2019 Mooly Fest

April 6th, 2019 —
ETAPS, Prague, Czech Republic

Calculational design of
a static dependency analysis

Patrick Cousot

New York University, Courant Institute of Mathematics, Computer Science

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

¢ “Calculational design of, a static dependency analysis” -1/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

https:nyu.edu
https:cims.nyu.edu
https:cs.nyu.edu
mailto:pcousot@cs.nyu.edu
http://cs.nyu.edu/~pcousot

Motivation

“Calculational design of, a static dependency analysis”

-2/39 -

© P. Cousot, NYU, CIMS, CS, April 6th, 2019

Dependency

Dependency is prevalent in computer science:

Non-interference (confidentiality, integrity)

Security, privacy
= Slicing
= Temporal dependencies in synchronous languages (Lustre, Signal, etc.)
= etc.

The existing definitions

= are postulated a priori (par exemple Cheney, Ahmed, and Acar, 2011;
D. E. Denning and P. J. Denning, 1977),

= without semantics justifications (except Assaf, Naumann, Signoles, Totel, and
Tronel, 2017 (“hyper-collecting semantics”), Urban and Miiller, 2018 on program
exit uniquely)

We are interested in principles, in soundness proofs, not so much in a new more

powerful dependency analysis.
¢ “Calculational design of, a static dependency analysis” -3/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Structural fixpoint trace semantics

¢ “Calculational design of, a static dependency analysis” —4/39 — © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Program syntax

= C statements limited to integers, assignments, statement lits, conditionals,
iterations

= Programs are labelled to designate program points
= at[S]: entry program point of S starts;
= after[S]: normal exit program point of S;
= in[[S]: reachable program points of S (excluding after[s]);

= break-to[[S]: breaking point when S contains a break ; to exit a loop (then
escape[s] = tt);

“Calculational design of, a static dependency analysis” -5/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Execution traces

= Program:
6x=03;whilet (tt) {&Gx=x+13; } &
.. . x=0=0 tt x=x+1=1 t
= |nfinite execution trace: & 128 2 1% 2
X=x+1=2 0 t ¢ X=x+1l=n ¢ t ¢ x=x+1l=n+1 6 .

= Trace: finite or infinite sequence of program points separated by action
(x = A =value, B, B, et break ;)

“Calculational design of, a static dependency analysis” -6/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Value of a variable (and an expression)

= The value of a variable x along a trace 7 is the last assigned value (or 0 at
initialization).

o(mt X=E=V oy X £ v
o(mt ——5 t)x = o(mt) otherwise
o(t)x = 0
= Value of an arithmetic expression
di]p = 1
dlxlp £ p(x)
dla -nlp = dla]p-dAA]p

= Same for boolean expressions.

“Calculational design of, a static dependency analysis” - 7/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Structural fixpoint prefix/maximal trace semantics & *[s]

= The prefix trace semantics §*[[s]] is a relation between
= an initialization trace myat[S] arriving at[s], and
= the prefix execution traces at[S]m continuing this initialization by zero or more
execution steps

= The maximal trace semantics 8 *®[s] collects the maximal finite traces and the
infinite traces obtained as limits of their prefixes.

“Calculational design of, a static dependency analysis” -8/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Structural fixpoint definition of the prefix trace semantics (1)
= Assignment S ::= ¢ x = A ; (where at[[S] = ¢)

S*[s] & {(nt, &) |mteT }uU

{(me, ¢ XZA=V, after[s]) | mt € T" Av = A [A]o(nt)}

¢ “Calculational design of, a static dependency analysis” -9/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Structural fixpoint definition of the prefix trace semantics (I1)
= |teration S ::= whilet (B) S, (where at[[S] = ¢):
S*[s] = Ifp° F*[s]
F*[whitet (B) S,[(X) 2 {(mt, v)|mt eT AV =t} (a)

-(B
U {(m, ¥, ¢m,t) after[s]) | (m, ¥, ¢m,¥') € XA
BBlo(m tm,t) =ffat =t} (b)
U {(m, ¥, et =2 at[s,] - 7m) | () Uty € X A
BBle(m t'm,t) = tt A <7T1E'772€,i’at[[sb]]’ m3) € T[S At =1t} (c)

A definition of the form d(%) £ {f(%') | P(%',X)} has the variables X' in P(¥',X) bound to those of f(X')
whereas X is free in P(X',X) since it appears neither in f(X') nor (by assumption) under quantifiers in
P(x',X). The X of P(X, %) is therefore bound to the X of d(X).

