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Dependency

Dependency is prevalent in computer science:

Non-interference (confidentiality, integrity)

Security, privacy
= Slicing
= Temporal dependencies in synchronous languages (Lustre, Signal, etc.)
= etc.

The existing definitions

= are postulated a priori (par exemple Cheney, Ahmed, and Acar, 2011;
D. E. Denning and P. J. Denning, 1977),

= without semantics justifications (except Assaf, Naumann, Signoles, Totel, and
Tronel, 2017 (“hyper-collecting semantics”), Urban and Miiller, 2018 on program
exit uniquely)

We are interested in principles, in soundness proofs, not so much in a new more

powerful dependency analysis.
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Structural fixpoint trace semantics
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Program syntax

= C statements limited to integers, assignments, statement lits, conditionals,
iterations

= Programs are labelled to designate program points
= at[S]: entry program point of S starts;
= after[S]: normal exit program point of S;
= in[[S]: reachable program points of S (excluding after[s]);

= break-to[[S]: breaking point when S contains a break ; to exit a loop (then
escape[s] = tt);
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Execution traces

= Program:
6x=03;whilet (tt) {&Gx=x+13; } &
.. . x=0=0 tt x=x+1=1 t
= |nfinite execution trace: & 128 2 1% 2
X=x+1=2 0 t ¢ X=x+1l=n ¢ t ¢ x=x+1l=n+1 6 .

= Trace: finite or infinite sequence of program points separated by action
(x = A =value, B, B, et break ;)
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Value of a variable (and an expression)

= The value of a variable x along a trace 7 is the last assigned value (or 0 at
initialization).

o(mt X=E=V oy X £ v
o(mt ——5 t)x = o(mt) otherwise
o(t)x = 0
= Value of an arithmetic expression
di]p = 1
dlxlp £ p(x)
dla -nlp = dla]p-dAA]p

= Same for boolean expressions.

# “Calculational design of, a static dependency analysis” - 7/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019



Structural fixpoint prefix/maximal trace semantics & *[s]

= The prefix trace semantics §*[[s]] is a relation between
= an initialization trace myat[S] arriving at[s], and
= the prefix execution traces at[S]m continuing this initialization by zero or more
execution steps

= The maximal trace semantics 8 *®[s] collects the maximal finite traces and the
infinite traces obtained as limits of their prefixes.
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Structural fixpoint definition of the prefix trace semantics (1)
= Assignment S ::= ¢ x = A ; (where at[[S] = ¢)

S*[s] & {(nt, &) |mteT }uU

{(me, ¢ XZA=V, after[s]) | mt € T" Av = A [A]o(nt)}

¢ “Calculational design of, a static dependency analysis” -9/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019



Structural fixpoint definition of the prefix trace semantics (I1)
= |teration S ::= whilet (B) S, (where at[[S] = ¢):
S*[s] = Ifp° F*[s]
F*[whitet (B) S,[(X) 2 {(mt, v)|mt eT AV =t} (a)

-(B
U {(m, ¥, ¢m,t ) after[s]) | (m, ¥, ¢m,¥') € XA
BBlo(m tm,t) =ffat =t} (b)
U {(m, ¥, et =2 at[s,] - 7m) | () Uty € X A
BBle(m t'm,t) = tt A <7T1E'772€,i’at[[sb]]’ m3) € T[S At =1t} (c)

A definition of the form d(%) £ {f(%') | P(%',X)} has the variables X' in P(¥',X) bound to those of f(X')
whereas X is free in P(X',X) since it appears neither in f(X') nor (by assumption) under quantifiers in
P(x',X). The X of P(X, %) is therefore bound to the X of d(X).
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Properties
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Property

= A property is represented by a set of elements (those elements which have the
property)

Even intergers: 2Z 2 {2k | k € Z}

= x has property Pis x € P

Implication is P, € P,
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Semantic property

= The prefix trace semantics belongs to (T x T**®)
= A semantics property belongs to @(p(T" x T™*))
= The abstraction

AQ-pQ
(p(p(T* x T*®)), ) —————; (p(T* x T*®), <)

P=UP

provides trace properties (e.g.safety, liveness, etc.)
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Dependency, informally
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Dependency, informally

= At program point ¢, the variable y depends upon the initial value x, of variable x
iff
changing only x, will change the non-empty sequences of values y,, y;,... of y
observed at ¢ whenever control reaches ¢
= Example: & if (x=0) { y=x; &} &
= y does not depend on x neither at ¢ nor at ¢
= y depends on x at &
= No need to distinguish between explicit and implicit dependencies
= Absence of observation is not an observation

= No timing channels
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Dependency, formally
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Observation of the sequence of values of a variable at a program point

* non-empty initialization trace 7, € T*
= non-empty continuation trace 7 € T*®

» seqval[y]t(ry, 7) is the sequence of values of the variable y at program point ¢
along the trace 7 continuing 7,

seqvaly]t(my, ¢) = o(my)y
seqval[y]e(rz,, ¢')

