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A casual introduction to 
Abstract Interpretation

1
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Examples of 
Abstractions

2

P. Cousot & R. Cousot. A gentle introduction to formal verification of computer systems by abstract interpretation. In Logics and Languages for Reliability and Security, J. Esparza, O. Grumberg, & 
M. Broy (Eds), NATO Science Series III: Computer and Systems Sciences, © IOS Press, 2010, Pages 1—29.
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Abstractions of Dora Maar by Picasso

3
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Pixelation of a photo by Jay Maisel

4

www.petapixel.com/2011/06/23/how-much-pixelation-is-needed-before-a-photo-becomes-transformed/
Image credit: Photograph by Jay Maisel
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An old idea...

5

The concrete is not always well-known!

20 000 years old picture in a spanish cave:
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Abstractions of a man / crowd

6
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Numerical abstractions in Astrée

7

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌃ [a, b] x ⌅ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⌅cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌃ D1, . . . , lfp�Fn ⌃ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇧ �1(lfp�F1) � · · · � �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌃ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌃ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F ( x1, . . . , xn⌦) � ⇥( F1(x1), . . . ,
Fn(xn⌦) and  r1, . . . , rn⌦ = lfp�F in CJtKI ⇧ �1(r1) � · · · � �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥( [0, 100], odd⌦) =  [1, 99], odd⌦.

10 of 38

American Institute of Aeronautics and Astronautics
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A slightly more detailled 
example

8
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Set of functions abstraction

9

t

fi(t)

i=0
i=1
i=2

i=3

i=4

How to approximate { f1, f2, f3, f4 } ?
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t

f(t)

Set of functions abstraction

10
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A less precise abstraction

11

t

f(t)
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Concrete questions answered in the abstract

12

t

f(t)

M

m

on the fi 

∃ i, t ∈ [l, h]: fi(t) < m ?   No

∃ i, t ∈ [l,h] : fi(t) > M ?  

l h

Min/max questions on the fi
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Concrete questions answered in the abstract

13

t

f(t)

M

∃ i, t ∈ [l,h] : fi(t) < m ?   No
m

∃ i, t ∈ [l,h]: fi(t) > M ?   I don’t know

Min/max questions on the fi

l h
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• No concrete case is ever forgotten:

Soundness of the abstraction

14

t

f(t)
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A more precise/refined abstraction

15

t

f(t)
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An even more precise/refined abstraction

16

t

f(t)
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Passing to the limit

17

t

f(t)

Sound and complete abstraction for min/max questions on 
the fi
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A non-comparable abstraction

1811

t

f(t)

Sound and incomplete abstraction for min/max questions on 
the fi
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The hierarchy of abstractions

19
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Elements of Abstract 
Interpretation Theory 

Explained with ... Flowers

20

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse És Sciences 
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, Proceedings of the second international symposium on Programming, Paris, 
France, pages 106—130, April 13-15 1976, Dunod, Paris.
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Elements of Abstract 
Interpretation Theory 

Explained with ... Flowers

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse És Sciences 
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, Proceedings of the second international symposium on Programming, Paris, 
France, pages 106—130, April 13-15 1976, Dunod, Paris.
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The concrete world

22
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A mini graphical language

23

• Objects o ∈ O

• Operations on objects  On       O, n ≥ 0

• Logical operations on objects  On       Booleans, n ≥ 0
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Objects
• An object o ∈ O is defined by

• An origin (a reference point    )

• A set of (infinitely small) black pixels (on a white 
background)

• Example I of object:

24
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An example II of object: a flower

25
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• Inclusion ⊆

• Examples: 

Logical operations on objects

26

⊆ ⊆
⊆ ⊆
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Constant objects
• A petal is an example of constant object

            

               petal      =   

27
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• rotation

         r[a](o)

rotates the object o clockwise by angle a degrees 
around its origin

Operation on objects: rotation

28

a

o r[a](o)
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Example I of rotation

29

petal = r[45](petal) =
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Example II of rotation

30

flower = r[-45](flower) =
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Operation on objects: add a stem
• Add a stem

     stem(o)

adds a stem to object o (up to the origin of object o, 
with new origin at the root of the stem)

31

o = stem(o) =
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Operation on objects: union
• The union o1 U  o2 of objects o1 and o2 is the 

superposition of the pixels of o1 and o2 at their 
origins

• Example:

o1 =                  o2 =                   o1Uo2 =

32
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Example: corolla

• corolla = petal U r[45](petal) U r[90](petal) U 
r[135](petal) U r[180](petal) U r[225](petal) U 
r[270](petal) U r[315](petal)

33
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 flower

34

corolla = 

flower = stem(corolla) =
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Building a corolla iteratively