% “Calculational design of, a static dependency analysis” -10/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Properties

% “Calculational design of, a static dependency analysis”

~11/39 -

© P. Cousot, NYU, CIMS, CS, April 6th, 2019

Property

= A property is represented by a set of elements (those elements which have the
property)

Even intergers: 2Z 2 {2k | k € Z}

= x has property Pis x € P

Implication is P, € P,

% “Calculational design of, a static dependency analysis” -12/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Semantic property

= The prefix trace semantics belongs to (T x T**®)
= A semantics property belongs to @(p(T" x T™*))
= The abstraction

AQ-pQ
(p(p(T* x T*®)),) —————; (p(T* x T*®), <)

P=UP

provides trace properties (e.g.safety, liveness, etc.)

% “Calculational design of, a static dependency analysis” -13/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Dependency, informally

% “Calculational design of, a static dependency analysis” —14/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Dependency, informally

= At program point ¢, the variable y depends upon the initial value x, of variable x
iff
changing only x, will change the non-empty sequences of values y,, y;,... of y
observed at ¢ whenever control reaches ¢
= Example: & if (x=0) { y=x; &} &
= y does not depend on x neither at ¢ nor at ¢
= y depends on x at &
= No need to distinguish between explicit and implicit dependencies
= Absence of observation is not an observation

= No timing channels

% “Calculational design of, a static dependency analysis” - 15/39 — © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Dependency, formally

% “Calculational design of, a static dependency analysis” -16/39 — © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Observation of the sequence of values of a variable at a program point

* non-empty initialization trace 7, € T*
= non-empty continuation trace 7 € T*®

» seqval[y]t(ry, 7) is the sequence of values of the variable y at program point ¢
along the trace 7 continuing 7,

seqvaly]t(my, ¢) = o(my)y
seqval[y]e(rz,, ¢')

112

3

1>

sequally](m, ¢ % t'm) £ g(my)y - sequal[y]e(my - ¢ % ¢, e'm)

sequal[y]e(ry - ¥ < ¢, e'7)

1>

seqval[y]e(my, ¢’ Ny)

» seqval[y]t(ry,) is the empty sequence 3 if ¢ never appears in
(co-inductive definition for infinite traces).

% “Calculational design of, a static dependency analysis” -17/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Difference between sequences of values w and w’

= Sequences that differ may have a common prefix but must eventually have a
different value at some position in the sequences.

diff(w, w’) 2 FJwy, 0, 0LV, V.0 =wy - v-w, A0 =wy -V -0 AV EY

% “Calculational design of, a static dependency analysis” - 18/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Dependency, formally

= Dependency property:

Dygt(x, y) 2 (e T x T) | Iy, m,), (b, 7}) €11
(Vz € V\ {x} . 0(my)z = o(1r})z) A
diff(seqval[y]¢(m,, m,),seqvaly]e(n}, 7))}

= y depends on the initial value of x at program point ¢ in program P is:

S*P] € Dygt{x y)

= Lemma

S*[P] € Dygtlxy) & S*[P] € Dygt(x y)

% “Calculational design of, a static dependency analysis” -19/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Value dependency abstraction

% “Calculational design of, a static dependency analysis” -20/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Abstraction en dépendance de données

= The abstraction of a semantic property S € p(p(T* x T**)) into a value
dependency property a(S) € L — p(V x V) is:

al(S)e = {(x, y) | S € Dggtx, y)}

= This is a Galois connection:

d
Lemma 1 (p(p(T* x T*®)), <) y:q (L — p(VxV), 2%) where the concretization

of a dependency property D € L —;xp(\y x V) is:
Y@ = (][] Dt y)

el (x,y)eD(t)

(the more semantics, the less common dependencies)

% “Calculational design of, a static dependency analysis” -21/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Static dependency analysis

% “Calculational design of, a static dependency analysis” -22/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Potential dependency

» «'({8*[s]}) is not computable (Rice theorem)

= We design an over-approximation:

Abstract potential dependency semantics 8 " :

(S [s]) ¢ SU[s]

= The abstraction in D. E. Denning and P. J. Denning, 1977 is purely syntactic;

= We do a little better by taking the semantics is a simple way.

