On Various
Abstract Understandings
of
Abstract Interpretation

Patrick Cousot
cims.nyu.edu/~pcousot

TASE 2015

The 9th International Symposium on Theoretical Aspects of Software Engineering

September 12—14, 2015 — Nanjing, China

Motivation

Formal methods
Reasonings on programs are

*Reasonings on properties of their semantics (i.e.
execution behaviors)

*Always involve some form of abstraction

Abstract interpretation

A theory establishing a correspondance between

*Concrete semantic properties
1 what you want to prove on the semantics
*Abstract properties
1 how to prove it in the abstract
Objective: formalize
* formal methods
* algorithms for reasoning on programs

4

Fundamental motivations

in

Scientific research
/

trend towards unification and synthesis through

universal principles

trend towards dispersion and parcelization through a
collection of local techniques for specific applications

An exponential process, will stop!

Example: reasoning on computational structures

WCE_T . Security protocole gysrems biology Operational
Axiomatic verification lysi semantics
semantics anafysis Abstraction

Confidentiality Dataflow dl;l c::ier: Database (efinement
analysis p, qtia analysis . "e _ query Type

Program ayaluation Obfuscation Dependence inference

synthesis Effect Denotational analysis Separation
Grammar systems semantics CEGAR |Oglc .

analysis Theories Program lermination
Statistical Trace ombination transformation Proof
model-checking Semantics Code Interpolants Abstract ~Shape
Invariance Symbolic contracts Integrity ~ model analysis
proof execution analysis checking Malware
Probabilistic ~ Quantum entanglement Bisimulation ~ detection
verification detection SMT solvers Code

Parsing Type theory Steganography Tautology testers refactoring

7

Example: reasoning on computational structures

WCE_T . Security protocole gycrems biology Operational
Axiomatic verification ysi semantics
semantics analysis Abstraction

Confidentiality Dataflow cfl:a ?ﬂﬁ: Database |.ofinement
analysis] analysis ' g query Type

Program ayaluation Obfuscation Dependence inference

synthesis Effect Denotational analysis Separation
Grammar systems semantics CEGAR Ioglc .

analysis Theories Program lermination
Statistical Trace ombination transformation Proof
model-checking Semantics Code Interpolants Abstract ~Shape
Invariance Symbolic contracts Integrity model analysis
proof execution analysis ~ checking Malware
Probabilistic ~ Quantum entanglement Bisimulation detection
verification detection SMT solvers Code

Parsing Type theory Steganography T,ytology testers refactoring

Example: reasoning on computational structures

Abstract interpretation

SIS Security protocole gyctems biolo Operathnal
Axiomatic TR Y Iology semantics
i e R Abstraction
semantics
Confidentiality Dataflow Model Database " cfinement
analysis _ analysis checking query Type
Program evzzlll::t?:)n Obfuscation Dependence inference
synthesis Denotational analysis Separation
Effect ; logi
Grammar systems semantics CEGAR ogic
analysis T Theories Program Termination
Statistical rac: combination transformation Proof
model-checking Semantics Code Interpolants Abstract Shape
Invariance Symbolic contracts Integrity =~ model analysis

proof execution analysis ~ checking Malware
Probabilistic ~ Quantum entanglement Bisimulation detection
verification detection SMT solvers Code

Parsing Type theory Steganography T,tology testers refactoring

Practical motivations

Ariane 5.01 failure Patriot failure Mars orbiter loss Heartbleed
(overflow) (float rounding) (unit error) (buffer overrun)

Checking the presence of bugs by debugging is great
Proving their absence by static analysis is even better!

Undecidability and complexity is the challenge for
automation

TASE 2015, September 1214, 2015, Nanjing, Chi Il P Couso

arstechnica

MAIN MENU MY STORIES: FORUMS

TECHNOLOGY LAB - INFORMATION TECHNOLOGY

Boeing 787 Dreamliners contain a
potentially catastrophic software bug

Beware of integer overflow-like bug in aircraft's electrical system, FAA warns.

by Dan Goodin - May 1, 2015 7:55pm CEST
i share | Ea
A software vulnerability in Boeing's new 787 Dreamliner jet has the potential to cause pilots to lose
control of the aircraft, possibly in mid-flight, Federal Aviation Administration officials warned airlines
recently.

The bug—which is either a classic integer overflow or one very much resembling it—resides in one of
the electrical systems responsible for generating power, according to memo the FAA issued last week.
The vulnerability, which Boeing reported to the FAA, is triggered when a generator has been running
continuously for a little more than eight months. As a result, FAA officials have adopted a new
airworthiness directive (AD) that airlines will be required to follow, at least until the underlying flaw is
fixed.