35

F0 F1 F2 F3 F4

F5 F6 F7 F8 Fn, n≥8
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• F(X) = r[45]X   U  petal

• Example:

• X =

• r[45]X =

• r[45]X U petal =

Corolla transformer

36
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Iterates of a transformer to a fixpoint

• The iterates Fn, n≥0, of F from the empty set ∅ are

• Least fixpoint:  F(lfp F) = lfp F,       and 
                      F(x)=x implies  lfp F ⊆ x

37

F0 = ∅
F1 = F(F0)
F2 = F(F1)
…
Fn+1 = F(Fn)
…
Fω = Un≥0 Fn = lfp F

Patrick Cousot & Radhia Cousot. Constructive versions of Tarski's fixed point theorems. In Pacific Journal of Mathematics, Vol. 82, No. 1, 1979, pp. 43—57.

(assuming F continuous)
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Fixpoint corolla
• F(X) = r[45]X   U  petal

• corolla = lfp F =

• Proof: the iterates are

38CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012                                                                                                                       © P. Cousot

Building a corolla iteratively

34

F0 F1 F2 F3 F4

F5 F6 F7 F8 Fn, n≥8
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• bouquet = r[-45](flower) U flower U r[45](flower)

Concrete bouquet

39
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The abstract world

40
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Over-approximation

41

• An over-approximation of an object o is an object o 
with

• same origin

• more pixels

• The dual  is an under-approximation, with less pixels

(I) Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse És Sciences 
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.

(I)
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Examples of over-approximations of flowers 

42

⊆ ⊆
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Abstraction
• An abstraction of an object o is a mathematical/

computer representation of an over-approximation 
of this object o

• The abstraction is sometimes exact else is a strict 
over-approximation

• Examples abstraction by plain squares

                                        exact

                                        strict over-approximation

43
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• Encode a concrete over-approximation by its outline

mm

Examples of abstractions of flowers 

44

concrete                abstract              more abstract
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A Touch of  Abstract 
Interpretation Theory

45

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282
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Abstract domain
• An abstract domain is

• a set of abstract objects O (abstracting concrete 
objects)

• a set of abstract operations (abstracting the 
concrete operations) On       O, n ≥ 0

• a set of logical abstract operations 

On       Booleans, n ≥ 0

46
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Abstraction function

• The abstraction function α ∈ O     O maps concrete 
objects o ∈ O to their approximation by an abstract 
object  α(o) ∈ O

• Example I of abstraction function by plain squares:

47

Patrick Cousot, Radhia Cousot, Laurent Mauborgne: The Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

α

α

o α(o)

exact

approximate
α
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Example II of abstraction function

48

Outlining brush: 
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Example III of abstraction function

49

Outlining brush of infinite diameter
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• Larger brush diameter: more abstract

• Different brush shapes: may be non-comparable 
abstractions

The hierarchy of abstractions

50

Oval outlining brush:
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Concretization function
• A concretization function γ ∈ O    O maps an ab-

stract object o ∈ O to the concrete objects γ(o) ∈ O 
that is represents/approximates

• γ(o) is the concrete meaning/semantics of o

51

Patrick Cousot, Radhia Cousot, Laurent Mauborgne: The Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282
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Example of concretization

52

γ(o)o γ
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Abstract logical operation: abstract inclusion

• The abstract flower inclusion is defined as

    o1 m o2     if and only if     γ(o1) ⊆ γ(o2) 

• Example:

53

m ⊆since
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Galois connection 1/4
• α is increasing

The larger the concrete, the larger the abstract

54

⊆ mimplies

Patrick Cousot, Radhia Cousot, Laurent Mauborgne: The Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282
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Galois connection 2/4
• γ is increasing

• Proof: by definition of m, o1 m o2  implies γ(o1) ⊆ γ(o2)

55

m implies
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Galois connection 3/4
• For all concrete objects x ∈ O,   x ⊆  γ o α(x)  

• Intuition: soudness (over-approximation)

56

flower              α( flower )               γ(α( flower ))
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Galois connection 4/4

• For all abstract objects y ∈ O,   α o γ(y)  =  y 

• Intuition: α returns the most precise abstraction 

57

flower                γ(flower)                 α(γ(flower))
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Galois connection: all in one

• Notation:

   

• Equivalent definition

    ∀ o ∈ O,  o ∈ O:   α(o) m o     iff     o ⊆ γ(o)

    α surjective

58

⇒ soundness
⇐ best abstractionand

Patrick Cousot, Radhia Cousot, Laurent Mauborgne: The Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

α

γ
<O, ⊆ >                <O, m >

(otherwise α o γ(y)  m  y)
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Example of biological abstraction

59

Set of reachable chemical species

Let R = {R
i

} be a set of rules.
Let Species be the set of all chemical species (C, c

1

, c

0
1

, . . . , c

k

, c

0
k

, . . . 2 Species).
Let Species

0

be the set of initial .
We write:

c

1

, . . . , c

m

!
R

k

c

0
1

, . . . , c

0
n

whenever:
1. there is an embedding of the lhs of R

k

in the solution c

1

, . . . , c

m

;
2. the (embedding/rule) produces the solution c

0
1

, . . . , c

0
n

.

