ICTAC 2019

October 30 – November 4, 2019 Hammamet, Tunisia

Calculational Design of a Regular Model Checker by Abstract Interpretation

Patrick Cousot

New York University, Courant Institute of Mathematics, Computer Science pcousot@cs.nyu.edu cs.nyu.edu/~pcousot

How to design a static analyzer by abstract interpretation [P. Cousot and R. Cousot, 1977, 1979]

- Define the syntax & semantics of the language
- Define the semantic properties to be analyzed
- Define an abstraction of this semantic properties into an abstract domain (machine representable subset of the semantic properties)
- Design the static analyzer by calculational design of the abstraction of the semantics

How to design a static analyzer by abstract interpretation [P. Cousot and R. Cousot, 1977, 1979]

- Define the syntax & semantics of the language
- Define the semantic properties to be analyzed
- Define an abstraction of this semantic properties into an abstract domain (machine representable subset of the semantic properties)
- Design the static analyzer by calculational design of the abstraction of the semantics
- This is illustrated by the design of a regular model checker ("regular" means that the program behaviors are specified using regular expressions [Wolper, 1983])

Syntax and trace semantics of programs

Syntax

```
x, y, \dots \in V
         A \in A ::= 1 | x | A_1 - A_2
         B \in \mathbb{B} ::= A_1 < A_2 \mid B_1 \text{ nand } B_2
         s \in S ::=
                    x = A:
               | if (B) S | if (B) S else S
                 while (B) S | break;
                  { Sl }
\mathtt{Sl} \in \mathbb{SI} ::= \mathtt{Sl} \ \mathtt{S} \mid \epsilon
   P \in \mathbb{P} ::= Sl
 S \in \mathbb{P}_{\mathcal{C}} \triangleq S \cup S \mathbb{I} \cup \mathbb{P}
```

```
variable (V not empty)
arithmetic expression
boolean expression
statement
  assignment
  skip
  conditionals
  iteration and break
  compound statement
statement list
program
program component
```

Program labelling

Unique labelling to designate (sets of) program points $\ell \in L$:

- at[S] the program point at which execution of S starts;
- after[S] the program exit point after S, at which execution of S is supposed to normally terminate, if ever;
- escape[S] a boolean indicating whether or not the program component S contains a break; statement escaping out of that component S;
- break-to[S] the program point at which execution of the program component S
 goes to when a break; statement escapes out of that component
 S;
- breaks-of[S] the set of labels of all break; statements that can escape out of S

Prefix traces

- Program label: $\ell \in L$ (locates next step to be executed in the program)
- Environment: $\rho \in \mathbb{E} v \triangleq V \to V$ assigns values $\rho(x) \in V$ to variables $x \in V$.
- State: $\langle \ell, \rho \rangle \in \mathbb{S} \triangleq (\mathbb{L} \times \mathbb{E} \mathbf{v})$
- Trace: finite or infinite sequence $\pi \in \mathbb{T}^{+\infty}$ of states
- Example: $\langle \ell_1, \{x \to 1\} \rangle \langle \ell_2, \{x \to 2\} \rangle \langle \ell_4, \{x \to 2\} \rangle$
- Trace concatenation: •

■ In pattern matching, we sometimes need the empty trace \ni . For example if $\sigma\pi\sigma'=\sigma$ then $\pi=\ni$ and $\sigma=\sigma'$.

Structural definitions

 Our definitions (semantics, modeled checking, etc) are structural i.e.by induction on the grammatical program structure

$$\begin{cases} \widehat{\mathcal{D}}[\![\mathbf{S}]\!] X & \triangleq & \widehat{\mathcal{F}}[\![\mathbf{S}]\!] (\prod_{\mathbf{S}' \triangleleft \mathbf{S}} \widehat{\mathcal{D}}[\![\mathbf{S}']\!]) X \\ \mathbf{S} \in \mathcal{P}_{\mathcal{C}} & \end{cases}$$

• the transformer \$\widetilde{\mathcal{T}}\$ uses the results of the immediate components S' < S and involves a fixpoint computation for iteration statements.</p>

Prefix trace semantics

- A prefix trace describes the beginning of a computation
- Evaluation of an arithmetic expression

$$\mathcal{A} \llbracket \mathbf{1} \rrbracket \rho \triangleq 1$$

$$\mathcal{A} \llbracket \mathbf{x} \rrbracket \rho \triangleq \rho(\mathbf{x})$$

$$\mathcal{A} \llbracket \mathbf{A}_1 - \mathbf{A}_2 \rrbracket \rho \triangleq \mathcal{A} \llbracket \mathbf{A}_1 \rrbracket \rho - \mathcal{A} \llbracket \mathbf{A}_2 \rrbracket \rho$$

$$(2)$$

• Assignment $S := \ell \times A$; (where $at[S] = \ell$)

$$\widehat{\mathcal{S}}_{s}^{*}[\![S]\!] = \{\langle \ell, \rho \rangle \mid \rho \in \mathbb{E}v\} \cup \{\langle \ell, \rho \rangle \land [\![S]\!], \rho[x \leftarrow \mathcal{A}[\![A]\!]\rho] \rangle \mid \rho \in \mathbb{E}v\}$$
 (1)

■ Break statement S ::= \(\ell \) break ; (where at \[\[S \] = \(\ell \))

$$\mathbf{S}^* \llbracket \mathbf{S} \rrbracket \triangleq \{ \langle \ell, \rho \rangle \mid \rho \in \mathbb{E} \mathbf{v} \} \cup \{ \langle \ell, \rho \rangle \langle \text{break-to} \llbracket \mathbf{S} \rrbracket, \rho \rangle \mid \rho \in \mathbb{E} \mathbf{v} \}$$
 (3)

• Conditional statement $S ::= if \ell$ (B) S_t (where $at[S] = \ell$)

• If the conditional statement S is inside an iteration statement, and S_t has a break, the execution goes on at the break-to [S] after the iteration.

Statement list Sl ::= Sl' S (where at[S] = after[Sl'])

$$\widehat{\mathcal{S}}^* \llbracket \mathsf{Sl} \rrbracket \triangleq \widehat{\mathcal{S}}^* \llbracket \mathsf{Sl}' \rrbracket \cup \widehat{\mathcal{S}}^* \llbracket \mathsf{Sl}' \rrbracket + \mathcal{S}^* \llbracket \mathsf{S} \rrbracket$$

$$\mathcal{S}^* \mathcal{S}' \triangleq \{ \pi \cdot \pi' \mid \pi \in \mathcal{S} \wedge \pi' \in \mathcal{S}' \wedge \pi \cdot \pi' \text{ is well-defined} \}$$
(5)

■ $\pi' \in \widehat{\mathcal{S}}^*[S]$ starts at [S] = after [Sl'] so, by def. \cdot , the trace $\pi \in \widehat{\mathcal{S}}^*[Sl']$ must terminate to be able to go on with S.

