)) U gen(a) : 0)
e Availability abstraction (availability at exit of all paths of M):
ag(M) = N{avail(o) | 0 € M}

such that: ,

e Availability at all points ¢ € C:
O{a © Oép(MT)
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{n:_0_; i:_0_ }
n :=7,;

{ n:[-00,+00]; i:_0_ %}
i:=1;

{ n:[-00,+00]; i:[1,+00] }

while (i < n) do
{ n:[2,+00]; i:[1,1073741822] }
i:=(G+ 1)
{ n:[2,+00]; 1i:[2,+00] }
od
{ n:[-00,+00]; i:[1,+00] }

__ References

(15] P. Cousot and R. Cousot. Static determination of dynamic properties of programs. In Proc. 2"Int. Symp.
on Programming, pages 106-130. Dunod, 1976.

[16] P. Cousot. The Marktoberdorf’98 generic abstract interpreter. 1998.
http://www.di.ens.fr/"cousot/Marktoberdorf98.shtml, Nov.
[17] P. Lacan, J.N. Monfort, Le Vinh Quy Ribal, A. Deutsch, and G. Gonthier. The software reliability verification

process: The ARIANE 5 example. In Proceedings DASIA 98 — DAta Systems IN Aerospace, Athens, GR. ESA
Publications, SP-422, 25-28 May 1998.
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Grammar analysis is an abstract interpretation

e G=(N,T PA)
e The semantics [G] of G is the terminal language generated by G;

context free grammar

e The FIRST algorithm is an abstract interpretation of the grammar
fixpoint semantics [18] by:

(T*, C) = (p(T U {e'}), C)

where:
a(L) = {Q(o) | 0 € L}
ele) = ¢
e(xo) = x
__ Reference

[18] P. Cousot and R. Cousot. Abstract interpretation of algebraic polynomial systems. In M. Johnson, ed., Proc.
6" Int. Conf. AMAST ’97, Sydney, AU, LNCS 1349, pages 138-154. Springer-Verlag, 13-18 Dec. 1997.

4 ¢ is the empty string.
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e No best approximation (f € F?, a,b,c € F!, n € FV):

Xy =0
X1 = {f(a(n),b(n),c(n))}
X, = {f(a(n),b(n),c(n)), f(a*(n),b*(n),c*(n))}

X, 2 U A = {£(@(n), b5 (n), F(n)) | k > 0}

k>0 is not context free

e The A}, & > 0 can all be described by a regular tree grammar but
not A,,. So X, is approximated by the regular language:

{f(ak(n),be(n),cm(n)) | k, 0, m > 0}.
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Set based analysis is an abstract interpretation

e Concrete domain: set T of tree on a finite signature F = (J,,~ o F";

e Abstract domain: regular tree grammars G in Greibach normal form:

X o= ", V) frelF”
X o= f0 fler

where non-terminals X', ... correspond to program elements (vari-
ables, etc...)

. . A W
e Concretization: v(G) = the set of finite trees generated by the gram-
mar G
Reference
[19] P. Cousot and R. Cousot.
Formal language, grammar and set-constraint-based program analysis by abstract interpretation.
In Proc. 7™ FPCA, pages 170-181, La Jolla, Calif., 25-28 June 1995. ACM Press.
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Type inference is an abstract interpretation

e Concrete standard domain for A\-expressions:

W = {w} wrong
z€Z integers
v,peU=W,®Z, (U TU); domain of values
xeX program variables
ReER=X—UU environments
peS=R—TU A-expression type

_ Reference

[20] P. Cousot. Types as abstract interpretations, invited paper. In 24 POPL, pages 316-331, Paris, FR, Jan.
1997. ACM Press.
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e Concrete collecting domain:
P = o(S)

e Abstract domain:

meM  m:=int|m; — > my Church/Curry/Hindley

monotype
HeH=X—M type environments
el =HxM typings
TeT = o) program types

e [n general a A-expression has (infinitely) many types:

Ax.x hastypes {(H,m —>m) | H e HAme M}
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e (Galols connection:
(P, C) = (T, 2)

e Typable programs cannot go wrong: if a A-expression e has type T’

and T # () then VR € R : [e] R # w (since [e] € v(T));
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e Concretization:

7 € M p(U)
v(int) = ZU{L}
y(my —>mg) = {p e UrmTU | Vo € y(my) : ¢(v) € y(ma)} U{L}
7 € H— p(R)
y(H) = {ReER|Vx€X: R(x) € v(H(x))}
v € I p(S)
v(H,m) = {¢ € S|VR €~(H): ¢(R) € v(m)}
7 € T p(S)
YT) = () 10)
0T
v(®) =8
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Model checking is an abstract interpretation

e (S, t): transition system (t C S%);

e X5 set of traces on states S;

e M; C Ys: model (set of maximal traces) generated by ¢;

e X|s = {s0 | so € X} subset of traces of X C g starting with
state s

e ¢ € IL: formulae of temporal logic L;

e [] C Xg: semantics of the closed temporal formula (set of maximal
traces);

__ Reference

[21] P. Cousot and R. Cousot. Temporal abstract interpretation. In 27" POPL, Boston, Mass., Jan. 2000. ACM
Press. To appear.
A 6081 >B> «[H>
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e Boolean universal model checking is o ([¢])

W
(p(2), 2) == (p(S), 2)

v
ay

af(®) = {s €S| My, C D}

e Boolean existential model checking is dual (aj(®) = = (—=®)) so:

a

af(®) = {s € S| (My}sN P) # 0}
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4. Abstraction/concretization in semantics
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Abstract model checking is the composition of abstract
interpretations

e State abstraction:

(9(S), C) == (p(sh), C)

Qg
e Trace-based model abstraction:

(9(T), C) === (p(=H), C)

Qo

e Abstract model checking:

i
oz\g éasoozjovm
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Semantics are abstract interpretations

e The various semantics of programming languages can be understood
as abstract interpretations of a maximal trace semantics;

e (and the fixpoint characterizations of these semantics can all be con-
structively derived from the maximal trace semantics generated by a
transition system (i.e. small-step operational semantics), see [22]).