"This AD was prompted by the determination that a Model 787 airplane that has been powered
continuously for 248 days can lose all alternating current (AC) electrical power due to the generator
control units (GCUs) simultaneously going into failsafe mode," the memo stated. "This condition is
caused by a software counter internal to the GCUs that will overflow after 248 days of continuous
power. We are issuing this AD to prevent loss of all AC electrical power, which could result in loss of
control of the airplane."

Abstractions of Dora Maar by Picasso

Informal examples of

abstraction
Pixelation An old idea...

20 000 years old picture in a spanish cave:

/www.petapixel.com/201 1/06/23/how-much-pixelation-is-needed-before-a-photo-becomes-transformed/

Image credit: Photograph by Jay Maisel

15 16

Abstractions of a man / crowd

Fingerprint
®

Eye color

Phone metadata

Numerical abstractions in Astrée

Y Y
Pﬁgfi

[y

A o
°
°

8

e & 6 9 6 0 O

5 Intervals:2°

x € [a, b]
Y

Collecting semantics:'

partial traces

Y

YA

Octagons:2° Ellipses:26

e 6 06 9 0 0 o

Simple congruences:
x = alb]

® ©6 ¢ ¢ 6 o O
S /

24

Exponentials:2”

_abt < y(t) < abt

+x+ty<a x? + by? —axy < d
12-14, 2015, Nanjing, Chi 18

An informal introduction to

abstract interpretation

P. Cousot &
M. Broy (Ed:

formal verificati

R. Cousot. A gentle i to for of ¢ systems by abstract In Logics and L
s). NATO Science Series I1I: Computer and System:

omputer s by abs for Reliability and Security, J. Esparza, O. Grumberg, &
s Sciences, © 10S Press, 2010, Pages 1—29.

19

|) Define the programming language

Formalize the concrete execution of programs (e.g. transition system)

(xy) € X

>~
e
t=1

Ve

t

Trajectory
in state space X

20

Space/time trajectory

Il) Define the program properties of interest

Formalize what you are interested to know about program behaviors

[§

Possible
trajectories

lIl) Define which specification must be checked

Formalize what you are interested to prove about program behaviors

| Possible
trajectories

V) Choose the appropriate abstraction

Abstract away all information on program behaviors irrelevant to the proof

| Possible
trajectories

Abstraction of the trajectories

V) Mechanically verify in the abstract

The proof is fully automatic

Forbidden zone

| Possible
trajectories

Abstraction of the trajectories

Soundness of the abstract verification

Never forget any possible case so the abstract proof is correct in the concrete

Forbidden zone

| Possible
trajectories

Abstraction of the trajectories

Unsound validation: testing

Try a few cases

Forbidden zone

Error 11!

Possible
trajectories

Unsound validation: bounded model-checking

Simulate the beginning of all executions

Forbidden zone

Possible
trajectories

Bounded model-checking

Unsound validation: static analysis

Many static andlysis tools are unsound (e.g. Coverity, etc.) so inconclusive

Forbidden zone Error !l!

Possible
trajectories

Erroneous trajectory abstraction

Incompleteness

When abstract proofs may fail while concrete proofs would succeed

Alarm !l

Forbidden zone

| Possible
trajectories

Error or false alarm ?

By soundness an alarm must be raised for this overapproximation!

True error

The abstract alarm may correspond to a concrete error

Alarm !l

Forbidden zone

| Possible
trajectories

False alarm

The abstract alarm may correspond to no concrete error (false negative)

Forbidden zone Alarm !

Possible
trajectories

False alarm

] 31

What to do about false alarms?

® Consider special cases: finite (small) models (model-
checking), decidable cases (SMT solvers), human
interaction (theorem provers, proof verifiers), ...

® Automatic refinement: inefficient and may not
terminate (Godel, see next slide)

® Domain-specific abstraction:

® Adapt the abstraction to the programming paradigms
typically used in given domain-specific applications

® e.g. synchronous control/command: no recursion,
simple memory allocation, maximum execution
time, etc.

32

In general refinement does not terminate
® Example:filter invariant abstraction:

2nd order filter: Unstable polyhedral
abstraction: S ,

X U F(X)

Counter-example
guided refinement |
will indefinitely
add missing points

according to the
execution trace: 7 -

Stable ellipsoidal
abstraction:

-100 80 60

Julien Bertrane, Patrick Cousot, Radhia Cousot, Jérome Feret, Laurent Mauborgne, Antoine Miné, & Xavier Rival. Static Analysis and Verification of Aerospace Software by Abstract Interpretation. In
AIAA Infotech@@ Aerospace 2010, Atlanta, Georgia. American Institute of Aeronautics and Astronautics, 20—22 April 2010. © AIAA.

