POPL 2012: 39th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages Philadelphia, USA, January 25-27, 2012

An Abstract Interpretation Framework for Termination

Patrick Cousot

Radhia Cousot

cims.nyu.edu/~pcousot/ www.di.ens.fr/~cousot/

www.di.ens.fr/~rcousot/

POPL 2012, An Abstract Interpretation Framework for Termination

© P. Cousot & R. Cousot

Three principles

Principle I

Program verification methods (formal proof or static analysis methods) are abstract interpretations of a semantics of the programming language (**)

- P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. *POPL*, 238–252, 1977.
- (**) P. Cousot and R. Cousot. Systematic design of program analysis frameworks POPL, 269–282, 1979.

POPL 2012, An Abstract Interpretation Framework for Ten

© P. Cousot & R. Cousot

Refinement to principle II

Safety as well as termination verification methods are abstract interpretations of a maximal trace semantics of the programming language

© P. Cousot & R. Cousot

© P. Cousot & R. Couso

Comments on principle II

- This is well-known for instances of safety (like invariance) using prefix trace semantics
- This is proved in the paper for full safety (omitted in this presentation)
- New for termination

(*) P. Cousot and R. Cousot. Systematic design of program analysis frameworks. POPL, 269–282, 1979.

POPL 2012, An Abstract Interpretation Framework for Termination

5

© P. Cousot & R. Cousot

© P. Cousot & R. Cousot

New principle III

More expressive and powerful verification methods are derived by structuring the trace semantics (into a hierarchy of segments)

Comments on principle III

- Syntactic instances have been known for long (different variant functions for nested loops, Hoare logic for total correctness,...)
- Semantic instances have been ignored for long (Burstall's total correctness proof method using intermittent assertions) and very successful recently (Podelski-Rybalchenko)

C. Hoare. An axiomatic basis for computer programming. Communications of the Association for Computing Machinery, 12(10):576–580, 1969.

Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs Acta Inf., 3:243–263, 1974.

R. Burstall. Program proving as hand simulation with a little induction. *Information Processing*, 308–312. North-Holland, 1974.
A. Podelski and A. Rybalchenko. Transition invariants. *LICS*, 32–41, 2004.

71. Fodelski and 71. Rysalenenko. Transition invariants. Early, 32, 41, 200-

7

© P. Cousot & R. Cousot

Maximal trace semantics

POPL 2012, An Abstract Interpretation Framework for Terminatio

8

POPL 2012, An Abstract Interpretation Framework for Termination

© P. Cousot & R. Cousot

Maximal trace semantics

(Trace) properties

POPL 2012, An Abstract Interpretation Framework for Terminatio

© P. Cousot & R. Cousot

© P. Cousot & R. Cousot

© P. Cousot & R. Cousot

Fixpoint maximal trace semantics

Complete lattice

$$\langle \wp(\Sigma^{*\infty}), \sqsubseteq, \Sigma^{\infty}, \Sigma^{*}, \sqcup, \sqcap \rangle$$

Computational ordering

$$(T_1 \sqsubseteq T_2) \triangleq (T_1^+ \subseteq T_2^+) \wedge (T_1^{\infty} \supseteq T_2^{\infty}) \quad T^+ \triangleq T \cap \Sigma^+$$

$$(T_1 \sqcup T_2) \triangleq (T_1^+ \cup T_2^+) \cup (T_1^{\infty} \cap T_2^{\infty}) \quad T^{\infty} \triangleq T \cap \Sigma^{\infty}$$

Fixpoint semantics

$$\tau^{+\infty} \llbracket \mathbf{P} \rrbracket = \mathsf{lfp}_{\Sigma^{\infty}}^{\sqsubseteq} \overleftarrow{\phi}_{\tau}^{+\infty} \llbracket \mathbf{P} \rrbracket$$

$$= \mathsf{lfp}_{\emptyset}^{\subseteq} \overleftarrow{\phi}_{\tau}^{+} \llbracket \mathbf{P} \rrbracket \cup \mathsf{gfp}_{\Sigma^{\infty}}^{\subseteq} \overleftarrow{\phi}_{\tau}^{\infty} \llbracket \mathbf{P} \rrbracket$$

$$\overleftarrow{\phi}_{\tau}^{+\infty} \llbracket \mathbf{P} \rrbracket T \triangleq \beta_{\tau} \llbracket \mathbf{P} \rrbracket \sqcup \tau \llbracket \mathbf{P} \rrbracket \stackrel{\circ}{,} T$$