• Empty statement list $S1 := \epsilon$ (where at S1 = after S1)

$$\mathcal{S}^* \llbracket \mathtt{Sl} \rrbracket \, \triangleq \, \{ \langle \mathtt{at} \llbracket \mathtt{Sl} \rrbracket, \, \rho \rangle \mid \rho \in \mathbb{E} \mathtt{v} \}$$

■ Iteration statement $S ::= while \ell$ (B) S_b (where at $[S] = \ell$)

$$\widehat{\mathcal{S}}_{s}^{*}[\text{while } \ell \text{ (B) } S_{b}] = \text{Ifp}^{\varsigma} \mathcal{F}^{*}[\text{while } \ell \text{ (B) } S_{b}]$$
 (6)

$$\mathcal{F}_{\mathbb{S}}^*[\![\mathsf{while}\,^{\ell}\,(\mathsf{B})\,\,\mathsf{S}_b]\!]\,X \quad \triangleq \quad \big\{\langle\ell,\,\rho\rangle\,\,\big|\,\,\rho\in\mathbb{E}\mathsf{v}\big\} \tag{a}$$

$$\cup \left\{ \pi_2 \langle \ell', \, \rho \rangle \langle \mathsf{after}[\![\mathsf{S}]\!], \, \rho \rangle \mid \pi_2 \langle \ell', \, \rho \rangle \in X \land \mathcal{B}[\![\mathsf{B}]\!] \, \rho = \mathsf{ff} \land \ell' = \ell \right\} \quad \mathsf{(b)}$$

$$\cup \left\{ \pi_{2} \langle \ell', \rho \rangle \langle \mathsf{at}[\![\mathsf{S}_{b}]\!], \rho \rangle \cdot \pi_{3} \mid \pi_{2} \langle \ell', \rho \rangle \in X \land \mathcal{B}[\![\mathsf{B}]\!] \rho = \mathsf{tt} \land$$

$$\langle \mathsf{at}[\![\mathsf{S}_{b}]\!], \rho \rangle \cdot \pi_{3} \in \widehat{\mathcal{S}}^{*}_{\$}[\![\mathsf{S}_{b}]\!] \land \ell' = \ell \right\}$$

- (a) either the execution observation stop at $[\![\mathbf{while}\ \ell\ (\mathbf{B})\ \mathbf{S}_b]\!] = \ell$, or
- (b) after a number of iterations, control is back to ℓ , the test is false, and the loop is exited, or
- (c) after a number of iterations, control is back to ℓ , the test is true, and the loop body is executed

(This includes the termination of the loop body after $[S_h] = at [while \ell (B) S_h] = \ell$)

Maximal trace semantics

Maximal trace semantics

$$\mathbf{\mathcal{S}}^+[\![\mathbf{S}]\!] \triangleq \{\pi\langle \ell, \, \rho \rangle \in \mathbf{\mathcal{S}}^*[\![\mathbf{S}]\!] \mid (\ell = \mathsf{after}[\![\mathbf{S}]\!]) \lor (\mathsf{escape}[\![\mathbf{S}]\!] \land \ell = \mathsf{break-to}[\![\mathbf{S}]\!]) \}$$
$$\mathbf{\mathcal{S}}^\infty[\![\mathbf{S}]\!] \triangleq \lim (\mathbf{\mathcal{S}}^*[\![\mathbf{S}]\!])$$

Limit

$$\lim \mathcal{T} \triangleq \{ \langle \pi, \pi' \rangle \mid \pi' \in \mathbb{T}^{\infty} \land \forall n \in \mathbb{N} : \langle \pi, \pi'[0..n] \rangle \in \mathcal{T} \}.$$

Specification of program semantics

Regular specifications

- We specify execution traces using regular expressions where terminals/[meta]characters are replaced by local assertions
- A local assertion L: B specifies that invariant B should be true whenever execution reaches a program label $\ell \in L$ in the set L.
- B depends on the initial value x of the variables x and there current value x at \(\ell \)
- Abbreviation: ?: B $\triangleq \mathbb{L}$: B means that B holds at any program label $\ell \in \mathbb{L}$

Examples of regular specifications

- $(?: x \ge 0)^*$ states that the value of x is always positive or zero during program execution
- $(?:x >= x)^*$ states that the value of x is always greater than or equal to its initial value x during execution.
- $(?: x \ge 0)^* \cdot \ell : x = 0 \cdot (?: x < 0)^*$ states that
 - the value of x should be positive or zero, and next
 - if program point ℓ is ever reached then x should be 0, and next
 - if computations go on after program point ℓ then x should be negative afterwards.
- In the literature: Fred Schneider's security monitors [Schneider, 2000] : monitor the actions of a program, checks the behavior of the program against a given safety specification (and initiate remedial actions)^{1,2}

¹use automata equivalent to regular expressions

²use actions instead of program labels

Syntax of regular expressions

```
L \in \wp(\mathbb{L})
                                                                                 sets of program labels
x, y, \dots \in V
                                                                                       program variables
\underline{x}, y, \dots \in \underline{V}
                                                                              initial values of variables
        B \in \mathbb{R}
                                                 boolean expressions such that vars[B] \subseteq V \cup V
R \in \mathbb{R}
                                                                                     regular expressions (7)
R ::= \varepsilon
                                                                                                     empty
                                                                                         invariant B at L
        L:B
       R_1R_2 (or R_1 \cdot R_2)
                                                                                           concatenation
       R_1 \mid R_2
                                                                                                alternative
      R_1^* \mid R_1^+
                                                                 zero/one or more occurrences of R
        (R_1)
                                                                                                  grouping
```

Subsets of regular expressions

- $R_{\rm s}$ empty regular expressions
- non-empty regular expressions (used for specifications since no execution is empty)
- alternative I-free regular expressions

Semantics of regular expressions

- The semantics $S^r[R]$ of a regular expression R is a relation between
 - an initial environment ϱ (holding the initial values of variables), and
 - the traces π from ϱ satisfying the regular specification R
- Example:
 - $R \triangleq \ell$: $x = x \bullet \ell'$: x = x + 1
 - $\mathcal{S}^{\mathsf{r}}[\![\mathsf{R}]\!] = \{\langle \varrho, \langle \ell_1, \rho \rangle \langle \ell_2, \rho' \rangle \rangle \mid \rho(\mathsf{x}) = \varrho(\mathsf{x}) \wedge \rho'(\mathsf{x}) = \varrho(\mathsf{x}) + 1\}[\![\!]$
 - The program ℓ_1 x = x + 1; ℓ_2 satisfies this specification
 - The program $\ell_1 \times = \times + 1$; $\ell_2 \times = \times + 1$; ℓ_3 also satisfies this specification (the execution can be longer than the specification)
 - The program ℓ_1 y = 0; ℓ_2 does not satisfy this specification

Semantics of regular expressions (Cont'd)

Semantics of boolean expressions

$$\mathcal{A} \begin{bmatrix} \mathbf{1} \end{bmatrix} \underline{\varrho}, \rho \triangleq 1$$

$$\mathcal{A} \begin{bmatrix} \mathbf{x} \end{bmatrix} \underline{\varrho}, \rho \triangleq \underline{\varrho}(\mathbf{x})$$

$$\mathcal{A} \begin{bmatrix} \mathbf{x} \end{bmatrix} \underline{\varrho}, \rho \triangleq \underline{\rho}(\mathbf{x})$$

$$\mathcal{A} \begin{bmatrix} \mathbf{A}_1 - \mathbf{A}_2 \end{bmatrix} \underline{\varrho}, \rho \triangleq \mathcal{A} \begin{bmatrix} \mathbf{A}_1 \end{bmatrix} \underline{\varrho}, \rho - \mathcal{A} \begin{bmatrix} \mathbf{A}_2 \end{bmatrix} \underline{\varrho}, \rho$$

$$\mathcal{B} \begin{bmatrix} \mathbf{A}_1 < \mathbf{A}_2 \end{bmatrix} \underline{\varrho}, \rho \triangleq \mathcal{A} \begin{bmatrix} \mathbf{A}_1 \end{bmatrix} \underline{\varrho}, \rho < \mathcal{A} \begin{bmatrix} \mathbf{A}_2 \end{bmatrix} \underline{\varrho}, \rho$$

$$\mathcal{B} \begin{bmatrix} \mathbf{B}_1 \text{ nand } \mathbf{B}_2 \end{bmatrix} \underline{\varrho}, \rho \triangleq \mathcal{B} \begin{bmatrix} \mathbf{B}_1 \end{bmatrix} \underline{\varrho}, \rho \uparrow \mathcal{B} \begin{bmatrix} \mathbf{B}_2 \end{bmatrix} \underline{\varrho}, \rho$$

