
.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Online seminar series on Verification beyond 2020

Is Static Analysis Successful?

Patrick Cousot
IMDEA Software, Madrid & NYU, New York
pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

Tuesday, July 7th, 2020

“Is Static Analysis Successful?” – 1/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

http://cs.nyu.edu/~pcousot

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Abstract

When I was invited for the online seminar, I first thought of a
technical subject (more precisely, symbolic terms, substitutions,
and systems of equations which abstract interpretation clarifies
by giving them various ground semantics).
Assume ⟨C, ⊑⟩ −−−→−→←−−−−

α

γ
⟨A, ≼⟩ is a Galois connection between posets and α is

surjective. If ⟨C, ⊑⟩ is a complete lattice then so is ⟨A, ≼⟩.
So symbolic terms, substitutions, and equations are complete lattices ⟨A, ≼⟩ where

⟨C, ⊑⟩ is a powerset with ground terms (already well-known but proved “in abstracto”
in the literature).

The problem is that substitutions do not have a unique interpretation! This is the
origin of great difficulties, misunderstandings, and lot of confusion about substitutions
in the literature.

“Is Static Analysis Successful?” – 2/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Abstract

But then, the conversation Andreas and I had on the
mainstream success of deductive methods while static analysis
stays in the shade, led me to another idea:
discuss whether static analysis is successful, or not, and what
are the conditions to make it mainstream, and, why not,
immensely popular?

“Is Static Analysis Successful?” – 3/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The successes of deductive methods

“Is Static Analysis Successful?” – 4/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Deductive methods
• Theorem provers
• Proof assistants
• SMT solvers

“Is Static Analysis Successful?” – 5/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

https://en.wikipedia.org/wiki/Automated_theorem_proving
https://en.wikipedia.org/wiki/Proof_assistant
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem provers

“Is Static Analysis Successful?” – 6/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem provers
• First-order theorem proving started with Jacques Herbrand (invents unification in

1930), John Robinson (invents resolution in 1965), …;
• Great academic tools: ACL2, B prover of Atelier B, iProver, Prover9, PVS, etc;
• Industrial successes: e.g.

• B method used to prove the security software of the new Paris driverless metro line
14 (not the control/command software);

• Verification of all elementary floating-point arithmetics on the AMD Athlon by
ACL21;

• Not simple, slow, requires specialists, proofs must be changed after each program
modification, etc;

• Punctual successes not easily replicated (e.g. B not used for renovation of existing
line A of Paris RER).

1J. Strother Moore, Marijn J. H. Heule: Industrial Use of ACL2: Applications, Achievements, Challenges, and Directions. ARCADE@CADE 2017:
42-45

“Is Static Analysis Successful?” – 7/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

https://en.wikipedia.org/wiki/ACL2
https://www.atelierb.eu/
http://www.cs.man.ac.uk/~korovink/iprover/
https://en.wikipedia.org/wiki/Prover9
https://en.wikipedia.org/wiki/Prototype_Verification_System
https://www.methode-b.com/en/b-method/
http://deploy-eprints.ecs.soton.ac.uk/8/1/fm_sc_rs_v2.pdf
https://en.wikipedia.org/wiki/Paris_Métro_Line_14
https://en.wikipedia.org/wiki/Paris_Métro_Line_14
https://en.wikipedia.org/wiki/ACL2
https://easychair.org/publications/open/6w5W

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Theorem provers
• Full automation is hopeless2;
• Real successes mostly came from reducing the initial ambitions:

• Restrict automation: Proof assistants;
• Prove less: SMT solvers.

2Henry Gordon Rice, Classes of Recursively Enumerable Sets and Their Decision Problems,Trans. Amer. Math. Soc., 74:1, 1953, 358–366.

“Is Static Analysis Successful?” – 8/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

https://www.ams.org/journals/tran/1953-074-02/S0002-9947-1953-0053041-6/S0002-9947-1953-0053041-6.pdf

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof assistants

“Is Static Analysis Successful?” – 9/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof assistants
• Interact or program the proof;
• Great academic tools: Isabelle3, Coq4, etc;
• Great successes, e.g. for Coq:

• Four color theorem, Feit–Thompson theorem by Georges Gonthier,
• CompCert by Xavier Leroy;

• Industrialization (of software proved by Coq):
• CompCert sold by AbsInt (used by Airbus France);

3first-order logic (FOL), higher-order logic (HOL) or Zermelo–Fraenkel set theory (ZFC)
4Calculus of constructions

“Is Static Analysis Successful?” – 10/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

https://en.wikipedia.org/wiki/Isabelle_(proof_assistant)
https://en.wikipedia.org/wiki/Coq
https://en.wikipedia.org/wiki/Four_color_theorem
https://en.wikipedia.org/wiki/Feit–Thompson_theorem
https://en.wikipedia.org/wiki/Georges_Gonthier
https://en.wikipedia.org/wiki/CompCert
https://en.wikipedia.org/wiki/Xavier_Leroy
https://en.wikipedia.org/wiki/Coq
https://www.absint.com/compcert/index.htm
https://www.absint.com/
https://en.wikipedia.org/wiki/Calculus_of_constructions

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof assistants
• Despite proving already known theorems, proof assistants are not used

• by mathematicians (who favor creation over verification),
• by production engineers;

• Real compilers (LLVM, GCC, etc) are 10 to 50 times larger than CompCert,
proofs become inhuman.

• The hope is more for small complex algorithms (e.g. EasyCrypt 5 in
cryptography).

5Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, Pierre-Yves Strub: EasyCrypt: A Tutorial. FOSAD 2013:
146-166

“Is Static Analysis Successful?” – 11/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

https://en.wikipedia.org/wiki/LLVM
https://en.wikipedia.org/wiki/GNU_Compiler_Collection
https://en.wikipedia.org/wiki/CompCert
https://www.easycrypt.info/trac/

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

SMT solvers

“Is Static Analysis Successful?” – 12/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

SMT solvers
• Restrict what you can prove;
• Fixed reduced product of abstract domains6;
• An unexpected formalization by abstract interpretation7;
• Great academic tools: CVC3, CVC4, Z3, and many, many, others;
• Some industrial successes e.g.:

• In R&D on very specific subjects (most often small but complex algorithms) 8,
• Used by AdaCore to check SPARK contracts;

• Rather unstable over time in competitions;
• At the limit one SMT solver per application9.

6Patrick Cousot, Radhia Cousot, Laurent Mauborgne: Theories, solvers and static analysis by abstract interpretation. J. ACM 59(6): 31:1-31:56
(2012)

7Vijay D’Silva, Leopold Haller, Daniel Kroening: Abstract satisfaction. POPL 2014: 139-150.
8e.g. Z3 and SMT in Industrial R&D, Nicolaj Bjørner, 2018
9could be done by incorporating the adequate abstract domains in the product, presently customization is done by hand.

“Is Static Analysis Successful?” – 13/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

https://cs.nyu.edu/acsys/cvc3/
https://cvc4.github.io
https://en.wikipedia.org/wiki/Z3_Theorem_Prover
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://en.wikipedia.org/wiki/GNAT
https://en.wikipedia.org/wiki/SPARK_(programming_language)
https://easychair.org/smart-slide/slide/ln37

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Is static analysis successful?

“Is Static Analysis Successful?” – 14/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Static analysis is hard to understand
Contrary to deductive methods (check the work of mathematicians), static analysis
(check the work of programmers) is more difficult to perceive

• by the general public;
• by programmers (who learn to prove theorems at school but not to prove and,

even less, to analyze a program with a tool10).

10Compilers are the only universally used static analyzers.

