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Automatic Program Verification
by Abstract Interpretation

Result:

� Can produce zero or very few false alarms
while checking non-trivial properties (absence of Run-Time Error);

� Does scale up.

How ?

� We specialize the abstract interpreter for a family of programs
(which correctness proofs would be similar).

� The abstract domains are generic invariants
automatically instantiated by the analyzer (to make these proofs).
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Considered Programs and Semantics

Which Programs are Considered ?

� Embedded avionic programs;

� Automatically generated from a proprietary graphical system control language
(à la Simulink);

� Synchronous real-time critical programs:

declare volatile input, state, and output variables;

initialize state variables;

loop forever

read volatile input variables,

compute output and state variables,

write to volatile output variables;

wait for next clock tick

end loop
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Main Characteristics of the Programs

Difficulties:

� Many global variables and arrays (> 10 000);

� A huge loop (> 75 000 lines after simplification);

� Each iteration depends on the state of the previous iterations (state variables);

� Floating-point computations
(80% of the code implements non-linear control with feed-back);

� Everything is interdependent (live variables analysis, slicing ineffective);

� Abstraction by elimination of any variable is too imprecise.

Simplicities:

� All data is statically allocated;

� Pointers are restricted to call-by-reference, no pointer arithmetics;

� Structured, recursion-free control flow.
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Semantics

� The standard ISO C99 semantics:
• arrays should not be accessed out of their bounds, . . .

restricted by:

� The machine semantics:
• integer arithmetics is 2’s complement,

• floating point arithmetics is IEEE 754-1985,

• int and float are 32-bit, short is 16-bit, . . .

restricted by:

� The user’s semantics:
• integer arithmetics should not wrap-around,

• some IEEE exceptions (invalid operation, overflow, division by zero)
should not occur, . . .
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Goal of the Program Static Analyzer

� Correctness verification.

� Nothing can go wrong at execution:
• no integer overflow or division by zero,

• no exception, NaN, or ±∞ generated by IEEE floating-point arithmetics,

• no out of bounds array access,

• no erroneous type conversion.

� The execution semantics on the machine never reaches an indetermination
or an error case in the standard / machine / user semantics.
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Information about the Program Execution
Automatically Inferred by the Analyzer

� The analyzer effectively computes a finitely represented, compact over-
approximation of the immense reachable state space.

� The information is valid for any execution interacting with any possible
environment (through undetermined volatiles).

� It is inferred automatically by abstract interpretation of the collecting seman-
tics and convergence acceleration (∇, ∆).
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Iterations to Over-Approximate
the Reachable States

U U U

while (...) { ... }
memorized abstract invariants

propagated abstract invariants

Program Iterative invariant computation
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Abstract Domains

Choice of the Abstract Domains

Abstract Domain:

� Computer representation of a class of program properties;

� Transformers for propagation through expressions and commands;

� Primitives for convergence acceleration: ∇, ∆.

Composition of Abstract Domains:

� Essentially approximate reduced product (conjunction with simplification).

Design of Abstract Domains:

� Know-how;

� Experimentation.
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Interval Abstract Domain

� Classical domain [Cousot Cousot 76];

� Minimum information needed to check the correctness conditions;

� Not precise enough to express a useful inductive invariant
(thousands of false alarms);

� =⇒ must be refined by:
• combining with existing domains through reduced product,

• designing new domains, until all false alarms are eliminated.
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Clock Abstract Domain

Code Sample:

R = 0;

while (1) {
if (I)

{ R = R+1; }
else

{ R = 0; }
T = (R>=n);

wait for clock ();

}

• Output T is true iff the volatile input I has been
true for the last n clock ticks.

• The clock ticks every s seconds for at most h

hours, thus R is bounded.

• To prove that R cannot overflow, we must
prove that R cannot exceed the elapsed clock
ticks (impossible using only intervals).

Solution:
� We add a phantom variable clock in the concrete user semantics to track

elapsed clock ticks.

� For each variable X, we abstract three intervals: X, X+clock, and X-clock.

� If X+clock or X-clock is bounded, so is X.
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Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;

L = A;

if (R>V)

{ � L = Z+V; }
�

}

• At �, the interval domain gives
L ≤ max(max A, (max Z)+(max V)).

