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Introduction
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How to design a static analyzer by abstract interpretation [P. Cousot and
R. Cousot, 1977, 1979]

= Define the syntax & semantics of the language
= Define the semantic properties to be analyzed

= Define an abstraction of this semantic properties into an abstract domain (machine
representable subset of the semantic properties)

= Design the static analyzer by calculational design of the abstraction of the semantics
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How to design a static analyzer by abstract interpretation [P. Cousot and
R. Cousot, 1977, 1979]

= Define the syntax & semantics of the language
= Define the semantic properties to be analyzed

= Define an abstraction of this semantic properties into an abstract domain (machine
representable subset of the semantic properties)

= Design the static analyzer by calculational design of the abstraction of the semantics

= This is illustrated by the design of a regular model checker

(“regular” means that the program behaviors are specified using regular expressions
[Wolper, 1983])
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Syntax and trace semantics of programs
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variable (V not empty)
arithmetic expression
boolean expression
statement
assignment
skip
conditionals
iteration and break
compound statement
statement list
program
program component
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Program labelling
Unique labelling to designate (sets of) program points ¢ € £:

at[s] the program point at which execution of S starts;

after[s] the program exit point after S, at which execution of S is supposed
to normally terminate, if ever;

escape[S]  a boolean indicating whether or not the program component S con-
tains a break ; statement escaping out of that component S;

break-to[S] the program point at which execution of the program component S
goes to when a break ; statement escapes out of that component
S;

breaks-of [S] the set of labels of all break ; statements that can escape out of S
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Prefix traces

= Program label: ¢ € L (locates next step to be executed in the program)

= Environment: p € Ev =V — V assigns values p(x) € V to variables x € V.
= State: (¢, p) € S = (L x Ev)

= Trace: finite or infinite sequence 7 € T of states

= Example: (4, {x = 1}){&, {x = 2}){&, {x = 2})

= Trace concatenation: ~

T, 0| = 0,71, undefined if o, # 0,
N . S
T~ 0,7, = T if m; € S is infinite
N . b
0~ 0T, = 0,7, if m; € TT is finite

= |n pattern matching, we sometimes need the empty trace >. For example if oo’ =
othenmt=5and o =0'.
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Structural definitions

= Qur definitions (semantics, modeled checking, etc) are structural i.e.by induction on
the grammatical program structure

11>

D[s] X TIsIC[] DIs'h x
S € Pc e

—

= the transformer I uses the results of the immediate components S’ < S and
involves a fixpoint computation for iteration statements.
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Prefix trace semantics

= A prefix trace describes the beginning of a computation

= Evaluation of an arithmetic expression

Af1]p 2 1 (2)
dx]p = p(x)
da -np = dlalp-Aa]p

= Assignment S ::= ¢ x = A ; (where at[S] =¢)

S:s] = (& p) | p € Ev}i U {(¢, p)(after[s], p[x <« A[A]p]) | p € Ev} (1)
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Prefix trace semantics (cont'd)

= Break statement S ::= ¢ break ; (where at[s] = ¢)

S*[s] £ {¢t, p) | p € Ev} U {(t, p){break-to[S], p) | p € Ev} (3)
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Prefix trace semantics (cont'd)
= Conditional statement S ::= if ¢ (B) S, (where at[[S] = ¢)

8'[s] 2 {(tp)lpeky (4)
U{(t, p)(after[s], p) | SB[B]p = ff}
U (¢, p){at[s,], p)m | B[B]p = tt A (at[s,], p)m € 8 *[s,]}

= |f the conditional statement S is inside an iteration statement, and S, has a break,
the execution goes on at the break-to[[S] after the iteration.
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Prefix trace semantics (cont'd)

= Statement list S1::= SU S (where at[[S] = after[S1'])

S*[sUTUS*[sU] - §*[s] (5)

S*[s1]
m-~n'"|mne8An" €8 Am~n'is well-defined}

-8’

a
a

» 71’ € 8§*[s] starts at[s] = after[s] so, by def. ~, the trace 7 € 8 *[sU'] must
terminate to be able to go on with S.
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Prefix trace semantics (cont'd)

= Empty statement list S1 ::= € (where at[S1] £ after[S1])

§*[s1 = {(at[si], p) | p € Ev}
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Prefix trace semantics (cont'd)
= |teration statement S ::= whilet (B) S, (where at[s] = ¢)
S:[whitet (B) S,] = Ifp® F*[whilet (B) S,] (6)