Semantics of regular expressions (Cont'd)

Semantics of regular expressions

$$\mathcal{S}^{r}[\![\varepsilon]\!] \triangleq \{\langle \underline{\varrho}, \, \mathfrak{d} \rangle \mid \underline{\varrho} \in \mathbb{E} v\} \qquad \qquad \mathcal{S}^{r}[\![R]\!]^{1} \triangleq \mathcal{S}^{r}[\![R]\!] \qquad (9)$$

$$\mathcal{S}^{r}[\![L:B]\!] \triangleq \{\langle \underline{\varrho}, \, \langle \ell, \, \rho \rangle \rangle \mid \ell \in L \land \mathcal{B}[\![B]\!] \underline{\varrho}, \rho\} \qquad \mathcal{S}^{r}[\![R]\!]^{n+1} \triangleq \mathcal{S}^{r}[\![R]\!]^{n} \otimes \mathcal{S}^{r}[\![R]\!] \qquad \mathcal{S}^{r}[\![R]\!]^{n} \otimes \mathcal{S}^{r}[\![R]\!]^{n} \qquad \mathcal{S}^{r}[\![R]\!]^{n} \qquad \mathcal{S}^{r}[\![R]\!]^{n} \qquad \mathcal{S}^{r}[\![R]\!]^{n} \qquad \mathcal{S}^{r}[\![R]\!]^{n} \qquad \mathcal{S}^{r}[\![R]\!]^{n} \qquad \mathcal{S}^{r}[\![R]\!] \triangleq \mathcal{S}^{r}[\![R]\!]^{n} \qquad \mathcal{S}^{r}[\![R]\!]^{n} \qquad \mathcal{S}^{r}[\![R]\!]^{n} \qquad \mathcal{S}^{r}[\![R]\!] \triangleq \mathcal{S}^{r}[\![R]\!]^{n} \qquad \mathcal{S}^{r}[\![R]\!] \triangleq \mathcal{S}^{r}[\![R]\!]^{n} \qquad \mathcal{S}^{r}$$

Semantic properties to be analyzed

Semantics property

- The semantics of program P satisfies the specification R (for some initial environment o)
- Traditionally denoted $P, \varrho \models R$
- "satisfies" means the prefix trace semantics of P is included in that of the specification R (extended to be long enough)

Definition 2 (Model checking)
$$P, \underline{\varrho} \models R \triangleq (\{\underline{\varrho}\} \times \widehat{\mathcal{S}}_{\$}^* \llbracket P \rrbracket) \subseteq \operatorname{prefix}(\mathcal{S}^r \llbracket R \bullet (?:tt)^* \rrbracket) \qquad \Box$$

where

$$\mathsf{prefix}(\Pi) \ \triangleq \ \{\langle \varrho, \, \pi \rangle \mid \pi \in \mathbb{S}^+ \land \exists \pi' \in \mathbb{S}^* \ . \ \langle \varrho, \, \pi \cdot \pi' \rangle \in \Pi\} \qquad \mathsf{prefix} \ \mathsf{closure}.$$

the regular specification R specifies only a prefix of the traces of program P

Model checking is an boolean abstraction of the program semantics

$$\begin{split} &\alpha_{\underline{\varrho},\mathbf{R}}(\Pi) \triangleq (\{\underline{\varrho}\} \times \Pi) \subseteq \mathsf{prefix}(\boldsymbol{\mathcal{S}}^r [\![\mathbf{R} \bullet (?:tt)^*]\!])) \\ &\mathbf{P}, \underline{\varrho} \models \mathbf{R} = \alpha_{\underline{\varrho},\mathbf{R}}(\widehat{\boldsymbol{\mathcal{S}}}^*_{\mathbb{S}} [\![\mathbf{P}]\!]) \\ &\langle \wp(\mathbb{S}^+), \, \subseteq \rangle \xrightarrow[\alpha_{\varrho,\mathbf{R}}]{\gamma_{\varrho,\mathbf{R}}} \langle \mathbb{B}, \, \Leftarrow \rangle \end{split}$$

A short digression on regular expressions

Equivalence of regular expressions

- There are several ways of writing the same regular expression (e.g. a+ or a(a*))
- Notion of equivalence

$$R_1 \approx R_2 \triangleq (\mathcal{S}^r[R_1] = \mathcal{S}^r[R_2])$$

• Equivalent regular expressions have the same semantics

Disjunctive normal form of regular expressions

- A regular expression is in disjunctive normal form if it is of the form $(R_1 \mid ... \mid R_n)$ for some $n \ge 1$, in which none of the R_i , for $1 \le i \le n$, contains an occurrence of $| \cdot |$.
- Kleene's algorithm transforms any regular expression R into an equivalent disjunctive normal form dnf(R) (so dnf(R) ≈ R)

[Brzozowski, 1964] derivative of regular expressions

- a string of the form $a\sigma$ (starting with the symbol a) matches an expression R iff the suffix σ matches the *derivative* $D_a(R)$ (also denoted $a^{-1}R$)
- Given a non-empty and alternative-free regular expression $R \in \mathbb{R}^+ \cap \mathbb{R}^+$, we define $fstnxt(R) = \langle L : B, R' \rangle$ such that
 - L: B recognizes the first state of sequences of states recognized by R;
 - the derivative R' recognizes sequences of states after the first state of sequences of states recognized by R.

```
\begin{array}{lll} \operatorname{fstnxt}(\mathsf{L}:\mathsf{B}) & \triangleq & \langle \mathsf{L}:\mathsf{B}, \, \varepsilon \rangle & & & & & \\ \operatorname{fstnxt}(\mathsf{R}_1\mathsf{R}_2) & \triangleq & \operatorname{fstnxt}(\mathsf{R}_2) & & \operatorname{if} \, \mathsf{R}_1 \in \mathcal{R}_\varepsilon \\ \operatorname{fstnxt}(\mathsf{R}_1\mathsf{R}_2) & \triangleq & \operatorname{let} \, \langle \mathsf{R}_1^f, \, \mathsf{R}_1^n \rangle = \operatorname{fstnxt}(\mathsf{R}_1) \, \operatorname{in} \, \left( \!\! \left[ \, \mathsf{R}_1^n \in \mathcal{R}_\varepsilon \, \, \right] \, \langle \, \mathsf{R}_1^f, \, \mathsf{R}_2 \rangle \, \otimes \, \langle \, \mathsf{R}_1^f, \, \mathsf{R}_1^n \bullet \, \mathsf{R}_2 \rangle \, \right) \\ & & & & \operatorname{if} \, \mathsf{R}_1 \notin \mathcal{R}_\varepsilon \\ \operatorname{fstnxt}(\mathsf{R}^+) & \triangleq & \operatorname{let} \, \langle \, \mathsf{R}^f, \, \, \mathsf{R}^n \rangle = \operatorname{fstnxt}(\mathsf{R}) \, \operatorname{in} \, \left( \!\! \left[ \, \mathsf{R}^n \in \mathcal{R}_\varepsilon \, \, \right] \, \langle \, \mathsf{R}^f, \, \, \mathsf{R}^n \rangle \, \otimes \, \langle \, \mathsf{R}^f, \, \, \mathsf{R}^n \bullet \, \mathsf{R}^n \rangle \, \right) \\ \operatorname{fstnxt}((\mathsf{R})) & \triangleq & \operatorname{fstnxt}(\mathsf{R}) \end{array}
```

Calculational design of the abstract interpreter (I)

Methodology

Apply the abstraction function

$$\alpha_{\varrho,R}(\Pi) \triangleq (\{\underline{\varrho}\} \times \Pi) \subseteq \mathsf{prefix}(\mathcal{S}^r[\![R \bullet (? : tt)^*]\!]))$$

to the semantics

$$\widehat{\mathcal{S}}_{s}^{*}[s]$$

of program components S

by structural induction on the program components S

Methodology

- Problem: $\alpha_{\rho,R}(\widehat{\mathcal{S}}_s^*[S])$ is <u>not</u> structurally inductive on S
- Counter-example:

$$\alpha_{\underline{\varrho},\mathsf{R}}(\widehat{\mathcal{S}}_{\,\,\$}^{\,\,*}[\![\mathsf{S}_1\,;\mathsf{S}_2]\!]) \quad = \quad f_{\underline{\varrho},\mathsf{R}}(\alpha_{\underline{\varrho},\mathsf{R}_1}(\widehat{\mathcal{S}}_{\,\,\$}^{\,\,*}[\![\mathsf{S}_1]\!]),\alpha_{\underline{\varrho},\mathsf{R}_2}(\widehat{\mathcal{S}}_{\,\,\$}^{\,\,*}[\![\mathsf{S}_2]\!]))$$

where $R = R_1R_2$, R_1 specifies S_1 , and R_2 specifies S_2 How do we get R_1 and R_2 ???

