SAS 2019
3rd World Congress on Formal Methods, Porto, Portugal
Friday, October 11th, 2019

Responsibility Analysis by
Abstract Interpretation

Chaogiang Deng Patrick Cousot

Computer Science, Courant Institute of Mathematics, New York University
deng@cs.nyu.edu pcousot@cs.nyu.edu

NYU

What is Responsibility?

What is responsibility?

T, kOO | i fyR(SMaX’LMaX’(C’B) T, kOO T,V kOO
(p(E™),) &————— s (P(E™ X E X E™), C)
ar (ST, L7 C, B)

where

ar € p(E™) = p(p(E™)) = (E™ = p(E™))
— E(E*°) = p(E*°) = p(E™° x E x E*°)
ap(SM* LM ¢ B T A
let apred[S](P) = {o € Pref(P) | Vo' € S.0 <0’ = ¢’ € P} in
let I(S,L,0) =M{P € L |0 € aped|S]|(P)} in
let O(S,L,C,0) ={I(S,L,0") | ¢’ € C(o)} in
{{oy, oRr, or) | oyoror € T Alor|=1A
0 COSM™ LM C,onor) C B C O(SY LM C,on)}

Who is responsible?

 Forest Fire Example [Halpern & Pearl, 2001]

e Disjunctive Scenario: one lit match is sufficient to burnt down the forest.
e Homer throws a lit match to the forest, which guarantees to burn down the forest.
e Later, Lisa drops another lit match in the forest.

e The wind can influence the speed of fire.

e The forest is burnt down, and who is responsible?

Who is responsible?

Forest Fire Example [Halpern & Pearl, 2001]

Noaohkhowobd

homer = input_1(); // T or F (light a match or not)
m1 = homer; // 1st match

lisa =input_2(); / T or F (light a match or not)
m2 = lisa; // 2nd match

wind = input_3(); // 1 or 2 (weak or strong wind)
forest = (m1 || m2) ? wind : 0;

// Undesired behavior if forest > 0

Dependency
e The value of forest at 7 depends on wind at 6, m2 at 5, lisa at 4, m1 at 3, homer at 2.

e By dependency analysis, the forest’s status depends on not only Homer and Lisa’s decisions, but
also the wind and two matches.

Actual Cause
e Use a structural equations model (SEM) to represent the system (built by hand).

e Anevent C is an actual cause of another event E, iff E counterfactually depends on C under certain
contingencies.

e In the context where input_1=T, input_2=T and input_3=1 (i.e. Homer and Lisa lit matches, and the
wind is weak), the actual causes of “forest > 0” are “homer = T”, “m1=T", “lisa = T” and “m2=T".

e By actual causality analysis, both Homer and Lisa are causes of fire, as well as two matches, but
not the wind.

Who is responsible?

Forest Fire Example [Halpern & Pearl, 2001]

Noaohkhowobd

homer = input_1(); // T or F (light a match or not)
m1 = homer; // 1st match

lisa =input_2(); / T or F (light a match or not)
m2 = lisa; // 2nd match

wind = input_3(); // 1 or 2 (weak or strong wind)
forest = (m1 || m2) ? wind : 0;

// Undesired behavior if forest > 0

Responsibility

e Lisa shall not be responsible.
e Keep the temporal ordering of events, and only the first event that guarantees the behavior of
interest is responsible.
e Matches shall not be responsible.
e Only entities that are free to make choices can possibly be responsible.

e Specify “to whose cognizance / knowledge”.

* All the reasoning above is implicitly based on the cognizance of an omniscient observer (i.e.
everything occurred is known). How about the cognizance of a non-omniscient observer?

. If the observer observes only Lisa’s action and does not know that Homer already started a fire, the observer
would determine Lisa to be responsible for the fire.

e E.g.in program security, the cognizance can represent attackers’ capabilities.

Informal Definition of Responsibility

Def. To the cognizance of an observer, the entity Er is responsible for a behavior
B of interest in a certain execution, iff according to the observer’s cognizance, Er
Is free to choose its value, and such a choice is the first one that guarantees the
occurrence of B in that execution.

e Remark

e |nevery single execution where B occurs, there is one and only one entity responsible for B.

e For the whole system, there may exist more than one entities that are responsible for B.

e Responsibility is NOT a trace property.

e To decide which entity in an execution is responsible, the execution alone is not sufficient, and
it is necessary to reason on the whole semantics to exhibit the entity’s “free choice” and its
guarantee of B.

Framework of Responsibility
Analysis

Framework of Responsibility Analysis

e Three Components

1. System Semantics

e The set of all possible executions, each of which can be analyzed individually.

System Semantics

Framework of Responsibility Analysis

e Three Components

1. System semantics

2. Lattice of system behaviors of interest

e The stronger a behavior is, the lower its position in the lattice is.