112

3

1>

sequally](m, ¢ % t'm) £ g(my)y - sequal[y]e(my - ¢ % ¢, e'm)

sequal[y]e(ry - ¥ < ¢, e'7)

1>

seqval[y]e(my, ¢’ Ny )

» seqval[y]t(ry, ) is the empty sequence 3 if ¢ never appears in
(co-inductive definition for infinite traces).
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Difference between sequences of values w and w’

= Sequences that differ may have a common prefix but must eventually have a
different value at some position in the sequences.

diff(w, w’) 2 FJwy, 0, 0LV, V.0 =wy - v-w, A0 =wy -V -0 AV EY
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Dependency, formally

= Dependency property:

Dygt(x, y) 2 (e T x T) | Iy, m,), (b, 7}) €11
(Vz € V\ {x} . 0(my)z = o(1r})z) A
diff(seqval[y]¢(m,, m,),seqvaly]e(n}, 7))}

= y depends on the initial value of x at program point ¢ in program P is:

S*P] € Dygt{x y)

= Lemma

S*[P] € Dygtlxy) & S*[P] € Dygt(x y)
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Value dependency abstraction
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Abstraction en dépendance de données

= The abstraction of a semantic property S € p(p(T* x T**)) into a value
dependency property a(S) € L — p(V x V) is:

al(S)e = {(x, y) | S € Dggtx, y)}

= This is a Galois connection:

d
Lemma 1 (p(p(T* x T*®)), <) y:q (L — p(VxV), 2%) where the concretization

of a dependency property D € L —;xp(\y x V) is:
Y@ = (][] Dt y)

el (x,y)eD(t)

(the more semantics, the less common dependencies)

% “Calculational design of, a static dependency analysis” -21/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019



Static dependency analysis

% “Calculational design of, a static dependency analysis” -22/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019



Potential dependency

» «'({8*[s]}) is not computable (Rice theorem)

= We design an over-approximation:

Abstract potential dependency semantics 8 " :

(S [s]) ¢ SU[s]

= The abstraction in D. E. Denning and P. J. Denning, 1977 is purely syntactic;

= We do a little better by taking the semantics is a simple way.
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Calculation design

. ?‘;‘”[[S]] is designed by calculus (in principle can be checked in Coq as Jourdan,
Laporte, Blazy, Leroy, and Pichardie, 2015);

= By structural induction on the program syntax;

= By fixpoint approximation for iteration:

Theorem (fixpoint over-approximation) If (C, C, L, T, U, M) and (4, £, 0, 1, V,
Y
A) are complete lattices, (C, C) ? (4, <) is a Galois connection, f € C—C and

fea—=2Aa are monotonally increasing and a ° f < f = « (semi-commutation) then
Ifp" f C y(Ifp™ f).

= Finite domain, no need for widening
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Abstract potential dependency semantics of assignment S ::=x = A ;

Sa[s]e = (t=at[s] 7 {(y, y) lye Vi
[ € = after[s] 2 {(y, x) | y € ST[AI}U{(y, y) | y # x}
s D)

§giff[[A]] £ {y|5|p€IEV.EWE\/.%[[A]]p:/:%[[A]]p[yev]}

§giff[[1]] =) §g”f[[x]] £ Ix} ?;”f[[Al - A,] 2 {y € vars[A,] Uvars[A,] | A, # A}
S4T[A] < vars[A]

Examples:
= after x =y -y ;, x does not depends on vy.
= after x =y ; x =y -x ;, x depends on the initial value of x and y (to be more

precise information of values of variables must be kept such as 'y - x =0 by
symbolic constant analysis)
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Proof |

The case ¢ = at[[s] was handled in (44.39). Assume ¢ = after[s].

ad({8*°[s]}) after[s]
=ad({S*[s]}) after[s] {def. (7.6) of 8T°[s] since the assignment S has only finite prefix traces§
={(x, y) | 8*[5] € Dy (after[s])(x', y)} {def. (44.23) of a4 and def. ¢§
={(s yy | gy, m)(mp ) € 8F[s] . vz e WV \ {X} . ez = o(mp)z) A
diff(seqval[y](at[s])(rry, 7, ), seqval[y] (at[S]) (g, 1))} def. (44.18) of D yt(x', y)§