Fclwhitet (B) S, X = {(t, p) | p € Ev} (a)
U {m, (¥, py(after[s], p) | m, (¢, p) e XA B[B] p=FfF At =t} (b)
U {m, (¥, pyat[syl p) -5 | (¥, py € XAB[B] p=1tt A (c)
(atls,]. p) -3 € S{[s,] A ¥ =t}
(a) either the execution observation stop at[whilet (B) S,] =¢, or

(b) after a number of iterations, control is back to ¢, the test is false, and the loop is exited, or

(c) after a number of iterations, control is back to ¢, the test is true, and the loop body is
executed

(This includes the termination of the loop body after[s,] = at[whilet (B) S,] =¢)
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Maximal trace semantics

= Maximal trace semantics

ST[s] = {n(t, p) € 8*[S] | (¢ = after[S]) V (escape[S] A ¢t = break-to[S])}
8[s] = lim(8*[s])
= Limit

im7 2 {(m, a') | n' e T° AVn e N. {(m, n'[0..n]) € T}.
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Specification of program semantics

“Calculational Design of a Regular Model Checker by Abstract Interpretation” -16/63 — © P. Cousot, NYU, CIMS, CS, October 30 — November 4, 2019



Regular specifications

= We specify execution traces using regular expressions where terminals/[meta]-
characters are replaced by local assertions

= A local assertion L : B specifies that invariant B should be true whenever execution
reaches a program label ¢ € L in the set L.

= B depends on the initial value x of the variables x and there current value x at ¢
= Abbreviation: ? : B= [ : B means that B holds at any program label ¢ € £

“Calculational Design of a Regular Model Checker by Abstract Interpretation” -17/63 - © P. Cousot, NYU, CIMS, CS, October 30 — November 4, 2019



Examples of regular specifications

= (? : x>=0)" states that the value of x is always positive or zero during program
execution.

= (2 : x>=x)" states that the value of x is always greater than or equal to its initial
value x during execution.
m (2 :x>=0) et x==00e(2: x<0)" states that
= the value of x should be positive or zero, and next
= if program point ¢ is ever reached then x should be 0, and next

= if computations go on after program point ¢ then x should be negative
afterwards.

= In the literature: Fred Schneider's security monitors [Schneider, 2000] : monitor the
actions of a program, checks the behavior of the program against a given safety
specification (and initiate remedial actions)!-2

Luse automata equivalent to regular expressions

2use actions instead of program labels
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Syntax of regular expressions

L € (L) sets of program labels
XY, ... €V program variables
XY,... € 4 initial values of variables
BeRB boolean expressions such that vars[B] < VU ¥

R € R regular expressions (7)
R 1:= ¢ empty
| L:B invariant B at L
| RR, (or R; * R,) concatenation
| R, IR, alternative
| Ry | R} zero/one or more occurrences of R
[ (R) grouping
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Subsets of regular expressions

R, empty regular expressions
R™ non-empty regular expressions (used for specifications since no execution is empty)

R* alternative |-free regular expressions
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Semantics of regular expressions

= The semantics 8$"[R] of a regular expression R is a relation between
= an initial environment ¢ (holding the initial values of variables), and
» the traces 7 from p satisfying the regular specification R

= Example:

] Réf:x:lol’,’;le-}-l

o S'IR] = (o, (6 p) (& ') | p(x) = 0(x) A p'(x) = a(x) + 1}]]

» The program & x = x + 1 ;¢ satisfies this specification

= The program ¢ x = x +1 ;& x = x + 1 ;& also satisfies this specification (the
execution can be longer than the specification)

= The program ¢ y = 0 ;¢ does not satisfy this specification
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Semantics of regular expressions (Cont'd)

Semantics of boolean expressions

d[1]e.p = 1 (8)
d[x]o.p = o(x)
d[x]e.p = p(x)
da - Ale.p = dA]e.p-d[A]e.p
BA; <AJo.p = A[AJo p < A[A]e p
BB, nand B,o,p = B[B,]o,p T B[B,]o, p

>
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Semantics of regular expressions (Cont'd)