- Solution: use a more refined abstraction
 - Checking that S satisfies the beginning R₁ of R
 - Returns the remaining R₂ of R at the end of S

$$\begin{array}{lll} \alpha_{\underline{\varrho},\mathtt{R}}(\widehat{\mathcal{S}}_{\,\,\$}^{\,\,*}[\![\,\mathtt{S}_1\,;\,\mathtt{S}_2]\!]) &=& \mathrm{let}\,\langle b_1,\,\,\mathtt{R}_2\rangle = \alpha_{\underline{\varrho},\mathtt{R}}(\widehat{\mathcal{S}}_{\,\,\$}^{\,\,*}[\![\,\mathtt{S}_1]\!]) \ \mathrm{in} \\ && \mathrm{let}\,\langle b_2,\,\,\mathtt{R}_3\rangle = \alpha_{\underline{\varrho},\mathtt{R}_2}(\widehat{\mathcal{S}}_{\,\,\$}^{\,\,*}[\![\,\mathtt{S}_2]\!])) \ \mathrm{in} \\ && \langle b_1 \wedge b_2,\,\,\mathtt{R}_3\rangle \end{array}$$

Structural regular modelchecking abstraction

Definition 2 of regular model checking

- We first consider the case of |-free regular expressions
- Trace model checking abstraction ($\underline{\varrho} \in \mathbb{E}v$ is an initial environment and $R \in \mathbb{R}^+ \cap \mathbb{R}^+$ is a non-empty and I-free regular expression):

$$\mathcal{M}^{t}\langle \underline{\varrho}, \, \varepsilon \rangle \pi \, \triangleq \, \langle \mathsf{tt}, \, \varepsilon \rangle \tag{11}$$

$$\mathcal{M}^{t}\langle \underline{\varrho}, \, \mathsf{R} \rangle \ni \, \triangleq \, \langle \mathsf{tt}, \, \mathsf{R} \rangle$$

$$\mathcal{M}^{t}\langle \underline{\varrho}, \, \mathsf{R} \rangle \pi \, \triangleq \, \mathsf{let} \, \langle \ell_{1}, \, \rho_{1} \rangle \pi' = \pi \, \mathsf{and} \, \langle \mathsf{L} : \mathsf{B}, \, \mathsf{R}' \rangle = \mathsf{fstnxt}(\mathsf{R}) \, \mathsf{in}$$

$$\pi \neq \ni$$

$$\left[\langle \varrho, \, \langle \ell_{1}, \, \rho_{1} \rangle \rangle \in \mathcal{S}^{r} \left[\mathsf{L} : \mathsf{B} \right] \, \mathcal{M}^{t}\langle \varrho, \, \mathsf{R}' \rangle \pi' \, \circ \langle \mathsf{ff}, \, \mathsf{R}' \rangle \right]$$

Example

- $\pi = \langle \ell_1, \ \rho_1 \rangle \pi' \text{ with } \pi' = \langle \ell_2, \ \rho_2 \rangle \ni \text{ with } \rho_2 = \rho_1 [\mathbf{x} \leftarrow \rho_1(\mathbf{x}) + 1] \text{ is a trace of } \widehat{\mathcal{S}}_s^* \llbracket \ell_1 \ \mathbf{x} = \mathbf{x} + \mathbf{1} \ \mathbf{;} \ell_2 \rrbracket$
- $R_1 = ? : x = x ? : x = x + 1 ? : x = x + 3$
- $fstnxt(R_1) = \langle \mathbb{L} : x = \underline{x}, R_2 \rangle$ with $R_2 = ? : x = \underline{x} + 1 \cdot ? : x = \underline{x} + 3$
- $fstnxt(R_2) = \langle \mathbb{L} : x = \underline{x} + 1, R_3 \rangle$ with $R_3 = ? : x = \underline{x} + 3$
- $\mathcal{M}^t \langle \varrho, R_3 \rangle \ni = \langle tt, \varepsilon \rangle$
- $\langle \varrho, \langle \ell_2, \rho_2 \rangle \rangle \in \mathcal{S}^r \llbracket \mathcal{L} : \mathbf{x} = \underline{\mathbf{x}} + 1 \rrbracket = \rho_2(\mathbf{x}) = \varrho(\underline{\mathbf{x}}) + 1$
- $\begin{array}{l} \bullet \quad \mathcal{M}^t \langle \underline{\varrho}, \; \mathsf{R}_2 \rangle \pi' \; = \; \! \big[\! \big[\langle \underline{\varrho}, \; \langle \ell_2, \; \rho_2 \rangle \big] \in \mathcal{S}^\mathsf{r} \big[\! \big[\! \mathbb{L} \; : \; \mathsf{x} = \underline{\mathsf{x}} + 1 \big] \! \big] \; \widehat{\otimes} \; \mathcal{M}^t \langle \underline{\varrho}, \; \mathsf{R}_3 \rangle \ni \, \widehat{\otimes} \; \langle \mathsf{ff}, \; \mathsf{R}_3 \rangle \, \big] = \\ \big[\! \big[\! \big[\rho_2(\overline{\mathsf{x}}) = \varrho(\underline{\mathsf{x}}) + 1 \; \widehat{\otimes} \; \langle \mathsf{tf}, \; \varepsilon \rangle \, \widehat{\otimes} \; \langle \mathsf{ff}, \; \mathsf{R}_3 \rangle \, \big] \\ \end{array}$
- $\bullet \ \langle \varrho, \ \langle \ell_{\scriptscriptstyle 1}, \ \rho_{\scriptscriptstyle 1} \rangle \rangle \in \mathcal{S}^{\mathsf{r}} \llbracket \mathbb{L} \ : \ \mathsf{x} = \underline{\mathsf{x}} \rrbracket = \rho_{1}(\mathsf{x}) = \varrho(\underline{\mathsf{x}})$
- $\begin{array}{l} \blacksquare \quad \mathcal{M}^t \langle \underline{\varrho}, \, \mathsf{R}_1 \rangle \pi \triangleq \left[\!\!\left[\langle \underline{\varrho}, \, \langle \ell_1, \, \rho_1 \rangle \right] \in \mathcal{S}^r \left[\!\!\left[\mathcal{L} : \, \mathbf{x} = \underline{\mathbf{x}} \right]\!\!\right] \, \Re \, \mathcal{M}^t \langle \underline{\varrho}, \, \mathsf{R}_2 \rangle \pi' \, \& \, \langle \mathsf{ff}, \, \mathsf{R}_2 \rangle \, \right] = \\ \left[\!\!\left[\rho_1(\mathbf{x}) = \underline{\varrho}(\underline{\mathbf{x}}) \, \Re \, \mathcal{M}^t \langle \underline{\varrho}, \, \mathsf{R}_2 \rangle \pi' \, \& \, \langle \mathsf{ff}, \, \mathsf{R}_2 \rangle \, \right] = \left[\!\!\left[\rho_1(\mathbf{x}) = \underline{\varrho}(\underline{\mathbf{x}}) \, \Re \, \left[\!\!\left[\rho_2(\mathbf{x}) = \underline{\varrho}(\underline{\mathbf{x}}) + 1 \, \Re \, \langle \mathsf{ft}, \, \mathsf{R}_2 \rangle \, \right] \right] \\ \varepsilon \rangle \, \& \, \langle \mathsf{ff}, \, \mathsf{R}_3 \rangle \, \Re \, \langle \mathsf{ff}, \, \mathsf{R}_2 \rangle \, \end{pmatrix} \quad \leftarrow \text{if ff we could also return the counter-example } \pi \end{aligned}$