“Is Static Analysis Successful?” – 15/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Static analysis is harder than verification (by deductive methods)
Program Analysis Is Harder Than

Verification: A Computability Perspective

Patrick Cousot1 , Roberto Giacobazzi2,3 , and Francesco Ranzato4(B)

1 New York University, New York City, USA
2 University of Verona, Verona, Italy

3 IMDEA Software Institute, Madrid, Spain
4 University of Padova, Padova, Italy

ranzato@math.unipd.it

Abstract. We study from a computability perspective static program
analysis, namely detecting sound program assertions, and verification,
namely sound checking of program assertions. We first design a general
computability model for domains of program assertions and correspond-
ing program analysers and verifiers. Next, we formalize and prove an
instantiation of Rice’s theorem for static program analysis and verifica-
tion. Then, within this general model, we provide and show a precise
statement of the popular belief that program analysis is a harder prob-
lem than program verification: we prove that for finite domains of pro-
gram assertions, program analysis and verification are equivalent prob-
lems, while for infinite domains, program analysis is strictly harder than
verification.

1 Introduction

It is common to assume that program analysis is harder than program verifi-
cation (e.g. [1,17,22]). The intuition is that this happens because in program
analysis we need to synthesize a correct program invariant while in program ver-
ification we have just to check whether a given program invariant is correct. The
distinction between checking a proof and computing a witness for that proof can
be traced back to Leibniz [18] in his ars iudicandi and ars inveniendi , respec-
tively representing the analytic and synthetic method. In Leibniz’s ars combina-
toria, the ars inveniendi is defined as the art of discovering “correct” questions
while ars iudicandi is defined as the art of discovering “correct” answers. These
foundational aspects of mathematical reasoning have a peculiar meaning when
dealing with questions and answers concerning the behaviour of computer pro-
grams as objects of our investigation.

Our main goal is to define a general and precise model for reasoning on the
computability aspects of the notions of (sound or complete) static analyser and
verifier for generic programs (viz. Turing machines). Both static analysers and
verifiers assume a given domain A of abstract program assertions, that may range
from synctatic program properties (e.g., program sizes or LOCs) to complexity

c© The Author(s) 2018
H. Chockler and G. Weissenbacher (Eds.): CAV 2018, LNCS 10982, pp. 75–95, 2018.
https://doi.org/10.1007/978-3-319-96142-2_8

“Is Static Analysis Successful?” – 16/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Two additional difficulties for static analysis
• induction (no inductive invariants are given to static analysers);
• no universal interface (to many programming languages, libraries, and systems).

“Is Static Analysis Successful?” – 17/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The context of static analysis is quite diverse
• Academic and industrial tools;
• Academic and industrial users;
• Explicit versus implicit specifications;
• Small models to large programs;
• Sound and unsound tools;
• Bug finding versus verification;
• Terminology is confusing (static analysis versus software

checking);
• Many different levels of ambitions (from compilers, linters,

unsound commercial tools, semantic-based, sound, and
precise tools, to verifiers);
→ hard for non-specialists to have a clear understanding of
the field;
→ a lot of space for unscrupulous charlatans.

58 COMMUNICATIONS OF THE ACM | FEBRUARY 2010 | VOL. 53 | NO. 2

practice

ALTHOUGH FORMAL METHODS have been used in the
development of safety- and security-critical systems
for years, they have not achieved widespread industrial
use in software or systems engineering. However,
two important trends are making the industrial use
of formal methods practical. The first is the growing
acceptance of model-based development for the
design of embedded systems. Tools such as MATLAB
Simulink6 and Esterel Technologies SCADE Suite2 are
achieving widespread use in the design of avionics and
automotive systems. The graphical models produced
by these tools provide a formal, or nearly formal,
specification that is often amenable to formal analysis.

The second is the growing power of formal verification
tools, particularly model checkers. For many classes

of models they provide a “push-but-
ton” means of determining if a model
meets its requirements. Since these
tools examine all possible combina-
tions of inputs and state, they are
much more likely to find design errors
than testing.

Here, we describe a translator
framework developed by Rockwell Col-
lins and the University of Minnesota
that allows us to automatically trans-
late from some of the most popular
commercial modeling languages to a
variety of model checkers and theorem
provers. We describe three case studies
in which these tools were used on in-
dustrial systems that demonstrate that
formal verification can be used effec-
tively on real systems when properly
supported by automated tools.

DOI:10.1145/1646353.1646372

A translator framework enables the use
of model checking in complex avionics
systems and other industrial settings.

BY STEVEN P. MILLER, MICHAEL W. WHALEN,
AND DARREN D. COFER

Software
Model
Checking
Takes Off

“Is Static Analysis Successful?” – 18/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Keys to static analysis successes

“Is Static Analysis Successful?” – 19/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Specifications are inexistent
• Formal semantics of languages;
• Requirements for programs;
• Few exceptions: e.g. MISRA C for automobile, DO-178C for the avionics.

38 COMMUNICATIONS OF THE ACM | APRIL 2015 | VOL. 58 | NO. 4

V viewpoints

I
M

A
G

E
 B

Y
 S

A
K

O
N

B
O

O
N

 S
A

N
S

R
I

Viewpoint
Who Builds a House
without Drawing
Blueprints?
Finding a better solution by thinking about the problem
and its solution, rather than just thinking about the code.

something, we can explain it clearly in
writing. If we have not explained it in
writing, then we do not know if we re-
ally understand it.

The second observation is that to
write a good program, we need to think
above the code level. Programmers

I
BE GAN WRITING programs in
1957. For the past four de-
cades I have been a computer
science researcher, doing only
a small amount of program-

ming. I am the creator of the TLA+
specification language. What I have
to say is based on my experience pro-
gramming and helping engineers write
specifications. None of it is new; but
sensible old ideas need to be repeated
or silly new ones will get all the atten-
tion. I do not write safety-critical pro-
grams, and I expect that those who do
will learn little from this.

Architects draw detailed plans
before a brick is laid or a nail is ham-
mered. But few programmers write
even a rough sketch of what their pro-
grams will do before they start coding.
We can learn from architects.

A blueprint for a program is called a
specification. An architect’s blueprint is
a useful metaphor for a software speci-
fication. For example, it reveals the fal-
lacy in the argument that specifications
are useless because you cannot gener-
ate code from them. Architects find
blueprints to be useful even though
buildings cannot be automatically gen-
erated from them. However, metaphors
can be misleading, and I do not claim
that we should write specifications just
because architects draw blueprints.

The need for specifications follows
from two observations. The first is that

it is a good idea to think about what we
are going to do before doing it, and as
the cartoonist Guindon wrote: “Writ-
ing is nature’s way of letting you know
how sloppy your thinking is.”

We think in order to understand
what we are doing. If we understand

DOI:10.1145/2736348 Leslie Lamport

11

11Static analysis of blueprints is certainly also useful!

“Is Static Analysis Successful?” – 20/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

https://en.wikipedia.org/wiki/MISRA_C
https://en.wikipedia.org/wiki/DO-178C

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Program certification is not mandatory
• No regulation on software quality;
• A facility rather than an obligation;
• Obligation of means rather than results;
• Software engineering is empiricism but no science;

“Is Static Analysis Successful?” – 21/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Benchmarks are biased
• Academic benchmarks do not reflect industrial needs;
• Industrial benchmarks are not publicly available.

“Is Static Analysis Successful?” – 22/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Independent evaluations are rare
• Few independent comparative evaluations;
→ choosing the appropriate static analysis tool is very difficult for engineers and
managers.

