SAS 2019
Wednesday, October 9t" 2019
Symposium on Formal Methods, FM'19, Porto, Portugal

Syntactic and Semantic Soundness
of Structural Dataflow Analysis

Patrick Cousot

New York University, Courant Institute of Mathematics, Computer Science

pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -1/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

https:nyu.edu
https:cims.nyu.edu
https:cs.nyu.edu
http://cs.nyu.edu/~pcousot

Soundness of data flow analysis

= |n what sense is data flow analysis sound?

» Classical definitions of liveness (and other data flow analyses) [Beyer, Gulwani, and
Schmidt, 2018; Kildall, 1973; Schmidt, 1998; Steffen, 1991, 1993]

= hide subtleties in the definition of soundness,
= which may lead to incorrect semantics-based compiler optimizations.

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” —2/39 — © P. Cousot, NYU, CIMS, CS, Wednesday, October 9th 2019

Syntax and trace semantics of programs

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -3/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Syntax

XY,... €V
A € A == 1]|x]A-A
B € B ::= A <A, | BynandB,
S € % ::=
X =Aj
| s
| if(B)S | if (B) SelseS
| while (B) S | break ;
| {si}
S1e3l ::= S1L S| €
Pe P ::= Sl
SelPc 2 SUSIUP
“Syntactic and Semantic Soundness of Structural Dataflow Analysis” - 4/39 -

variable (V not empty)
arithmetic expression
boolean expression
statement
assignment
skip
conditionals
iteration and break
compound statement
statement list
program
program component

© P. Cousot, NYU, CIMS, CS, Wednesday, October 9th 2019

Program labelling

Unique labelling to designate (sets of) program points:

at[s] the program point at which execution of S starts;

after[[S] the program exit point after S, at which execution of S is supposed
to normally terminate, if ever;

escape[s] a boolean indicating whether or not the program component S

contains a break ; statement escaping out of that component S;
break-to[S] the program point at which execution of the program component S
goes to when a break ; statement escapes out of that component

S;

breaks-of[S] the set of labels of all break ; statements that can escape out of
S

in[s] the set of program points inside S (including at[s] but excluding
after[[S] and break-to[S]);

labx[s] the potentially reachable program points while executing S either

at, in, or after the statement, or resulting from a break.

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -5/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Traces

= Events/action: assignment x = A = v, true test B, false test —(B), break, skip
= State: program label ¢ (next step to be executed)
= Trace: finite/infinite sequence 7 € T of states separated by events

= = 2(x < 0) b
= Example: ¢ = xx1=1,, ¢, (with implicit initialization to 0)

= Trace concatenation: ~
= Value g(m)x of a variable x at the end of trace 7
o(t)x £ 0 implicit initialization to 0 (2)

olmt ZZAZY, iy 2y

o(mt)x otherwise

[I>

o(mt —2s ¥)x

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -6/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Prefix trace semantics

= Evaluation of an arithmetic expression

df1]p =1 (4)
dx]p = p(x)
da -a)p = dla]p-dA]p

= Assignment S ::= ¢ x = A ; (where at[[S] = ¢)

S*[s] 2 {(mt, &), (me, ¢ ZZAZY after[S]) |t € T Av = A [AJo(t)} (3)

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” - 7/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Prefix trace semantics (cont'd)

= Break statement S ::= ¢ break ; (where at[s] = ¢)

break

8*[s] 2 {(nt, &), (me, ¢ break-to[S]) | 7t € T+} (5)

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -8/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Prefix trace semantics (cont'd)
= Conditional statement S ::= if ¢ (B) S, (where at[[S] = ¢)
S*[s] & {(met, &) | me e T} (6)

U {(me, ¢ ﬂ after[s]) | B[B]o(r,t) =ffAmteT"}
U (8 € -2 at[[s,] - 7,) | B[BJe(m) = tt A (¢ — at[s,], m,) € 8*[s,]}