September 12-14, 2015, Nanjing, China 33 P Couso

Abstract Interpretation

Abstract interpretation is all about:

Soundness

Induction

ember 12—

34

A very short more formal
introduction
to abstract interpretation

Patrick Cousot & Radhia Cousot. Vérification statique de la cohérence dynamique des programmes. In Rapport du contrat IRIA SESORI No 75-035, Laboratoire IMAG, University of Grenoble,
France. 125 pages. 23 September 1975.

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, f ings of the second iy i ium on , Paris,
France, pages 106—130, April 13-15 1976, Dunod, Paris.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thése Es Sciences
‘Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In $.5. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, US.A., 1981.

lember 1214, 2015, Nanjing, China 35 P Couso

Properties and their
Abstractions

lember 1214, 2015, Nanjing, China 36

Concrete properties

A concrete property is represented by the set of
elements which have that property:

e universe (set of elements) & (e.g. a semantic domain)
e properties of these elements: P € g(9)
e “x has property P’ is x € P

(92(92), S, U, N, ...) is a complete lattice for inclusion C

37

Example of Property

® Odd natural numbers e =N
0={1,3,57..}
D
® x is odd *0ep®)
xe€O0 ® “x has property O”
® xis 2
x € {2}

® the strongest property of 2
{2}

® 2 and 4 are even
{2,4} ¢ {0,2,4,68,...}

38

Abstract properties

Abstract properties: Q € &

Abstract domain & : encodes a subset of the concrete

properties (e.g. a program logic, type terms, linear
algebra, etc)

Poset: (<4, C,U,M,...)

Partial order: C is abstract implication

39

Example of Abstract Properties

o ={L1,0,ET}

40

Concretization

Concretization Y E€ A — (D)
Y(Q) is the semantics (concrete meaning) of O

Y is increasing (so C abstracts C)

41

Example of Concretization

T 7 012345,..)=N

024,37 0 L 135,

42

Best abstraction

A concrete property P € g(9) has a best abstraction
Qe o iff

*it is sound (over-approximation):

P cy(@)
*and more precise than any sound abstraction:
PCy(Q) = QLCO
The best abstraction is unique (by antisymmetry)

Under-approximation is order-dual

43

Galois connection
Any P e ¢(9) has a (unique) best abstraction o(P) in <
if and only if
VPe @(2):V0 e d: ao(P)C QO < P Cy(0)

=>: over-approximation

. & : best abstraction
written

(), ©) === (1,)

44

Examples
Needness/strictness analysis (80’s)

unknown {0,1 } Y T

non-termination {O} { 1 } termination

%) x L

unreachable

Similar abstraction (y(T) £ {true, false}) for scalable
hardware symbolic trajectory evaluation STE (90)

Alan Mycroft: The Theory and Practice of Transforming Call-by-need into Call-by-value.
Symposium on Programming 1980: 269-281
Carl-Johan H. Seger, Randal E. Bryant: Formal Verification by Symbolic Evaluation of Partially-
Ordered Trajectories. Formal Methods in System Design 6(2): 147-189 (1995)

TASE 2015, September 12-14, 2015, Nanjing, Ch 45

Equivalent mathematical structures

0

Join morphism Meet morphism Upper closure
{0, 1} {0, 1} {0,1}
0} V() @@{1} 0)
0 0 0
Moore family Topology Downset family
""", A: {1 } y
{0,1} 10, 1) 55 REy)[0]1
{0} W SN J0
) (0} {1} T v
Congruence Soundness relation Relation postimage

46

In absence of best abstraction?

Best abstraction of a disk by a rectangular parallelogram
(intervals)

No best abstraction of a disk by a polyhedron (Euclid)

use only abstraction or concretization or widening

(*) Patrick Cousot, Radhia Cousot: Abstract Interpretation Frameworks. J. Log. Comput. 2(4): 511-547 (1992)
TASE 2015, September 1214, 2015, Nanjing, Chi 47

Sound semantics abstraction
program Pel programming language
standard semantics S[P|| € 9 semantic domain
collecting semantics {S[|P]|} € g2(2) semantic property
abstract semantics S[[P] € &/ abstract domain
concretization Y€ A — (D)
siel} < vSIel)