% “Calculational design of, a static dependency analysis” —23/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Calculation design

. ?‘;‘”[[S]] is designed by calculus (in principle can be checked in Coq as Jourdan,
Laporte, Blazy, Leroy, and Pichardie, 2015);

= By structural induction on the program syntax;

= By fixpoint approximation for iteration:

Theorem (fixpoint over-approximation) If (C, C, L, T, U, M) and (4, £, 0, 1, V,
Y
A) are complete lattices, (C, C) ? (4, <) is a Galois connection, f € C—C and

fea—=2Aa are monotonally increasing and a ° f < f = « (semi-commutation) then
Ifp" f C y(Ifp™ f).

= Finite domain, no need for widening

% “Calculational design of, a static dependency analysis” —24/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Abstract potential dependency semantics of assignment S ::=x = A ;

Sa[s]e = (t=at[s] 7 {(y, y) lye Vi
[€ = after[s] 2 {(y, x) | y € ST[AI}U{(y, y) | y # x}
s D)

§giff[[A]] £ {y|5|p€IEV.EWE\/.%[[A]]p:/:%[[A]]p[yev]}

§giff[[1]] =) §g”f[[x]] £ Ix} ?;”f[[Al - A,] 2 {y € vars[A,] Uvars[A,] | A, # A}
S4T[A] < vars[A]

Examples:
= after x =y -y ;, x does not depends on vy.
= after x =y ; x =y -x ;, x depends on the initial value of x and y (to be more

precise information of values of variables must be kept such as 'y - x =0 by
symbolic constant analysis)

% “Calculational design of, a static dependency analysis” © P. Cousot, NYU, CIMS, CS, April 6th, 2019

-25/39 -

Proof |

The case ¢ = at[[s] was handled in (44.39). Assume ¢ = after[s].

ad({8*°[s]}) after[s]
=ad({S*[s]}) after[s] {def. (7.6) of 8T°[s] since the assignment S has only finite prefix traces§
={(x, y) | 8*[5] € Dy (after[s])(x', y)} {def. (44.23) of a4 and def. ¢§
={(s yy | gy, m)(mp) € 8F[s] . vz e WV \ {X} . ez = o(mp)z) A
diff(seqval[y](at[s])(rry, 7,), seqval[y] (at[S]) (g, 1))} def. (44.18) of D yt(x', y)§

—{(xs y) | g,), Gty 1) € {(rat]s], at[s] ——@ D | trer[s]) | mat]S] € T*} . (Vz € ¥\ {(x'} . o)z =

o(my)z) A diff(seqval[y] (at[S]) (g, 77,), seqvaly] (at[S]) (ry, 727))}
{def. maximal finite trace semantics in Section 6.4 and (6.13)§
x=8 [A]Q(mpa x=8 [A]Q(mpa
—(xy y) | F(mpat[s], at[s] ——2mD - ter[s]), (mhat]s], at[s] ——m@HED
Y\ {x'} . o(mpat[s])z = e(mpat[s])z) A diff(seqvaly]after[s](myat[s]
<=8 [A1QUrhat[s])

after[s]) . (Vz €

x=8 [A]Q(mgat[s])
L i IR after[s], after[s]),

seqvally]after[s](mpat[s] ————— after[s], after[s]))} {def. €§
—{xs y) | Fmgat[s], at[s] —— 2D - gers]y, (hat[s], at[s] ——mtED | frer[s]) . (V2 € ¥\

{x'} . o(myat[s])z = e(myat[s])z) A diff(e(myat[s])y - e(myat[s] w after[s])y, o(mpat[s])y -

) «=# [A]Q(rhat [s])
o(mhat[s] —————— after[s])y)} {def. (44.15) of seqvally]§

% “Calculational design of, a static dependency analysis” -26/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Proof Il

x=8 [A]@(moat[s]) x=8[A]Q(mpat[s])
c{{x, vy | Fmyat[s], at[s] _ERentD after[s]), (mpat[s], at[[s]]——ﬁi;after[[s]]) . (Vz €

VA {x'} . e(mat[s])z = e(mpat[s])z) A ((e(mpat[s])y # e(mpat[s])y:) V (e(mpat[s])y = e(mpat[s])y:) A
o(myat[s] Rl i N after[s])y # o(mpat[s] Rl i iR after[s])y))} {(44.17) so that diff(a-b, c-d)
ifand only if (1) a#cor (2)a=cAb+#d.§
<=8 [A]Qrhat [s])
< {(x', y) | A(mpat[s], at[s] after[[s]), (mpat[s], at[s] ——————— after[s]) . (Vz € ¥\ {x'}.