Definition 2 of regular model checking (Cont'd)

• Set of traces model checking abstraction (for an I-free regular expression $R \in \mathbb{R}^+$):

$$\mathcal{M}^{\dagger}\langle \underline{\varrho}, \, \mathsf{R} \rangle \Pi \, \triangleq \, \big\{ \langle \pi, \, \mathsf{R}' \rangle \, \big| \, \pi \in \Pi \land \langle \mathsf{tt}, \, \mathsf{R}' \rangle = \mathcal{M}^{t}\langle \underline{\varrho}, \, \mathsf{R} \rangle \pi \big\} \tag{12}$$

This abstraction is a Galois connection

$$\langle \wp(\mathbb{S}^+), \subseteq \rangle \xleftarrow{\gamma_{\mathcal{M}^+(\varrho, \mathbb{R})}} \langle \wp(\mathbb{S}^+ \times \mathbb{R}^+), \subseteq \rangle \quad \text{for } \mathbb{R} \in \mathbb{R}^+ \text{ in (12)}$$
 (16)

■ Program component $S \in Pc$ model checking (for an 1-free regular expression $R \in \mathbb{R}^+$):

$$\mathcal{M}^{\dagger}[\![\mathbf{S}]\!]\langle\underline{\varrho},\,\mathbf{R}\rangle \triangleq \mathcal{M}^{\dagger}\langle\underline{\varrho},\,\mathbf{R}\rangle(\widehat{\mathcal{S}}_{\,s}^{\,*}[\![\mathbf{S}]\!]) \tag{13}$$

Definition 2 of regular model checking (Cont'd)

- We now consider the general case by decomposition into I-free regular expressions
- Set of traces model checking (for regular expression $R \in \mathbb{R}$):

$$\mathcal{M} \langle \underline{\varrho}, \, \mathsf{R} \rangle \Pi \triangleq \det (\mathsf{R}_1 \, | \, \dots \, | \, \mathsf{R}_n) = \mathsf{dnf}(\mathsf{R}) \, \mathsf{in}$$

$$\bigcup_{i=1}^n \left\{ \pi \, | \, \exists \mathsf{R}' \in \mathbb{R} \, . \, \langle \pi, \, \mathsf{R}' \rangle \in \mathcal{M}^{\dagger} \langle \underline{\varrho}, \, \mathsf{R}_i \rangle \Pi \right\}$$

$$(14)$$

This abstraction is a Galois connection

$$\langle \wp(\mathbb{S}^+), \subseteq \rangle \xrightarrow{\gamma_{\mathcal{M}} \langle \varrho, R \rangle} \langle \wp(\mathbb{S}^+), \subseteq \rangle \quad \text{for } R \in \mathbb{R} \text{ in (14)}$$

■ Model checking of a program component $S \in Pc$ (for regular expression $R \in R$):

$$\mathcal{M}[\![S]\!]\langle \varrho, R \rangle \triangleq \mathcal{M}\langle \varrho, R \rangle (\widehat{\mathcal{S}}_{S}^*[\![S]\!])$$
(15)

Definition 2 of regular model checking (Cont'd)

Back to boolean model-checking

$$\langle \wp(\mathbb{S}^+), \subseteq \rangle \xrightarrow{\gamma_{\mathcal{M}\langle \varrho, \mathbb{R} \rangle}} \langle \mathbb{B}, \Leftarrow \rangle \tag{18}$$

$$\text{ where } \alpha_{\mathcal{M}\,\langle\varrho,\,\mathsf{R}\rangle}(X) \quad \triangleq \quad (\{\underline{\varrho}\}\times X) \subseteq \mathcal{M}\,\langle\underline{\varrho},\,\mathsf{R}\rangle(X)$$

Theorem 4 (Model checking soundness
$$(\Leftarrow)$$
 and completeness (\Rightarrow))

$$\mathsf{P}, \underline{\varrho} \vDash \mathsf{R} \quad \Leftrightarrow \quad \alpha_{\mathscr{M}\langle \underline{\varrho}, \, \mathsf{R} \rangle}(\widehat{\mathscr{S}} \, {}^*_{\, \mathbb{S}} \llbracket \mathsf{P} \rrbracket)$$

Note that we can prove soundness/completeness from the specification of the model-checking algorithm (still to be designed)

Structural model checking

• We have solved the non-inductiveness problem!

Structural model checking

$$\begin{cases} \widehat{\mathcal{M}} [S] \langle \underline{\varrho}, R \rangle & \triangleq & \widehat{\mathcal{F}} [S] (\prod_{S' \triangleleft S} \widehat{\mathcal{M}} [S']) \langle \underline{\varrho}, R \rangle \\ S \in \mathcal{P} c \end{cases}$$

The $S' \triangleleft S$ are the immediate components of program component S. By calculus,

Theorem 6
$$\widehat{\mathcal{M}}$$
 $[s]\langle \varrho, R \rangle = \mathcal{M}[s]\langle \varrho, R \rangle$.

П

Calculational design of the structural model-checking abstract interpreter (II)

Calculational design

$$\begin{split} & \boldsymbol{\mathcal{M}}[\![\mathbf{S}]\!] \langle \underline{\varrho}, \, \mathbf{R} \rangle \\ & \triangleq \, \boldsymbol{\mathcal{M}} \langle \underline{\varrho}, \, \mathbf{R} \rangle (\widehat{\boldsymbol{\mathcal{S}}}_{\,s}^*[\![\mathbf{S}]\!]) \\ & = \, \boldsymbol{\mathcal{M}} \langle \underline{\varrho}, \, \mathbf{R} \rangle (\widehat{\boldsymbol{\mathcal{T}}}_{\!\mathcal{S}}^*[\![\mathbf{S}]\!] (\prod_{\mathbf{S}' \prec \mathbf{S}} \widehat{\boldsymbol{\mathcal{S}}}_{\,s}^*[\![\mathbf{S}'\!]]) \langle \underline{\varrho}, \, \mathbf{R} \rangle) \\ & \qquad \qquad \langle \text{by structural definition } \widehat{\boldsymbol{\mathcal{S}}}_{\,s}^*[\![\mathbf{S}]\!] = \widehat{\boldsymbol{\mathcal{T}}}_{\!\mathcal{S}}^*[\![\mathbf{S}]\!] (\prod_{\mathbf{S}' \prec \mathbf{S}} \widehat{\boldsymbol{\mathcal{S}}}_{\,s}^*[\![\mathbf{S}'\!]]) \text{ of the stateful prefix} \end{aligned}$$

trace semantics in Section 25
... ?calculus to expand definitions, rewrite and simplify formulæ by algebraic laws?