P has abstract property S|[[P]

soundness

ie. S[P] € vy(S[P]),

48

Best abstract semantics

If (90(2), C) <—ZL—> (o, C) then the best abstract

semantics is the abstraction of the collecting semantics

SIPI £ «{SIPIY

It is sound:

It is the most precise:

49

Calculational design of the abstract semantics

The (standard hence collecting) semantics are defined by
composition of mathematical structures (such as set unions,
products, functions, fixpoints, etc)

If you know best abstractions of properties, you also know
best abstractions of these mathematical structures

So, by composition, you also know the best abstraction of
the collecting semantics ... calculational design of the
abstract semantics

Orthogonally, there are many styles of
® semantics (traces, relations, transformers,...)
e induction (transitional, structural, segmentation [POPL 2012])

e presentations (fixpoints, equations, constraints, rules [CAV 1995])

50

Example: functional connector

Y
If ¢ =(&,C) = (A,C) then

o
(%@ AF.yoFo a o 2o
g ':>g - < — ’—> AF.(X°F°'Y < ’—>
o RN
g Y™ Yi|la £

(= is a called a Galois connector)

51

Simple example

F(x2) = {x+2 | x E x2}

a-Fey(l)
T =a({x+2 | x E T}
= a(J)
0 E =1
_ L aoFoy(O)
Fx)|L|O|E|T =a({x+2 | x € y(0)}
LlLfL]LfL =a({x+2|x € {1,3,5,...}})
O|L|E|O|T =a({3,5,7,...})
E|l1L|O|E|T =0
TIL|T|T|T

52

Fixpoints of increasing functions (Tarski)

A

f(x)

> + 00

Another fixpoint at +00 1

53

Fixpoint abstraction
Best abstraction (completeness case)
if aocF=Fox then F=a+Foy and a(lfp F) =Ifp F

e.g. semantics, proof methods, static analysis of finite state
systems

Best approximation (incompleteness case)
if F=aoFoy but ac FCFoa then a(fp) Clfp F

e.g. static analysis of infinite state systems

idem for equations, constraints, rule-based deductive
systems, etc

54

Simple Example

: X = 1;

: while x < 10 do
T X 1= X + 23

: od;

= W NPk O
LX)

(Xo,...,x4)=F(Xo,...,X4)

xo={...-2,-1,0,1,2,...}
x1= {1}

x2 = (x1 Ux3) N {...,-8-9}
X3 = {x1+2 | x E X2}

x4 =(x1 Ux3) N {10,11,...}

T

L

(xo,...,x4)=F(xo,...,X4)
Xo=T
x1=0
xX2=(X1ux3)nT
X3=X2 @F
Xa=Xiux3)nT

55

Iterative resolution

Xo=T

x1=0
X2=(xX1ux3)nT
X3=X) ®F
Xa=Xiux3)nT

iteration 0 |
X0 =1
x1=1
X2 =1
X3 =_1
X4= 1

Sl

HE=[QIA| N
HEQIQ|H|w
H QIQ|IQ|H| &
QQIQIQ|IH |V

- | QIQIQ0|Q|H| o

fixpoint

Exact fixpoint abstraction

Abstract domain § ,
, o F F g F "
o o ‘f‘ a o aaa

Concrete domain
awoF=Foa = allpF) = IfpF*

Approximate fixpoint abstraction

Abstract domam fOF
il ./Ayxf/’x’/'

J_z/,

aliy o 7 oz 7 a 7 al 7 Approximation

. = § ; = = N relation C
R L Y F ﬁ/’uﬂ/

i F C ~(Ifp F*?)

Duality
(u,>,¥) (n,>,¥)
(u,>,1) QUL
Uy, ¥+ (n,<y) o o
= Why abstracting properties
(U, 1) (n,«s1)

Order duality: join (U) or meet (N)
Inversion duality: forward (—) or backward (< = (—)-1)

Fixpoint duality: least (1) or greatest (1)

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of
Fixpoints. POPL 1977: 238-252

59

of semantics, not semantics
or models?

60

Understandings of Abstract Interpretation

I. Abstract interpretation = a non-standard semantics
(computations on values in the standard semantics
are replaced by computations on abstract values) =

extremely limited

2. Abstract interpretation = an abstraction of the
standard semantics = limited

3. Abstract interpretation = an abstraction of
properties of the standard semantics = more

i.e. (1) is an abstraction of (2), (2) is an abstraction of (3)

6l

Example: trace semantics properties

Domain of [in]finite traces on states: /7

“Standard” trace semantics domain: @ = g(I7)
“Standard” trace semantics S[[P| € D = g(II)

Domain of semantics properties is (D) = g(g(1))
Collecting semantics C[[P] £ {S[P]} € (D) = g(g (1))

62

How to abstract the standard semantics!?