o(myat[s])z = e(mpat[s])z) A ((y = x") V (y = x A E[A]e(myat[s]) # E[A]e(myat[s])))} {def. (6.3) of of

x=8 [A]Q(moat[s])
_—

c{x, 1 Wy=x"YV(y=xA3p,v.E€[A]p + E[A]plx" < v]))}
Uletting p = o(myat[s])) and v = o(mpat[s])(x’) so that Vz € V' \ {x'} . o(myat[s])z = o(rhat[s])z implies
that o(rrgat[s]) = p[x’ « vI§
c {({x!, X"y | x" # x} U {{X, x) | Hp,vA.%’[[A]]p #+ E[Alplx" « v]} {case analysis§
={(x', Xy [x" # x}U{{x', x) | X' € STFA]}

{by defining the functional dependency of an expression A as ?giff[[A]] 2 {x'| 3p,v. E€[Alp #+ E[A]p[x" —
v]}§]

]

¢ “Calculational design of, a static dependency analysis” - 27/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Abstract potential dependency semantics of the iteration
S ::=whilet (B) S,

?;i“[[s]] ¢ = (Ifp® Fiwhilet (B) S,]) ¢
Filwhilet (B) S, X =
[¢=¢7 1, UX() U (X3 Ss,])
[¢ € in[s] U (escape[s] ? {break-to[S]} : @] ? X(¥') U (X(8) 3 S4[s,] ¢)
| ¢ = after[s] 7 X(¢) U{(x’, y) | x' € vars[B] Ay € mod[s,]}
s D)

= Can be refined by taking test determinacy into account (e.g. after test x == 1, x can
only have value 1 so nothing can depend on x afterwards).

% “Calculational design of, a static dependency analysis” —28/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

No structural compositionality

In the following statement, x and y at ¢ depend on x at &.
[* x=Xpy =Yy */
bhy=x;
& [* X =Xpy=%xg */
In the following statement, x and y at ¢ depend on x at ¢&.
/* X=Xy =Yy */
Ly=y-x;
2 [* X=Xy =yg—Xg */
In the sequential composition of the two statements
/* X=X,y =Yy */

bhy=x3 [* X=X,y =xg */
by =y-x; /*_x:xo,y:o */
e2

y at & depends on x at & which depends on x at & so, by composition, y at ¢ depends
on x at &.

However, y = 0 at & so y at ¢ does not depend on x at .
% “Calculational design of, a static dependency analysis” -29/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Improving precision

= To improve prcision one must take values of variables into account;

» Reduced product with a reachability analsyis (e.g. Cortesi, Ferrara, Halder, and
Zanioli, 2018; Zanioli and Cortesi, 2011)

% “Calculational design of, a static dependency analysis” -30/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Conclusion

% “Calculational design of, a static dependency analysis”

- 31/39 -

© P. Cousot, NYU, CIMS, CS, April 6th, 2019

Dependency analysis is an abstract interrpetation

= No need for a generalized theory (as proposed by Assaf, Naumann, Signoles, Totel,
and Tronel, 2017; Urban and Mller, 2018)

= This includes further abstractions, dye analysis, taint analysis, etc.
= Many possible variants (e.g. by changing diff to = we get timing channel
dependency).

= Data dependency analysis to detect parallelism in sequential codes Padua and
Wolfe, 1986 is also an abstract interpretation Tzolovski, 1997, Tzolovski, 2002,
Ch. 5.

% “Calculational design of, a static dependency analysis” -32/39 - © P. Cousot, NYU, CIMS, CS, April 6th, 2019

Bibliographie

% “Calculational design of, a static dependency analysis”

~33/39 -

© P. Cousot, NYU, CIMS, CS, April 6th, 2019

References |

Assaf, Mounir, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel
(2017). “Hypercollecting semantics and its application to static analysis of
information flow". In: POPL. ACM, pp. 874-887 (53, 3).

Barthe, Gilles, Benjamin Grégoire, and Vincent Laporte (2017). “Provably secure
compilation of side-channel countermeasures”. IACR Cryptology ePrint Archive
2017, p. 1233 (53, 33).

