SAS 2019
Thursday, October 10t" 2019
Symposium on Formal Methods, FM'19, Porto, Portugal

Abstract Semantic Dependency

Patrick Cousot

New York University, Courant Institute of Mathematics, Computer Science

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

“Abstract Semantic Dependency” —1/40 — © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

https:nyu.edu
https:cims.nyu.edu
https:cs.nyu.edu
http://cs.nyu.edu/~pcousot

Objective

“Abstract Semantic Dependency” —2/40 — © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Objective

= Design a dependency analysis by abstract interpretation of a trace semantics.

= g depends on b iff changing b into a different b’ will change a into a different a’

= This involves 2 execution traces a — b and a’ — b’ (i.e. it is not a trace
abstraction)

“Abstract Semantic Dependency” - 3/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Objective

= Design a dependency analysis by abstract interpretation of a trace semantics.
= g depends on b iff changing b into a different b’ will change a into a different a’

= This involves 2 execution traces a — b and a’ — b’ (i.e. it is not a trace
abstraction)

= Recent work (Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and
Frédéric Tronel and Caterina Urban and Peter Miiller) suggests abstract
interpretation theory must be revisited

“Abstract Semantic Dependency” - 3/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Objective

= Design a dependency analysis by abstract interpretation of a trace semantics.
= g depends on b iff changing b into a different b’ will change a into a different a’

= This involves 2 execution traces a — b and a’ — b’ (i.e. it is not a trace
abstraction)

= Recent work (Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and
Frédéric Tronel and Caterina Urban and Peter Miiller) suggests abstract
interpretation theory must be revisited

= or not?

“Abstract Semantic Dependency” - 3/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Syntax and trace semantics

“Abstract Semantic Dependency” —4/40 — © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Syntax and trace semantics

= The syntax is a subset of C (while programs)

= The semantics is a structural prefix (or maximal) trace semantics (n¢, t7’) € $*[S]
(where ¢ = at[S]) means that an execution reaching the entry point ¢ of program
component S may continue as stated by ¢r’.

= Example: Assignment S ::=¢t x = A ; (where at[S] =¢)

S*[s] £ {(met, &), (me, ¢ XZAZY, after[s]) | mt € T Av = d [A]o(mt)} (0)
S*[s] 2 {(mt, ¢ ZZAZY after[s]) | mt € T* Av = o [A](t)}
S®[s] £ @ no infinite trace

“Abstract Semantic Dependency” - 5/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Informal Requirements for a Se-
mantic Definition of Dependency

“Abstract Semantic Dependency” - 6/40 — © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Informal Requirements for a Semantic Definition of Dependency

= For simplicity, we consider dependency upon initial states

= The dependency of variables on initial states is local, at each program point (not
global as in [D. E. Denning and P. J. Denning, 1977] or on program exit as in
[Assaf, Naumann, Signoles, Totel, and Tronel, 2017; Urban and Miiller, 2018])

= We don't want to make a difference between control and data dependency (as in
[D. E. Denning and P. J. Denning, 1977] and their followers)

= We ignore timing channels (as usual in compilation)

= We ignore empty observations (observing nothing at a program point is not an
observation)

“Abstract Semantic Dependency” - 7/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Formal Semantic Def-
inition of Dependency

“Abstract Semantic Dependency” —8/40 — © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Sequence of values of a variable at a program point

= seqval[y[t(ry, 7) is the sequence of values of the variable y at program point ¢
along the trace 7 continuing 7,

seqval[y]t(ry, ¢) 2 o(my)y (1)
seqval[y]¢(my, ¢') £ 3 when ¢ # ¢

>

sequal[y]¢(rg, ¢ = ¢') £ g(my)y - sequal[y]e(, - ¢ < ¢/, ¢"m)

>

sequal[y]e(my, ¢ —= ¢'m) 2 sequal[y]e(m, - ¢ — ¢, ¢"7) when ¢ # ¢

» (bi-induction: induction for finite traces, co-induction for infinite ones)

“Abstract Semantic Dependency” - 9/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Differences between sequences of values of a variable at a program point

» diff(w,w’) holds if and only if the sequences of value observations w and w’ at some
program point differ by at least one value

diff(w, ') 2 Jwy, w, w0, v,V . 0=w, v -0, A0 =wy -V @) AV EY (2)

» diff(w, w') implies
» ejther that w = 0’ (no dependency for same futures)
= or one is a strict prefix of the other (timing channels are abstracted away).

= Change this definition to get alternative concepts of dependency (e.g. timing
channels, empty observation, etc.)

