
PLDI’03

A Static Analyzer for Large

Safety-Critical Software

B. Blanchet, P. Cousot, R. Cousot, J. Feret

L. Mauborgne, A. Miné, D. Monniaux, X. Rival

CNRS
École normale supérieure

École polytechnique
Paris France

Automatic Program Verification
by Abstract Interpretation

Result:

� Can produce zero or very few false alarms
while checking non-trivial properties (absence of Run-Time Error);

� Does scale up.

How ?

� We specialize the abstract interpreter for a family of programs
(which correctness proofs would be similar).

� The abstract domains are generic invariants
automatically instantiated by the analyzer (to make these proofs).

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 1/21

Considered Programs and Semantics

Which Programs are Considered ?

� Embedded avionic programs;

� Automatically generated from a proprietary graphical system control language
(à la Simulink);

� Synchronous real-time critical programs:

declare volatile input, state, and output variables;

initialize state variables;

loop forever

read volatile input variables,

compute output and state variables,

write to volatile output variables;

wait for next clock tick

end loop

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 2/21



Main Characteristics of the Programs

Difficulties:

� Many global variables and arrays (> 10 000);

� A huge loop (> 75 000 lines after simplification);

� Each iteration depends on the state of the previous iterations (state variables);

� Floating-point computations
(80% of the code implements non-linear control with feed-back);

� Everything is interdependent (live variables analysis, slicing ineffective);

� Abstraction by elimination of any variable is too imprecise.

Simplicities:

� All data is statically allocated;

� Pointers are restricted to call-by-reference, no pointer arithmetics;

� Structured, recursion-free control flow.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 3/21

Semantics

� The standard ISO C99 semantics:
• arrays should not be accessed out of their bounds, . . .

restricted by:

� The machine semantics:
• integer arithmetics is 2’s complement,

• floating point arithmetics is IEEE 754-1985,

• int and float are 32-bit, short is 16-bit, . . .

restricted by:

� The user’s semantics:
• integer arithmetics should not wrap-around,

• some IEEE exceptions (invalid operation, overflow, division by zero)
should not occur, . . .

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 4/21

Goal of the Program Static Analyzer

� Correctness verification.

� Nothing can go wrong at execution:
• no integer overflow or division by zero,

• no exception, NaN, or ±∞ generated by IEEE floating-point arithmetics,

• no out of bounds array access,

• no erroneous type conversion.

� The execution semantics on the machine never reaches an indetermination
or an error case in the standard / machine / user semantics.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 5/21

Information about the Program Execution
Automatically Inferred by the Analyzer

� The analyzer effectively computes a finitely represented, compact over-
approximation of the immense reachable state space.

� The information is valid for any execution interacting with any possible
environment (through undetermined volatiles).

� It is inferred automatically by abstract interpretation of the collecting seman-
tics and convergence acceleration (∇, ∆).

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 6/21



Iterations to Over-Approximate
the Reachable States

U U U

while (...) { ... }
memorized abstract invariants

propagated abstract invariants

Program Iterative invariant computation

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 7/21

Abstract Domains

Choice of the Abstract Domains

Abstract Domain:

� Computer representation of a class of program properties;

� Transformers for propagation through expressions and commands;

� Primitives for convergence acceleration: ∇, ∆.

Composition of Abstract Domains:

� Essentially approximate reduced product (conjunction with simplification).

Design of Abstract Domains:

� Know-how;

� Experimentation.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 8/21

Interval Abstract Domain

� Classical domain [Cousot Cousot 76];

� Minimum information needed to check the correctness conditions;

� Not precise enough to express a useful inductive invariant
(thousands of false alarms);

� =⇒ must be refined by:
• combining with existing domains through reduced product,

• designing new domains, until all false alarms are eliminated.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 9/21



Clock Abstract Domain

Code Sample:

R = 0;

while (1) {
if (I)

{ R = R+1; }
else

{ R = 0; }
T = (R>=n);

wait for clock ();

}

• Output T is true iff the volatile input I has been
true for the last n clock ticks.

• The clock ticks every s seconds for at most h

hours, thus R is bounded.

• To prove that R cannot overflow, we must
prove that R cannot exceed the elapsed clock
ticks (impossible using only intervals).

Solution:
� We add a phantom variable clock in the concrete user semantics to track

elapsed clock ticks.

� For each variable X, we abstract three intervals: X, X+clock, and X-clock.

� If X+clock or X-clock is bounded, so is X.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 10/21

Octagon Abstract Domain

Code Sample:

while (1) {
R = A-Z;

L = A;

if (R>V)

{ � L = Z+V; }
�

}

• At �, the interval domain gives
L ≤ max(max A, (max Z)+(max V)).

• In fact, we have L ≤ A.

• To discover this, we must know at � that
R = A-Z and R > V.