Patrick Cousot, Radhia Cousot: Inductive Definitions, Semantics and Abstract Interpretation, POPL 1992: 83-94

An Abstract Interpretation Framework for Termination

10

Program properties

• A program property P is the set of semantics which have this property:

$$P \in \mathcal{O}(\mathcal{O}(\Sigma^{+\infty}))$$

• Example:

• Strongest property of program P:

$$\{ au^{+\infty}\llbracket \mathtt{P}
rbracket\}$$

P. Cousot and R. Cousot. Systematic design of program analysis frameworks POPL, 269–282, 1979.

OPL 2012, An Abstract Interpretation Framework for Termination

12

© P. Cousot & R. Couso

Trace property abstraction

• Trace property abstraction:

$$\alpha_{\Theta}(P) \ \triangleq \ \bigcup P \qquad \langle \wp(\wp(\Sigma^{+\infty})), \ \subseteq \rangle \xrightarrow[\alpha_{\Theta}]{\gamma_{\Theta}} \langle \wp(\Sigma^{+\infty}), \ \subseteq \rangle$$

• Example: $P = \overbrace{ \begin{array}{c} & & & \\ & & & \\ & & & \\ \end{array}}^{0} \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array}}_{\text{result}} \text{ always same result}$ $\alpha_{\Theta}(P) = \underbrace{ \begin{array}{c} & & & \\ & & & \\ \end{array}}_{\text{results can be different}}$

- The strongest trace property of a trace semantics is this trace semantics $\alpha_{\Theta}(\{\tau^{+\infty}[\![P]\!]\}) = \tau^{+\infty}[\![P]\!]$
- Safety/liveness (termination) are *trace properties*, <u>not</u> general program properties

POPL 2012, An Abstract Interpretation Framework for Termination

© P. Cousot & R. Cousot

© P. Cousot & R. Cousot

The Termination Problem

The termination proof problem

• Termination abstraction:

$$\alpha^t(T) \triangleq T \cap \Sigma^+$$

• Termination proof:

$$\alpha^t(\tau^{+\infty}\llbracket \mathbf{P} \rrbracket) = \tau^{+\infty}\llbracket \mathbf{P} \rrbracket$$

• Termination proofs are not very useful since programs do not *always* terminate

POPL 2012, An Abstract Interpretation Framework for Termination

;

© P. Cousot & R. Cousot

Example

• Arithmetic mean of integers x and y

• Does not always terminate e.g.

$$< x,y> = < 1,0> \rightarrow < 0,1> \rightarrow < -1,2> \rightarrow < -2,3> \rightarrow ...$$

Patrick Cousot: Proving Program Invariance and Termination by Parametric Abstraction, Lagrangian Relaxation and Semidefinite Programming. VMCAI 2005: 1-24

The termination inference problem

- Determine a necessary condition for program termination and prove it sufficient
- Example:
 - (1) Under which necessary conditions

```
while (x <> y) {
   x := x - 1;
   y := y + 1
}
```

does terminate?

• (2) Prove these conditions to be sufficient

POPL 2012, An Abstract Interpretation Framework for Termination

17

© P. Cousot & R. Cousot

The Termination Inference Problem

Potential termination

• For non-deterministic programs, we may be interested in potential termination

POPL 2012, An Abstract Interpretation Framework for Termination

9

© P. Cousot & R. Cousot

Definite termination abstraction

• or in definite termination

 Potential and definite termination coincide for deterministic programs. Only definite termination in this presentation.

20

POPL 2012, An Abstract Interpretation Framework for Termination

Definite termination trace abstraction

Prefix Abstraction

$$\mathsf{pf}(\sigma) \ \triangleq \ \left\{ \sigma' \in \Sigma^{+\infty} \ \middle| \ \exists \sigma'' \in \Sigma^{*\infty} : \sigma = \sigma' \sigma'' \right\}$$

$$\mathsf{pf}(T) \ \triangleq \ \left| \ \left\{ \mathsf{pf}(\sigma) \ \middle| \ \sigma \in T \right\} \right.$$

• Definite termination abstraction

$$\alpha^{\mathsf{Mt}}(T) \triangleq \{ \sigma \in T^+ \mid \mathsf{pf}(\sigma) \cap \mathsf{pf}(T^\infty) = \emptyset \}$$

© P. Cousot & R. Cousot

© P. Cousot & R. Cousot

• « Abstract and model-check » is impossible for termination and unsound for non-termination of unbounded programs