The join abstraction:

(p(go(ID)), C) ZC (go(IT), C)
ay(X) = UX
YY) £ go(¥)

Join abstraction of the collecting semantics:
ay(Cel) = Uislel} = S(el
(i.e. the semantics is the join abstraction of its strongest

property)

63

Loss of information

“Always terminate with the same value, either 0 or |”

P € g(gD)

always the same
result

oy(P) € go(I)

results can

“Always terminate, either with 0 or |7 ° "™

64

Limitations of the union abstraction

Complete iff any property of the semantics S[p] is also
valid for any subset y(S[P[)) = @(S[P]):

* Examples: safety, liveness

* Counter-example: security (e.g. authentication using a
random cryptographic nonce)

65

Exact abstractions

66

Exact abstractions

The concrete properties of the standard semantics S[P|]

that you want to prove can always be proved in the
abstract (which is simpler):

VQed: S[pley@ <« S[P]C Q
where

S[E] £ aeS[PJey

67

Example Il of exact
abstractions: semantics

Patrick Cousot: Constructive design of a hierarchy of semantics of a transition system by abstract
interpretation. Theor. Comput. Sci. 277(1-2): 47-103 (2002)

68

Trace semantics

Initial states
Final states of the

»LIntermediate states finite traces \

Infinite
traces

-~

Yy

1 23 45 6 7 8 9 ... discrete time

0

69

Abstraction to denotational/natural semantics

Initial states

Initial states
Final states of l

) Final states
l Intermediate states

finite traces @ .’Z

A ad
@0 L 28
e o Infinite e f ad
g T traces { « .é.".h a .E.f....f
—0—0—0—0—0—0—0—0-—0-—0-—0—0_ ®® *0
A e l i g h
PRIP P P WP P S P WP WP P S W PP PRI *.9
R k L v]

- ...

O (L

0123 45617289 discrete time
Trace semantics Denotational Natural
semantics semantics

70

Abstraction to small-steps operational semantics

Initial states Transitions Final states

° —o 0—0 --- 0—o ™
a a b b c d (d

° —o 690 06—90 0—90---0—9, ™
€ € / f

° —eo o9 069 --- 0o ®
g g h h

o *—eo 6—0 06— 0—0 --- Hj ..
7 7 J J

° k k:H —o o690 690 0690 --- —o---

° pH —9 06— ¢6—90 0690 0—90---0—90---

(Small-Step) Operational Semantics

71

Abstraction to reachability/invariance

Initial states Reachable states Final states

([] ® o 6 06 06 o o o ®
a a b c d (d

.(3 .8 ® 6 6 6 06 06 &6 o o .f .f

.g .g e 6 6 06 06 ¢ 0 O .]L .h

(28 . 06 6 6 6 06 06 06 6 ¢ ¢ o o o
1 4 J 7

.]{’ .k‘. e 6 ¢ ¢ 6 0 ¢ 06 ¢ 06 ¢ 0 O ---

.é‘/ .f ® 6 6 6 6 6 6 6 6 6 6 6 6 & ---

Partial Correctness / Invariance Semantics

72

Abstraction to Hoare logic

Initial states
P

b c

(0 Final states

0.0 o o

{PYC{Q} = {e|ecPre—-eo—-eo— . —0c[C]}CQ

73

Poset of semantics

Hoare logics
7PH

Weakest precondition wip

semantics T -
-
Denotational semantics ' e
T T T TT
M
) . T
Relational semantics
+ <!
-
Trace semantics B
Tt T

___ abstraction
__ equivalence
--- restriction

| B
angelic natural demoniac
determinist infinite

74

Approximate abstractions

75

Approximate abstractions

The concrete properties of the standard semantics S[P]]

that you want to prove may not always be provable in
the abstract:

voed:S[ElevQ o slpl c 0

where

STe] 3 «e S[P[oy

76

Why abstraction may be approximate?
Example

{x=yA0<x< 10} L
X 1= X - Y; f

{x=0A0<Ly<I0}
Interval abstraction:

{x€[0,10] Ay €[0,10]}
X 1= X - V;