Solution: we need a numerical relational abstract domain.

� The octagon abstract domain [Miné 03] is a good cost / precision trade-off.

� Invariants of the form ± x± y ≤ c, with O(N2) memory and O(N3) time cost.

� Here, R = A-Z cannot be discovered, but we get L-Z ≤ max R which is sufficient.

� We use many octagons on small packs of variables instead of a large one using
all variables to cut costs.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 11/21

Ellipsoid Abstract Domain

2d Order Filter Sample:

j

Switch

-

a b

i

z-1

Unit delay

z-1

B

+
+
+

t

x(n)

Unit delay

Switch

Switch

• Computes Xn =

{
αXn−1 + βXn−2 + Yn

In

• The concrete computation is bounded,
which must be proved in the abstract.

• There is no stable interval or octagon.

• The simplest stable surface is an ellipsoid.

X U F(X)

X
F(X)

F(X)
X

X U F(X)

unstable interval stable ellipsoid

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 12/21

Decision Tree Abstract Domain

Synchronous reactive programs encode control flow in boolean variables.

Code Sample:

bool B1,B2,B3;

float N,X,Y;

N = f(B1);

if (B1)

{ X = g(N); }
else

{ Y = h(N); }

Decision Tree:

� � �� � �� � �� � �

� �� �� �
��

�

� �� ��� � � � �� � � �

Numerical abstract domains

X
Y

X
Y

X
Y

X
Y

B3

B1

B2

BDD

There are too many booleans (4 000) to build one big tree so we:

� limit the BDD height to 3 (analysis parameter);

� use a syntactic criterion to select variables in the BDD and the numerical parts.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 13/21



Relational Domains on Floating-Point

Problems:
� Relational numerical abstract domains rely on a perfect mathematical concrete

semantics (in R or Q).

� Perfect arithmetics in R or Q is costly.

� IEEE 754-1985 floating-point concrete semantics incurs rounding.

Solution:

� Build an abstract mathematical semantics in R that over-approximates the
concrete floating-point semantics, including rounding.

� Implement the abstract domains on R using floating-point numbers rounded
in a sound way.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 14/21

Iteration Strategies

for Fixpoint Approximation

Iteration Refinement: Loop Unrolling

Principle:

� Semantically equivalent to:

while (B) { C } =⇒ if (B) { C }; while (B) { C }

� More precise in the abstract:
• less concrete execution paths are merged in the abstract.

Application:

� Isolate the initialization phase in a loop (e.g. first iteration).

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 15/21

Iteration Refinement: Trace Partitioning

Principle:

� Semantically equivalent to:
if (B) { C1 } else { C2 }; C3

⇓
if (B) { C1; C3 } else { C2; C3 };

� More precise in the abstract:
• concrete execution paths are merged later.

Application:

if (B)

{ X=0; Y=1; }
else

{ X=1; Y=0; }
R = 1 / (X-Y);

/ cannot result in a division by zero

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 16/21



Convergence Accelerator: Widening

Principle:

� Brute-force widening:

� Widening with thresholds:

Thresholds

Examples:

� 1., 10., 100., 1000., etc. for floating-point variables;

� maximal values of data types;

� syntactic program constants, etc.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 17/21

Fixpoint Stabilization for Floating-point

Problem:

� Mathematically, we look for an abstract invariant inv such that F(inv) ⊆ inv.

� Unfortunately, abstract computation uses floating-point and incurs rounding:
maybe Fε(inv) � inv!

Solution:

� � �� � �� � �� � �� � �� � �� � �� � �

� � �� � �� � �� � �� � �� � �� � �� � �

attractiveness

rounding
error

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �� � � � � � � �

Inv

F εF

ε ’

Inv

• Widen inv to inv
ε
′ with the hope to

jump into a stable zone of Fε.

• Works if F has some attractiveness
property that fights against rounding
errors (otherwise iteration goes on).

• ε′ is an analysis parameter.

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 18/21

Results

Example of Analysis Session

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 19/21



Results

� Efficient:
• tested on two 75 000 lines programs,

• 120 min and 37 min computation time on a 2.8GHz PC,

• 200 Mb memory usage.

� Precise:
• 11 and 3 lines containing a warning.

� Exhaustive:
• full control and data coverage (unlike checking, testing, simulation).

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 20/21

Conclusion

� Success story:
• we succeed where a commercial abstract interpretation-based static

analysis tool failed
(because of prohibitive time and memory consumption and very large number
of false alarms);

� Usable in practice for verification:
• directly applicable to other similar programs

by changing some analyzer parameters,

• approach generalizable to other program families
by including new abstract domains and specializing the iteration
strategy.
(Work in progress: power-on self-test for a family of embedded systems.)

PLDI’03 - A Static Analyzer for Large Safety-Critical Software 21/21