System Semantics : Lattice of System Behaviors
' of Interest
@
homer=T :
: TMax = G Max Behaviors
2 ! / FF: Forest Fire (forest > 0)
nl=T : NF: No Fire (forest = 0)
. FF WF: Weak Fire (forest = 1)
3 CY) : / \ SF: Strong Fire (forest = 2)
lisa=T E
' WF SF NF
4 ;
m2=T : \ /
5 E J_Max= @

forest=1

10

Framework of Responsibility Analysis

e Three Components
1. System semantics
2. Lattice of system behaviors of interest

3. An observation function for each observer

e Maps every (probably unfinished) execution to a behavior that is guaranteed to occur.

System Semantics 5 Lattice of System Behaviors
' of Interest

10 1 E
homer=T E —>
' } : TMax = g Max Behaviors
\ / FF: Forest Fire (forest > 0)
NF: No Fire (forest = 0)

ml=T o
Observation WF: Weak Fire (forest = 1)

. FF
3 (Y) ; / \ SF: Strong Fire (forest = 2)

Omniscient WF SF NF

4 Observer \ /
m2=T ;

behavior grows stronger after extending
an execution, then extension part must

J_Max= @ .
If an observer finds that the guaranteed
forest=1
be responsible for the stronger behavior.

11

Framework of Responsibility Analysis

e Three Components
1. System semantics
2. Lattice of system behaviors of interest

3. An observation function for each observer

e Maps every (probably unfinished) execution to a behavior that is guaranteed to occur.

System Semantics : Lattice of System Behaviors
' f Interest
10 of Interes
homer=T§ :
L reereeeseesnesnnensansd TMax = g Max Behaviors
2 ;..-E-.-............-..---E / FF: Forest Fire (forest > 0)
SR SO A > NF: No Fire (forest = 0)
ol : FF WE: Weak Fire (forest = 1)
3 CY) “ Observation / \ SF: Strong Fire (forest = 2)
lisa=T :
4 ! WF SF NF
M2=T Non-omniscient
Observer
5 e.g. Lisa | Max_ .
wind=1 ; If an observer finds that the guaranteed

5 CY) : behavior grows stronger after extending
forest=1 5 an execution, then extension part must
be responsible for the stronger behavior.

12

Formal Definition of Responsibility

13

1) System Semantics

Event: any action in the system

* E.g. assignment, Boolean test, skip

Trace: a sequence of events

ec B event

occET>® 2 U {[0,n —1] —» E} U{N— E} nonempty trace
n>1

o€ E* £ [eJUET™ empty or nonempty trace

oc=0 = lo|<|0|AVOLi<]o|—1:0;=0] prefix ordering of traces

e E.g. 0l = homer=T > m1=T > lisa=T > m2=T > wind=1 > forest=1

Trace Prefix

Pref € p(E*°) — p(E™) prefixes of traces
Pref(P) £ {0/ € E**® |30 € P. 0’ < 0}

14

1) System Semantics

Maximal Trace Semantics sMx ¢ o(E*>)

* the set of all valid maximal traces

Prefix Trace Semantics s ¢ p(E*™)

* the set of all valid prefix traces

e an abstraction of maximal trace semantics SPref — Pref (S'V'ax)

E.g. Forest Fire Program

Exit
* consists of 8 maximal traces joorestl @Cl ghax)
wind=1
/()7m2=T—>():
1isac wind=2 forest=2
isa=T Ao——— " »@| o2
=T
ml i forest=1
lisa=F ,VO—>© o3
4 wind=1
homer=T m2=F—(
windz2 forest=2
\%j—————————>C> o4
Entry forest=1
®| o5
wind=1
homer=F /()7m2=T—>O(
.7 wind=2 forest=2
lisa=T \O »®| o6
ml=F
i forest=0
lisa=F /O—>© o7
wind=1
(—m2=F—
wind=2 forest=0
NG Y,

15

2) Lattice of System Behaviors of Interest

e Trace Property
e Atrace property is a set of traces in which a given property holds.
e Every system behavior is represented as a maximal trace property P € p(S"2¥)

e E.g. “Forest Fire” FF is a set of maximal traces whose last event is forest=1 or forest=2.

Similarly, “No forest Fire” NF (forest=0), “Weak forest Fire” WF (forest=1), and “Strong forest
Fire” SF (forest=2).