“Is Static Analysis Successful?” – 23/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example 1 of benchmarks
Benchmarking Software Model Checkers

on Automotive Code

Lukas Westhofen1, Philipp Berger2, and Joost-Pieter Katoen2

1 OFFIS e.V., Oldenburg, Germany
lukas.westhofen@offis.de

2 RWTH Aachen University, Aachen, Germany
{berger, katoen}@cs.rwth-aachen.de

Abstract. This paper reports on our experiences with verifying auto-
motive C code by state-of-the-art open source software model checkers.
The embedded C code is automatically generated from Simulink open-
loop controller models. Its diverse features (decision logic, floating-point
and pointer arithmetic, rate limiters and state-flow systems) and the
extensive use of floating-point variables make verifying the code highly
challenging. Our study reveals large discrepancies in coverage — which
is at most only 20% of all requirements — and tool strength compared
to results from the main annual software verification competition. A
hand-crafted, simple extension of the verifier CBMC with k-induction
delivers results on 63% of the requirements while the proprietary BTC
EmbeddedValidator covers 80% and obtains bounded verification results
for most of the remaining requirements.

1 Introduction

Software Model Checking. Software model checking is an active field of research.
Whereas model checking algorithms initially focused on verifying models, vari-
ous dedicated techniques have been developed in the last two decades to enable
model checking of program code. This includes e.g., predicate abstraction, ab-
stract interpretation, bounded model checking, counterexample-guided abstrac-
tion refinement (CEGAR) and automata-based techniques. Combined with the
enormous advancements of SAT and SMT-techniques [1], nowadays program
code can be directly verified by powerful tools. Companies like Microsoft, Face-
book, Amazon, and ARM check software on a daily basis using in-house model
checkers. The enormous variety of code verification techniques and tools has ini-
tiated a number of software verification competitions such as RERS, VerifyThis,
and SV-COMP. For software model checking, the annual SV-COMP competition
is most relevant. Launched with 9 participating tools in 2012, it gained popular-
ity over the years with more than 40 competitors in 2019 [2]. It runs o↵-line in
a controlled manner, and has several categories. Competitions like SV-COMP
have established standards in input and output format, and evaluation criteria.
Software model checkers are ranked based on the verification results, earning

ar
X

iv
:2

00
3.

11
68

9v
1

 [c
s.L

O
]

26
 M

ar
 2

02
0

message of this paper is to emphasize the need for a synchronization between
the industrial and scientific software verification communities.

2 Preliminaries

2.1 The Automotive Benchmarks

Benchmark Description. Both case studies involve auto-generated code of
two R&D prototype Simulink models from Ford Motor Company: the next-gen
Driveline State Request (DSR) feature and the next-gen E-Clutch Control (ECC)
feature. The DSR and ECC features implement the decision logic for opening
and closing the driveline and calculating the desired clutch torque and corre-
sponding engine control torque of the vehicle, respectively. The case studies are
described in detail in [3]. Unfortunately, because of non-disclosure agreements,
we cannot make the benchmarks publicly available; instead we give a detailed
characterization of the used code in the following.

Table 1: Code metrics of the benchmarks.

Metric DSR ECC

Complexity

Source lines of code 1,354 2,517
Cyclomatic complexity 213 268

Global constants 77 274

char 12 8
char[] [12,32] 2 0
float 35 77
float[] [6-12] 9 [2-7] 4
float* 1 1
void* 18 184

Global variables 273 775

char 199 595
char[] [16-32] 3 0
float 46 110
float[] [4-10] 25 [2-4] 70

Operations 5232 10096

Addition/subtraction 133 346
Multiplication/division 52 253
Bit-wise operations 65 191
Pointer dereferences 83 180

Code Characteristics. From
the Simulink models, gener-
ated by a few thousand blocks,
around 1,400 and 2,500 source
lines of C code were extracted
for DSR and ECC. Both code
bases have a cyclomatic com-
plexity of over 200 program
paths. The cyclomatic com-
plexity is a common software
metric indicating the number
of linearly independent paths
through a program’s code. Ta-
ble 1 presents the metrics col-
lected on both case studies.

Constants are used to ac-
count for configurability, i.e.
they represent parameters of
the model that can be changed
for di↵erent types of applica-
tions. The configurable state-
space consists of 77 and 274
constants, for DSR and ECC
respectively. Most of them are
of type float, sometimes in a
fixed-length array, as indicated
by the square brackets. Their

3 Comparing the Open-Source Verifiers

Coverage. Fig. 2 shows the verification results of running the open-source veri-
fiers on the two case studies, omitting the results of the witness validation.

0

20

40

60

80

100

CBM
C+

k

CBM
C

U
ltim

ateTaipan

ESBM
C

U
ltim

ateA
utom

izer

Sym
biotic

CPAChecker

PeSCo

D
epthK

U
ltim

ateK
ojak

2LS
SM

ACK

P
er
ce
n
ta
ge

True

False

Timeout

Out of memory

Verifier bug

Spurious counterexample

Max. depth reached

Fig. 2: The overall result distribution for each software model checker, in percent.

CBMC+k is able to verify about 63% of the verification tasks; CBMC and
UltimateTaipan cover roughly 20%. ESBMC delivers results on 10% of the re-
quirements. The remaining verifiers reach a coverage of at most 5%. The majority
of the verifiers is either able to identify counterexamples or produce proofs, but
seldom both. 2LS and SMACK cannot return a single definite result. The only
successful witness validation was a proof of PeSCo validated by CPAChecker,
indicated by True (Correct). CBMC delivered invalid witnesses on all tasks,
leading it to fail the witness validation process.

Fig. 2 also indicates the reasons for Unknown answers. We observe that
time- and memory-outs prevail, but a large number of verifiers exhibit erroneous
behavior. A detailed description of the latter issues is given in Section 5.

To get insight into which requirements are covered by which software model
checker, Fig. 3 depicts two Venn diagrams indicating the subsets of all 179 verifi-
cation tasks. Each area represents the set of verification tasks on which a verifier
returned a definite result. Those areas are further divided into overlapping sub-
areas, where a number indicates the size of this set. For reasons of clarity, we
included only the top five verifiers for the respective case study, based on the
number of definite answers. For both case studies, there is not one verifier which
covers all requirements covered by the other verifiers. For DSR, CBMC+k cov-
ers all but one definite results of the remaining verifiers. In this case, CBMC
was able to identify a counterexample close to the timeout. CBMC+k exhausts
its resources on this requirement as the inductive case occupies a part of the
available computation time. For ECC, UltimateTaipan, ESBMC, and CBMC+k
together cover the set of all definite results. Note that some verifiers — e.g. Ulti-
mateTaipan and ESBMC — perform rather well on one case study, but lose most
of their coverage on the other. In most of such cases, this is due to erroneous
behavior of the verifier manifesting on just one of the two case studies.

We believe that the substantial di↵erence in verifier coverage for the two case
studies, as seen in Fig. 3, is the result of structural di↵erences in the benchmark

size range is also given in square brackets. Additionally, both case studies contain
pointers to constant data (e.g. const void*).

With a couple of hundred variables, globals are heavily employed . They are
used for exchanging data with other compilation units. Here, the char type is
most prevalent, taking up around three quarters of the variable count. float
variables make up the remaining quarter.

The number of operations in the call graph are around 5, 000 and 10, 000 for
DSR and ECC. While linear arithmetic is most prominent, we also observe a
large amount of multiplication and division operations, possibly on non-constant
variables. Challenges for software verifiers rise along with the complexity of oper-
ators used. Pointer and floating-point arithmetic, as well as bit-wise operations
impose challenges. These case studies employ a variety of bit-wise operations

such as >>, &, and |, mainly on 32-bit variables. Such operators can force the
underlying solvers to model the variable bit by bit. A noticeable amount of
pointer dereferences, namely 180 and 83 occurrences, is present in the programs.