Finite abstractions do not work

Unbounded executions:

• Finite homomorphic abstraction:

- Termination: impossible (lasso)
- Non-termination (lasso): unsound

(*) Excluding trivial solutions, see: Patrick Cousot: Partial Completeness of Abstract Fixpoint Checking. SARA 2000: 1-25

© P. Cousot & R. Cousot

Definite termination

ullet The semantics/set of traces T definitely terminates if and only if

$$\alpha^{\mathsf{Mt}}(T) = T$$

Definite termination domain

2

Reachability analysis

• A forward invariance analysis infers states potentially reachable from initial states (by over-approximating an abstract fixpoint lfp F)

(*) P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static analysis of programs by construction or approximation of fixpoints. *POPL*, 238–252, 1977.

© P. Cousot & R. Cousot

Accessibility analysis

 A backward invariance analysis infers states potentially / definitely accessing final states (by over-approximating an abstract fixpoint lfp B)

P. Cousot and R. Cousot. Systematic design of program analysis frameworks. POPL 269-282 1979

Combined reachability/accessibility analyses

• An iterated forward/backward invariance analysis infers reachable states potentially/definitely accessing final states (by over-approximating $\operatorname{lfp} F \cap \operatorname{lfp} B$)

- (*) P. Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique de programmes.

 (*) P. Cousot & R. Cousot. Abstract interpretation and application to logic programs. J. Log. Program. 13 (2 & 3): 103–179 (1992) Thèse d'État ès sciences math., USMG, Grenoble, 1978.

© P. Cousot & R. Couso

Example

• Arithmetic mean of two integers X and Y

• Necessarily $x \ge y$ for proper termination

Example (cont'd)

• Arithmetic mean of two integers x and y (cont'd)

```
while (x <> y) {
    k := k - 1;
    x := x - 1;
    y := y + 1
}
assume (k = 0)
```

POPL 2012, An Abstract Interpretation Framework for Termination

29

© P. Cousot & R. Cousot

Example (cont'd)

Arithmetic mean of two integers x and y (cont'd)

The difference x − y must initially be even for proper termination

Observations

- k provides the *value* of the variant function in the sense of Turing/Floyd
- The constraints on k (hence the variant function) are computed backwards
 - ⇒ a backward analysis should be able to infer the variant function

R. Floyd. Assigning meaning to programs. *Proc. Symp. in Applied Math.*, Vol. 19, 19–32. Amer. Math. Soc., 1967.

A. Turing. Checking a large routine. Con. on High Speed Automatic Calculating Machines. Math. Lab., Cambridge, UK, 67-69, 1949.

POPL 2012, An Abstract Interpretation Framework for Terminatio

31

© P. Cousot & R. Cousot

The Turing-Floyd termination proof method

R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19, 19–32. Amer. Math. Soc., 1967.

A. Turing. Checking a large routine. Con. on High Speed Automatic Calculating Machines, Math. Lab., Cambridge, UK, 67–69, 1949.

The hierarchy of termination semantics

• Maximal trace concrete backward trace semantics

Definite termination abstract backward trace semantics

$$\alpha^{\mathsf{W}}$$

Weakest pre-condition abstract backward state semantics (termination domain)

Variant function abstract ordinal backward semantics

POPL 2012, An Abstract Interpretation Framework for Termination

33

© P. Cousot & R. Cousot

Fixpoint definition of the variant function

We now apply the abstract interpretation methodology:

- The maximal trace semantics has a fixpoint definition
- The variant function is an abstraction of the maximal trace semantics
- With this abstraction, we construct a fixpoint definition of the abstract variant semantics
 - ⇒ Fixpoint induction provides a termination proof method
 - ⇒ Further abstractions and widenings provide a static analysis method

POPL 2012, An Abstract Interpretation Framework for Termination

35

© P. Cousot & R. Cousot

The ranking abstraction

$$\begin{array}{rcl} \alpha^{\mathsf{rk}} & \in & \wp(\Sigma \times \Sigma) \mapsto (\Sigma \not \mapsto \mathbb{O}) \\ \alpha^{\mathsf{rk}}(r)s & \triangleq & 0 & \mathsf{when} & \forall s' \in \Sigma : \langle s, \ s' \rangle \not \in r \\ \alpha^{\mathsf{rk}}(r)s & \triangleq & \mathsf{sup} \left\{ \alpha^{\mathsf{rk}}(r)s' + 1 \ \middle| \ \exists s' \in \Sigma : \langle s, \ s' \rangle \in r \land \right. \\ & \qquad \qquad \forall s' \in \Sigma : \langle s, \ s' \rangle \in r \implies s' \in \mathsf{dom}(\alpha^{\mathsf{rk}}(r)) \right\} \end{array}$$