Exit
forest=1 X (/ \SMah
———————»

® ii!lll
wind=1
/Ofm2=T—>O:
wind=2
1isacT ~ forest=2 ®
1=T
" forest=1
wind=1
homer=T O—m2=r—X FF
wind=2
forest=2
O——o
Entry forest=1
r =
®
wind=1
homer=F /()7m2=T—>Oi
1isacT wind=2 forest=2
\%3_————————>C>‘06 I)
ml=F
i forest=0
lisa=F 10 >®| o7
wind=1
O—m2—F—>C(NF
wind=2 forest=0
*O———»0| o8
o J

16

2) Lattice of System Behaviors of Interest

e Complete Lattice of Maximal Trace Properties of Interest
<£Max7 g) TMax) J_Max’ U, m>
o [Maxc 6(p(E*®)) is a set of system behaviors of interest.

o TMax = SMaxisihe weakest maximal trace property which holds in every valid maximal trace.

o 1M = 0 s the strongest property such that no valid trace has this property, hence it is used to
represent the property of invalidity.

e E.g. Forest Fire Program

TMax = G Max Behaviors
/ FF: Forest Fire (forest > 0)
NF: No Fire (forest = 0)
FF WFEF: Weak Fire (forest = 1)
/ \ SF: Strong Fire (forest = 2)
WF SF NF
J_Max= %)

17

2) Lattice of System Behaviors of Interest

e Prediction Abstraction

e Along a maximal trace o in a property P, where is the point from which P is guaranteed to hold later
in the execution?

e E.g.in 01l = homer=T > m1=T > 1lisa=T > m2=T > wind=1 > forest=1, the property “Forest
Fire” FF is guaranteed immediately after the event homer=T.

e Abstraction from Maximal Trace Property P into Prediction Trace Property Q.

e P isisomorphically abstracted into a set Q of prefixes, excluding those whose maximal
prolongation may not satisfy P.

apred [SV] € p(E*) — p(E*) prediction abstraction
apred[SM](P) = {0 € Pref(P) | Vo' € SM™. 0 <0’ = ¢/ € P}
Yrred [SM] € p(E*™) = p(E*>) prediction concretization

fYPred[[SMaX]](Q) L {O' = Q | = Sl\/lax} _ QﬂSMaX

e E.g. for the property “Forest Fire” FF, the corresponding prediction trace property is
QlPred [[SMaX]] (FF) = {0 € SPref | homer=T < ¢ V homer=F >ml1=F>1lisa=T <o}
i.e. for any valid prefix trace, after homer=T or 1isa=T occurs, FF is guaranteed.
e E.g. Opred [[SMaX]] (NF) = {0 € SPref | homer=F >m1=F > lisa=F <o}
i.e. for any valid prefix trace, only after homer=F and 1isa=F, NF is guaranteed.

18

3) Observation of System Behaviors

 Inquiry Function (strongest guaranteed property on a trace o)

e Given ™™ and £ an inquiry function I maps a trace o to the strongest maximal trace property in
LM that o guarantees.

€ p(B*) o plp(E)) o B o p(E") inquiry (2)
I(SMax, LMax) 2
let apred[S](P) = {o € Pref(P) |[Vo' € S.0 20’ = o' € P}in
A{P € LM | 5 € aped[SM](P)}

e The inquiry function is decreasing: the greater (longer) o is, the stronger property it guarantees.

e E.g. I(SMax gMax o) — TMax At the entry, it is not guaranteed if there will be fire or not.
I(SM2x, LM homer=T) = FF After Homer lit a match, the forest fire is guaranteed.
I(SMax| LMax homer=F) = [(SM2* LM homer=F >mi=F) = TM2* |f Homer does not light a

match, it is not guaranteed if there will be fire or not.
I(SMax £Max homer=F > m1=F > 1isa=T) = FF After Lisa lit a match, the fire is guaranteed.

[(SMax £Max yomer=F >mi=F > lisa=F) = NF If neither Homer nor Lisa lit a match, it is
guaranteed to have no fire.

19

3) Observation of System Behaviors

e Cognizance Function (Observable Abstraction of the Semantics)
* An observer may not distinguish a trace o from some other traces.

C € E™ — p(E*) cognizance (3)

C(o) £ {0’ € E*™ | observer cannot distinguish o’ from o}

* Specially, for an omniscient observer, every trace is unambiguous.
Vo e E*°. C,(0) = {0}

* E.g.in program security, the observer’s cognizance can be used to represent attackers’ capabilities
(e.g. what they can learn from the program execution).

* E.qg.in the forest fire example, if the observer observes only Lisa, but not Homer:

(C(homer=T > m1=T) = C(homer=F > m1=F) = {homer=T > ml1=T , homer=F > m1=F}

20

3) Observation of System Behaviors

e Observation Function
e What can an observer learn from a trace 0?

1. Get the set C(a) of traces that the observer cannot distinguish from o;

2. For each trace o’ in C(o), apply the inquiry function I to get a trace property guaranteed by o’;

3. By joining all trace properties returned by 1, we get the property learned from o.

0 € p(E™) = p(p(E™)) = (E™ = p(E™)) = E™ — o(E™)

O(SMax M € o) & observation (4)

let apred[S](P) = {0 € Pref(P) | Vo' € S.0 <X o' =0’ € P}in
let I(S,L,0) =M{P € L | 0 € apd[S](P)} in
{I(SMex £Max 51| o’ € C(o)]}.