$$= \,\, \widehat{\boldsymbol{\mathcal{T}}}_{\!\!\!\mathcal{M}} [\![\![\boldsymbol{\mathsf{S}}]\!] (\prod_{\boldsymbol{\mathsf{S}}' \,\triangleleft \, \boldsymbol{\mathsf{S}}} \boldsymbol{\mathcal{M}} [\![\![\boldsymbol{\mathsf{S}}']\!]\!]) \langle \underline{\varrho}, \, \boldsymbol{\mathsf{R}} \rangle$$

(by calculational design to commute the model checking abstraction on the result to the model checking of the arguments of $\widehat{\mathcal{S}}_s^* \| \mathbf{S} \|$

$$= \,\, \widehat{\boldsymbol{\mathcal{T}}}_{\!\!\!\!\mathcal{M}}[\mathtt{S}](\prod_{\mathtt{S}'\, \triangleleft \,\, \mathtt{S}} \,\, \widehat{\boldsymbol{\mathcal{M}}}\, [\![\mathtt{S}']\!]) \langle \underline{\varrho}, \,\, \mathtt{R} \rangle$$

 $\triangleq \widehat{\mathcal{M}} [S] \langle \rho, R \rangle$

ind. hyp.

$$\langle \text{by defining } \widehat{\mathcal{M}} [S] \triangleq \widehat{\mathcal{T}}_{\mathcal{M}} [S] (\prod_{s' \in S} \widehat{\mathcal{M}} [S']) \rangle$$

y defining \mathcal{M} $[S] = \mathcal{G}_{\mathcal{M}}[S](\prod_{S' \triangleleft S} \mathcal{M})$

Calculational design

For iteration statements, $\widehat{\mathfrak{T}}[s](\prod_{s' \triangleleft s} \widehat{\mathcal{S}}_{s}^*[s'])\langle \varrho, R \rangle$ is a fixpoint, and this proof involves the fixpoint transfer theorem [P. Cousot and R. Cousot, 1979, Th. 7.1.0.4 (3)] based on the commutation of the concrete and abstract transformer with the abstraction.

Theorem 7 (exact least fixpoint abstraction in a complete lattice) Assume that $\langle \mathcal{C}, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ and $\langle \mathcal{A}, \preccurlyeq, 0, 1, \lor, \curlywedge \rangle$ are complete lattices, $f \in \mathcal{C} \xrightarrow{\smile} \mathcal{C}$ is increasing, $\langle \mathcal{C}, \sqsubseteq \rangle \xrightarrow{\varphi} \langle \mathcal{A}, \preccurlyeq \rangle$, $\overline{f} \in \mathcal{A} \xrightarrow{\smile} \mathcal{A}$ is increasing, and $\alpha \circ f = \overline{f} \circ \alpha$ (commutation property). Then $\alpha(\mathsf{lfp}^{\sqsubseteq} f) = \mathsf{lfp}^{\preccurlyeq} \overline{f}$.

Structural regular model checking of an empty specification $oldsymbol{arepsilon}$

$$\mathcal{M}^{\dagger}[S]\langle\underline{\varrho},\varepsilon\rangle$$

$$\triangleq \mathcal{M}^{\dagger}\langle\underline{\varrho},\varepsilon\rangle\langle\widehat{S}_{s}^{*}[S]) \qquad \qquad ((13))$$

$$\triangleq \{\langle \pi,\varepsilon'\rangle \mid \pi \in \widehat{S}_{s}^{*}[S] \land \langle \mathsf{tt},\varepsilon'\rangle = \mathcal{M}^{t}\langle\underline{\varrho},\varepsilon\rangle\pi\}$$

$$\triangleq \{\langle \pi,\varepsilon'\rangle \mid \pi \in \widehat{S}_{s}^{*}[S] \land \langle \mathsf{tt},\varepsilon'\rangle = \langle \mathsf{tt},\varepsilon\rangle\}$$

$$= \{\langle \pi,\varepsilon\rangle \mid \pi \in \widehat{S}_{s}^{*}[S]\}$$

$$\triangleq \{\langle \pi,\varepsilon\rangle \mid \pi \in \widehat{S}_{s}^{*}[S]\}$$

$$\triangleq \widehat{\mathcal{M}}^{\dagger}[S]\langle\varrho,\varepsilon\rangle$$

$$((13))$$

$$((12))$$

$$((12))$$

$$((12))$$

$$((12))$$

$$((12))$$

$$((12))$$

$$((13))$$

$$((12))$$

$$((13))$$

$$((12))$$

$$((13))$$

$$((13))$$

$$((13))$$

$$((13))$$

$$((14))$$

$$((14))$$

$$((15))$$

$$((15))$$

$$((16))$$

$$((16))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$((17))$$

$$($$

Definition 3 (Structural model checking)

• Model checking an empty temporal specification ε .

$$\widehat{\mathcal{M}}^{\dagger} \llbracket \mathbf{S} \rrbracket \langle \underline{\varrho}, \, \varepsilon \rangle \, \triangleq \, \left\{ \langle \pi, \, \varepsilon \rangle \, \, \big| \, \pi \in \widehat{\mathcal{S}}_{\, \mathbb{S}}^{\, *} \llbracket \mathbf{S} \rrbracket \right\} \tag{20}$$

Structural regular model checking of programs P ::= Sl

$$\mathcal{M} \llbracket P \rrbracket \langle \underline{\varrho}, R \rangle (\widehat{\mathcal{S}}_{\mathbb{S}}^* \llbracket P \rrbracket) \qquad ((15))$$

$$\triangleq \det(R_1 \mid \dots \mid R_n) = \operatorname{dnf}(R) \text{ in } \bigcup_{i=1}^n \{\pi \mid \exists R' \in \mathbb{R} . \langle \pi, R' \rangle \in \mathcal{M}^+ \langle \underline{\varrho}, R_i \rangle (\widehat{\mathcal{S}}_{\mathbb{S}}^* \llbracket P \rrbracket) \} \qquad ((14))$$

$$= \det(R_1 \mid \dots \mid R_n) = \operatorname{dnf}(R) \text{ in } \bigcup_{i=1}^n \{\pi \mid \exists R' \in \mathbb{R} . \langle \pi, R' \rangle \in \mathcal{M}^+ \langle \underline{\varrho}, R_i \rangle (\widehat{\mathcal{S}}_{\mathbb{S}}^* \llbracket P \rrbracket) \} \qquad ((14))$$

$$= \det(R_1 \mid \dots \mid R_n) = \operatorname{dnf}(R) \text{ in } \bigcup_{i=1}^n \{\pi \mid \exists R' \in \mathbb{R} . \langle \pi, R' \rangle \in \widehat{\mathcal{M}}^+ \langle \underline{\varrho}, R_i \rangle (\widehat{\mathcal{S}}_{\mathbb{S}}^* \llbracket S1 \rrbracket) \}$$

$$= \det(R_1 \mid \dots \mid R_n) = \operatorname{dnf}(R) \text{ in } \bigcup_{i=1}^n \{\pi \mid \exists R' \in \mathbb{R} . \langle \pi, R' \rangle \in \widehat{\mathcal{M}}^+ \llbracket S1 \rrbracket \langle \underline{\varrho}, R_i \rangle \}$$

$$(13) \rangle$$

$$\triangleq \widehat{\mathcal{M}} \llbracket S1 \rrbracket \langle \underline{\varrho}, R \rangle$$

Structural regular model checking of programs P ::= S1 (Cont'd)

Definition 3 (Structural model checking, contn'd)

■ Model checking a program $P ::= Sl \ell$ for a temporal specification $R \in \mathbb{R}$ with alternatives.

$$\widehat{\mathcal{M}} \, \llbracket P \rrbracket \langle \underline{\varrho}, \, R \rangle \, \triangleq \, \operatorname{let} \, (R_1 \mid \dots \mid R_n) = \operatorname{dnf}(R) \, \operatorname{in}$$

$$\bigcup_{i=1}^n \, \{ \pi \mid \exists R' \in \mathbb{R} \, . \, \langle \pi, \, R' \rangle \in \widehat{\mathcal{M}}^+ \llbracket \operatorname{Sl} \rrbracket \langle \underline{\varrho}, \, R_i \rangle \}$$

$$(19)$$

Structural regular model checking of assignments $S := \ell x = A$;