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -9/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Prefix trace semantics (cont'd)

= Statement list S1::= SU S (where at[[S] = after[S1'])

8*[s1] = 8§*[sU'] (8)
U {(my, my ~m3) | (5 1) € 8¥[SU] A (g = 71,, 713) € S*[S]}

= Empty statement list S1 ::= € (where at[S1] £ after[[S1])

8*[s1] £ {(mat[s1], at[s1]) | mat[s1] € T*} (7)

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -10/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Prefix trace semantics (cont'd)

= |teration statement S ::= whilet (B) S, (where at[s] = ¢)
$*[s] = lfp= F*[s] (9)
Frwhilet (B) SpJ(X) 2 {(me &) |meeT} (a)
U {(m,¢, tm,t —®, after[s])) | (¢, emyt) € X A B[B]o(m, tmyt) = ff} (b)

U {(m,¢, tm,t B, at[s,] = m3) | (8, tmyt) € XA
BBlo(m,tm,0) = tt A (my byt —at[s,], 73) € S*[s,]} (<)

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -11/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Maximal trace semantics

= Maximal trace semantics

ST[s] £ {(m, m,yt) € 8*[S] | (¢ = after[S]) V (escape[[S] A ¢ = break-to[S])} (11)
8[s] = lim(8*[s]) (12)

= Limit
im7 2 {(m, a') | 7' e T° AVn e N. {(m, n'[0..n]) € T}. (13)

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -12/39 — © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Live variables analysis
[Kennedy, 1975, 1976a,b]

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” - 13/39 — © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Parameterized live variable abstraction on a trace
1
‘xuse,mod[[sﬂ Lb’ Le <7T0a 77)

= After initialization 77, execution of component S may continue with
= [, live variables if S escapes with a break
= [, live variables if S terminates

» use defining the set use[a]p of variables which value is used when executing action
a in environment p;

» mod defining the set mod[a]p of variables which value is modified when executing
action a in environment p.

)

ause,mod

[s] Ly, L, {7y, m) is the set of live variable at[[S] for execution 7 initialized by 7,

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” - 14/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Parameterized live variable analysis

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” - 15/39 — © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Parameterized definition of the live variable abstraction of a trace

e moalS] Ly L, (g, &) 2 {x € V| (¢ = after[S[Ax € L,) V (a) (14)
(escape[S] At = break-to[S] A x € L)}
e moalS] Ly» L (g, ¢ 2, vm) 2 {x e V| x € use[a]o(m,) V (b)

(X ¢ mOd[[a]]Q(ﬂO) AX € (xluse,mod[[s]] Lb’Le <7T0 - zi)el’ 2’7-[1»}

A variable is live at some point if it holds a value that may be needed in the
future, or equivalently if its value may be read before the next time the variable
is written to.

https://en.wikipedia.org/wiki/Live_variable_analysis
= may be — potential liveness, is on one trace

= or equivalently — wrong

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -16/39 — © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

https://en.wikipedia.org/wiki/Live_variable_analysis

Parameterized definition of the live variable abstraction of a trace

a; a, a1 "
Lemma 1If 7, = ¢ & t, and (my, m;) € 8*[S] then
& emoalS] Ly Ly (g, 1) = {x eV |3ie[l,n—1].Yje[Li-1].
a, 4j-1 a, a1
x ¢ mod[a;Je(m, ~ & b ...) A x €usefa;]o(m, - & 6. &)}
U (& = after[S] 2 L, ¢ @) U (escape[S] A&, = break-to[S] ? L, s D). O

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -17/39 — © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Parameterized definition of the live variable abstraction

of a trace semantics
= Liveness

oty moalS] 8 Ly, L, = U e moalS] Lo» L (g, 1) potential liveness (15)
(mg,my € 8

use mod[[s]] S Lb’