Requirement Characteristics. The requirements originate from internal and
informal documents of the car manufacturer and have been formalized by hand.
As described in [3], obtaining an unambiguous formal requirement specification
can be a substantial task. All di↵erences between the formalization in [3] and this
work in number of properties stem from di↵erent splitting of the properties. For
the DSR case study, from 42 functional requirements we extracted 105 properties,
consisting of 103 invariants and two bounded-response properties. For the ECC
case study, from 74 functional requirements we extracted 71 invariants and three
bounded-response properties.

Invariant properties are assertions that are supposed to hold for all reachable
states. Bounded-response properties request that a certain assertion holds within
a given number of computational steps whenever a given, second assertion holds.

2.2 The Software Model Checkers

In order to analyze the performance of open-source verifiers on our specific use
case of embedded automotive C code from Simulink models, we selected a suit-
able subset of C verifiers based on the following criteria:

1. Has matured enough to compete in the SV-COMP 2019 [2] in the Reach-

Safety and SoftwareSystems category.
2. Has a license that allows an academic evaluation.

Based on these criteria, we selected the verifiers: 2LS, CBMC, CPAChecker,
DepthK, ESBMC, PeSCo, SMACK, Symbiotic, UltimateAutomizer, UltimateKo-
jak, and UltimateTaipan. The study was conducted in March 2019. We used the
latest stable versions of each tool to that date. We also included CBMC+k (de-
scribed in Section 2.3), a variant of CBMC that enables k-induction as a proof
generation technique on top of CBMC. Let us briefly introduce the selected
open-source verifiers.

size range is also given in square brackets. Additionally, both case studies contain
pointers to constant data (e.g. const void*).

With a couple of hundred variables, globals are heavily employed . They are
used for exchanging data with other compilation units. Here, the char type is
most prevalent, taking up around three quarters of the variable count. float
variables make up the remaining quarter.

The number of operations in the call graph are around 5, 000 and 10, 000 for
DSR and ECC. While linear arithmetic is most prominent, we also observe a
large amount of multiplication and division operations, possibly on non-constant
variables. Challenges for software verifiers rise along with the complexity of oper-
ators used. Pointer and floating-point arithmetic, as well as bit-wise operations
impose challenges. These case studies employ a variety of bit-wise operations

such as >>, &, and |, mainly on 32-bit variables. Such operators can force the
underlying solvers to model the variable bit by bit. A noticeable amount of
pointer dereferences, namely 180 and 83 occurrences, is present in the programs.

Requirement Characteristics. The requirements originate from internal and
informal documents of the car manufacturer and have been formalized by hand.
As described in [3], obtaining an unambiguous formal requirement specification
can be a substantial task. All di↵erences between the formalization in [3] and this
work in number of properties stem from di↵erent splitting of the properties. For
the DSR case study, from 42 functional requirements we extracted 105 properties,
consisting of 103 invariants and two bounded-response properties. For the ECC
case study, from 74 functional requirements we extracted 71 invariants and three
bounded-response properties.

Invariant properties are assertions that are supposed to hold for all reachable
states. Bounded-response properties request that a certain assertion holds within
a given number of computational steps whenever a given, second assertion holds.

2.2 The Software Model Checkers

In order to analyze the performance of open-source verifiers on our specific use
case of embedded automotive C code from Simulink models, we selected a suit-
able subset of C verifiers based on the following criteria:

1. Has matured enough to compete in the SV-COMP 2019 [2] in the Reach-

Safety and SoftwareSystems category.
2. Has a license that allows an academic evaluation.

Based on these criteria, we selected the verifiers: 2LS, CBMC, CPAChecker,
DepthK, ESBMC, PeSCo, SMACK, Symbiotic, UltimateAutomizer, UltimateKo-
jak, and UltimateTaipan. The study was conducted in March 2019. We used the
latest stable versions of each tool to that date. We also included CBMC+k (de-
scribed in Section 2.3), a variant of CBMC that enables k-induction as a proof
generation technique on top of CBMC. Let us briefly introduce the selected
open-source verifiers.

“Is Static Analysis Successful?” – 24/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Example 2 of benchmarks
NISTIR 8304

SATE VI Ockham Sound Analysis

Criteria

Paul E. Black
Kanwardeep Singh Walia

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8304

NISTIR 8304

SATE VI Ockham Sound Analysis

Criteria

Paul E. Black
Kanwardeep Singh Walia

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8304

NISTIR 8304

SATE VI Ockham Sound Analysis

Criteria

Paul E. Black
Kanwardeep Singh Walia

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8304

NISTIR 8304

SATE VI Ockham Sound Analysis

Criteria

Paul E. Black
Kanwardeep Singh Walia

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8304

NISTIR 8304

SATE VI Ockham Sound Analysis

Criteria

Paul E. Black
Kanwardeep Singh Walia

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8304

NISTIR 8304

SATE VI Ockham Sound Analysis

Criteria

Paul E. Black
Kanwardeep Singh Walia

This publication is available free of charge from:
https://doi.org/10.6028/NIST.IR.8304

Abstract

Static analyzers examine the source or executable code of programs to find problems. Many
static analyzers use heuristics or approximations to examine programs with millions of lines
of code for hundreds of classes of problems. The Ockham Sound Analysis Criteria recog-
nizes static analyzers that are precise. In brief the criteria are (1) the analyzer’s findings
are claimed to always be correct, (2) it produces findings for most of a program, and (3)
even one incorrect finding disqualifies an analyzer. This document begins by explaining
the background and requirements of the Ockham Criteria and how we determine if a tool
satisfies it.

As part of Static Analysis Tool Exposition (SATE) VI, we examined two tools: Astrée
and Frama-C with the Evolved Value Analysis (Eva) plug-in. Examining the tool outputs
led us to find several systematic mistakes in the Juliet 1.3 test suite and thousands of mis-
takes in its manifest of known errors.

Our conclusion is that Astrée and Frama-C with Eva satisfied the SATE VI Ockham
Sound Analysis Criteria.

Key words

Ockham Criteria; software assurance; software measurement; software testing; sound anal-
ysis; static analysis.

i

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

We still had significant difficulty assigning tool warnings to these new classes. Part of
the problem was understanding exactly what the tool warning covered or what it did not
cover. Part of the problem was that our classes made distinctions that tools did not and
vice versa. Our own classes were easier to use than CWEs, but did not come close to being
reasonable universal classes.

2. The Criteria

This section has the details of the Ockham Criteria itself, and includes explanation and
discussion. Much of this section comes from Sec. 2 of the SATE V Ockham report [9].

The Criteria is named for William of Ockham, best known for Occam’s Razor. Since the
details of the Criteria will likely change in the future, the name includes a time reference:
SATE VI Ockham Sound Analysis Criteria.

The value of a sound analyzer is that every one of its findings can be assumed to be
correct.

We tried to write criteria that communicated our intent, ruled out trivial satisfaction,
and were understandable. We planned to be liberal in interpreting the rules: we anticipated
that tools satisfy the Criteria, so we occasionally assumed proper operation of the tool in
cases requiring human judgment.

The criteria were:
1. The tool is claimed to be sound.
2. For at least one weakness class and one test case the tool produces findings for a

minimum of 75 % of appropriate sites.
3. Even one incorrect finding disqualifies a tool for this SATE.
An implicit criterion is that the tool is useful, not merely a toy.
A finding is a definitive report about a site, which is a specific place in code. In other

words, the tool reports that the site has a specific weakness (is buggy) or that the site does
not have that weakness.

