Static Analysis and Verification
of Aerospace Software
by Abstract Interpretation

Julien Bertrane

Ecole normale supérieure, Paris

Patrick Cousot

Courant Institute of Mathematical Sciences, NYU, New York €& Ecole normale supérieure, Paris

Radhia Cousot Jérome Feret

Ecole normale supérieure €& CNRS, Paris Ecole normale supérieure €& INRIA, Paris

Laurent Mauborgne
Ecole normale supérieure, Paris & IMDEA Software, Madrid

Antoine Miné Xavier Rival

Ecole normale supérieure €& CNRS, Paris Ecole normale supérieure €& INRIA, Paris

AlAA Infotech@Aerospace 2010 , Atlanta, Georgia April 20,2010

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 | © P Cousot et Al.

Content

® Motivation

® An informal introduction to abstract interpretation

® A short overview of a few applications and on-going

work on aerospace software

® All necessary theoretical and practical details and
references are given in the paper

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 2

© P Cousot et Al

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010

Motivation

© P Cousot et Al.

All computer scientists have experienced bugs

Ariane 5.01 failure Patriot failure Mars orbiter loss
(overflow) (float rounding) (unit error)

® Checking the presence of bugs is great

® Proving their absence is even better!

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 4 © P Cousot et Al

Abstract interpretation

Abstract interpretation
® Started in the /0’s and well-developped since then

® Oiriginally for program dataflow analysis in compilers
(e.g. check for conditions under which optimizations
are applicable such as elimination of useless runtime
checks)

® Based on the idea that undecidability and complexity
of automated program analysis can be fought by
approximation

® Applications evolved from static analysis to verification

Fighting undecidability and complexity
in program verification

® Any automatic program verification method will
definitely fail on infinitely many programs (Godel)

® Solutions:

® Ask for human help (theorem-prover based
deductive methods)

® Consider (small enough) finite systems (model-
checking)

® Do sound approximations or complete
abstractions (abstract interpretation)

Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 7

An informal introduction to
abstract interpretation

|) Define the programming language semantics

Formalize the concrete execution of programs (e.g. transition system)

/:/ (%)

i
E\.« - X M

t=1 t

>

Trajectory Space/time trajectory
In state space

II) Define the program properties of interest

Formalize what you are interested to know about program behaviors

A

. —

lIl) Define which specification must be checked

Formalize what you are interested to prove about program behaviors

®
I

V) Choose the appropriate abstraction
Abstract away all information on program behaviors irrelevant to the proof

A

Abstraction of the trajectories

AlAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 | 2 © P Cousot et Al

V) Mechanically verify in the abstract

The proof is fully automatic

Forbidden zone

o O

Abstraction of the trajectories

Soundness of the abstract verification

Never forget any possible case so the abstract proof is correct in the concrete

Forbidden zone

oS

Abstraction of the trajectories

Unsound validation: testing

Iry a few cases

Forbidden zone

Test of a few trajectories

Unsound validation: bounded model-checking

Simulate the beginning of all executions

Forbidden zone

Bounded model-checking

Unsound validation: static analysis

Many static analysis tools are unsound (e.g. Coverity, etc.) so inconclusive

Forbidden zone Error !!

(3

Erroneous trajectory abstraction

Incompleteness

When abstract proofs may fail while concrete proofs would succeed

Forbidden zone ‘ Alarm !

oS

Error or false alarm ?

By soundness an alarm must be raised for this overapproximation!

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 | 8 © P Cousot et Al.

True error

The abstract alarm may correspond to a concrete error

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010

Forbidden zone “‘ Alarm !

© P Cousot et Al.

False alarm

The abstract alarm may correspond to no concrete error (false negative)

Forbidden zone A'arm’”

O O

False alarm

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 20 © P Cousot et Al

What to do about false alarms?