We are interested in Species

!

the set of all chemical species that can be
constructed in one or several applications of rules in R starting from the set
Species

0

of initial chemical species.

(We do not care about the number of occurrences of each chemical species).

Jérôme Feret 20 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012
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Local views

E

R

E

R

R

E

r

l.

l

r

Y1

u

l

Y1

r.

u

↵({R(Y1⇠u,l!1), E(r!1)}) = {R(Y1⇠u,l!r.E); E(r!l.R)}.

Jérôme Feret 22 January 2012

Local views

E

R

E

R

R

E

r

l.

l

r

Y1

u

l

Y1

r.

u

↵({R(Y1⇠u,l!1), E(r!1)}) = {R(Y1⇠u,l!r.E); E(r!l.R)}.

Jérôme Feret 22 January 2012

Local views

E

R

E

R

R

E

r

l.

l

r

Y1

u

l

Y1

r.

u

↵({R(Y1⇠u,l!1), E(r!1)}) = {R(Y1⇠u,l!r.E); E(r!l.R)}.

Jérôme Feret 22 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).
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• cte = α(cte)

op1(x) = α(op1(γ(x)))

op2(x, y) = α(op2(γ(x), γ(y)))

….

opn(x1,…,xn) = α(opn(γ(x1), …,γ(xn)))

• Can be less precise

α(opn(γ(x1), …,γ(xn))) m opn(x1,…,xn)

Specification of abstract operations

60

constant

unary

binary

…

n-ary
D

D

D

D
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Abstract constants
• Abstract petal

α(      )     =    

61

D
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• Abstract rotation

    r[a](o)  =   α(r[a](γ(o)))

               =   α(γ(r[a](o)))

               =   r[a](o)

• Example:

Abstract rotation

62

D
definition

rotation preserves shape

identity

a

o 

a

γ(o) α(r[a](γ(o)))r[a](γ(o))
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A commutation theorem on rotation
• α(r[a](y)) = r[a](α(y))                                ∀ y ∈ O

• Proof:

= α(r[a](y))

= α(γ(α(r[a](y))))

= α(γ(r[a](α(y))))

= α(r[a](γ(α(y))))

= r[a](α(y))  

63

α o γ is the identity

α preserves rotation

γ preserves rotation

definition abstract rotationD
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Abstract stems
• stem(y) = α(stem(γ(y)))

• Example:

64

α(stem(γ(corolla)))stem(γ(corolla))γ(corolla)corolla

D
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Abstract union
• x + y  =  α(γ(x) U γ(y))

• Join abstraction theorem:

α(x) + α(y) = α(x U y)                  Galois connection

65

D
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Abstract bouquet (cont’d)
• bouquet = r[-45](flower) + flower + r[45](flower)

66

++
= =

=

=

( )α (γ U) (γ ) U (γ )
U U( )α
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Abstract bouquet (cont’d)

67

( )α

U U( )α

=

=
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A theorem on abstract bouquets
• bouquet 

r[-45](flower) + flower + r[45](flower)

r[-45](α(flower)) + α(flower) + r[45](α(flower))

α(r[-45](flower)) + α(flower) + α(r[45](flower))

α(r[-45](flower) U flower U r[45](flower))

α(bouquet)

68

=

=

=

=

flower = α(flower)

rotation commutation theorem

join abstraction theorem

=
definition concrete bouquet
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Abstract corolla transformer
• Corolla transformer commutation theorem:

• α(F(x))

= α(petal U r[45](x))

= α(petal) + α(r[45](x))

= petal + α(r[45](x))

= petal + r[45](α(x))

= F(α(x))

        by defining F(y) = petal + r[45](y)

69

join abstraction theorem

definition F

rotation commut. theorem

definition abstract petal
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Abstract transformer
• An abstract transformer      is

• Sound iff

• Complete iff

70

↵t(T ) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF
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Example of biological transformer
• Concrete rule:

• Abstract rule:

71
Vincent Danos, Jérôme Feret, Walter Fontana, Jean Krivine: Abstract Interpretation of Cellular Signalling Networks. VMCAI 2008: 83-97

Jérôme Feret. Reachability Analysis of Biological Signalling Pathways by Abstract Interpretation. In Proceedings of the International Conference of Computational Methods in Sciences and Engineering 
(ICCMSE'2007), Corfu, Greece, 25--30 september, T.E. Simos(Ed.), 2007, American Institute of Physics conference proceedings 963.(2), pp 619--622.