ﬂ e moalS] Lo» L (g, 1) definite liveness (16)
(ng,m) €8

= Deadness is defined dually

a2 oalS] 8 Dy, D, = —al, ,.04[S] 8 =Dy, =D, potential deadness (1)
ol 0alS] 8 Dy, D, = =ail,,.q4lS] 8 =D, =D, definite deadness (2)

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” - 18/39 — © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Parameterized definition of the live variable abstraction
of a trace semantics

Lemma 2 (xuse mad[[s]] (8+OO[[S]]) = ause mod[[s]] (8 [[S]]) O

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -19/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October 9t" 2019

Instances of the parameter-
ized live variable analysis

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” —-20/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Semantic liveness/deadness

= yse
use[skip] p = @ (19)
use[x =A]p 2 {y | Ive V. A[A] p + A[A] ply « v] A p(x) + A[A] p}
usefall p 2 {y | IveV . RB[a] p + Bla] ply < v} a € {B, ~(B)}
= mod

mod[a] p £ {x | a=(x=A)A(p(x) + L[A] p)}
= Semantic potential liveness

S7[s] 2 oeemonls] (87[s]) (20)

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -21/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Classical syntactic liveness/deadness

" use
use[x = A] p = vars[A] (21)
use[skip] p £ &
use[B] p 2 use[-(B)]p 2 vars[B]
(p is useless)
= mod
mod[x = Al p £ {x}
mod[skip] p £ &
mod[B] p £ mod[-(B)]p = O
= (Classical syntactic potential liveness
[[S]] ﬂJ]§® mod [[Sﬂ (8+00[[S]]) (22)

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -22/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Soundness expectation
= Soundness of potential liveness

83[s] ¢ 8¥[s]

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” —-23/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October 9t" 2019

Soundness expectation
= Soundness of potential liveness

83[s] ¢ 8¥[s]

= THIS IS NOT TRUE!

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” —-23/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October 9t" 2019

Soundness expectation
= Soundness of potential liveness

83[s] ¢ 8¥[s]

= THIS IS NOT TRUE!

= Problem
Ja.3p € Ev. x € mod[a] p A x ¢ mod[a] p

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” —-23/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Soundness expectation
= Soundness of potential liveness

S[s] ¢ $¥[s]

= THIS IS NOT TRUE!

= Problem
Ja.3p € Ev. x € mod[a] p A x ¢ mod[a] p

= Counter-example
X = X;

If the compiler eliminates that assignment, this changes syntactic liveness (but not
semantic liveness). For soundness, the syntactic liveness analysis must be redone
after useless assignment elimination.

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -23/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

How to fix the problem?

= Change the live variable algorithm to be sound with respect to the semantic
definition
= this becomes a liveness/eventuality problem, requires variant functions, etc.
= too complicated for compilers!
= Keep the live variable algorithm, but change the notion of soundness
= this limits compiler optimizations, or
requires a recomputation of the live variable information after the program
transformation
= less complicated for compilers (which may even be incorrect if the live
variable analysis is not redone after program transformation)

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” —24/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Restating soundness

= Define

[[S]] use mod (8+OO [[S]]) (24)

Theorem 1 If o', 4[S] ($*°[s]) ¢ $¥'[s] then $¥[s] ¢ $¥'[s].

= Follows from

Jpelkv.ycusefa]p=Vpekv.ycusela]p (23)

= [ntuition

A variable is live at some point if it holds a value that may be necessarily used
before the next time the variable is assigned to.