* For an omniscient observer, the observation function = the inquiry function.
* The observation function is decreasing: the greater (longer) o is, the stronger property is learned.
* E.g. in the forest fire example, if the observer is Lisa who is unaware of Homer’s action:
O(SMax £Max C homer=T >m1=T) = I (SMa* LM3 homer=T> m1=T) W [(SMax Max
homer=F >m1=F) = FF | TMax — T Max

O(SMax| LMax C homer=T > m1=T > lisa=T) = [(SM* LM®* homer=T> m1=T > lisa=T)
o I(SMax LM3x homer=F >m1=F > 1isa=T) = FF J FF = FF

21

4) Formal Definition of Responsibility

 To an observer’s cognizance, in a trace OHOROF, Or is responsible for behavior B,

Iﬂ: @g @(SMax’ LMax7 C, O_HO_R) C B _,C,_ @(SMax’ LMax7 C, O_H)}
J B cannot be learned from on

o B can be learned from onoR

e Responsibility Abstraction

ap € p(E™) = p(p(E™)) = (E™ = p(E™))
— p(E*°) = p(E*°) = p(E**°x E x E**)
ap(SM, LM C B T) £
let apred[S](P) = {o € Pref(P) | Vo' € S.0 20’ = ¢’ € P} in
let I(S,L,0) =M{P € L | 0 € apred|[S](P)} in
let O(S,L,C,0) ={I(S,L,0")| " € C(o)} in
{{ou, or, or) | ouoror € T A|lor| =1A
0 C O(SM* M C ogor) € B C O(SM LM C, oy))

* 0O | L IR (SMaX’ ﬁMaX’ C, B) * OO * OO
(P(E™), C) 3 s (P(E™ X EX E™), ©)
OﬁR(SMaX,ﬁMaX,(C,B)

e Anvariant: § C O(SM* LM C opor) C B 2 O(SM* LM C, o)

22

Maximal trace semantics: ™
Lattice of system behaviors: £
Observer’s cognizance: C
Behavior of interest: B

Set of analyzed traces: T

4) Formal Definition of Responsibility

 To an observer’s cognizance, in a trace OHOROF, Or is responsible for behavior B,
I.ﬁ: @g @(SMax, LMax7 C, O_HO_R) C B _,C,_ @(SMax’ LMaX,C, O_H)}

e E.g.inthe forest fire example, analyze o1 = homer=T > m1=T > lisa=T > m2=T > wind=1 > forest=1
e For the omniscient observer:
@(SMaX, EMax7 (C, 8) — —|-Max
O(SMax Max C homer=T) = FF

O(SMax Max C homer=T > m1=T > 1isa=T > m2=T) = FF

O(SMax Max C homer=T > m1=T > 1isa=T > m2=T >wind=1) = WF

J For a non-omniscient observer of Lisa who is unaware of Homer’s action:
O(SMax Max C homer=T >m1=T) = TMa*
O(SMax, fMax C homer=T >mi=T > 1lisa=T) = FF

O(SMax LMax C homer=T > mi=T > 1isa=T >m2=T) = FF
O(SMax £Max C homer=T > m1=T > lisa=T >mn2=T > wind=1) = WF

23

Responsibility Analysis

* Responsibility analysis
e Collect the system’s trace semantics S“*;
 Build the lattice £** of maximal trace properties of interest;
e Derive an inquiry function I from M
define a cognizance function C for each observer,
create the corresponding observation function O;
e Specify the behavior B of interest and the analyzed traces T,

apply the responsibility abstraction &R,

* Applications
* E.g. buffer overflow analysis, information leakage analysis

* E.g. permissions configuration/authorization in a social network

24

More Work in the Appendix

Abstract Responsibility Analysis

e Abstract system semantics by Floyd-Hoare Automaton

e |Leverage trace partitioning to increase precision
e Specify system behaviors as program invariants
e Define the cognizance function as an equivalence relation on invariants

e Build the observation function on automaton nodes

e Utilize iterative forward/backward invariance analysis, and CTL property analysis

e Find “under conditions” responsibility that is a sound abstraction of concrete
responsibility analysis

25

Ongoing Work

* A lattice of responsibility abstractions

e Cope with possible alternative weaker or stronger definitions of responsibility

* (Generalization of cognizance function

e Not only an equivalence relation, but also an abstraction of system semantics

20

Conclusion

* Responsibility based on the abstract interpretation of event trace
semantics

e More precise than dependency, actual cause, etc.

e The observer’s cognizance is new in responsibility analysis.

27

The End. Thank You!

28