No manual editing of the tool output was allowed. No automated filtering specialized
to a test case or to SATE VI was allowed, either. The tool’s settings and options may
be selected to produce the best result, as alluded to in Sec. 1.1. Such setting should be
reported.

2.1 Criterion 1: “Sound” (and “Complete”) Analysis

Criterion 1 is “The tool is claimed to be sound.”
We use the term sound to mean that every finding is correct. In other words, “Sound

analysis means that the [tool] never asserts a property to be true when it is not true.” [16,
FM.1.6.2]. The tool need not produce a finding for every site; that is completeness.

A tool may have settings that allow unsound analysis. The tool still qualifies if it has
clearly sound settings. For example, it is acceptable for the user to be able to select unsound

6

__
This publication is available free of charge from

: https://doi.org/10.6028/N
IST.IR

.8304

Astrée produces 36316 alarms including all 18954 known bugs in the test suite (plus a number
that where unknown but real). Note: Astrée is not a general purpose static analyzer, which is
not reflected in the Juliet 1.3 (https://samate.nist.gov/SRD/testsuite.php) test suite.
Frama-C with Eva produces 42056 alarms including all 18954 known bugs in the test suite.

The analyzers that fail the test are not mentioned in the politically-correct report.

“Is Static Analysis Successful?” – 25/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Of course not everybody agrees with the significance of the test suite:

WHITE PAPER

Coverity: Risk Mitigation for DO-178C
Gordon M. Uchenick, Lead Aerospace/Defense Sales Engineer

WHITE PAPER

Coverity: Risk Mitigation for DO-178C
Gordon M. Uchenick, Lead Aerospace/Defense Sales Engineer

WHITE PAPER

Coverity: Risk Mitigation for DO-178C
Gordon M. Uchenick, Lead Aerospace/Defense Sales Engineer

…

 | synopsys.com | 7

Putting it all together
Picking the right analysis tool is important because it will have a significant effect on development efficiency and the DO-178C
certification schedule. In this paper we’ve discussed how using Coverity static analysis during code development and before
reverse-engineering certification artifacts from the code has proven to increase productivity while simultaneously reducing
budget and schedule risk. But it is typical for procurement policies to require the consideration of multiple suppliers for software
tools. Synopsys welcomes competition and, in that spirit, provides the following vendor-neutral guidelines for establishing your
selection criteria:

Do’s
• Install, or have the vendor install, the candidate tool for a test run in your environment. (Synopsys does this regularly with

Coverity, for free.)

 – Verify that the tool works in your development environment.

 – Verify that it interfaces with your software repository and defect tracking systems.

 – Verify that it is compatible with your software build procedures and other development tools, such as compilers, integrated
development environments (IDEs), and so on.

 – Verify that managing and updating the tool will not impose an unacceptable workload on IT staff.

• Run the tool over your existing code.

 – Determine whether the defects reported are meaningful or insignificant. Allocate some time for your subject matter
experts to perform this task, because a proper assessment requires a systemwide perspective.

 – Determine whether the tool presents defects in a manner useful to developers. There should be more information than
“Problem type X in line Y of source file Z.” The tool should disclose the reasoning behind each finding, because very often
the fix for a defect found in a line of code is to change lines of code in the control flow preceding that defect.

• Verify that the tool is practical.

 – Verify that it runs fast enough to be invoked in every periodic build.

 – Determine whether you can run it only over modified code relative to the baseline while still retaining context or whether it
is fast enough to analyze all the code all the time.

 – Determine whether you can implement and enforce a clean-before-review or clean-before-commit policy.

• Determine the false-positive (FP) rate.

 – Focus on your own code. Do not accept an FP rate based on generic code or an unsubstantiated vendor claim.

 – Decide an acceptable FP rate for your process. An unacceptable FP rate wastes resources and erodes developer
confidence in the tool itself. A very significant finding can be obscured by meaningless noise.

• Investigate training, startup, and support options.

 – Inquire about the vendor’s capability to provide on-site training relevant to your SDLC.

 – Verify that they can provide services to help you get started with the tool quickly and smoothly.

 – Verify that their support hours correspond to your workday.

 – Verify that they have field engineering staff if on-site support becomes necessary.

Don’ts
• Don’t evaluate tools by comparing lists of vendor claims about the kinds of defects that their tools can find, and don’t let a

vendor push the evaluation in that direction. Comparing lists of claims regarding defect types isn’t meaningful and leads to
false equivalencies. Capabilities with the same name from different vendors won’t have the same breadth, depth, or accuracy.

• Don’t waste time purposely writing defective code to be used as the evaluation target. Purposely written bad code can contain
only the kinds of defects that you already know of. The value of a static analysis tool is to find the kinds of defects that you
don’t already know of.

• Don't overestimate the limited value of standard test suites such as Juliet.†† These suites often exercise language features that
are not appropriate for safety-critical code. Historically, the overlap between findings of different tools that were run over the
same Juliet test suite has been surprisingly small.

ƋƋŵ�.YPMIX�8IWX�7YMXIW�EVI�EZEMPEFPI�EX�https://samate.nist.gov/SRD/testsuite.php.

 | synopsys.com | 7

Putting it all together
Picking the right analysis tool is important because it will have a significant effect on development efficiency and the DO-178C
certification schedule. In this paper we’ve discussed how using Coverity static analysis during code development and before
reverse-engineering certification artifacts from the code has proven to increase productivity while simultaneously reducing
budget and schedule risk. But it is typical for procurement policies to require the consideration of multiple suppliers for software
tools. Synopsys welcomes competition and, in that spirit, provides the following vendor-neutral guidelines for establishing your
selection criteria:

Do’s
• Install, or have the vendor install, the candidate tool for a test run in your environment. (Synopsys does this regularly with

Coverity, for free.)

 – Verify that the tool works in your development environment.

 – Verify that it interfaces with your software repository and defect tracking systems.

 – Verify that it is compatible with your software build procedures and other development tools, such as compilers, integrated
development environments (IDEs), and so on.

 – Verify that managing and updating the tool will not impose an unacceptable workload on IT staff.

• Run the tool over your existing code.

 – Determine whether the defects reported are meaningful or insignificant. Allocate some time for your subject matter
experts to perform this task, because a proper assessment requires a systemwide perspective.

 – Determine whether the tool presents defects in a manner useful to developers. There should be more information than
“Problem type X in line Y of source file Z.” The tool should disclose the reasoning behind each finding, because very often
the fix for a defect found in a line of code is to change lines of code in the control flow preceding that defect.

• Verify that the tool is practical.

 – Verify that it runs fast enough to be invoked in every periodic build.

 – Determine whether you can run it only over modified code relative to the baseline while still retaining context or whether it
is fast enough to analyze all the code all the time.

 – Determine whether you can implement and enforce a clean-before-review or clean-before-commit policy.

• Determine the false-positive (FP) rate.

 – Focus on your own code. Do not accept an FP rate based on generic code or an unsubstantiated vendor claim.

 – Decide an acceptable FP rate for your process. An unacceptable FP rate wastes resources and erodes developer
confidence in the tool itself. A very significant finding can be obscured by meaningless noise.

• Investigate training, startup, and support options.

 – Inquire about the vendor’s capability to provide on-site training relevant to your SDLC.

 – Verify that they can provide services to help you get started with the tool quickly and smoothly.

 – Verify that their support hours correspond to your workday.

 – Verify that they have field engineering staff if on-site support becomes necessary.