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -25/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Calculational design of the structural
syntactic potential liveness static analysis

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -26/39 — © P. Cousot, NYU, CIMS, CS, Wednesday, October 9t" 2019

Calculational design

= Based on the soundness definition

uﬂ§e mod [[SH (8 [[S]]) < 83]“ [[S]]

= Method
= by structural induction on program components S
» develop oL, 0alS] (8*[S]) to eliminate the abstraction aZl, ;. .o4[S]
= over-approximate to eliminate all concrete computations (e.g. value of a test
with dead branch)

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -27/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Assignment S ::=¢x = A 3
SH[s] L,, L,
= usemmﬂ[[sﬂ(s [[S]])Lb’ 2(22) and Lemma 23
= U{‘xuse,mod[[s]] Lb’Le <n0’ ﬂ1> | <7[0’ 7[1> € S’*[[S]]} Zdef (15) of ‘xruzse m@d[[sﬂs

x = A = d [Ale(roat[s])

= U{“{wse,mwd [[S]] Lb> Le <7TOat[[s]]’ at[[s]]>}UU{aéﬂ§e,mmﬂ [[S]] Lb’ Le <ﬂoat[[s]]’ at [[S]] after[[s]D}
{def. (3) of $*[s]§

x = & = d[al(moat[s])

after[s])}
{def. (14.2) of agomoeallS] Ly» L, (moat[s], at[s]) =@ §
= U{y € V |y € usefx = Ale(mat[s]) V (y ¢ mod[x = AJe(mat[S]) Ay € aim‘m@d[[sl] L, L, (myat[[s] =
x=A=d mpa
at[s] A= e dsD after[[s], after[s]))}
{def. (14.b) of als mog
{yeV|yecuse[x=A]V(y¢mod[x=A] Ay € L,)}
{def. (14.2) of e meq[S] Ly L, (o after[s]) 2 {x € V | x € L,} = L, since escape[s] = ff and
omitting the useless parameters of use and mod §
use[x = AJ U (L, \ mod[x = A]) {def. €§
S¥x=A;] L, L, { Id Est Ratione (without approximation!)§

= U{(xul.nse,mudl IIS]] Lb’Le <7Toat[[s]]’ at[[sﬂ

x = A = d [ae(mat[s])

L,, L, {myat[s], at[s] after[[s]) §

> |

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -28/39 — © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Potentially live variables

Structural syntactic potential liveness analysis

I3

SF¥sre) L, 2 SF[s1¢]) @,L, (25)
S¥x=A;] L, L, 2 use[x = A] U (L, \ mod[x = A])
ST L, L, 2 L,
SF[sV s] L, L, 2 SF[sV] L, (S¥[s] L, L,)
S¥[e] L, L, 2L,
S¥if (B) s,] L, L, 2 use[B]UL, uS¥[s,] L, L,
S¥[if (B) s, else 5] L, L, = use[B] US™[s,] L, L, uS¥[s/] L;, L,
S [white (B) S, Ly, L, 2 use[B] UL, uS¥[s,] L,, L,
S¥[break ;] L, L, 2 L,
S¥gs1i] L, L, 2 8SF[s L, L, o

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -29/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

A surprise

The fixpoint in the structural syntactic potential liveness analysis of the iteration
while (B) S, is a constant.

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -30/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Definitely dead variables

Structural syntactic definite deadness analysis

SY[ste] D, = §¥[s1¢] V, D, (26)
8"Y[x=A ;] D,,D, = ~use[x = A] N (D, Umod[x = A])
8"[;] DD, = D,
SY[sV s]| D,, D, = 8Y[sV'] D,,(8"[s] D, D,)
8"[e] D, D, = D,
SY[if (B) s,] Dy, D, = ~use[B] nD,n8"¢[s,] D,, D,
SY[if (B) s, else S| D, D, = ~use[8] n8Y[s,] D, D,n8"[s;] D, D,
SVwhite (B) s,] Dy, D, = ~use[B] nD,n8"[s,] D,, D,
S"[break ;] D,,D, = D,
8"[{s13] D,,D, = 8"¢[s1] D,, D, O

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -31/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Conclusion

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -32/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Conclusion

» Classical definitions of the soundness of data flow analyses [Beyer, Gulwani, and
Schmidt, 2018; Kildall, 1973; Schmidt, 1998; Steffen, 1991, 1993] are specified with
respect to an abstraction of the semantics not the semantics itself, which is
confusing