Definition 3 (Structural model checking, contn'd)

■ Model checking an assignment statement S ::= ℓ x = A;

$$\widehat{\boldsymbol{\mathcal{M}}}^{\dagger} \llbracket S \rrbracket \langle \underline{\varrho}, \, R \rangle \triangleq \text{let } \langle L : B, \, R' \rangle = \text{fstnxt}(R) \text{ in}$$

$$\{ \langle \langle \text{at} \llbracket S \rrbracket, \, \rho \rangle, \, R' \rangle \mid \langle \underline{\varrho}, \, \langle \text{at} \llbracket S \rrbracket, \, \rho \rangle \rangle \in \mathcal{S}^{r} \llbracket L : B \rrbracket \}$$

$$\cup \{ \langle \langle \text{at} \llbracket S \rrbracket, \, \rho \rangle \langle \text{after} \llbracket S \rrbracket, \, \rho \llbracket x \leftarrow \mathcal{A} \llbracket A \rrbracket \rho \rrbracket \rangle, \, \varepsilon \rangle \mid R' \in \mathcal{R}_{\varepsilon} \wedge$$

$$\langle \underline{\varrho}, \, \langle \text{at} \llbracket S \rrbracket, \, \rho \rangle \rangle \in \mathcal{S}^{r} \llbracket L : B \rrbracket \}$$

$$\cup \{ \langle \langle \text{at} \llbracket S \rrbracket, \, \rho \rangle \langle \text{after} \llbracket S \rrbracket, \, \rho \llbracket x \leftarrow \mathcal{A} \llbracket A \rrbracket \rho \rrbracket \rangle, \, R'' \rangle \mid R' \notin \mathcal{R}_{\varepsilon} \wedge$$

$$\langle \underline{\varrho}, \, \langle \text{at} \llbracket S \rrbracket, \, \rho \rangle \rangle \in \mathcal{S}^{r} \llbracket L : B \rrbracket \wedge \langle L' : B', \, R'' \rangle = \text{fstnxt}(R') \wedge$$

$$\langle \underline{\varrho}, \, \langle \text{after} \llbracket S \rrbracket, \, \rho \llbracket x \leftarrow \mathcal{A} \llbracket A \rrbracket \rho \rrbracket \rangle \rangle \in \mathcal{S}^{r} \llbracket L' : B' \rrbracket \}$$

Structural regular model checking of assignments $S := \ell x = A$; (Cont'd)

```
\mathcal{M}^{\dagger} \llbracket \mathsf{S} \rrbracket \langle \varrho, \mathsf{R} \rangle
= \{ \langle \pi, \mathsf{R}' \rangle \mid \pi \in \widehat{\mathcal{S}}_{s}^{*} [\![\mathsf{SI}]\!] \land \langle \mathsf{tt}, \mathsf{R}' \rangle = \mathcal{M}^{t} \langle \rho, \mathsf{R} \rangle \pi \}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 7(13) and (12) \
   = \{\langle \pi, \mathsf{R}' \rangle \mid \pi \in \{\langle \ell, \rho \rangle \mid \rho \in \mathbb{E} \mathsf{v}\} \cup \{\langle \ell, \rho \rangle \langle \mathsf{after} \llbracket \mathsf{S} \rrbracket, \rho [\mathsf{x} \leftarrow \upsilon] \rangle \mid \rho \in \mathbb{E} \mathsf{v} \wedge \upsilon = \mathscr{A} \llbracket \mathsf{A} \rrbracket \rho \wedge \langle \mathsf{tt}, \rho \rangle \langle \mathsf{after} \llbracket \mathsf{S} \rrbracket, \rho [\mathsf{x} \leftarrow \upsilon] \rangle \rangle = \mathcal{A} \mathsf{v} \wedge \upsilon 
                                                                 R' \rangle = \mathcal{M}^t \langle \rho, R \rangle \pi
= \{ \langle \langle \ell, \rho \rangle, R' \rangle \mid \rho \in \mathbb{E} v \land \langle \mathsf{tt}, R' \rangle = \mathcal{M}^t \langle \varrho, R \rangle \langle \ell, \rho \rangle \} \cup
                                                          \{\langle \langle \ell, \, \rho \rangle \langle \mathsf{after} \llbracket \mathsf{S} \rrbracket, \, \rho [\mathsf{x} \leftarrow v] \rangle, \, \mathsf{R}' \rangle \mid \rho \in \mathbb{E} \mathsf{v} \wedge v = \mathcal{A} \llbracket \mathsf{A} \rrbracket \rho \langle \mathsf{tt}, \, \mathsf{R}' \rangle = \mathcal{M}^t \langle \varrho, \, \mathsf{R} \rangle \langle \ell, \, \rho \rangle \langle \mathsf{after} \llbracket \mathsf{S} \rrbracket, \, \rho \rangle \langle \mathsf{r}, \, \rho \rangle \langle
                                                                 \rho[\mathsf{x}\leftarrow v]\rangle
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    7 def. \cup and ∈ \( \)
   = \{ \langle \langle \ell, \rho \rangle, R' \rangle \mid \langle \mathsf{tt}, R' \rangle = \mathsf{let} \langle \mathsf{L} : \mathsf{B}, R'' \rangle = \mathsf{fstnxt}(\mathsf{R}) \text{ in } \{ \langle \varrho, \langle \ell, \rho \rangle \rangle \in \mathcal{S}^r [\![\mathsf{L} : \mathsf{B}]\!] \ \mathscr{E} \langle \mathsf{tt}, R'' \rangle \otimes \langle \mathsf{ff}, \mathsf{R}'' \rangle \} 
                                                                 R'} }} ∪
                                                          \{\langle \langle \ell, \rho \rangle \langle \text{after} [S], \rho[x \leftarrow v] \rangle, R' \rangle \mid v = \mathcal{A}[A] \rho \wedge \langle \text{tt}, R' \rangle = \text{let} \langle L : B, R'' \rangle = \text{fstnxt}(R) \text{ in } [\langle \rho, \langle \ell, R' \rangle] = \text{fstnxt}(R) \rangle
                                                                 |\rho\rangle\rangle \in \mathcal{S}^{\mathsf{r}}[\mathsf{L}:\mathsf{B}] \ \mathscr{M}^{\mathsf{t}}\langle\rho,\mathsf{R}''\rangle\langle\mathsf{after}[\mathsf{S}],\; \rho[\mathsf{x}\leftarrow\upsilon]\rangle \otimes \langle\mathsf{ff},\mathsf{R}''\rangle)\}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         7(11)
```

```
= \{ \langle \langle \ell, \rho \rangle, R' \rangle \mid \langle L : B, R' \rangle = fstnxt(R) \land \langle \rho, \langle \ell, \rho \rangle \rangle \in \mathcal{S}^r \llbracket L : B \rrbracket \} \cup
        \{\langle \langle \ell, \rho \rangle | \text{after}[S], \rho[x \leftarrow v] \rangle, R' \rangle \mid v = \mathcal{A}[A] \rho \wedge \exists R'' \in \mathcal{R} \cdot \langle L : B, R'' \rangle = \text{fstnxt}(R) \wedge \langle \rho, \langle \ell, q \rangle \rangle
         \rho\rangle\rangle\in\mathcal{S}^{r}\llbracket\mathsf{L}:\mathsf{B}\rrbracket\wedge\llbracket\mathsf{R}''\in\mathcal{R}_{s}\ \text{? tt}\ \text{$:$}\ \mathcal{M}^{t}\langle\varrho,\,\mathsf{R}''\rangle\langle\mathsf{after}\llbracket\mathsf{S}\rrbracket,\,\rho[\mathsf{x}\leftarrow\upsilon]\rangle=\langle\mathsf{tt},\,\mathsf{R}'\rangle\,]\}
                                                                                                                                                           \partial def. = \text{and } \mathcal{M}^t \langle \rho, \varepsilon \rangle \pi \triangleq \langle \mathsf{tt}, \varepsilon \rangle \text{ by } (11) \langle \mathsf{tt} \rangle
= \{ \langle \langle \ell, \rho \rangle, R' \rangle \mid \langle L : B, R' \rangle = fstnxt(R) \land \langle \varrho, \langle \ell, \rho \rangle \rangle \in \mathcal{S}^{r} \llbracket L : B \rrbracket \} \cup
        \{\langle \langle \ell, \rho \rangle \langle \text{after} [S], \rho [x \leftarrow v] \rangle, R' \rangle \mid v = \mathcal{A} [A] \rho \land \exists R'' \in \mathcal{R} . \langle L : B, R'' \rangle = \text{fstnxt}(R) \land \langle \rho, R'' \rangle = \text{fstnxt}(R) \land \langle \rho, R'' \rangle
        \langle \ell, \rho \rangle \rangle \in \mathcal{S}'[L:B] \land [R'' \in \mathcal{R}_{\varepsilon}] \text{ tt } s \text{ let } \langle L':B', R''' \rangle = \text{fstnxt}(R'') \text{ in } \langle \rho, \langle \text{after}[S], \rangle
         \rho[\mathsf{x} \leftarrow v]\rangle\rangle \in \mathcal{S}^{\mathsf{r}}[\mathsf{L}' : \mathsf{B}']]
                                                                                                                                                                                                                                                               7(11)
= let \langle L : B, R' \rangle = fstnxt(R) in
               \{\langle \langle \ell, \rho \rangle, R' \rangle \mid \langle \varrho, \langle \ell, \rho \rangle \rangle \in \mathcal{S}^r \llbracket L : B \rrbracket \}
         \cup \{ \langle \langle \ell, \rho \rangle \langle \text{after} [S], \rho [\mathsf{x} \leftarrow \upsilon] \rangle, \varepsilon \rangle \mid \upsilon = \mathcal{A} [A] \rho \wedge \langle \varrho, \langle \ell, \rho \rangle \rangle \in \mathcal{S}^{\mathsf{r}} [L : B] \wedge R' \in \mathcal{R}_{\varepsilon} \}
         R'' \rangle = fstnxt(R') in \langle \varrho, \langle after[S], \rho[x \leftarrow \upsilon] \rangle \rangle \in S^r[L' : B']
                                                                                                                                                                                                                                                          7def. ∪\
=\widehat{\mathcal{M}}^{\dagger} \llbracket \mathsf{S} \rrbracket \langle \varrho, \mathsf{R} \rangle
                                                                                                                                                                                                                                                    7(23)\ \
```