“Abstract Semantic Dependency” —-10/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Definition of value dependency

w ITep(T"xT™) is a trace semantics
= Properties are represented by sets (of individuals with this property)

= II € De(x, y) means that y at ¢ depends on the initial value of x

Definition 1 (Dependency D)

De(x, y) = {Il € (T x T™) | Im,, m,), (mly, 7)) €11, (3)
(Vz € V\ {x} . o(y)z = 0(r}y)z) A
diff(seqval[y]e(ry, 71,), seqvaly] ¢ (', ')} o

“Abstract Semantic Dependency” - 11/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Value dependency flow

= X -->,E y iff, at program point ¢ of program P, variable y depends on the initial value
of variable x (or the initial value of variable x flows to variable y at program point

t)

Definition 2 (Value dependency flow)

X w),e, y = (8*°[P] € Dt(x, y)). (4) i

= The use of the prefix trace semantics 8 *[P] is equivalent to that of the maximal
trace semantics §"°[P]

Lemma 1 (Value dependency for finite prefix traces)

x wby = (8*[P] € De(x, y)). O

“Abstract Semantic Dependency’ - 12/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Value dependency abstraction

= a%(S) is the value dependency abstraction of a semantic property
Sep(p(T xT™™))is

Definition (Value dependency abstraction «?)

al(8)t = {(x, y) | § € DYx, y)} (5)

4
= This a Galois connection (p(p(T* x T*®)), <) (—y—q’* (P¢, %) where

P!2 [— (VX V) is ordered pointwise

{ Corollary 1 (Value dependency for finite prefix traces)

to {(x, y) | x woyl = ad{S*P]D) = o?({S*[P]}) 0

“Abstract Semantic Dependency” - 13/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Exact, definite, and potential value dependency semantics

S4s] 2 al({8T[s]}) a{S*[s]h exact dependency
EZW[[S]] < ad({ST[s]hH definite dependency
a‘({SF°[s]}) ¢ Ejm[{sﬂ potential dependency (6)

“Abstract Semantic Dependency” - 14/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Calculational design of the struc-
tural potential dependency analysis

“Abstract Semantic Dependency” - 15/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Calculational design

Based on the soundness definition

ad(S8* [s]h € §jiff[[s]]

The finite abstract domain is L — g(V x V) ordered pointwise
Method
= by structural induction on program components S
» develop a*({8*[S]}) to eliminate the abstraction a!
= over-approximate to eliminate all concrete computations (e.g.value of a test
with dead branch)
A bit more complicated than for DFA since for each program component S, we have
to consider any two execution traces of S (only one for DFA)

“Abstract Semantic Dependency” - 16/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Structural static potential value dependency analysis

® assignment S ::=x = A ;

>

[¢=at[s] ? 1, - (10)
| ¢ = after[s] 2 {(y, x) | y € SI (AL U{(y, y) | v # x}

o
o

{yl3pekv.IveV. d[A]lp+ A[A]ply «— v]} < vars[A]

8als]e

1>

8alAl

“Abstract Semantic Dependency” - 17/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Proof of (10) We consider the case ¢ = after[S]. (The cases ¢ = at[S] and ¢ ¢ labx[[S] are simpler.)

ad({8+°[s]}) after[s]
= a%({8*[s]}) after[s] {Lemma 1§
= (X', y) | 8*[s] € D(after[s]){x, y)} {def. (5) of a® and def. <§
= {5 yy | FHmy, m)(ny,) e 8] . Vz e WV \ {X} . emy)z = elryz A
diff(seqval[y] (after[S])(r,, 7,), seqval[y] (after[S]) (), 7))} {def. € and (3) of De(x’, y)§

' f f x=o [A]Q(mat[s]) .)
= {(x, y) | Hmy,), (', m')) € {(mat[s], at[s] —————— after[s]) | mat[s] € T*}.Vz € V\ {x'}.

o(my)z = g(mhy)z A diff(seqval[y] (after[S])(rry, 71,), seqval[y] (after[S]) (', 7'}))}
{def. of the assignment prefix finite trace semantics§
= (o) | Amgat[s], atfs] —— LI | g erlsDy, et ats], at[s] —— QD | ers]y . vz €

. x=d [A]o(myat[s])
v\ {x'} . o(myat[s])z = e(nlat[s])z A diff(seqvally](after[S])(m,at[s], at[S] ——————— after[s]),

x=d [A]o(r}at[s])
seqval[y](after[s])(m)yat[s], at[S] ——————— after[s]))} {def. €§
= {6 y) | Fmats], atfs] ——2LICTED o ertsy, (rhatfs], atfs] —— Ll | erps)y
x=9 [A]0(myat[s])