- $\alpha^{\text{rk}}(r)$ extracts the well-founded part of relation r
- provides the rank of the elements s in its domain
- ullet strictly decreasing with transitions of relation r
- ⇒ the most precise variant function

Example I

• Maximal trace semantics:

• Ranking fixpoint iterates:

Example II

Program

int x; while
$$(x > 0) \{ x = x - 2; \}$$

• Fixpoint $v = \operatorname{lfp}_{\dot{\varrho}}^{\sqsubseteq^{\mathsf{v}}} \overleftarrow{\phi}_{\tau}^{\mathsf{M}\mathsf{v}} \llbracket \mathsf{P} \rrbracket$

• Iterates $v^0 = \dot{0}$

$$v^1 = \lambda x \in [-\infty, 0] \cdot 0$$

$$v^2 = \lambda x \in [-\infty, 0] \cdot 0 \dot{\cup} \lambda x \in [1, 2] \cdot 1$$

$$v^{3} = \lambda x \in [-\infty, 0] \cdot 0 \dot{\cup} \lambda x \in [1, 2] \cdot 1 \dot{\cup} \lambda x \in [3, 4] \cdot 2$$

$$v^{n} = \lambda x \in [-\infty, 0] \cdot 0 \dot{\cup} \lambda x \in [1, 2 \times (n-1)] \cdot (x+1) \dot{\div} 2$$

$$v^\omega \ = \ \lambda \, x \in [-\infty,0] \bullet 0 \ \dot{\cup} \ \lambda \, x \in [1,+\infty] \bullet (x+1) \div 2 \ .$$

POPL 2012, An Abstract Interpretation Framework for Termination

3/

© P. Cousot & R. Co

Example III

• Program:

• Iterates (linear abstraction):

POPL 2012, An Abstract Interpretation Framework for Termination

© P. Cousot & R. Cousot

 $k = \nu(x, y)$

Computational order on functions

$$v \sqsubseteq^{\mathsf{v}} v' \triangleq \mathsf{dom}(v) \subseteq \mathsf{dom}(v') \land \forall x \in \mathsf{dom}(v) : v(x) \preccurlyeq v'(x)$$

Example IV

- In general a widening is needed to enforce convergence
- Program: int x; while (x > 0) { x = x 2; }
- Iterates with widening:

© P. Cousot & R. Cousot

38

© P. Cousot & R. Cousot

Objection I:Turing/Floyd's method goes forward not backward!

• An analysis can be inverted using auxiliary variables^(*)

int x;
while
$$(c(x))$$
 {

while $(c(x))$ {

x := f(x)

}

 $x := f(x)$

}

Backward variant v:

Forward variant V:

$$V(x_{before}) = V(x_{after}) + I$$
 $V(x_0) = V(x) + I$ $\Leftrightarrow V(x_{before}) = V(f(x_{before})) + I$ $\Leftrightarrow V(x_0) = V(f(x_0)) + I$

© P. Cousot & R. Cousot

Structuring trace semantics with segments

Objection II: you need ordinals!

• Example: x := ?; while (x >= 0) do x := x - 1 od

• Ranking:

• To avoid transfinite ordinals/well-founded orders of for unbounded non-determinism, the computations need to be structured!

(*) R. Floyd. Assigning meaning to programs. Proc. Symp. in Applied Math., Vol. 19, 19–32. Amer. Math. Soc., 1967

© P. Cousot & R. Cousot

© P. Cousot & R. Cousot

© P. Cousot & R. Cousot

Floyd/Turing termination proof method

• Trivial postfix structuring of traces into segments

• Also used for termination of straight-line code (no need for variant functions)

^(*) P. Cousot. Semantic foundations of program analysis. Program Flow Analysis: Theory and Applications, ch. 10, 303–342. Prentice-Hall, 1981.