__ Reference

[22] P. Cousot. Constructive design of a hierarchy of semantics of a transition system by abstract interpretation.
ENTCS, 6,1997. URL: http://www.elsevier.nl/locate/entcs/volume6.html, 25 pages. (Full version to
appear in TCS.)
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Maximal trace semantics

e The basic maximal trace semantics is:

blocking
state

T = {o—>o—>o L. e—se— o} « finite traces

! !

U {e—e—e...0—e—e...} <« infinite traces

! !

any state transition

o TP € p(T), T is the set of traces over states S.
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Natural, demoniac & angelic semantics

e Natural trace semantics: Tu;
e Angelic abstraction

a(Tu) = {e—e—.. . e —e]

o—>o—>.,,—>o—>o€Tn};

e Demoniac abstraction :

ofTH = TF

U{.H.ﬂ‘,,,—,‘.—).’
o0 —.. .0 —e—. .. e’]'h}

The «’s are Galois connections.

5 Eliminate all infinite traces.
6 Introduce all arbitrary finite traces for states possibly starting an infinite trace.
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Transition semantics

e Transition semantics:

ab a b
a(Th) = {<o,o> | e—5e—e...—0— 30— .. .0—>0 € Tﬂ}
a b a v
U{<o,0> | o—e ... 0—e0—e——0 .. . 0—> . E’Th}

. . . 2
e o is a Galois connection: (p(T), C) — (p(S x 8), C)
e This is an approximation. For example, fairness information is lost:
if 79 = a*b then v o a(T%) = a*b | a¥.
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Relational semantics

a € p(T)— p(SxS,), S, =Su{l}

R = a(T)
ab a b
= {(e,0) |[0—0— ... >0 —ecT}
U{(e, l)|0e—e—...me—e—...cT}

« 1s a Galois connection.
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Non-deterministic denotational semantics

@ € P(SxS8)— (S p(S)))

D = o(R)
= As-{s'€S| | (s,8) € R} right image

« is a Galois isomorphism.
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Axiomatic semantics

a € (p(S) = p(S1)) — p(p(S) x p(S 1))

H = a(W)
= {(PQ) | PCW(Q)}

« is a Galois injection.
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Predicate transformer semantics

a € (S p(S1)) — (p(S1) = p(S))

W = «o(D)
=AQ-{seS|VsieS,:deD(s)=5€Q}

« is a Galois injection.
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The hierarchy of semantics

Manna-&-Pnueli Hoare

Axiomatic
semantics

—» abstraction
equivalence

B - Djkstra’s-wlp .
Djkstra’s-wp Predicate transformer

Jacob-&-Gries’-gwp semantics
.. . Scott Sn'1y1,h Hoare R
Deterministic e > bl Y Nondeterministic deno-
. Of 1 . .
denotational tational semantics
semantics Park Relational

semantics

.. Keller Hoare I
Transition e I Trace
semantics semantics

Demoniac Natural Angelic semantics
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5. Conclusion
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On the coincidence of abstraction/refinement in program
verification and abstraction/concretization in abstract
interpretation (tentative)

e Abstraction/refinement in program verification:
a: concrete object — abstract object

e Abstraction/concretization in abstract interpretation:
a: p(concrete object) — p(abstract object)

e Coincidence:

- Lift the reasoning on objects to reasoning on object properties
(e.g. using predicate transformers) 777

- Use category theory (various attempts that we made did not bring
any new practical idea) 777
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Abstraction in abstract interpretation, SO

What is abstract interpretation?

e Semantics as well as program analysis algorithms approximate the
incomputable collection of all possible behaviors of programs on com-
puters [21];

e Abstract interpretation is a theory of abstraction understood as a
discrete approximation of computer system behavior specifications
[23];

__ Reference

[23] P. Cousot. Abstract interpretation. Symposium on Models of Programming Languages and Computation,
ACM Comput. Surv., 28(2):324-328, 1996.

[24] P. Cousot. Program analysis: The abstract interpretation perspective. ACM  Comput. Surv.,
28A(4es):165-es, Dec. 1996.
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e What [ know about refinement "
-c:Cw+— C concrete operation a: A+ A abstract operation
~a:C— A abstraction
-aoc=a°«w refinement condition (10)
e Lifting to sets:
- A (X) 2 {alz) [z € X} so (p(C), C) == (p(A), C)
- HX) 2 {elw) | @ € X) ”
-d(Y) = {aly) |z € Y}
so that (10) implies: of o b = a? o of. If o is surjective then
af = af o ¢f o4 (ie. a is the abstract interpretation of cf).
e So (7) reasoning on objects in program development by refinement is
“equivalent to” reasoning on their local properties (i.e. topos theory
is relevant)?

7 nothing, so its what I guess about refinement!
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