Cheney, James, Amal Ahmed, and Umut A. Acar (2011). “Provenance as dependency
analysis”. Mathematical Structures in Computer Science 21.6, pp. 1301-1337 (3,
51).

Cortesi, Agostino, Pietro Ferrara, Raju Halder, and Matteo Zanioli (2018). “Combining
Symbolic and Numerical Domains for Information Leakage Analysis”. Trans.
Computational Science 31, pp. 98-135 (53, 30).

Cousot, Patrick and Radhia Cousot (2009). “Bi-inductive structural semantics”. /nf.
Comput. 207.2, pp. 258-283 (5, 11, 3, 8).

% “Calculational design of, a static dependency analysis” —34/39 — © P. Cousot, NYU, CIMS, CS, April 6th, 2019

References |l

Denning, Dorothy E. and Peter J. Denning (1977). “Certification of Programs for
Secure Information Flow". Commun. ACM 20.7, pp. 504-513 (1, 3-5, 7, 11, 13, 52,
23).

Giacobazzi, Roberto and Isabella Mastroeni (2018). “Abstract Non-Interference: A
Unifying Framework for Weakening Information-flow”. ACM Trans. Priv. Secur. 21.2,
9:1-9:31 (53, 33).

Goguen, Joseph A. and José Meseguer (1982). “Security Policies and Security Models".
In: IEEE Symposium on Security and Privacy. |EEE Computer Society, pp. 11-20 (1,
3, 51, 52).

— (1984). "Unwinding and Inference Control". In: |[EEE Symposium on Security and
Privacy. IEEE Computer Society, pp. 75-87 (1, 3, 51, 52).

Jourdan, Jacques-Henri, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and
David Pichardie (2015). “A Formally-Verified C Static Analyzer”. In: POPL. ACM,
pp. 247-259 (18, 17, 13, 16, 5, 24).

% “Calculational design of, a static dependency analysis” —35/39 — © P. Cousot, NYU, CIMS, CS, April 6th, 2019

References 1l

Lampson, Butler W. (1973). “A Note on the Confinement Problem”. Commun. ACM
16.10, pp. 613-615 (5).

Mulder, Elke De, Thomas Eisenbarth, and Patrick Schaumont (2018). “ldentifying and
Eliminating Side-Channel Leaks in Programmable Systems”. |[EEE Design & Test
35.1, pp. 74-89 (5).

Padua, David A. and Michael Wolfe (1986). “Advanced Compiler Optimizations for
Supercomputers”. Commun. ACM 29.12, pp. 1184-1201 (53, 32).

Russo, Alejandro, John Hughes, David A. Naumann, and Andrei Sabelfeld (2006).
“Closing Internal Timing Channels by Transformation”. In: ASIAN. Vol. 4435.
Lecture Notes in Computer Science. Springer, pp. 120-135 (5).

Sabelfeld, Andrei and Andrew C. Myers (2003). “Language-based information-flow
security”. IEEE Journal on Selected Areas in Communications 21.1, pp. 5-19 (5).
Tzolovski, Stanislav (1997). “"Data Dependence as Abstract Interpretations”. [n: SAS.

Vol. 1302. Lecture Notes in Computer Science. Springer, p. 366 (53, 32).

“Calculational design of, a static dependency analysis” —-36/39 — © P. Cousot, NYU, CIMS, CS, April 6th, 2019

References IV

Tzolovski, Stanislav (15 June 2002). “Raffinement d'analyses par interprétation
abstraite”. Theése de doctorat. Palaiseau, France: Ecole polytechnique (53, 32).

Urban, Caterina and Peter Miiller (2018). “An Abstract Interpretation Framework for
Input Data Usage”. In: ESOP. Vol. 10801. Lecture Notes in Computer Science.
Springer, pp. 683-710 (21, 3, 53).

Zanioli, Matteo and Agostino Cortesi (2011). “Information Leakage Analysis by
Abstract Interpretation™. In: SOFSEM. Vol. 6543. Lecture Notes in Computer
Science. Springer, pp. 545-557 (53, 30).

% “Calculational design of, a static dependency analysis” —-37/39 — © P. Cousot, NYU, CIMS, CS, April 6th, 2019

The End, Thank you
Happy sixties Mooly!

% “Calculational design of, a static dependency analysis” —-38/39 — © P. Cousot, NYU, CIMS, CS, April 6th, 2019

	Bibliography