Floyd with nested loops

• The trace semantics is recursively structured in segments according to loop nesting

Prove termination of outer loop assuming termination of body/ nested inner loops

(equivalent to lexicographic orderings)

POPL 2012, An Abstract Interpretation Framework for Termination

© P. Cousot & R. Cousot

Hoare logic

- The trace semantics is recursively structured in segments according to the program syntax
- while (c) { b; a }...

tree structure of the segmentation:

 $\{P, PF, PL, PLE, PLD,$ *PLDB*, *PLDC* }

© P. Cousot & R. Cousot

Burstall's proof method by hand-simulation and a little induction

- Program **do** odd(x) **and** $x \ge 3 \rightarrow x := x+1$ \Box even (x) and $x \ge 2 \rightarrow x := x/2$ od
- Proof chart

R. Burstall. Program proving as hand simulation with a little induction. *Information Processing*, 308–312. North-Holland, 1974.

P. Cousot and R. Cousot. Sometime = always + recursion ≡ always, on the equivalence of the intermittent and invariant assertions methods for proving

POPL 2012, An Abstract Interpretation Framework for Tern

© P. Cousot & R. Cousot

Burstall's proof method by hand-simulation and a little induction

• Iterative program but recursive proof structure

Inductive trace cover by segments

C. Hoare. An axiomatic basis for computer programming. Communications of the Association for Computing Machinery, 12(10):576–580, 1969.

Z. Manna and A. Pnueli. Axiomatic approach to total correctness of programs. Acta Inf., 3:243–263, 1974.

Podelski-Rybalchenko

 Transition invariants are abstractions of trace segments covering the trace semantics by their extremities

 Termination based on Ramsey theorem on colored edges of a complete graph, no recursive structure

A. Podelski and A. Rybalchenko. Transition invariants. *LICS*, 32–41, 2004 F. P. Ramsey. On a problem of formal logic. In *Proc. London Math. Soc.*, volume 30, pages 264–285, 1930.

POPL 2012, An Abstract Interpretation Framework for Termination

49

© P. Cousot & R. Cousot

Rely-guarantee

 Example of abstraction of segments into relyguarantee/contracts state properties:

Joey W. Coleman, Cliff B. Jones: A Structural Proof of the Soundness of Rely/guarantee Rules. J. Log. Comput. 17(4): 807-841 (2007)

POPL 2012, An Abstract Interpretation Framework for Termination

© P. Cousot & R. Cousot

Trace semantics segmentation

Recursive trace segmentation

Definition 2. An *inductive trace segment cover* of a non-empty set $\chi \in \wp(\Sigma^{+\infty})$ of traces is a set $C \in \mathfrak{C}(\chi)$ of sequences S of members B of $\wp(\alpha^+(\chi))$ such that

1. if $SS' \in C$ then $S \in C$ (prefix-closure) 2. if $S \in C$ then $\exists S' : S = \chi S'$ (root) 3. if $SBB' \in C$ then $B \ni B'$ (well-foundedness) 4. if $SBB' \in C$ then $B \subseteq \biguplus_{SBB' \in C} B'$ (cover). \Box

- Proof by induction on the possibly infinite but wellfounded trace segmentation tree
- Orthogonal to proofs on segment sets (using variant functions, Ramsey theorem, etc.)

POPL 2012, An Abstract Interpretation Framework for Termination

51

© P. Cousot & R. Cousot

© P. Cousot & R. Cousot

Conclusion

52

More in the paper

- The presentation was deliberately intended to be simple and intuitive
- The paper provides
 - More topics (e.g. abstract trace covers/proofs)
 - More technical details (e.g. fixpoint definitions of the various abstract termination semantics)
 - More examples (e.g. a more detailed piecewise linear termination abstraction)

POPL 2012, An Abstract Interpretation Framework for Termination

53

© P. Cousot & R. Cousot

© P. Cousot & R. Cousot

Contributions

- Formalization of existing termination proof methods as abstract interpretations
- Pave the way for new backward termination static analysis methods (going beyond reduction of termination to safety analyzes)
- The new concept of trace semantics segmentation is not specific to termination and applies to all specification/verification/analysis methods

Future work

- Abstract domains for termination
- Semantic techniques for segmentation inference
- Eventuality verification/static analysis
- (General) liveness^(*) verification/static analysis

(*) Beyond LTL, as defined in

Bowen Alpern, Fred B. Schneider: Defining Liveness. Inf. Process. Lett. (IPL) 21(4):181-185 (1988);2EEBowen Alpern, Fred B. Schneider: Defining Liveness. Inf. Process. Lett. (IPL) 21(4):181-185 (1985)

POPL 2012, An Abstract Interpretation Framework for Termination

55

© P. Cousot & R. Cousot

The end, thank you

5

POPL 2012, An Abstract Interpretation Framework for

POPL 2012, An Abstract Interpretation Framework for Termination

© P. Cousot & R. Couso