{x €[-10,10] Ay €[0,10] }

(but for constants, the interval abstraction can’t express
equality)

mber 12-14, 2015, Nanjing, Chi 77

Finite versus infinite
abstractions

78

[In]finite abstractions

Given a program P and a program property O which
holds (i.e. Ifp F/[[P]| € Q) there exists a most abstract
abstraction in a finite domain </ [|P| to prove it
Example:

x=0; while x<1 do x++ — {1,[0,0],[0,1],[-00,00]}

x=0; while x<2 do x++ — {L,[0,0],[O0,1],[0,2],[-00,00]}

x=0; while x<n do x++ — {L,[0,0],[0,!],[0,2],[0,3],..., [0,],[-00,00]}

*
) Patrick Cousot: Partial Completeness of Abstract Fixpoint Checking. SARA 2000: 1-25

79

[In]finite abstractions
No such domain exists for infinitely many programs

. |J [P] is infinite

pel

Exameple: (1,100}, 10,17, 10.2, [0.31, ..., [01], [0,2+1],[-c0,00]}

2. AP € .9 [P] is not computable (for

undecidable properties)

= finite abstractions will fail infinitely often while
infinite abstractions will succeed!

80

Fixpoint approximation in
infinite abstractions

8l

Abstract Induction

82

Convergence acceleration
417

Ifp F

Infinite iteration

83

Convergence acceleration

47 F
L7 N ()

Ifp F’ Ifp F| |z

> >

Accelerated iteration with widening
(e.g. with a widening based on the derivative
as in Newton-Raphson method®)

Infinite iteration

(2010)
TASE 2015, September 12-14, 2015, Nanjing, Chi

®) Javier Esparza, Stefan Kiefer, Michael Luttenberger: Newtonian program analysis. J. ACM 57(6): 33

84

Problem with infinite abstractions
For non-Noetherian iterations, we need
* finitary abstract induction, and
* finitary passage to the limit
XO0=1, .., X! = g(X,

iteration converging

F(X)),..., limy_ X"

133 above the limit below the limit
Iteration bellci’nvritthe widening \/ |dual narrowing A
starting A A =
from 2 (I)i\r/ﬁitt ®| narrowing A | dual widening \/

85

[Semi-]dual abstract induction methods

X E F(X)
co-in-
duction
induct-
tion
(separate from termination conditions)
TASE 2015, September 12-14, 2015, Nanjing, Chi 86 P Couso

Examples of widening/narrowing
Abstract induction for intervals:

*a widening [1-2]

(xVy)=casxe
O, 2
?2,0=>x;
["L""l]‘[“z"“z] =>

[al? b,17 [a,, b,] =

Y [if a; < a; then -= else a, £i,-
sim, > m alors += sinon m, fsi] ;

fincas ; ifb. >Db

. - 72 1

*a narrowing [2
[a1xb1] A [az;bz] =
[if a, == then a, else MIN [a,l.azJ.

if b, = += then I:g2 else MAX (b,,b,]]

1

[1] Patrick Cousot, Radhia Cousot: Vérification statique de la é i des Rapport du contrat IRIA-SESORI No 75-032, 23 septembre 1975.

then += else bl'£:_i_]

[2] Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

TASE 2015, September 1214, 2015, Nanjing, Chi 87

P Couso

On widening/narrowing/and their duals

Because the abstract domain is non-Noetherian, any
widening/narrowing/duals can be strictly improved

infinitely many times (i.e. no best widening)
E.g. widening with thresholds [1]

Vxe L, L V,(Dx=xV,(j) L=x
U, w1 V,()) [B, 1))
=[if0< L <, thenOelsif I, <, then —b — 1 else I, fi,
ifu, < u, < 0 then 0 elsif u, < u, then b else u, fi]
Any terminating widening is not increasing (in its first

parameter)

Any abstraction done with Galois connections can be
done with widenings (i.e. a widening calculus)

[1] Patrick Cousot, Semantic foundations of program analysis, Ch. 10 of Program flow analysis: theory and practice, N. Jones & S. Muchnich (eds), Prentice Hall, 1981.

TASE 2015, September 1214, 2015, Nanjing, Chi 88 P Couso

Infinitary static analysis
with abstract induction

TASE 2015, September 1214, 2015, Nanjing, China 89 P Couso

Widening
(4, C) poset
NV € AxA—o
Sound widening (upper bound):

Vx,yed: xCxVyAyCxVy
Terminating widening: for any (x"€ &/, neN), the
sequence Y020, y"TL 20N/ X0 is ultimately

stationary (3eeN: Vnze: y"=y*)

(Note: sound and terminating are independent properties)

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Constructron or Approximation of Fixpoints. POPL 1977: 238-252
Il mber 12-14, 2015, Nanjing, Chi 90 P Couso