Wz € WV \ X} . omat[sz = o(7hat[s])z) A diff(o(m,at[S] ——————— after[S])y,
x=d [A]o(r}yat[s])
o(mhat[s] ————— after[S])y)} {def. (0) of the future seqval[y]§

“Abstract Semantic Dependency” - 18/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

x=d [A]o(m,at[s]) x=d [A]o(r}at[s])
—_—_—

= {(x, y) | Am,at[s], at[s] after[s]), (hat[s], at[s] —————— after[s]) . (Vz €
VA {x'} . o(mat[s])z = e(mhat[s])z) A ((e(myat[S])y # e(mpat[S])y) V (e(myat[S])y = e(mhat[s])y A

o(mat]s] = 2ICTIED g 1Dy # o(rhat]s] ——ITAED g erishy))

{(2) so that diff(a-b, c-d) if and only if (1) a#cor (2) a=cAb+d.§
— {0, y) | 3(mat[s], at]s] —— LI ED g erlsDy, catats], at[s] ——2PHCTED g sy . vz €
V\x'} . elmoatls]z = oGrhatls])z) A ((y = x') v (y = x A st [Ala(moat[s]) # o [Ale(rhat[sD)} (def. oS
(<) [y =x")Vv(y=xA3p,v. d[A]p # d[A]plx" — v]))} (1)

Uetting p = o(myat[S]) and v = g(}at[S])(x") so that Vz € ¥\ {x'} . o(m,at[s])z = e()yat[S])z implies
that o(mhat[s]) = p[x" « v].§

= {(x XY I X" #xu{x, x) | 3p,v. AA]p # A[A]plx" — v]} {case analysis§

N

= (<, x') | ¥ £ UL, %) | X € S Al}

{by defining the functional dependency of an expression A as Efﬂff[[A]] 2 {x' | 3p,v . A[Alp #
A[A]p[x" « v]}in (10)§ o

“Abstract Semantic Dependency” - 19/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Determinacy

= if variables in x € det(B,, B,) have different values then B, and B, cannot both be
true
i.e. if By and B, are both true then the values of variables x € det(B,,B,) are the same

det(B,,B,) < {x | Vp,p' . (B[B.]p A B[B,]p") = (p(x) = p'CN} (13)
e.g. det(x=1,x=1 A y=42) = {x}
= The values of variables in det(B, B) are determined by the veracity of B
det(B,B) € {x | Vp,p' . (B[B]pAB[B]p') = (p(x) = p’'(x))}

e.g. det(x=y A z=42,x=y A z=42) = {z}

“Abstract Semantic Dependency” —20/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Non-determinacy:

= variables in x € nondet(B,,B,) do not change the veracity of B, and B,

nondet(B;,B,) 2 ¥\ det(B;,B,)

2
2 {x|3p,p" . B[B[p A B[B,]p" A p(x) # p'(x)}

e.g. nondet(x=1, x=1 A y=42) = {y}
= The values of variables in x € nondet(B, B) are not determined by the veracity of B

nondet(B,B) 2 {x | 3p,p' . B[B]p A B[B]p’ A p(x) + p'(x)}

e.g. det(x=y A z=42, x=y A z=42) = {x, y}

“Abstract Semantic Dependency” —21/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Structural static potential value dependency analysis (cont’d)

= conditional S ::=1if (B) S,

82ds]e = (t=at[s] 7 1, (a) (12)
J¢ein]s,] ? §2.[s,] ¢] nondet(s, B): (b)
| ¢ = after[s] ? §jm[[st]] after[s,] 1 nondet(B, B) (c.1)
U 1, 1 nondet(—B, -B) (c.2)
U nondet(—B, =B) x mod[s,] (c.3)
s) (d)

mod(S,] is the set of variables that may be modified by s,

1] is left restriction
“Abstract Semantic Dependency” —22/40 — © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

m So:=¢L=H;?
giiff[[s]] t= {<L> L)) <H3 H)}

Example

§3iff[[s]] ¢ ={(H, L)} U {(H, H)}.

m S = {ift (H) &L L=H ;& elset L=H ;t }&

?jifr[[sl]] b
Sjiffﬂs’]] &

“Abstract Semantic Dependency”

nondet(H,H) =
?jiff[[sl]] b=
gjiff[[sl]] o=
gjiff[[sl]] t =
Soals'le =

—23/40 -

nondet(=H,—H) = {L}
{{L, L), (H, H)}

{{L, L}

{(H, H)}

{{H, L)} U {(H, H)}

© P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Structural static potential value dependency analysis (cont’d)

= statement list ST ::=SlU' s

82 [sU ¢ 2 [¢elabx]sl'] ? 82, [sU] ¢ (16.2)
| ¢ € labx]s] \ {at[s]} ? §3.[sU] at[s] 3 83, [s]¢ (16.b)
s D)

where 1, 57, 2 {{x, y) | 3z . (x, z2) € r; A(z, y) € 1,}.