® Automatic refinement: inefficient and may not
terminate (Godel)

® Domain-specific abstraction:

® Adapt the abstraction to the programming

pbaradigms typically used in given domain-specific
applications

® e.g.synchronous control/command: no recursion, no

dynamic memory allocation, maximum execution
time, etc.

21

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010

ASTREE

22

© P Cousot et Al.

Target language and applications
® C programming language

® Without recursion, 1ongjump, dynamic
memory allocation, conflicting side effects,
backward jumps, system calls (stubs)

® With all its horrors (union, pointer
arithmetics, etc)

® Reasonably extending the standard (e.g. size &
endianess of integers, |[EEE 754-1985 floats, etc)

® Synchronous control/command

® e.g. generated from Scade

23

The semantics of C implementations
is very hard to define

What is the effect of out-of-bounds array indexing?

% cat unpredictable.c
#include <stdio.h>
int main () { int n, TI[1];

n:

2147433647 ;

printf("n = %i, Tln] = %i\n", n, T[n]);

¥

Yields different results on different machines:

n = 2147483647, T[n]
n = 2147483647, T[n]
n = 2147483647, T[n]

Bus error

Aerospace 2010, Atlanta, georgia, 04/20/2010

24

2147483647
-1203492044
-135294988

Macintosh PPC
Macintosh Intel
PC Intel 32 bits
PC Intel 64 bits

© P Cousot et Al

Implicit specification

® Absence of runtime errors: overflows, division by
zero, buffer overflow, null & dangling pointers,
alignment errors, ...

® Semantics of runtime errors:

® TJerminating execution: stop (e.g. floating-point
exceptions when traps are activated)

® Predictable outcome: go on with worst case
(e.g. signed integer overflows result in some
integer, some options: e.g. modulo arithmetics)

® Unpredictable outcome: stop (e.g. memory
corruption)

Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 25

Abstractions

Y o o Uoh o o
o — — — -
X e o o o o7

Collecting semantics: Intervals: Simple congruences:
partial traces X € |a,b] x = alb]

Y Y

Octagons: Ellipses: Exponentials:
t+tx+y<a x? 4+ by? — axy < d —ab® <y(t) < a®

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 26 © P Cousot et Al

Example of general purpose abstraction: octagons

e Invariants of the form + x4y < c, with O(IN?) memory and O(IN?) time cost.

® [xample:
Whilf (1) 1 ® At %, the interval domain gives
i” j ﬁ_z’ L < max(max A, (max Z)+(max V)).
if (R>V) ® In fact, we have L. < A.
{ % L = 2z+v; }
* ® To discover this, we must know at ¥ that
1 R=A-Zand R > V.

e Here, R = A-Z cannot be discovered, but we get L-Z < max R which is sufficient.

e We use many octagons on small packs of variables instead of a large one using

&

all variables to cut costs.

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 27 © P Cousot et Al

Example of general purpose abstraction:
decision trees

/* boolean.c */
typedef enum {F=0,T=1} BOOL;
BOOL B;
void main () {
unsigned int X, Y;
while (1) {

B = (X == 0);

it (1B) {
Y=1/X;

“u
Y4 V4 'f+l

8

I,T ! |
The boolean relation abstract
domain is parameterized by the
height of the decision tree (an
analyzer option) and the

abstract domain at the leaves

28 © P Cousot et Al

= 1 =X

Example of domain-specific abstraction: ellipses

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () A

static float E[2], S[2];

if (INIT) { S[0] = X; P = X; E[0] = X; %}

else { P = ((((C0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))

+ (S[0] = 1.5)) - (S[1] = 0.7)); }

E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;

/* S[0], S[1] in [-1327.02698354, 1327.02698354] x*/
+
void main () { X = 0.2 * X + 5; INIT = TRUE;

while (1) {

X =0.9 x X + 35;

filter (); INIT = FALSE; } v
} T
AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 © P Cousot et Al.

