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Objective

= Design a dependency analysis by abstract interpretation of a trace semantics.

= g depends on b iff changing b into a different b’ will change a into a different a’

= This involves 2 execution traces a — b and a’ — b’ (i.e. it is not a trace
abstraction)
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= g depends on b iff changing b into a different b’ will change a into a different a’

= This involves 2 execution traces a — b and a’ — b’ (i.e. it is not a trace
abstraction)

= Recent work (Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and
Frédéric Tronel and Caterina Urban and Peter Miiller) suggests abstract
interpretation theory must be revisited
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Objective

= Design a dependency analysis by abstract interpretation of a trace semantics.
= g depends on b iff changing b into a different b’ will change a into a different a’

= This involves 2 execution traces a — b and a’ — b’ (i.e. it is not a trace
abstraction)

= Recent work (Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and
Frédéric Tronel and Caterina Urban and Peter Miiller) suggests abstract
interpretation theory must be revisited

= or not?
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Syntax and trace semantics
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Syntax and trace semantics

= The syntax is a subset of C (while programs)

= The semantics is a structural prefix (or maximal) trace semantics (n¢, t7’) € $*[S]
(where ¢ = at[S]) means that an execution reaching the entry point ¢ of program
component S may continue as stated by ¢r’.

= Example: Assignment S ::=¢t x = A ; (where at[S] =¢)

S*[s] £ {(met, &), (me, ¢ XZAZY, after[s]) | mt € T Av = d [A]o(mt)} (0)
S*[s] 2 {(mt, ¢ ZZAZY after[s]) | mt € T* Av = o [A](t)}
S®[s] £ @ no infinite trace
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Informal Requirements for a Se-
mantic Definition of Dependency
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Informal Requirements for a Semantic Definition of Dependency

= For simplicity, we consider dependency upon initial states

= The dependency of variables on initial states is local, at each program point (not
global as in [D. E. Denning and P. J. Denning, 1977] or on program exit as in
[Assaf, Naumann, Signoles, Totel, and Tronel, 2017; Urban and Miiller, 2018])

= We don't want to make a difference between control and data dependency (as in
[D. E. Denning and P. J. Denning, 1977] and their followers)

= We ignore timing channels (as usual in compilation)

= We ignore empty observations (observing nothing at a program point is not an
observation)
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Formal Semantic Def-
inition of Dependency
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Sequence of values of a variable at a program point

= seqval[y[t(ry, 7) is the sequence of values of the variable y at program point ¢
along the trace 7 continuing 7,

seqval[y]t(ry, ¢) 2 o(my)y (1)
seqval[y]¢(my, ¢') £ 3 when ¢ # ¢

>

sequal[y]¢(rg, ¢ = ¢') £ g(my)y - sequal[y]e(, - ¢ < ¢/, ¢"m)

>

sequal[y]e(my, ¢ —= ¢'m) 2 sequal[y]e(m, - ¢ — ¢, ¢"7) when ¢ # ¢

» (bi-induction: induction for finite traces, co-induction for infinite ones)
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Differences between sequences of values of a variable at a program point

» diff(w,w’) holds if and only if the sequences of value observations w and w’ at some
program point differ by at least one value

diff(w, ') 2 Jwy, w, w0, v,V . 0=w, v -0, A0 =wy -V @) AV EY (2)

» diff(w, w') implies
» ejther that w = 0’ (no dependency for same futures)
= or one is a strict prefix of the other (timing channels are abstracted away).

= Change this definition to get alternative concepts of dependency (e.g. timing
channels, empty observation, etc.)
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Definition of value dependency

w ITep(T"xT™) is a trace semantics
= Properties are represented by sets (of individuals with this property)

= II € De(x, y) means that y at ¢ depends on the initial value of x

Definition 1 (Dependency D)

De(x, y) = {Il € (T x T™) | Im,, m,), (mly, 7)) €11, (3)
(Vz € V\ {x} . o(y)z = 0(r}y)z) A
diff(seqval[y]e(ry, 71,), seqvaly] ¢ (', ')} o
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Value dependency flow

= X -->,E y iff, at program point ¢ of program P, variable y depends on the initial value
of variable x (or the initial value of variable x flows to variable y at program point

t)

Definition 2 (Value dependency flow)