Semantics of regular expressions

S'[e] = {{o, 3) | ¢ € Ev} S'[R]* 2 S'[R] (9)
8L :B] = {(o, (& p)) | t € LA DB[B]o, p} S'[RI™! = S'[R]" S"[R]
S"[RiR,] £ S'[R ] S'[R,] $'r) = [J S'IRI"
neN
S8 =g,y (emeSnlgn)es8t S8RT=2 (] STR"
neN\{0}
S"Ri1R] £ S"[RJ U ST[R,] S"[(R)] = S'[R]
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Semantic properties to be analyzed
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Semantics property

= The semantics of program P satisfies the specification R (for some initial
environment )

= Traditionally denoted P,po E R

= “satisfies” means the prefix trace semantics of P is included in that of the
specification R (extended to be long enough)

Definition 2 (Model checking)

1>

P,oFR

({o} x S:P) < prefix(8T[R« (2 : tt)*]) o

where

prefix(IT) = {{o, m) | € ST A In' € S*. (o, - 'y e I} prefix closure.

the regular specification R specifies only a prefix of the traces of program P
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Abstraction
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Model checking is an boolean abstraction of the program semantics

ocg)R(H) = ({g} x1D) ¢ prefix(S8"[R« (2 : &)*]))

P.OER= ocg’R(;S’\;[[P]])

Yor
(p(S), ©) s (B, )
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A short digression on regular expressions

“Calculational Design of a Regular Model Checker by Abstract Interpretation” —28/63 — © P. Cousot, NYU, CIMS, CS, October 30 — November 4, 2019



Equivalence of regular expressions

= There are several ways of writing the same regular expression (e.g. a+ or a(ax))

= Notion of equivalence

Ri =R, = (S'[Ry]=8"[R,])

= Equivalent regular expressions have the same semantics
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Disjunctive normal form of regular expressions

= A regular expression is in disjunctive normal form if it is of the form (R, | ... | R,)
for some n > 1, in which none of the R;, for 1 <i < n, contains an occurrence of |.

= Kleene's algorithm transforms any regular expression R into an equivalent
disjunctive normal form dnf(R) (so dnf(R) <= R)

dnf(e) = ¢ dnf(L:B) £ L:B
dnf(R; | R,) £ dnf(Ry) | dnf(R,) dnf(R*) = dnf(RR*)
dnf(R*) 2 letR! | ... | R" =dnf(R) in ((R)*...(R")*)* dnf((R)) = (dnf(R))
dnf(R,Ry) 2 letR! | ... | R™ =dnf(R) and RL | ... | R? = dnf(R,) in | ”fl RIR]
i=1 j=
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[Brzozowski, 1964] derivative of regular expressions

= a string of the form ao (starting with the symbol a) matches an expression R iff the
suffix o matches the derivative D,(R) (also denoted a™'R)
= Given a non-empty and alternative-free regular expression R € " N BT, we define
fstnxt(R) = (L : B, R") such that
= L : B recognizes the first state of sequences of states recognized by R;
= the derivative R’ recognizes sequences of states after the first state of
sequences of states recognized by R.

fstnxt(L : B) = (L :B, &) (10)
fstnxt(R,R,) = fstnxt(R,) if R, € R,
fstnxt(R;R,) 2 let (R), R") = fstnxt(R,) in (R? € B, 7 (R}, R,) s (R}, R" e Ry) ]
if Ry ¢ R,
fstnxt(RY) 2 let (R/, R") = fstnxt(R) in (R" € R, ? (R/, R*) ¢ (R/, R" « R*))
fstnxt((R)) = fstnxt(R)
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Calculational design of
the abstract interpreter (I)
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Methodology
= Apply the abstraction function
ocg,R(H) = ({o} x T0) € prefix($'[R« (2 : #)*]))

to the semantics
$:[s]
of program components S

= by structural induction on the program components S
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Methodology

= Problem: ag’R(§;ﬂsﬂ) is not structurally inductive on S

= Counter-example:

(Xg,R(S ; [[51 ;SZH) = fg,R((xg,Rl (8 ; [[Sl]])’ ag,Rz (8 ; [[52]]))
where R = R|R,, R, specifies S;, and R, specifies S,
How do we get R, and R,777
= Solution: use a more refined abstraction
» Checking that S satisfies the beginning R; of R

= Returns the remaining R, of R at the end of S
ocg’R(§;[[Sl;52]]) = let(b,, Ry) = ag,R(§;[slﬂ) in

let (b,, R3) = o, (3; [[52]])) in
<b1 /\ bzy R3>
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Structural regular model-
checking abstraction
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Definition 2 of regular model checking