Structural regular model checking of a statement list Sl ::= Sl' S

Definition 3 (Structural model checking, contn'd)

Model checking a statement list Sl ::= Sl' S

$$\widehat{\mathcal{M}}^{\dagger} \llbracket \mathsf{Sl} \rrbracket \langle \underline{\varrho}, \mathsf{R} \rangle \triangleq \widehat{\mathcal{M}}^{\dagger} \llbracket \mathsf{Sl}' \rrbracket \langle \underline{\varrho}, \mathsf{R} \rangle \qquad (21)$$

$$\cup \left\{ \langle \pi \cdot \langle \mathsf{at} \llbracket \mathsf{S} \rrbracket, \rho \rangle \cdot \pi', \mathsf{R}'' \rangle \mid \langle \pi \cdot \langle \mathsf{at} \llbracket \mathsf{S} \rrbracket, \rho \rangle, \mathsf{R}' \rangle \in \widehat{\mathcal{M}}^{\dagger} \llbracket \mathsf{Sl}' \rrbracket \langle \underline{\varrho}, \mathsf{R} \rangle \wedge \langle \langle \mathsf{at} \llbracket \mathsf{S} \rrbracket, \rho \rangle \cdot \pi', \mathsf{R}'' \rangle \in \widehat{\mathcal{M}}^{\dagger} \llbracket \mathsf{S} \rrbracket \langle \underline{\varrho}, \mathsf{R}' \rangle \right\}$$

Structural regular model checking of iterations $S ::= while \ell$ (B) S_h

Definition 3 (Structural model checking, contn'd)

■ Model checking an iteration statement S ::= while ℓ (B) S_h

$$\widehat{\mathcal{M}}^{\dagger}[\![S]\!]\langle \underline{\varrho}, R \rangle \triangleq |\mathsf{ffp}^{\varsigma}(\widehat{\mathcal{F}}^{\dagger}[\![S]\!]\langle \underline{\varrho}, R \rangle)$$

$$\widehat{\mathcal{F}}^{\dagger}[\![S]\!]\langle \underline{\varrho}, R \rangle \times \triangleq$$
(26)

$$\widehat{\boldsymbol{\mathcal{F}}}^{\dagger} \llbracket \mathbf{S} \rrbracket \langle \varrho, \; \mathbf{R} \rangle \; X \quad \triangleq \quad \dots \dots$$

Convergence

- In practice, the set S of states must be assumed to be finite (and very small) and encoded symbolically
- Regular expressions may be replaced by finite automata
- Nevertheless, model-checking in general, and regular model checking in particular, does not scale
- Convergence acceleration methods (widening, narrowing, and duals) must be used (trivial example: bounded model checking limits the length of traces to an arbitrary length n)

Liveness

- If the set of states is finite, this is safety
- Otherwise, abstraction is needed, BUT liveness is not preserved by over-approximation and under-approximation is difficult in infinite systems
- In general liveness in the finite abstract homomorphic transition does NOT imply liveness in the infinite concrete transition system, and
- non-liveness in the infinite concrete transition system does NOT imply non-liveness in the finite abstract transition system
- Our solution: variant functions.

Conclusion

- We have shown that a model-checker is an abstract interpretation of a program semantics [P. Cousot and R. Cousot, 2000]
- So the model-checker can be formally constructed by calculational design
- This provides a machine checkable [Jourdan, Laporte, Blazy, Leroy, and Pichardie, 2015] formal proof of soundness (and completeness) of the model-checker
- Soundness does not seem to be a preoccupation of the model-checking community!
- A computation tool (better than LATEX editing, grep, and copy-paste) would be very helpful
- Pave the way for further non trivial abstractions (beyond the homomorphic abstractions)

References I

- Brzozowski, Janusz A. (1964). "Derivatives of Regular Expressions". J. ACM 11.4, pp. 481–494 (32).
- Cousot, Patrick and Radhia Cousot (1977). "Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints". In: *POPL*. ACM, pp. 238–252 (3, 4).
- (1979). "Systematic Design of Program Analysis Frameworks". In: POPL. ACM Press, pp. 269–282 (3, 4, 45).
- (2000). "Temporal Abstract Interpretation". In: POPL. ACM, pp. 12–25 (59).
- Jourdan, Jacques-Henri, Vincent Laporte, Sandrine Blazy, Xavier Leroy, and David Pichardie (2015). "A Formally-Verified C Static Analyzer". In: *POPL*. ACM, pp. 247–259 (59).
- Schneider, Fred B. (2000). "Enforceable security policies". *ACM Trans. Inf. Syst. Secur.* 3.1, pp. 30–50 (19).

References II

Wolper, Pierre (1983). "Temporal Logic Can Be More Expressive". *Information and Control* 56.1/2, pp. 72–99 (3, 4).

The End, Thank you