“Abstract Semantic Dependency” —24/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Structural static potential value dependency analysis (cont’d)
= jteration S ::=whilet (B) S,
83,[s1¢ = (Ifp* Fwhite ¢ (B) S,]) ¢ (17)

Filwhilet (B) S,] X ¢ =

(¢ =¢21,U(X(®;3(83[s,] ¢ 1nondet(s,B))) (a)

[¢ €in[s,] 2 X(©) 5 (82,[s,] ¢ 1nondet(s,B)) (b)

| ¢ = after[s] © X(¢) U (X(&) s (V x mod[S,])) U (o)
O ((Uf"ebreaks-of[[sb]] §iiff[[sb]] 2")] nondet(B, B))

s) (d)

“Abstract Semantic Dependency” —25/40 — © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Reduced product with a
relational value analysis

“Abstract Semantic Dependency” - 26/40 — © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Structural compositionality
In the following statement, x and y at ¢ depend on x at %

eoy:)(;
el

In the following statement, x and y at ¢ depend on x at &

Ly=y-x;
12
In the sequential composition of the two statements
[* x=Xp,y =Y */

EOyZX;
Ly=y-x;
3

y at & depends on x at & which depends on x at &
By composition, y at ¢ depends on x at ¢&.
However, y = 0 at & so y at ¢ does not depend on x at .

“Abstract Semantic Dependency” - 27/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Structural compositionality (cont'd)
In the following statement, x and y at ¢ depend on x at %
/* X=X0Y = */
eo y =X ;
@1 /* x:xo’y:xo */
In the following statement, x and y at ¢ depend on x at &
/* x:xo’y:yo */
by=y-x;
b [* X=X,y = Yo~ Xo */
In the sequential composition of the two statements
/* x:xo,y:yo */

Eoy=x; /*x:xo,y:xo *x/
Ly=y-x; /* x=xp,y=0 %/
£,

y at & depends on x at & which depends on x at &

By composition, y at ¢ depends on x at ¢&.

However, y = 0 at & so y at ¢ does not depend on x at .

= reduced product with a value analysis (here Karr linear equalities)

“Abstract Semantic Dependency” —28/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Dye instrumented semantics

“Abstract Semantic Dependency” —29/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Dye analysis in hydrology

When a river is lost in the ground (e.g. la perte du Gour de Champlive in France)

a dye analysis with fluorescein can be used to discover its resurgences

“Abstract Semantic Dependency” —30/40 — © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Dye instrumented semantics

= The initial values of the variables are colored with different colors
= The initial color of a variable can be the variable name

= The dye instrumented semantics is sound iff it associates to each variable y and
program point ¢ the set of colors/variables x upon which is depends

{x | 8T°[P] € De(x, y)}

= Better approach than postulating the dye instrumented semantics [Cheney, Ahmed,
and Acar, 2011] (e.g. the mix of colors at tests and assignments can be postulated
arbitrarily)

“Abstract Semantic Dependency’ - 31/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Tracking analysis

Partition the variables ¥ into racked 7" and untracked ¢ variables (V = 7 U U and
TNnU=9)

Tracking abstraction a*(D) of a dependency property D € L — @(V x V)
a'(D)t = {y | Ix e T .(x, y) € D(t)}

Sound tracking analysis
S7[s] 2 aT(a*({ST[s]}))

Examples: taint analysis in privacy/security checks [Ferrara, Olivieri, and Spoto,
2018; Spoto, Burato, Ernst, Ferrara, Lovato, Macedonio, and Spiridon, 2019]
(tracked is tainted, untracked is untainted); binding time analysis in offline partial
evaluation [Hatcliff, 1998] (tracked is dynamic, untracked is static) and absence of
interference [Bowman and Ahmed, 2015; Goguen and Meseguer, 1984; Heinze and
Turker, 2018; Lourenco and Caires, 2015; Volpano, Irvine, and Smith, 1996]
(tracked is high (private/untrusted), untracked is low (public/trusted)).