X w),e, y = (8*°[P] € Dt(x, y)). (4) i

= The use of the prefix trace semantics 8 *[P] is equivalent to that of the maximal
trace semantics §"°[P]

Lemma 1 (Value dependency for finite prefix traces)

x wby = (8*[P] € De(x, y)). O
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Value dependency abstraction

= a%(S) is the value dependency abstraction of a semantic property
Sep(p(T xT™™))is

Definition (Value dependency abstraction «?)

al(8)t = {(x, y) | § € DYx, y)} (5)

4
= This a Galois connection (p(p(T* x T*®)), <) (—y—q’* (P¢, %) where

P!2 [ — (VX V) is ordered pointwise

{ Corollary 1 (Value dependency for finite prefix traces)

to {(x, y) | x woyl = ad{S*P]D) = o?({S*[P]}) 0
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Exact, definite, and potential value dependency semantics

S4s] 2 al({8T[s]}) a{S*[s]h exact dependency
EZW[[S]] < ad({ST[s]hH definite dependency
a‘({SF°[s]}) ¢ Ejm[{sﬂ potential dependency (6)
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Calculational design of the struc-
tural potential dependency analysis
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Calculational design

Based on the soundness definition

ad(S8* [s]h € §jiff[[s]]

The finite abstract domain is L — g(V x V) ordered pointwise
Method
= by structural induction on program components S
» develop a*({8*[S]}) to eliminate the abstraction a!
= over-approximate to eliminate all concrete computations (e.g.value of a test
with dead branch)
A bit more complicated than for DFA since for each program component S, we have
to consider any two execution traces of S (only one for DFA)
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Structural static potential value dependency analysis

® assignment S ::=x = A ;

>

[¢=at[s] ? 1, - (10)
| ¢ = after[s] 2 {(y, x) | y € SI (AL U{(y, y) | v # x}

o
o

{yl3pekv.IveV. d[A]lp+ A[A]ply «— v]} < vars[A]

8als]e

1>

8alAl

“Abstract Semantic Dependency” - 17/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019



Proof of (10) We consider the case ¢ = after[S]. (The cases ¢ = at[S] and ¢ ¢ labx[[S] are simpler.)

ad({8+°[s]}) after[s]
= a%({8*[s]}) after[s] {Lemma 1§
= (X', y) | 8*[s] € D(after[s]){x, y)} {def. (5) of a® and def. <§
= {5 yy | FHmy, m)(ny, ) e 8] . Vz e WV \ {X} . emy)z = elryz A
diff(seqval[y] (after[S])(r,, 7, ), seqval[y] (after[S]) (), 7))} {def. € and (3) of De(x’, y)§

' f f x=o [A]Q(mat[s]) . )
= {(x, y) | Hmy, ), (', m')) € {(mat[s], at[s] —————— after[s]) | mat[s] € T*}.Vz € V\ {x'}.

o(my)z = g(mhy)z A diff(seqval[y] (after[S])(rry, 71, ), seqval[y] (after[S]) (', 7'}))}
{def. of the assignment prefix finite trace semantics§
= (o ) | Amgat[s], atfs] —— LI | g erlsDy, et ats], at[s] —— QD | ers]y . vz €

. x=d [A]o(myat[s])
v\ {x'} . o(myat[s])z = e(nlat[s])z A diff(seqvally](after[S])(m,at[s], at[S] ——————— after[s]),

x=d [A]o(r}at[s])
seqval[y](after[s])(m)yat[s], at[S] ———————  after[s]))} {def. €§
= {6 y) | Fmats], atfs] ——2LICTED o ertsy, (rhatfs], atfs] —— Ll | erps)y
x=9 [A]0(myat[s])

Wz € WV \ X} . omat[sz = o(7hat[s])z) A diff(o(m,at[S] ———————  after[S])y,
x=d [A]o(r}yat[s])
o(mhat[s] ————— after[S])y)} {def. (0) of the future seqval[y]§

“Abstract Semantic Dependency” - 18/40 - © P. Cousot, NYU, CIMS, CS, Thursday, October 10th 2019



x=d [A]o(m,at[s]) x=d [A]o(r}at[s])
—_—_—

= {(x, y) | Am,at[s], at[s] after[s]), (hat[s], at[s] —————— after[s]) . (Vz €
VA {x'} . o(mat[s])z = e(mhat[s])z) A ((e(myat[S])y # e(mpat[S])y) V (e(myat[S])y = e(mhat[s])y A

o(mat]s] = 2ICTIED g 1Dy # o(rhat]s] ——ITAED g erishy))