= Transition systems forget about the program structure! so lead to iterations that
may be useless

Lsee however Patrick Cousot & Radhia Cousot. “A la Floyd" induction principles for proving inevitability properties of programs. In «Algebraic
methods in semanticsn, M. Nivat & J. Reynolds (Eds.), Cambridge University Press, Cambridge, UK, pp. 277—312; December 1985.
“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -33/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Conclusion

» Classical definitions of the soundness of data flow analyses [Beyer, Gulwani, and
Schmidt, 2018; Kildall, 1973; Schmidt, 1998; Steffen, 1991, 1993] are specified with
respect to an abstraction of the semantics not the semantics itself, which is
confusing

= Transition systems forget about the program structure! so lead to iterations that
may be useless

= Why CompCert get it right?

= does simultaneously the liveness analysis and the program transformation
based on this analysis

= returns the result of the liveness analysis valid after the transformation

= justifies by dependency: a variable is dead if nothing later depends on its value

Lsee however Patrick Cousot & Radhia Cousot. “A la Floyd" induction principles for proving inevitability properties of programs. In «Algebraic
methods in semanticsn, M. Nivat & J. Reynolds (Eds.), Cambridge University Press, Cambridge, UK, pp. 277—312; December 1985.
“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -33/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Conclusion

= Anonymous reviewer

“It is an old story that the dataflow analysis framework ("syntactic” dataflow analysis in
paper’s characterization) is way too weak. For modern programming languages, control
flow is not syntactic but a part of semantics. Dataflow analysis assumes the control flow to
be available before the analysis hence a stalemate for modern languages with higher order
functions, dynamic bindings, or dynamic gotos; dataflow analysis has neither a systematic
guide to prove the correctness of an analysis nor systematic approach to manage the
precision of the analysis. On the other hand, the semantics-based design theory (abstract
interpretation) is general enough to handle any kind of source languages and powerful
enough to prove the correctness and to manage its precision.”

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” - 34/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

Bibliography

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” —35/39 — © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

References |

Beyer, Dirk, Sumit Gulwani, and David A. Schmidt (2018). “Combining Model
Checking and Data-Flow Analysis". In: Handbook of Model Checking. Springer,
pp. 493-540 (2, 36, 37).

Kennedy, Ken (1975). “Node Listings Applied to Data Flow Analysis”. In: POPL. ACM
Press, pp. 10-21 (13).

— (Mar. 1976a). “A Comparison of Two Algorithms for Global Data Flow Analysis”.
SIAM J. Comput. 5.1, pp. 158-180 (13).

— (1976b). “A Comparison of Two Algorithms for Global Data Flow Analysis”. /nt. J.
of Comp. Math. Section A, Volume 3, pp. 5-15 (13).

Kildall, Gary A. (1973). “A Unified Approach to Global Program Optimization”. In:
POPL. ACM Press, pp. 194-206 (2, 36, 37).

Schmidt, David A. (1998). “Data Flow Analysis is Model Checking of Abstract
Interpretations”. In: POPL. ACM, pp. 38-48 (2, 36, 37).

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -36/39 — © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

References |l

Steffen, Bernhard (1991). “Data Flow Analysis as Model Checking”. In: TACS.
Vol. 526. Lecture Notes in Computer Science. Springer, pp. 346-365 (2, 36, 37).

— (1993). “Generating Data Flow Analysis Algorithms from Modal Specifications”. Sci.
Comput. Program. 21.2, pp. 115-139 (2, 36, 37).

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” -37/39 - © P. Cousot, NYU, CIMS, CS, Wednesday, October 9t" 2019

The End, Thank you

“Syntactic and Semantic Soundness of Structural Dataflow Analysis” —38/39 — © P. Cousot, NYU, CIMS, CS, Wednesday, October oth 2019

	Bibliography