Example of domain-specific abstraction: exponentials

7% cat count.c
typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;

volatile BOOLEAN I; int R; BOOLEAN T;
void main() {
R = 0;
while (TRUE) {
__ASTREE_log_vars((R));
if (I) {R=R+1; }
else { R =0; }
T = (R >= 100);
__ASTREE_wait_for_clock(());
T}

% cat count.config
__ASTREE_volatile_input((I [0,1]));

__ASTREE_max_clock((3600000));

/» astree -exec-fn main -config-sem count.config count.cl|grep ’I[R|’

IRl <= 0. + clock *1. <= 3600001. H

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 30 © P Cousot et Al.

< potential overflow!

Example of domain-specific abstraction: exponentials

% cat retro.c

typedef enum {FALSE=0, TRUE=1} BOOL;
BOOL FIRST;

volatile BOOL SWITCH;

volatile float E;

float P, X, A, B;

void dev()
{ X=E;
if (FIRST) { P =X; }
else
{P= (P - ((((2.0 x P) - A) - B)
* 4.491048e-03)); };
B = A;
if (SWITCH) {A = P;}
else {A = X;}

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010

3 I © P Cousot et Al.

% cat retro.config
__ASTREE_volatile_input((E [-15.0, 15.0]));
__ASTREE_volatile_input ((SWITCH [0,1]));
__ASTREE_max_clock((3600000));

|P| <= (15. + 5.87747175411e-39

/ 1.19209290217e-07) * (1 +
1.19209290217e-07) “clock - 5.87747175411e-39
/ 1.19209290217e-07 <= 23.0393526881

H

An erroneous common belief on static analyzers

“The properties that can be proved by static analyzers are often
simple” [2]
Like 1n mathematics:

— May be simple to state (no overflow)

— But harder to discover (s [0], S[1] in [-1327.02698354, 1327.02698354])

— And difficult to prove (since it requires finding a non trivial
non-linear invariant for second order filters with complex
roots [Fer04|, which can hardly be found by exhaustive enu-
meration)

Reference

[2] Vijay D’Silva, Daniel Kroening, and Georg Weissenbacher. A Survey of Automated Techniques for Formal Software Verification.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 27, No. 7, July 2008.

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 32 © P Cousot et Al.

Industrial applications

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 33 © P Cousot et Al.

Examples of applications
® Verification of the absence of runtime-errors in

® Fly-by-wire flight control systems

® ATV docking system

® Flight warning system
(on-going work)

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 34

© P Cousot et Al.

Industrialization

® 8 years of research (CNRS/ENS/INRIA):

www.astree.ens.fr

Blrr=ys

o
76)) + (S_0 * 1.5419)) -

}
OE 1 =E

[wimi =)|
invariant
X does not depend on itself

P does not depend on itself

elipse ¢ ne 35 - column 10 -~ character 333

direct = <float-interval: P in [-1252.84,

void ellipse () {

static float @€ 0, E.1, S0, S 1;

eif (INIT) {
®S5 0 = X;
oP = X;
®E 0 = X;o

} else {
P = (((((0.4677826 * X) - (E_0 * 0.7700725)) + (E_1 * 0.43443

(S_1 * 0.6740476)) ;0

1252.84], X in [123.645, 776.465] >

Zax

® |ndustrialization by AbsInt (since Jan.2010):

www.absint.com/astree/
O

Absint

Angewandte Informatik

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010

Seureas 51 feaiwe, 0r1-2009

35

o Fe W G Ve Fokvg Wede o

EEEOG M| 50X

o 0wt

- et aaqrm< -
Gt et e ol
T
£ g —
grabre; g gk et
e — |

© P Cousot et Al

On-going work

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 36 © P Cousot et Al.