{(2) so that diff(a-b, c-d) if and only if (1) a#cor (2) a=cAb+d.§
— {0, y) | 3(mat[s], at]s] —— LI ED g erlsDy, catats], at[s] ——2PHCTED g sy . vz €
V\x'} . elmoatls]z = oGrhatls])z) A ((y = x') v (y = x A st [Ala(moat[s]) # o [Ale(rhat[sD)}  (def. oS
(<) [y =x")Vv(y=xA3p,v. d[A]p # d[A]plx" — v]))} (1)

Uetting p = o(myat[S]) and v = g(}at[S])(x") so that Vz € ¥\ {x'} . o(m,at[s])z = e()yat[S])z implies
that o(mhat[s]) = p[x" « v].§

= {(x XY I X" #xu{x, x) | 3p,v. AA]p # A[A]plx" — v]} {case analysis§

N

= (<, x') | ¥ £ UL, %) | X € S Al}

{by defining the functional dependency of an expression A as Efﬂff[[A]] 2 {x' | 3p,v . A[Alp #
A[A]p[x" « v]}in (10)§ o
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Determinacy

= if variables in x € det(B,, B,) have different values then B, and B, cannot both be
true
i.e. if By and B, are both true then the values of variables x € det(B,,B,) are the same

det(B,,B,) < {x | Vp,p' . (B[B.]p A B[B,]p") = (p(x) = p'CN}  (13)
e.g. det(x=1,x=1 A y=42) = {x}
= The values of variables in det(B, B) are determined by the veracity of B
det(B,B) € {x | Vp,p' . (B[B]pAB[B]p') = (p(x) = p’'(x))}

e.g. det(x=y A z=42,x=y A z=42) = {z}
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Non-determinacy:

= variables in x € nondet(B,,B,) do not change the veracity of B, and B,

nondet(B;,B,) 2 ¥\ det(B;,B,)

2
2 {x|3p,p" . B[B[p A B[B,]p" A p(x) # p'(x)}

e.g. nondet(x=1, x=1 A y=42) = {y}
= The values of variables in x € nondet(B, B) are not determined by the veracity of B

nondet(B,B) 2 {x | 3p,p' . B[B]p A B[B]p’ A p(x) + p'(x)}

e.g. det(x=y A z=42, x=y A z=42) = {x, y}
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Structural static potential value dependency analysis (cont’d)

= conditional S ::=1if (B) S,

82ds]e = (t=at[s] 7 1, (a) (12)
J¢ein]s,] ? §2.[s,] ¢ ] nondet(s, B): (b)
| ¢ = after[s] ? §jm[[st]] after[s,] 1 nondet(B, B) (c.1)
U 1, 1 nondet(—B, -B) (c.2)
U nondet(—B, =B) x mod[s,] (c.3)
s ) (d)

mod(S,] is the set of variables that may be modified by s,

1] is left restriction
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m So:=¢L=H;?
giiff[[s]] t= {<L> L)) <H3 H)}

Example

§3iff[[s]] ¢ ={(H, L)} U {(H, H)}.

m S = {ift (H) &L L=H ;& elset L=H ;t }&

?jifr[[sl]] b
Sjiffﬂs’]] &

“Abstract Semantic Dependency”

nondet(H,H) =
?jiff[[sl]] b=
gjiff[[sl]] o=
gjiff[[sl]] t =
Soals'le =
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nondet(=H,—H) = {L}
{{L, L), (H, H)}

{{L, L}

{(H, H)}

{{H, L)} U {(H, H)}
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Structural static potential value dependency analysis (cont’d)

= statement list ST ::=SlU' s

82 [sU ¢ 2 [¢elabx]sl'] ? 82, [sU] ¢ (16.2)
| ¢ € labx]s] \ {at[s]} ? §3.[sU] at[s] 3 83, [s]¢  (16.b)
s D)

where 1, 57, 2 {{x, y) | 3z . (x, z2) € r; A(z, y) € 1,}.
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Structural static potential value dependency analysis (cont’d)
= jteration S ::=whilet (B) S,
83,[s1¢ = (Ifp* Fwhite ¢ (B) S,]) ¢ (17)