• In fact, we have L ≤ A.

• To discover this, we must know at � that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

� The octagon abstract domain [Miné 03] is a good cost / precision trade-off.

� Invariants of the form ± x± y ≤ c, with O(N2) memory and O(N3) time cost.

� Here, R = A-Z cannot be discovered, but we get L-Z ≤ max R which is sufficient.

� We use many octagons on small packs of variables instead of a large one using
all variables to cut costs.
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Ellipsoid Abstract Domain

2d Order Filter Sample:
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• Computes Xn =

{
αXn−1 + βXn−2 + Yn

In

• The concrete computation is bounded,
which must be proved in the abstract.

• There is no stable interval or octagon.

• The simplest stable surface is an ellipsoid.
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Decision Tree Abstract Domain

Synchronous reactive programs encode control flow in boolean variables.

Code Sample:

bool B1,B2,B3;

float N,X,Y;

N = f(B1);

if (B1)

{ X = g(N); }
else

{ Y = h(N); }

Decision Tree:

� � �� � �� � �� � �

� �� �� �
��

�

� �� ��� � � � �� � � �

Numerical abstract domains

X
Y

X
Y

X
Y

X
Y

B3
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B2

BDD

There are too many booleans (4 000) to build one big tree so we:

� limit the BDD height to 3 (analysis parameter);

� use a syntactic criterion to select variables in the BDD and the numerical parts.
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Relational Domains on Floating-Point

Problems:
� Relational numerical abstract domains rely on a perfect mathematical concrete

semantics (in R or Q).

� Perfect arithmetics in R or Q is costly.

� IEEE 754-1985 floating-point concrete semantics incurs rounding.

Solution:

� Build an abstract mathematical semantics in R that over-approximates the
concrete floating-point semantics, including rounding.

� Implement the abstract domains on R using floating-point numbers rounded
in a sound way.
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Iteration Strategies

for Fixpoint Approximation

Iteration Refinement: Loop Unrolling

Principle:

� Semantically equivalent to:

while (B) { C } =⇒ if (B) { C }; while (B) { C }

� More precise in the abstract:
• less concrete execution paths are merged in the abstract.

Application:

� Isolate the initialization phase in a loop (e.g. first iteration).
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Iteration Refinement: Trace Partitioning

Principle:

� Semantically equivalent to:
if (B) { C1 } else { C2 }; C3

⇓
if (B) { C1; C3 } else { C2; C3 };

� More precise in the abstract:
• concrete execution paths are merged later.

Application:

if (B)

{ X=0; Y=1; }
else

{ X=1; Y=0; }
R = 1 / (X-Y);

/ cannot result in a division by zero
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Convergence Accelerator: Widening

Principle:

� Brute-force widening:

� Widening with thresholds:

Thresholds

Examples:

� 1., 10., 100., 1000., etc. for floating-point variables;

� maximal values of data types;

� syntactic program constants, etc.
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Fixpoint Stabilization for Floating-point

Problem:

� Mathematically, we look for an abstract invariant inv such that F(inv) ⊆ inv.

� Unfortunately, abstract computation uses floating-point and incurs rounding:
maybe Fε(inv) � inv!

Solution:

� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �
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error
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Inv

F εF

ε ’

Inv

• Widen inv to inv
ε
′ with the hope to

jump into a stable zone of Fε.

• Works if F has some attractiveness
property that fights against rounding
errors (otherwise iteration goes on).

• ε′ is an analysis parameter.
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Results

Example of Analysis Session

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 19/21



Results

� Efficient:
• tested on two 75 000 lines programs,

• 120 min and 37 min computation time on a 2.8GHz PC,

• 200 Mb memory usage.

� Precise:
• 11 and 3 lines containing a warning.

� Exhaustive:
• full control and data coverage (unlike checking, testing, simulation).
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Conclusion

� Success story:
• we succeed where a commercial abstract interpretation-based static

analysis tool failed
(because of prohibitive time and memory consumption and very large number
of false alarms);

� Usable in practice for verification:
• directly applicable to other similar programs

by changing some analyzer parameters,

• approach generalizable to other program families
by including new abstract domains and specializing the iteration
strategy.
(Work in progress: power-on self-test for a family of embedded systems.)
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