Don’ts
• Don’t evaluate tools by comparing lists of vendor claims about the kinds of defects that their tools can find, and don’t let a

vendor push the evaluation in that direction. Comparing lists of claims regarding defect types isn’t meaningful and leads to
false equivalencies. Capabilities with the same name from different vendors won’t have the same breadth, depth, or accuracy.

• Don’t waste time purposely writing defective code to be used as the evaluation target. Purposely written bad code can contain
only the kinds of defects that you already know of. The value of a static analysis tool is to find the kinds of defects that you
don’t already know of.

• Don't overestimate the limited value of standard test suites such as Juliet.†† These suites often exercise language features that
are not appropriate for safety-critical code. Historically, the overlap between findings of different tools that were run over the
same Juliet test suite has been surprisingly small.

ƋƋŵ�.YPMIX�8IWX�7YMXIW�EVI�EZEMPEFPI�EX�https://samate.nist.gov/SRD/testsuite.php.

 | synopsys.com | 7

Putting it all together
Picking the right analysis tool is important because it will have a significant effect on development efficiency and the DO-178C
certification schedule. In this paper we’ve discussed how using Coverity static analysis during code development and before
reverse-engineering certification artifacts from the code has proven to increase productivity while simultaneously reducing
budget and schedule risk. But it is typical for procurement policies to require the consideration of multiple suppliers for software
tools. Synopsys welcomes competition and, in that spirit, provides the following vendor-neutral guidelines for establishing your
selection criteria:

Do’s
• Install, or have the vendor install, the candidate tool for a test run in your environment. (Synopsys does this regularly with

Coverity, for free.)

 – Verify that the tool works in your development environment.

 – Verify that it interfaces with your software repository and defect tracking systems.

 – Verify that it is compatible with your software build procedures and other development tools, such as compilers, integrated
development environments (IDEs), and so on.

 – Verify that managing and updating the tool will not impose an unacceptable workload on IT staff.

• Run the tool over your existing code.

 – Determine whether the defects reported are meaningful or insignificant. Allocate some time for your subject matter
experts to perform this task, because a proper assessment requires a systemwide perspective.

 – Determine whether the tool presents defects in a manner useful to developers. There should be more information than
“Problem type X in line Y of source file Z.” The tool should disclose the reasoning behind each finding, because very often
the fix for a defect found in a line of code is to change lines of code in the control flow preceding that defect.

• Verify that the tool is practical.

 – Verify that it runs fast enough to be invoked in every periodic build.

 – Determine whether you can run it only over modified code relative to the baseline while still retaining context or whether it
is fast enough to analyze all the code all the time.

 – Determine whether you can implement and enforce a clean-before-review or clean-before-commit policy.

• Determine the false-positive (FP) rate.

 – Focus on your own code. Do not accept an FP rate based on generic code or an unsubstantiated vendor claim.

 – Decide an acceptable FP rate for your process. An unacceptable FP rate wastes resources and erodes developer
confidence in the tool itself. A very significant finding can be obscured by meaningless noise.

• Investigate training, startup, and support options.

 – Inquire about the vendor’s capability to provide on-site training relevant to your SDLC.

 – Verify that they can provide services to help you get started with the tool quickly and smoothly.

 – Verify that their support hours correspond to your workday.

 – Verify that they have field engineering staff if on-site support becomes necessary.

Don’ts
• Don’t evaluate tools by comparing lists of vendor claims about the kinds of defects that their tools can find, and don’t let a

vendor push the evaluation in that direction. Comparing lists of claims regarding defect types isn’t meaningful and leads to
false equivalencies. Capabilities with the same name from different vendors won’t have the same breadth, depth, or accuracy.

• Don’t waste time purposely writing defective code to be used as the evaluation target. Purposely written bad code can contain
only the kinds of defects that you already know of. The value of a static analysis tool is to find the kinds of defects that you
don’t already know of.

• Don't overestimate the limited value of standard test suites such as Juliet.†† These suites often exercise language features that
are not appropriate for safety-critical code. Historically, the overlap between findings of different tools that were run over the
same Juliet test suite has been surprisingly small.

ƋƋŵ�.YPMIX�8IWX�7YMXIW�EVI�EZEMPEFPI�EX�https://samate.nist.gov/SRD/testsuite.php.

“Is Static Analysis Successful?” – 26/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

https://www.synopsys.com/content/dam/synopsys/sig-assets/whitepapers/coverity-risk-mitigation-for-do178c.pdf
https://www.synopsys.com/content/dam/synopsys/sig-assets/whitepapers/coverity-risk-mitigation-for-do178c.pdf

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Tool qualification is inexistent
• Almost no requirements on the static analysis tools used in industry;

→ you can run any tool to have a clear conscience!
• An exception: DO-333 (Formal Methods) for avionics (Astrée is DO-333-qualified,

meaning it can replace unit tests for runtime errors12).

12Astrée 20.4 supports Annex J of ISO/IEC 9899:1999 (E) and ISO/IEC TS 17961:2013 C guide lines, the Common Weak ness Enumer ation (CWE)
catalog, the SEI CERT C Coding Standard, the MISRA-C:2004, MISRA-C:2012 (including Amend ments 1 and 2), MISRA-C++:2008 rules.

“Is Static Analysis Successful?” – 27/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

https://en.wikipedia.org/wiki/DO-178C
https://en.wikipedia.org/wiki/Astrée_(static_analysis)
https://www.absint.com/astree/compliance.htm

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Education is parcimonious
• Static analysis theory and practice is (almost) not taught;
• The use of static analysis is not even mentioned in programming courses.

“Is Static Analysis Successful?” – 28/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Human resources are scarce
• Very few high-priced specialists for designing static analyzers;
• But, after one month engineers can use static analyzers autonomously;
• Not true for deductive methods.

X
X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X
X

X

1/29/19, 16(04(29) Google Cloud DevOps is hiring! | LinkedIn

Page 1 of 3https://www.linkedin.com/pulse/google-cloud-devops-hiring-doma…=IwAR0OfD-G0X37hjN9E0fK0VvR5vJO0mbManWzQqBbULjiPQ8_ jF908fqx_Ok

Google Cloud DevOps is hiring!
Published on January 8, 2019

Domagoj Babic
Tech Lead & Manager @ Google
2 articles

15 0 1

Job Description:

The DevOps organization is looking for Software Engineers passionate about research and
development of Google-scale deep program analysis tools, based on abstract
interpretation. We are starting a new team that will develop cutting-edge deep Go static
analysis tools and deploy them in production. We are looking for individuals who enjoy
collaborative teamwork, thrive on computationally hard problems, are motivated by impact,
deeply care about software correctness and security, and have a strong academic background
in program analysis.

Responsibilities:

Conceive, research, implement, evaluate, and productionize new analyses

Maintain, debug, optimize, and refactor code

Architect new systems, write tests, and documentation

Support the developers-facing teams who run our tools in production

Minimum qualifications:

 Following

ǳ�#bi`�+i AMi2`T`2i�iBQMǴ Ĝ RRf9d Ĝ Ü SX *QmbQi- Lul- *AJa- *a- JQM/�v kyRN@yR@k3

“Is Static Analysis Successful?” – 29/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Many bad designs
• Control: graph, SSA, etc versus structural induction (e.g. Astrée, Zoncolan at

FB);
• Data; unique representation of properties (e.g. Infer) versus structured in abstract

domains (e.g. Astrée);
• Extensibility: most often not considered in the original design (e.g. Infer), with

exceptions (Astrée, Frama-C with Eva plugin);

“Is Static Analysis Successful?” – 30/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

https://en.wikipedia.org/wiki/Astrée_(static_analysis)
https://engineering.fb.com/security/zoncolan/
https://en.wikipedia.org/wiki/Infer_Static_Analyzer
https://en.wikipedia.org/wiki/Astrée_(static_analysis)
https://en.wikipedia.org/wiki/Infer_Static_Analyzer
https://en.wikipedia.org/wiki/Astrée_(static_analysis)
https://frama-c.com/value.html

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Long term support
• Academic: require permanent self-funded institutions (e.g. INRIA for

Ocaml/Coq);
• Free-software: too complicated (e.g. Clousot is public domain makes no

significant progress since Fähndrich & Logozzo left MS research for FB);
• Industrial: indispensable but few competent and not extremely profitable

(academic Astrée: 60.000 lines of Ocaml, AbsInt: 265.000, not counting the much
larger user interface).