Filwhilet (B) S,] X ¢ =

(¢ =¢21,U(X(®;3(83[s,] ¢ 1nondet(s,B))) (a)

[ ¢ €in[s,] 2 X(©) 5 (82,[s,] ¢ 1nondet(s,B)) (b)

| ¢ = after[s] © X(¢) U (X(&) s (V x mod[S,])) U (o)
O ((Uf"ebreaks-of[[sb]] §iiff[[sb]] 2") ] nondet(B, B))

s ) (d)
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Reduced product with a
relational value analysis
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Structural compositionality
In the following statement, x and y at ¢ depend on x at %

eoy:)(;
el

In the following statement, x and y at ¢ depend on x at &

Ly=y-x;
12
In the sequential composition of the two statements
[* x=Xp,y =Y */

EOyZX;
Ly=y-x;
3

y at & depends on x at & which depends on x at &
By composition, y at ¢ depends on x at ¢&.
However, y = 0 at & so y at ¢ does not depend on x at .
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Structural compositionality (cont'd)
In the following statement, x and y at ¢ depend on x at %
/* X=X0Y = */
eo y =X ;
@1 /* x:xo’y:xo */
In the following statement, x and y at ¢ depend on x at &
/* x:xo’y:yo */
by=y-x;
b [* X=X,y = Yo~ Xo */
In the sequential composition of the two statements
/* x:xo,y:yo */

Eoy=x; /*x:xo,y:xo *x/
Ly=y-x; /* x=xp,y=0 %/
£,

y at & depends on x at & which depends on x at &

By composition, y at ¢ depends on x at ¢&.

However, y = 0 at & so y at ¢ does not depend on x at .

= reduced product with a value analysis (here Karr linear equalities)
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Dye instrumented semantics
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Dye analysis in hydrology

When a river is lost in the ground (e.g. la perte du Gour de Champlive in France)

a dye analysis with fluorescein can be used to discover its resurgences
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Dye instrumented semantics

= The initial values of the variables are colored with different colors
= The initial color of a variable can be the variable name

= The dye instrumented semantics is sound iff it associates to each variable y and
program point ¢ the set of colors/variables x upon which is depends

{x | 8T°[P] € De(x, y)}

= Better approach than postulating the dye instrumented semantics [Cheney, Ahmed,
and Acar, 2011] (e.g. the mix of colors at tests and assignments can be postulated
arbitrarily)
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Tracking analysis

Partition the variables ¥ into racked 7" and untracked ¢ variables (V = 7 U U and
TNnU=9)

Tracking abstraction a*(D) of a dependency property D € L — @(V x V)
a'(D)t = {y | Ix e T .(x, y) € D(t)}

Sound tracking analysis
S7[s] 2 aT(a*({ST[s]}))

Examples: taint analysis in privacy/security checks [Ferrara, Olivieri, and Spoto,
2018; Spoto, Burato, Ernst, Ferrara, Lovato, Macedonio, and Spiridon, 2019]
(tracked is tainted, untracked is untainted); binding time analysis in offline partial
evaluation [Hatcliff, 1998] (tracked is dynamic, untracked is static) and absence of
interference [Bowman and Ahmed, 2015; Goguen and Meseguer, 1984; Heinze and
Turker, 2018; Lourenco and Caires, 2015; Volpano, Irvine, and Smith, 1996]
(tracked is high (private/untrusted), untracked is low (public/trusted)).
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Conclusion
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Conclusion

= The dependency analysis is not postulated but derived formally by abstract
interpretation of the trace semantics.

= No need for extra notions like (hyper)”properties [Assaf, Naumann, Signoles, Totel,
and Tronel, 2017], non-standard abstract interpretation [Urban and Miiller, 2018],
postulated instrumented semantics [@rbaek, 1995, Sect. 4], multisemantics [Cabon
and Schmitt, 2017], monadic reification [Grimm, Maillard, Fournet, Hritcu, Maffei,
Protzenko, Ramananandro, Rastogi, Swamy, and Béguelin, 2018], etc.
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The End, Thank you
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