—{(xs y) | g, ), Gty 1) € {(rat]s], at[s] ——@ D | trer[s]) | mat]S] € T*} . (Vz € ¥\ {(x'} . o)z =

o(my)z) A diff(seqval[y] (at[S]) (g, 77, ), seqvaly] (at[S]) (ry, 727))}
{def. maximal finite trace semantics in Section 6.4 and (6.13)§
x=8 [A]Q(mpa x=8 [A]Q(mpa
—(xy y) | F(mpat[s], at[s] ——2mD - ter[s]), (mhat]s], at[s] ——m@HED
Y\ {x'} . o(mpat[s])z = e(mpat[s])z) A diff(seqvaly]after[s](myat[s]
<=8 [A1QUrhat[s])

after[s]) . (Vz €

x=8 [A]Q(mgat[s])
L i IR after[s], after[s]),

seqvally]after[s](mpat[s] ————— after[s], after[s]))} {def. €§
—{xs y) | Fmgat[s], at[s] —— 2D - gers]y, (hat[s], at[s] ——mtED | frer[s]) . (V2 € ¥\

{x'} . o(myat[s])z = e(myat[s])z) A diff(e(myat[s])y - e(myat[s] w after[s])y, o(mpat[s])y -

) «=# [A]Q(rhat [s])
o(mhat[s] —————— after[s])y)} {def. (44.15) of seqvally]§
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Proof Il

x=8 [A]@(moat[s]) x=8[A]Q(mpat[s])
c{{x, vy | Fmyat[s], at[s] _ERentD after[s]), (mpat[s], at[[s]]——ﬁi;after[[s]]) . (Vz €

VA {x'} . e(mat[s])z = e(mpat[s])z) A ((e(mpat[s])y # e(mpat[s])y:) V (e(mpat[s])y = e(mpat[s])y:) A
o(myat[s] Rl i N after[s])y # o(mpat[s] Rl i iR after[s])y))} {(44.17) so that diff(a-b, c-d)
ifand only if (1) a#cor (2)a=cAb+#d.§
<=8 [A]Qrhat [s])
< {(x', y) | A(mpat[s], at[s] after[[s]), (mpat[s], at[s] ——————— after[s]) . (Vz € ¥\ {x'}.

o(myat[s])z = e(mpat[s])z) A ((y = x") V (y = x A E[A]e(myat[s]) # E[A]e(myat[s])))} {def. (6.3) of of

x=8 [A]Q(moat[s])
_—

c{x, 1 Wy=x"YV(y=xA3p,v.E€[A]p + E[A]plx" < v]))}
Uletting p = o(myat[s])) and v = o(mpat[s])(x’) so that Vz € V' \ {x'} . o(myat[s])z = o(rhat[s])z implies
that o(rrgat[s]) = p[x’ « vI§
c {({x!, X"y | x" # x} U {{X, x) | Hp,vA.%’[[A]]p #+ E[Alplx" « v]} {case analysis§
={(x', Xy [ x" # x}U{{x', x) | X' € STFA]}

{by defining the functional dependency of an expression A as ?giff[[A]] 2 {x'| 3p,v. E€[Alp #+ E[A]p[x" —
v]}§ ]

]
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Abstract potential dependency semantics of the iteration
S ::=whilet (B) S,

?;i“[[s]] ¢ = (Ifp® Fiwhilet (B) S,]) ¢
Filwhilet (B) S, X =
[¢=¢7 1, UX() U (X3 Ss,] )
[ ¢ € in[s] U (escape[s] ? {break-to[S]} : @] ? X(¥') U (X(8) 3 S4[s,] ¢)
| ¢ = after[s] 7 X(¢) U{(x’, y) | x' € vars[B] Ay € mod[s,]}
s D)

= Can be refined by taking test determinacy into account (e.g. after test x == 1, x can
only have value 1 so nothing can depend on x afterwards).
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No structural compositionality

In the following statement, x and y at ¢ depend on x at &.
[* x=Xpy =Yy */
bhy=x;
& [* X =Xpy=%xg */
In the following statement, x and y at ¢ depend on x at ¢&.
/* X=Xy =Yy */
Ly=y-x;
2 [* X=Xy =yg—Xg */
In the sequential composition of the two statements
/* X=X,y =Yy */

bhy=x3 [* X=X,y =xg */
by =y-x; /*_x:xo,y:o */
e2

y at & depends on x at & which depends on x at & so, by composition, y at ¢ depends
on x at &.

However, y = 0 at & so y at ¢ does not depend on x at .
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Improving precision

= To improve prcision one must take values of variables into account;

» Reduced product with a reachability analsyis (e.g. Cortesi, Ferrara, Halder, and
Zanioli, 2018; Zanioli and Cortesi, 2011)
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Conclusion
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Dependency analysis is an abstract interrpetation

= No need for a generalized theory (as proposed by Assaf, Naumann, Signoles, Totel,
and Tronel, 2017; Urban and Mller, 2018)

= This includes further abstractions, dye analysis, taint analysis, etc.
= Many possible variants (e.g. by changing diff to = we get timing channel
dependency).

= Data dependency analysis to detect parallelism in sequential codes Padua and
Wolfe, 1986 is also an abstract interpretation Tzolovski, 1997, Tzolovski, 2002,
Ch. 5.
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The End, Thank you
Happy sixties Mooly!
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