“Is Static Analysis Successful?” – 31/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

https://www.inria.fr/en
https://ocaml.org
https://coq.inria.fr
https://pdfs.semanticscholar.org/000a/4e191336f9aab2b8726189898483f18dccff.pdf
https://www.linkedin.com/in/manuel-fahndrich-0474272
https://www.linkedin.com/in/francesco-logozzo-4106386
https://en.wikipedia.org/wiki/Astrée_(static_analysis)
https://www.absint.com

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Irresponsibility
• Programmers are never held responsible for their errors, even when the human and

economic consequences are huge13;
• Software engineers are guaranteed qualified immunity under the pretext that

verification is beyond best practice;
• If best practice would include the mandatory use of standards and qualified tools,

programmers and their hierarchy could be held accountable at least for definite
bugs automatically found be static analysis tools.

JULY 2014 | VOL. 57 | NO. 7 | COMMUNICATIONS OF THE ACM 7

cerf’s up

WELCOME TO “CERF’S UP!”
I am grateful for Editor-
in-Chief Moshe Vardi’s
invitation to continue
writing for Communica-

tions; this column succeeds the “From
the President” column I penned during
my service to ACM in that role.

Let me congratulate Alex Wolf, the
newly elected ACM president. I know he
will give exemplary service to our organi-
zation. Congratulations also go to Vicki
Hanson and Erik Altman in their new
roles as vice president and secretary/
treasurer respectively. I know this team
will provide first-rate leadership.

I also thank Alain Chenais, who ends
his term as Past President and I begin
mine. He has been a staunch, reliable,
and active leader in ACM matters and
I expect this will continue. There are
many others elected to new positions or
moving on as their terms in office end.
I thank them all without enumeration,
and commend them to your attention.

Lastly, allow me to note the enormous
contributions of the ACM staff and, es-
pecially, the leadership of John White,
CEO, and Pat Ryan, COO of ACM. They
have accumulated a truly enviable re-
cord of steadfast leadership spanning
the terms of many elected ACM officers.

Now to the substance of this col-
umn: responsible programming. What
do I mean by that? In a nutshell, I think
it means people who write software
should have a clear sense of responsi-
bility for its reliable operation and re-
sistance to compromise and error. We
do not seem to know how to write soft-
ware that has no bugs…at least, not yet.
But that, in a sense, is the very subject I
want to explore.

My very good friend, Steve Crocker,
drew me into a conversation about this
topic a short while ago. As a graduate stu-
dent, he had pursued a dissertation on
provable correctness of programs. While

this is not a new topic, the objective con-
tinues to elude us. We have developed re-
lated tactics for trying to minimize errors.
Model checking is one good example of
a systematic effort to improve reliability
for which ACM gave the Turing Award in
2007 to Edmund Clarke, Allen Emerson,
and Joseph Sifakis. What is apparent,
and emphasized by Crocker, is the tools
available to programmers for validating
assertions about program operation
are complex, with user interfaces only a
mother could love (my characterization).
Formal proofs are difficult, especially for
anything but the simplest sort of pro-
gram. Just conceiving the appropriate
conditional statements to characterize
program correctness is a challenge.

Despite the Turing Halting Problem,
it is still possible to establish lines of
reasoning to show a particular program
terminates or achieves a repeatable
state under the right conditions. One
can make other kinds of statements
about I/O checking (for example, buf-
fer overflows). Some unending pro-
grams, like email user agents, can still
have characterizations of well-defined
states. It is clear, however, it is not easy
to develop succinct and potentially de-
monstrable statements about program
behavior that show the likelihood the
program will behave as desired. Yet
harder may be demonstrating the pro-
gram does not do something undesired.

While I have no ready solution to
the problem, I believe better interactive
tools are needed to test assertions about
the program’s anticipated behavior
while it is being written and to get some
useful feedback from the composition
and validation system that these asser-
tions are somehow supportable. If not
provable, then at least not disproved by
counterexample perhaps. It seems fair
to imagine that when a programmer is
designing a program and actually writ-
ing the code, there is a model in the pro-

grammer’s head of what the program is
supposed to be doing and, presumably
things it is not supposed to do or should
avoid. Whether this model is sufficiently
clear and complete to allow provable or
verifiable assertions to be made could
be the subject of considerable debate.

One intriguing example of program-
ming environments that is tangentially
relevant comes from Bret Victor (http://
worrydream.com) who has conceived
and implemented a programming en-
vironment that allows one to see im-
mediately the results of executing the
current program. Obviously, the system
can only do this when the programmer
has reached a point where the program
can be parsed and interpreted. Imagine
an environment fashioned for continu-
ous validation of a set of assertions, as
the program is developed. One sus-
pects heavy use of libraries could either
help or hinder the process of verifying
program correctness. If the library of
subroutines is opaque to the verifying
tools, bugs could be hidden. However,
if a set of assertions that are invariant
for the subroutine could be codified,
the use of such a library might actually
help the validation process. I am fairly
certain a body of prior work exists that
can be cited here, but my impression is
such tools are not used regularly by pro-
fessional programmers today.

It seems timely to suggest responsi-
ble programming calls for renewed ef-
forts to verify proper operation of soft-
ware many may depend upon heavily to
work as advertised. To do this, we need
much better tools and programming
environments than seem to be avail-
able today. I await with great interest
responses from ACM members more
knowledgeable than I in this area.

Vinton G. Cerf is vice president and Chief Internet Evangelist
at Google. He served as ACM president from 2012–2014.

Copyright held by author.

Responsible Programming
DOI:10.1145/2631185 Vinton G. Cerf

13e.g. 2009–11 Toyota vehicle recalls, Boeing 737 MAX groundings.

“Is Static Analysis Successful?” – 32/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

https://en.wikipedia.org/wiki/2009–11_Toyota_vehicle_recalls
https://en.wikipedia.org/wiki/Boeing_737_MAX_groundings

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Successes remain unknown
• AbsInt has sold thousands of industrial licenses of Astrée;
• Who knows that?
• Which formal methods can make such a claim?

Towards an Industrial Use of Sound Static Analysis for the
Verification of Concurrent Embedded Avionics Software⇤

Antoine Miné
École Normale Supérieure

45, rue d’Ulm

F-75230 Paris Cedes 05, France

mine@di.ens.fr

David Delmas
Airbus Operations S.A.S.