= We first consider the case of |-free regular expressions

» Trace model checking abstraction (p € Ev is an initial environment and R € R* N R?
is a non-empty and |-free regular expression):

./%t(g, eymr = (tt, €) (11)
JM' (o, R)> = (it, R)
Mo, Ry 2 let (&, p))n’ =7 and (L : B, R') = fstnxt(R) in T#3

({0 (&, py)) € 8T[L : B] 2 M (g, R")7' s (ff, R")]
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Example

» 7= (4, ppr’ with ' = (&, p,)> with p, = p;[x « p;(x) + 1] is a trace of
St x=x+1 34]

m Rp=?2:x=xe?:x=xt+t1le?2:x=x+3

s fstnxt(R,) =(L : x=x, R,) withR, =2 : x=x+1e2 : x=x+3

= fstnxt(R,) =(L : x=x+1, Ry) withR; =2 : x=x+3

= Mg, Ry)> = (tt, &)

» (0, (&, p)) € SL : x=x+1] = py(x) = o(x) + 1

. ./I/Lt(g, R = ({0, (& pp)) € S'[L : x=x+1] 7 ./%t(g, Ry)3 3 (ff, Ry) ) =
(p2(x) = o(x) + 1 % (tt, &) s (ff, Ry) ]

» (o, (b, p1)) € ST[L : x=x] = p;(x) = o(x)

] ./”Lt(g, R 2 ([(g, (&, py)eSTL : x=x] 7 ./I/Lt(g, R s (ff, R,) ) =

(p1(0) = 2(x) @ Mo, R)7" s (ff, R} ) = (py(x) = 0(x) ? [py(x) = 0(x) + 1 7 (i,
e) s (ff, Ry)) e (ff, R,)) « if ff we could also return the counter-example 7
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Definition 2 of regular model checking (Cont'd)

» Set of traces model checking abstraction (for an |-free regular expression R € R*):
./ﬂljr(g, RMI = {(m, R") | m e ITA(tt, R') = ./%t(g, R)} (12)

This abstraction is a Galois connection

Yt (o, r)
(@(SY), ©) — m...+.<.g..>_, (@(S* x BT, ©)  for R e BT in (12) (16)
Q,R

» Program component S € Pc model checking (for an |-free regular expression
R € RT):

JI[S](e, RY = MY (o, RY(S :[S]) (13)
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Definition 2 of regular model checking (Cont'd)

= We now consider the general case by decomposition into |-free regular expressions

» Set of traces model checking (for regular expression R € R):
JM o, RYIT = let(R | ... | R,) = dnf(R) in (14)
U 13R e ®. (m, R') € (o, RHTT}
i=1

This abstraction is a Galois connection

(p(ST), ©) % (p(S*), <) forRe R in (14) (17)
./ﬂl(g, R)

» Model checking of a program component S € Pc (for regular expression R € R):

MIS|(e, R) = M (g, RIS:[S]) (15)
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Definition 2 of regular model checking (Cont'd)

= Back to boolean model-checking

. Yo o, R)
g,R

where « 4 © (X)) = ({g} x X) < M (g, R)(X)

Theorem 4 (Model checking soundness (<) and completeness (=))

P.OFR & aypn(S:[PD) 0

Note that we can prove soundness/completeness from the specification of the
model-checking algorithm (still to be designed)
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Structural model checking

= We have solved the non-inductiveness problem!

[ Lemma 5 J'(g,R)(n-n") = (tt,R") & (IR" € R . JM' (g, R)(m) = (tt,R")AM' (g,
R")(') = (it, R")). D

= Structural model checking

11>

A [S] (g, R) FsI([] A [s'])(e: R

s'as
S € Pc

The s’ < s are the immediate components of program component S. By calculus,

L Theorem 6 /./I/L\[[Sﬂ (0, R) = ./%[[s]](g, R). ]
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Calculational design of the structural
model-checking abstract interpreter (11)
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Calculational design

JL[S] <o, R)
2 Lo, RS :[s]) ((15)5
= Mg, RY(TSSI([ | 8:ls'De RY)
s'as
{by structural definition 8:[s] = F5[s]([Ts . S:[s']) of the stateful prefix
trace semantics in Section 2§

= ... [calculus to expand definitions, rewrite and simplify formulae by algebraic laws§
TolsI( [T I Die ®
s'as
{by calculational design to commute the model checking abstraction on the
result to the model checking of the arguments of 8 Z[s]§

= TSI ][] M[s']e. R lind. hyp.§
s'as
£ UL [s]¢e R) (by defining JL [S] £ T [S)([Ts o5 A [S'])S
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Calculational design

For iteration statements, J [S]([Ts < S Z[s']){o. R) is a fixpoint, and this proof
involves the fixpoint transfer theorem [P. Cousot and R. Cousot, 1979, Th. 7.1.0.4 (3)]
based on the commutation of the concrete and abstract transformer with the
abstraction.