Example: (simple) widening for polyhedra

Iterates

A 4

Widening

>
>

Patrick Cousot. Méthodes itératives de construction et da aopro xlm.ll d e poi ints fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes.
ité Jos :cph 1. Grenol 21 March 1978.

atic ixcoveryml r Restrai lAm ng Variables of a Program. POPL 1978: 84-96

2-14, 2015, Nanjing, China 9l P Couso

Iteration with widening for static analysis
Problem: compute / such that Ifp= F C/C Q

Compute [as the limit of the iterates:

e X002
e Xt & Xn when F(X") C X" so [= X"
e X2 (Xn F(X") AQ otherwise

I can be improved by an iteration with narrowing /\
Check that F(/) C O

Example: Astrée

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of

Programs by Constructron or Approximation of Fixpoints. POPL 1977: 238-252

mber 12-14, 2015, Nanjing, Chi 92 P Couso

Dual narrowing
(4, C) poset

A € dxdl—sgf
Sound dual narrowing (interpolation):

Vx,yed:xCy = xEx&yEy
Terminating dual narrowing: for any (x"€ &/, neN), the
sequence Y020, yitl a0 A is ultimately
stationary (JeeN: Vnze: y"=)*)

(Note: sound and terminating are independent properties)

Cousot, P. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs
monotones sur un treillis, analyse sémantique de programmes (in French). Thése d'Etat &s sciences

é athues Umversne scientifique et médicale de Grenoble, France 1978.
> 93

2015, Nanjin

Iteration with dual narrowing for static checking
Problem: find / such that Ifps FC/C QO
Compute [as the limit of the iterates:
X002 |
oXntl & Xn
X £ F(XM) A,
Check that F(/) C O

when F(X")C X"so | = X"

otherwise

Example: First-order logic + Graig interpolation (with
some choice of one of the solutions, control of
combinatorial explosion, and convergence enforcement)

(enneth L. Mchllan Appllcatlons of Craig Interpolants in Model Checking. TACAS 2005: 1-12
tember 12-14, 2015, Nanjin a 94 P Couso

Industrialization

Daniel Kistner, Christiar Ferd dSleph Wlhelm Slef a Nevona, Olha Honcharova, Patrick Cousot,Radhia Cousot, Jérome Feret, Laurent Mauborene, Antoine Ming, Xavier Rival, and
me S . In Workshop *) Germany, June 18%, 2009.

s hia Cousot, Jérome Feret, Khalil Ghorbal, Eric Goubault, David Lesens, Laurent Mauborgne, Antoine Miné, Sylvie Putot, Xavier Rival,
ing Abstract Interpretation. In Proc. of the Int. § tem Engineering Conf., Data Systems in Aerospace (DASIA 2009). Istambul, Turkey, May 2009, 7

ent of Astrée on Safety-Critical A

s Software. SAFECOMP 2007: 479-490
David Delmas, Jean Souyris: Astrée: From Research to Industry. SAS 2007: 437-451
Jean Souyris: Industrial experience of abstract interpretation-based static analyzers. IFIP Congress Topical Sessions 2004: 393-400

Stephan Thesing, Jean Souyris, Rei
Validation of Hard Real-Time Avi

., Marc La ibach, Reinhard Wilhelm, Christian Ferdinand: An Abstract Interpretation-Based Timing

015, September 12-14, 2015, Nanjing, China 95 P Couso

Astrée

Commercially available: www.absint.com/astree/

L Aumbe - Daample 1
Proge: [

v | Une armrary | Sew | ratves e | ot fow | Hm derty | Som

Effectively used in production to qualify truly large and complex
software in transportation, communications, medicine, etc

Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérdme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux, Xavier Rival: A static
analyzer for large safety-critical software. PLDI 2003: 196-207

TASE 2015, September 1214, 2015, Nanjing, China 96 P Couso

Example of domain-specific abstraction: ellipses

typedef enum {FALSE = 0, TRUE = 1} BOOLEAN;
BOOLEAN INIT; float P, X;

void filter () {
static float E[2], S[2];
if (INIT) { S[0] = X; P = X; E[0] = X; 2
else { P = (((((0.5 * X) - (E[0] * 0.7)) + (E[1] * 0.4))
+ (8[0] * 1.5)) - (S[1] * 0.7)); }
E[1] = E[0]; E[0] = X; S[1] = S[0]; S[0] = P;
/* S[0], S[1] in [-1327.02698354, 1327.02698354] */
+
void main () { X = 0.2 * X + 5; INIT = TRUE;
while (1) {
X =0.9 %« X + 35;
filter (); INIT = FALSE; } #
} .