“Abstract Semantic Dependency” - 32/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Conclusion

“Abstract Semantic Dependency”

—33/40 -

© P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

Conclusion

= The dependency analysis is not postulated but derived formally by abstract
interpretation of the trace semantics.

= No need for extra notions like (hyper)”properties [Assaf, Naumann, Signoles, Totel,
and Tronel, 2017], non-standard abstract interpretation [Urban and Miiller, 2018],
postulated instrumented semantics [@rbaek, 1995, Sect. 4], multisemantics [Cabon
and Schmitt, 2017], monadic reification [Grimm, Maillard, Fournet, Hritcu, Maffei,
Protzenko, Ramananandro, Rastogi, Swamy, and Béguelin, 2018], etc.

“Abstract Semantic Dependency” —34/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

References |

Assaf, Mounir, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel
(2017). “Hypercollecting semantics and its application to static analysis of
information flow". In: POPL. ACM, pp. 874-887 (9, 36).

Bowman, William J. and Amal Ahmed (2015). “Noninterference for free". In: ICFP.
ACM, pp. 101-113 (34).

Cabon, Gurvan and Alan Schmitt (2017). “Annotated Multisemantics To Prove
Non-Interference Analyses”. In: PLAS@CCS. ACM, pp. 49-62 (36).

Cheney, James, Amal Ahmed, and Umut A. Acar (2011). “Provenance as dependency
analysis”. Mathematical Structures in Computer Science 21.6, pp. 1301-1337 (33).

Denning, Dorothy E. and Peter J. Denning (1977). “Certification of Programs for
Secure Information Flow". Commun. ACM 20.7, pp. 504-513 (9).

“Abstract Semantic Dependency” —35/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

References |l

Ferrara, Pietro, Luca Olivieri, and Fausto Spoto (June 2018). “Tailoring Taint Analysis
to GDPR". In: Privacy Technologies and Policy. 6th Annual Privacy Forum, APF
2018, Barcelona, Spain, June 13-14, 2018, Revised Selected Papers. DOI:
10.1007/978-3-030-02547-2_4 (34).

Goguen, Joseph A. and José Meseguer (1984). “Unwinding and Inference Control”. In:
IEEE Symposium on Security and Privacy. |EEE Computer Society, pp. 75-87 (34).

Grimm, Niklas, Kenji Maillard, Cédric Fournet, Catalin Hritcu, Matteo Maffei,
Jonathan Protzenko, Tahina Ramananandro, Aseem Rastogi, Nikhil Swamy, and
Santiago Zanella Béguelin (2018). “A monadic framework for relational verification:
applied to information security, program equivalence, and optimizations™. In: CPP.
ACM, pp. 130-145 (36).

Hatcliff, John (1998). “An Introduction to Online and Offline Partial Evaluation using
a Simple Flowchart Language”. In: Partial Evaluation. Vol. 1706. Lecture Notes in
Computer Science. Springer, pp. 20-82 (34).

“Abstract Semantic Dependency” —-36/40 — © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

https://doi.org/10.1007/978-3-030-02547-2_4

References 1l

Heinze, Thomas S. and Jasmin Turker (2018). “Certified Information Flow Analysis of
Service Implementations”. In: SOCA. |EEE Computer Society, pp. 177-184 (34).

Lourenco, Luisa and Luis Caires (2015). “Dependent Information Flow Types”. In:
POPL. ACM, pp. 317-328 (34).

Drbaek, Peter (1995). “Can you Trust your Data?" In: TAPSOFT. Vol. 915. Lecture
Notes in Computer Science. Springer, pp. 575-589 (36).

Spoto, Fausto, Elisa Burato, Michael D. Ernst, Pietro Ferrara, Alberto Lovato,
Damiano Macedonio, and Ciprian Spiridon (2019). “Static Identification of Injection
Attacks in Java". ACM Trans. Program. Lang. Syst. 41.3, 18:1-18:58 (34).

Urban, Caterina and Peter Miiller (2018). “An Abstract Interpretation Framework for
Input Data Usage”. In: ESOP. Vol. 10801. Lecture Notes in Computer Science.
Springer, pp. 683-710 (9, 36).

Volpano, Dennis M., Cynthia E. Irvine, and Geoffrey Smith (1996). “A Sound Type
System for Secure Flow Analysis”. Journal of Computer Security 4.2/3, pp. 167-188
(34).

“Abstract Semantic Dependency” - 37/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

The End, Thank you

“Abstract Semantic Dependency” —38/40 — © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019

	Bibliography