Theorem 7 (exact least fixpoint abstraction in a complete lattice)  Assume
that (C, G, 1, T, U, M) and (4, £, 0, 1, YV, A) are complete lattices, f € C - C

Y — _
is increasing, (C, C) ? (A4, %), fe A<+ Aisincreasing, and a - f = f - «

(commutation property). Then «(Ifp® f) = Ifp~ f. 0
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Structural regular model checking of an empty specification &

s (e, €)

= Mg, e)(S2[s]) 1(13)§
2 {(m, &) | me SLIS] A (tt, ') = Mg, &)} {(12)§
2 Um ey | meSI[S]A (i, &) = (tt, &)} Z./%t(g, eym = (tt, €) by (11)§
= {(m, &) | m e 82[s]} (def. =§

= s (o, &)

Definition 3 (Structural model checking)
= Model checking an empty temporal specification «.

S0, &) = {(m, &) | m e 82[s]} (20)

>
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Structural regular model checking of programs P ::= S1

JL[P] <0, R)
2 M, RS I[PD) {(15)§
2 let(R, | ... | R,) =dnf(R) in U {m| IR e R.(m, R") € Mo, RYSI[PD} T (14)§
i=1
= let(R, | ... | R,) =dnfR)in | J{m | 3R" € R . (m, R') € Mo, RY(S :[S1])}
’;l (S:[P] = S:[s1S
= let(R, | ... |R,) =dnf(R)in | {m | 3R € R. (m, R') e M (g, RS :[s1])}
lzl {ind. hyp.§
= let(R, | ... I R,) =dnf(R)in | J {m | 3R" € R . (m, R") € M*[s1[(o, R,)} 1(13)§
i=1
= J[s{e R) ((19)5

“Calculational Design of a Regular Model Checker by Abstract Interpretation” —46/63 - © P. Cousot, NYU, CIMS, CS, October 30 — November 4, 2019



Structural regular model checking of programs P ::= S1 (Cont'd)

Definition 3 (Structural model checking, contn’d)

= Model checking a program P ::= S1 ¢ for a temporal specification R € R with
alternatives.

JL[P)(o, R) 2 let (R, | ... | R,) =dnf(R) in (19)
U 13R € ®. (m, R") € M1, R}
i=1
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Structural regular model checking of assignments S ::=¢ x = A ;

Definition 3 (Structural model checking, contn’d)

= Model checking an assignment statement S ::=€¢ x = A ;

L[S0, R) 2 let(L : B, R') = fstnxt(R) in (23)
{(Gat[s]. p), R") | . (at[s], p}) € S"[L = B]} (a)
u {{(at[s], p)(after[s], plx — A[A]p]), € | R" € R. A (b)
(0, (at[s], p)) € S"[L : B[}
U {((at[s], p)(after[s], plx — A[A]p]), R") | R" ¢ R, A (o)

(o, (at[s], p)) € 8"[L : BJ AL : B, R") = fstnxt(R") A
(o, (after[s], plx «— d[A]p])) € ST[L" : B[}

“Calculational Design of a Regular Model Checker by Abstract Interpretation” —48/63 — © P. Cousot, NYU, CIMS, CS, October 30 — November 4, 2019



Structural regular model checking of assignments S ::=¢ x = A ; (Cont'd)

J[S] (o, R

= {(m, R') | m e 8Z[SUA(tt, R") = M (g, R)7} {(13) and (12) §
={(m R | me{(& p) | p e Ev}U{(t, p)(after[s], plx < v]) | p € EvAv = A[A]p A (i,
R') = M (g, R)m} ((1)3