TASE 2015, September 12-14, 2015, Nanjing, China 97 ®P Couso

Code Contract Static Checker (cccheck)
https://github.com/Microsoft/CodeContracts (public domain)

og Example - Microsoft Visual Studio (Administrator) QO ¥ | QuickLaunch (Ctrt-Q) P - & x
FLE DT VEW PROECT BULD DEBUG TEAM T0OLS TEST ARCHTECTURE ANALVZE WINDOW HELP FancescoLogorzo - [l
-0 B-UMF D b Start - - Debug - - n
3 b - R 9
g - © BinarySearch(int(] array, int value) || appiication :
- ference & Configuration: | Active (Debug) v &
S public static int BinarySearch(int[] array, int value) N &
g M Platform: | Active (Any CPU) V) .
H Contract.Ensures(ebug e g — [E
g Contract.Result<int>() < @ || array[Contract.Result<int>()] == value); Resowces. (] Perfom Runtine Cortract Checkng | Ful §
g senices Custom RewerMethods s
- int inf = 0]
int_su ray:Length - 1; // spot null dereference, report preconditic} 7
H
Satic Checking

e Cinf e .
while (inf <= sup) Signing ———— g
Secur U
int index = (inf + sup) / 2; // spot int overflow, report fix ey) Gheck in Background 4 sShow sauggles z
int mid = array[index]; Publish impict NonNul Obigations Impict A—hmetic Oblgations 3
s s 0 it g
¢ (alie = i) = o~ v - | f
‘r?lurn ind;x;)// prove postcondition T, W °
if (mid < value H
ferRecuies Sugges Requres H
inf = index + 1; S“ = -
else o Enures Ey
sup = index - 1;) o ¢
0] Coche Resuls coudetserver g
return -1; // prove postcondition - . H
e cptestic on sl AP . &

v < R >

Search Error List P~
Column « Project a
Eample

Find Results |

Manuel Fihndrich, Francesco Logozzo: i i i ion. FoVeOOS 2010: 10-30

TASE 2015, September 12-14, 2015, Nanjing, China 98 ®P Couso

Comments on screenshot (courtesy Francesco Logozzo)

I. A screenshot from Clousot/cccheck on the classic binary search.
2. The screenshot shows from left to right and top to bottom
|. C# code + CodeContracts with a buggy BinarySearch
2. cccheck integration inVS (right pane with all the options integrated in the VS project
system)
3. cccheck messages in the VS error list
3. The features of cccheck that it shows are:
|. basic abstract interpretation:
I. the loop invariant to prove the array access correct and that the arithmetic operation
may overflow is inferred fully automatically
2. different from deductive methods as e.g. ESC/Java or Boogie where the loop invariant
must be provided by the end-user
2. inference of necessary preconditions:
I. Clousot finds that array may be null (message 3)
2. Clousot suggests and propagates a necessary precondition invariant (message |)
3. array analysis (+ disjunctive reasoning):
|. to prove the postcondition should infer property of the content of the array
2. please note that the postcondition is true even if there is no precondition requiring the
array to be sorted.
4. verified code repairs:
I. from the inferred loop invariant does not follow that index computation does not
overflow

TASE 2015, September 12-14, 2015, Nanjing, China 99 ®P Couso

Example Ill: CodeHawk

* http://www.kestreltechnology.com

GUI allows user to input
resolution engine to
resolve open proof User
obligations & input Interface
program corrections
for unsafe locations

CodeHawk

Resolution Engine
processes open
proof obligations

) Resolution
Front end ingests C Engine

program and outputs
list of proven safe
locations

©
Program

CHIF sent to, and
invariants

received from
the AIE

CodeHawk Abstract Interpretation Engine

The AIE
mathematically
models program
behavior

TASE 2015, September 12-14, 2015, Nanjing, Ch ©P Couso

Goal is 100% of locations |
proven Mathematically Safe

Conclusion

101

Abstract interpretation

Intellectual tool (not to be confused with its specific
application to iterative static analysis with \/ & A\)

No cathedral would have been built without plumb-line
and square, certainly not enough for skyscrapers:

Powerful tools are needed for progress and
applicability of formal methods

102

Abstract interpretation

Varieties of researchers in formal methods:

(i) explicitly use abstract interpretation, and are happy
to extend its scope and broaden its applicability

(ii) implicitly use abstract interpretation, and hide it
(iii) pretend to use abstract interpretation, but misuse it

(iv) don’t know that they use abstract interpretation, but
would benefit from it

Never too late to upgrade

103

The End

104

The End
Thank You

105