Verification of
target programs

37

Verification of compiled programs

® The valid source may be proved correct while the

certified compiler is incorrect so the target program
may go wrong

® Possible approaches:

® Verification at the target level

® Source to target proof translation and proof
check on the target

* Translation validation (local verification of

equivalence of run-time error free source and
target)

® Formally certified compilers

38

Verification of
imperfectly clocked
synchronous systems

39

Imperfect synchrony

® Example of (buggy) communicating synchronous systems:

c120000000++ blackboard inputs

e ST L | |
3 ! ®* negate previous input
Nor | |compaR Nor (on clocks C and C’)
' < v . ¢ compare Inputs
System 1 System 2

® Synchronized and dysynchronized executions:

System 2

System 1

|

COMPARE

o a2 3 4 sem|o a2 3 a4 5l
true + + + +.c_’ true + + + +c_,
false - Tfalse [-
' A A A A A ' X E E E |
?true Y Y. ftrue \ .
A SR S S LI R
::e o¥< o:l o¥< o¥< o¥< t::e !V= ' ! !V= !V= !V= < ﬂ awe CI
A b e - alarms
40 © P Cousot et Al

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010

Semantics and abstractions

® Continuous semantics (value s(t) of signals s at any
time t)

® Clock ticks and serial communications do happen in
known time intervals [/, h],] < h

® Examples of abstractions:
o Vte |ab]:s(t) =x.
e Jt €la;b|: s(t) ==
® change counting (< k,a» «b) and (> k,a » <b)

(signal changes less (more) than k times in time
interval [a, b])

41

Example of static analysis

SE;‘SORS
Changes
Counting
Constraints Constraints
s w1 For how long
ghanggs 'ghanggs
Y yCounting ountin Y .
should the input
REDUNDANT UNIT #1 REDUNDANT UNIT #2 b e sSta b | I | 7 e d
— before deciding
Counting [v;: o . Counting . 7
v Ty on disagreement!
Constraints
ACTUATORS Chang%s ACTUATORS
Cqunting
Y Y
VOTER

Integral bounding

Specification : no alarm raised with a normal input

0 2/3 A A
input stability < A : | Between % X A | input stability > A : the analyzer
counter-example and A : 7 proves the specification

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 42 © P Cousot et Al.

THESEE:Verification of

embedded real-time parallel
C programs

43

Parallel programs

Bounded number of processes with shared memory,
events, semaphores, message queues, blackboards,...

Processes created at initialization only

Real time operating system (ARINC 653) with fixed
priorities (highest priority runs first)

Scheduled on a single processor

Verified properties

® Absence of runtime errors

® Absence of unprotected data races

44

Semantics

® No memory consistency model for C

® Optimizing compilers consider sequential processes
out of their execution context

init: flagl = flag2 = 0

process 1:

process 2:

flagl = 1; flag2 = 1;
if (!'flag2) if ('flagl)
{ {

/* critical section */

® VWe assume:

/* critical section */

write to flagl/2 and
read of f1lag2/1 are

independent so can be
reordered — error!

® sequential consistency in absence of data race
® for data races, values are limited by possible
interleavings between synchronization points

45

Abstractions
Based on Astree for the sequential processes
Takes scheduling into account

OS entry points (semaphores, logbooks, sampling
and queuing ports, buffers, blackboards, ...) are all
stubbed (using Astree stubbing directives)

Interference between processes: flow-insensitive
abstraction of the writes to shared memory and
Inter-process communications

46

® Degraded mode (5 processes, 100 000 LOCS)
® |h40 on 64-bit 2.66 GHz Intel server
® 98 alarms

® Full mode (15 processes, | 600 000 LOCYS)
® 50 h

® |2 000 alarms !!! more work to be done !!! (e.g.
analysis of complex data structures, logs, etc)

47

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010

Conclusion

48

© P Cousot et Al.

Cost-effective verification
® The rumor has it that:

® Manuel validation (testing) is costly, unsafe, not a
verification!

® Formal proofs by theorem provers are
extremely laborious hence costly

® Model-checkers do not scale up
® Why not try abstract interpretation?

® Domain-specific static analysis scales and can
deliver

49

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010

The End

50

© P Cousot et Al.