= {{(& p), R') [ p e Ev A (it, R) = Ml (o, R){t, p)} U
{((¢, p)(after[s], p[x < v]), R") | p € EvAv = A[A]p(tt, R") = Mg, R)(t, p)(after[s],

plx < vy} {def. U and €§
= {{(¢, p), R") | (tt, R") = let (L : B, R") = fstnxt(R) in ([(g, (¢, p)) € 8"[L : B] ? (it, R"Y s (ff,

R U

{((&, p)(after[s], plx < v]), R") | v = A[A]pA(tt, R") =let (L : B, R") = fstnxt(R) in ( (o, (&

p)) eS8 L:B]7? Jﬁlt(g, R")(after[S], plx < v]) s {(ff, R") )} {(11)§
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= {{(¢, p), R") | (L : B, R") = fstnxt(R) A (0, (¢, p)) € 8"[L : BJ}U

{((¢, p)(after[s], plx « v]), R") | v =oA[A]pATR" € R. (L : B, R") = fstnxt(R) A (o, (¢,

p) € S'[L:BJA(R" € R 2 tt s M o, R")(after[s], p[x « v]) = (&, R") )} N

- (def. = and J'{p, ey = (tt, &) by (11)§

= {{(¢, p), R") | (L : B, R") = fstnxt(R) A (o, (¢, p)) € S"[L : B[} U

{((t, p)(after[s], p[x < v]), R") | v = A[A]JpATR" € R . (L : B, R") = fstnxt(R) A (o,

(¢, p)) € 8L : BJA(R" € R ? tt s let(L’ : B/, R") = fstnxt(R") in (o, (after[[sﬂ,

plx < v])) € 8"[L" : B']]} {(11)§
= let{L : B, R') = fstnxt(R) in

{{(&, p), R") [ (o, (& p)) € S[L : B]}

U {((t, p)(after[S], plx < v]), &) |v=oA[A]p A (0, (&, p)) € 8L : B] AR € R}

U{((t, p)(after[s], p[x < v]), R") | v=A[A]pA{o, (¢, p)) € 8"[L : BJAR" ¢ R.Alet (L’ : B,

R") = fstnxt(R") in (o, (after[s], p[x « v])) € 8'[[1' : B']} {def. U§
= JM*]s] (o, R) 1(23)§ o
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Structural regular model checking of a statement list SU::= SU S

Definition 3 (Structural model checking, contn’d)

= Model checking a statement list S1 ::=SU' s

MHsUe, R) 2 AHsU]{e, R) (21)
U {(r- (at[s], p) - ', R") | (m- (at[S], p), R') € M [s1']{g, R) A
((at[s], py - 7', R") € M'[S] (o, R')}
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Structural regular model checking of iterations S ::= whilet (B) S,

Definition 3 (Structural model checking, contn’d)

= Model checking an iteration statement S ::=whilet (B) S,

As](o, RY = Ifp* (Fs] (e, R)) (26)
Filsle VX = ...
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Scalability

“Calculational Design of a Regular Model Checker by Abstract Interpretation” - 53/63 — © P. Cousot, NYU, CIMS, CS, October 30 — November 4, 2019



Convergence

= In practice, the set S of states must be assumed to be finite (and very small) and
encoded symbolically

= Regular expressions may be replaced by finite automata

= Nevertheless, model-checking in general, and regular model checking in particular,
does not scale

= Convergence acceleration methods (widening, narrowing, and duals) must be used
(trivial example: bounded model checking limits the length of traces to an arbitrary
length n)
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| iveness
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Liveness

= |f the set of states is finite, this is safety

= Otherwise, abstraction is needed, BUT liveness is not preserved by
over-approximation and under-approximation is difficult in infinite systems

= In general liveness in the finite abstract homomorphic transition does NOT imply
liveness in the infinite concrete transition system, and

= non-liveness in the infinite concrete transition system does NOT imply non-liveness
in the finite abstract transition system

= Qur solution: variant functions.
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Conclusion
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Conclusion

= We have shown that a model-checker is an abstract interpretation of a program
semantics [P. Cousot and R. Cousot, 2000]

= So the model-checker can be formally constructed by calculational design

= This provides a machine checkable [Jourdan, Laporte, Blazy, Leroy, and Pichardie,
2015] formal proof of soundness (and completeness) of the model-checker

= Soundness does not seem to be a preoccupation of the model-checking community!

= A computation tool (better than IATEX editing, grep, and copy-paste) would be
very helpful

= Pave the way for further non trivial abstractions (beyond the homomorphic
abstractions)
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The End, Thank you
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