316, route de Bayonne

31060 Toulouse Cedex 9, France

david.delmas@airbus.com

ABSTRACT
Formal methods, and in particular sound static analyses,
have been recognized by Certification Authorities as reliable
methods to certify embedded avionics software. For sequen-
tial C software, industrial static analyzers, such as Astrée,
already exist and are deployed. This is not the case for con-
current C software. This article discusses the requirements
for sound static analysis of concurrent embedded software
at Airbus and presents AstréeA, an extension of Astrée with
the potential to address these requirements: it is scalable
and reports soundly all run-time errors with few false posi-
tives. We illustrate this potential on a variety of case studies
targeting di↵erent avionics software components, including
large ARINC 653 and POSIX threads applications, and a
small part of an operating system. While the experiments
on some case studies were conducted in an academic setting,
others were conducted in an industrial setting by engineers,
hinting at the maturity of our approach.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Real-Time and Embedded Systems; D.1.3 [Programming
Techniques]: Concurrent Programming; D.2.4 [Software
Engineering]: Software/Program Verification—Formal meth-
ods, Validation, Assertion checkers; F.3.1 [Logics and Mean-
ings of Programs]: Specifying and Verifying and Reason-
ing About Programs—Assertions, Invariants, Mechanical
verification; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages—Program analysis

Keywords
Static analysis, abstract interpretation, embedded software,
concurrent software

⇤This work is supported by the INRIA project“Abstraction”
common to CNRS and ENS in France, and by the project
ANR-11-INSE-014 from the French ANR.

General Terms
Experimentation, Reliability, Verification

1. INTRODUCTION
The safety of embedded critical software, such as those

found in avionics, automotive, space, medical, and power
industries is crucial, as the slightest software error can have
dramatic consequences. Their verification and validation
process is well specified in domain-specific international stan-
dards (e.g., [1] for avionics systems). While testing remains
a key method, its shortcomings are well-known, and there
is a strong movement towards formal methods to comple-
ment or replace them. Such methods provide strong, math-
ematical guarantees about systems behaviors. In particular,
semantic-based static analysis can discover at compile-time
properties of the dynamic behaviors of programs by analysis
of the source code; it is automated, sound (full control and
data coverage), and can be made precise and e�cient by
employing powerful abstractions (as advocated by abstract
interpretation [8]), making it an attractive method in an in-
dustrial context, where the cost of deploying new methods
must be taken into account. Nowadays, commercial static
analysis tools are deployed in embedded industries. One
example is the Astrée static analyzer [4], which detects all
the run-time errors in embedded C code. Astrée is however
limited to sequential codes and is not sound for concurrent
codes, which constitute an increasing share of critical em-
bedded software. Concurrent software is also a prime target
for formal verification because testing methods scale poorly
with the combinatorial explosion of concurrent executions.

This article discusses AstréeA, a recent extension of As-
trée to analyze soundly, e�ciently, and precisely concurrent
codes, and its application to verify avionics code from Air-
bus: Sec. 2 discusses the place of formal methods in avion-
ics certification and its implementation at Airbus, Sec. 3
presents the challenges of certifying concurrent avionics soft-
ware, Sec. 4 presents the technology behind AstréeA, Sec. 5
presents on some case studies how AstréeA can address these
challenges, Sec. 6 discusses related work, and Sec. 7 con-
cludes. The foundations and use of Astrée were covered,
from both academic and industrial perspectives, in a number
of publications [5, 4]. The theoretical foundations underly-
ing AstréeA were covered in [17, 18]. This article discusses
the e↵ective use of AstréeA. It presents novel case studies,
introducing for the first time studies performed by industrial
end-users, and builds a case for the widespread adoption of
sound static analysis to verify concurrent embedded soft-
ware. It brings an industrial perspective to AstréeA.

Technical Note

EVALUATION OF STATIC ANALYSIS TOOLS USED TO ASSESS
SOFTWARE IMPORTANT TO NUCLEAR POWER PLANT SAFETY

ALAIN OURGHANLIAN*

EDF Lab CHATOU, Simulation and Information Technologies for Power Generation Systems Department, EDF R&D, 6 quai Watier, BP 49,
78401 Chatou Cedex, France

a r t i c l e i n f o

Article history:

Received 8 October 2014

Received in revised form

2 December 2014

Accepted 4 December 2014

Available online 21 January 2015

Keywords:

Abstract Interpretation
Software V&V
Source Code Semantic Analysis

a b s t r a c t

We describe a comparative analysis of different tools used to assess safety-critical software

used in nuclear power plants. To enhance the credibility of safety assessments and to

optimize safety justification costs, Electricit!e de France (EDF) investigates the use of

methods and tools for source code semantic analysis, to obtain indisputable evidence and

help assessors focus on the most critical issues. EDF has been using the PolySpace tool for

more than 10 years. Currently, new industrial tools based on the same formal approach,

Abstract Interpretation, are available. Practical experimentation with these new tools

shows that the precision obtained on one of our shutdown systems software packages is

substantially improved. In the first part of this article, we present the analysis principles of

the tools used in our experimentation. In the second part, we present the main charac-

teristics of protection-system software, and why these characteristics are well adapted for

the new analysis tools. In the last part, we present an overview of the results and the

limitations of the tools.

Copyright © 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.

1. Introduction

In 1999, the French Nuclear Safety Authority published a
Fundamental Safety Rule (RFS: R"egle Fondamentale de Sûret!e)
applicable to safety systems' software. This document defines
the principles and requirements to be satisfied by the design,
implementation, installation, and operation of safety-critical

software. The French regulatory practice requires that
appropriate provisions be made to guarantee safe shutdown
of the reactor, long-term cooling of the fuel, and confinement

of radioactive products, under all realistic operating condi-
tions. For some requirements, the RFS proposes acceptable
practices.

One of these requirements is: “An analysis shall be per-
formed regarding the potential failures of a computer-based
system caused by a software fault and their consequences to
safety. The objective of this analysis is to verify that system

failures caused by software faults have no consequence to
safety”. One of the measures of the associated acceptable
practice consists of “identifying the various types of software

* Corresponding author.
E-mail address: alain-1.ourghanlian@edf.fr.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://

creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any me-
dium, provided the original work is properly cited.

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: ht tp: / /www.journals .e lsevier .com/nuclear-
engineer ing-and-technology/

Nu c l E n g T e c h n o l 4 7 (2 0 1 5) 2 1 2e2 1 8

http://dx.doi.org/10.1016/j.net.2014.12.009
1738-5733/Copyright © 2015, Published by Elsevier Korea LLC on behalf of Korean Nuclear Society.
Special Issue on ISOFIC/ISSNP2014.

Google scholar citations: 21 4

“Is Static Analysis Successful?” – 33/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

https://www.absint.com
https://www.absint.com/astree/index.htm
https://www.sciencedirect.com/science/article/pii/S1738573315000091

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Conclusion

“Is Static Analysis Successful?” – 34/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Necessary conditions to make static analyzers mainstream
• Specify before programming;
• Program certification is mandatory;
• Benchmarks are publicly available;
• Independent evaluations are fair and public;
• Tools qualification is mandatory;
• Education on static analyzers starts with programming
• Human resources are considerably developed;
• Tool designs are principled;
• Tools are supported in the long term;
• Programmers are made responsible for their errors;
• Industrial successes are glorified.

Hopefully, sufficient!
😂

“Is Static Analysis Successful?” – 35/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Necessary conditions to make static analyzers mainstream
• Specify before programming;
• Program certification is mandatory;
• Benchmarks are publicly available;
• Independent evaluations are fair and public;
• Tools qualification is mandatory;
• Education on static analyzers starts with programming
• Human resources are considerably developed;
• Tool designs are principled;
• Tools are supported in the long term;
• Programmers are made responsible for their errors;
• Industrial successes are glorified.

Hopefully, sufficient!
😂

“Is Static Analysis Successful?” – 35/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

The End, Thank you

“Is Static Analysis Successful?” – 36/37 – © P. Cousot, IMDEA Software, Madrid & NYU, New York, Tuesday, July 7th, 2020