Abstract rules

#

l

R R RR

E

R

RR E

RR
..

R

r r rr

u

Y1

u

Y1

l

r.

p

Y1

r.

r

r.

r
l r l

r.

p

Y1

r
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Fixpoint abstraction
• For an increasing and sound abstract transformer, we 

have a fixpoint approximation

• For an increasing, sound, and complete abstract 
transformer, we have an exact fixpoint abstraction

72
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Abstract corolla
• corolla = α(corolla) = α(lfp⊆ F) = lfpm F

since  F(x) = petal U r[45](x)

and    F(y) = petal + r[45](y)

do commute: α(F(x)) = F(α(x))

73
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Iterates for the abstract corolla

74

F0 F1 F2 F3 F4

F5 F6 F7 F8 Fn, n≥8
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Example of biological fixpoint
• Concrete reachability transformer:

• Reachable species from

        lfp⊆ λ X.              ∪    (X)

• Abstract reachability transformer:

75

Inductive definition

We define the mapping F as follows:

F :

8
>><

>>:

}(Species) ! }(Species)

X 7! X [
�
c

0
j

����
9R

k

2 R, c

1

, . . . , c

m

2 X,

c

1

, . . . , c

m

!
R

k

c

0
1

, . . . , c

0
n

✏
.

The set }(Species) is a complete lattice.
The mapping F is an extensive [-complete morphism.

We define the set of reachable chemical species as follows:

Species

!

=
[�

Fn(Species

0

)
��
n 2 N

 
.
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Abstract counterpart to F

We define F] as:

F] :

8
>><

>>:

}(Local_view) ! }(Local_view)

X 7! X [
�

lv

0
j

����
9R

k

2 R, lv

1

, . . . , lv

m

2 X,

lv

1

, . . . , lv

m

!]
R

k

lv

0
1

, . . . , lv

0
n

✏
.

We have:
• F] is extensive;
• F] is monotonic;

• F � �
.

✓ � � F];
• F] � ↵ = ↵ � F � � � ↵ (we will see later why).
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Set of reachable chemical species

Let R = {R
i

} be a set of rules.
Let Species be the set of all chemical species (C, c

1

, c

0
1

, . . . , c

k

, c

0
k

, . . . 2 Species).
Let Species

0

be the set of initial .
We write:

c

1

, . . . , c

m

!
R

k

c

0
1

, . . . , c

0
n

whenever:
1. there is an embedding of the lhs of R

k

in the solution c

1

, . . . , c

m

;
2. the (embedding/rule) produces the solution c

0
1

, . . . , c

0
n

.

We are interested in Species

!

the set of all chemical species that can be
constructed in one or several applications of rules in R starting from the set
Species

0

of initial chemical species.

(We do not care about the number of occurrences of each chemical species).
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Convergence acceleration with widening

76

Infinite iteration Accelerated iteration with widening
(e.g. with a widening based on the 

derivative as in Newton-Raphson method)

F

l fp F

F

l fp F x

F(x)6x
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Abstraction of the graphical language
• Any graphical program can be abstracted by replacing 

the concrete objects/operations by abstract ones

• The soundness follows by induction on the syntax of 
programs

77
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Applications of Abstract 
Interpretation in 

Computer Science

78

See Software Horror Stories (www.cs.tau.ac.il/~nachumd/horror.html)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012                                                                                                                       © P. Cousot

Software

79

• Ait: static analysis of the worst-case execution time of control/command 
software (www.absint.com/ait/) 

• Astrée: proof of absence of runtime errors in embedded synchronous 
real time control/command software (www.absint.com/astree/), 
AstréeA for asynchronous programs (www.astreea.ens.fr/)

• C Global Surveyor, NASA, static analyzer for flight software of NASA 
m i s s i o n s ( www.cmu.edu/silicon-valley/faculty-staff/venet-
arnaud.html)

• Checkmate: static analyzer of multi-threaded Java programs  
(www.pietro.ferrara.name/checkmate/) 

• CodeContracts Static Checker, Microsoft (msdn.microsoft.com/en-us/
devlabs/dd491992.aspx)

• Fluctuat: static analysis of the precision of numerical computations (www-
list.cea.fr/labos/gb/LSL/fluctuat/index.html)
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Software
• Infer: Static analyzer for C/C++ (monoidics.com/)

• Ju l i a : s t a t i c a n a l y z e r f o r J av a a nd And ro i d p ro g r ams    
(www.juliasoft.com/juliasoft-android-java-verification.aspx?
Id=201177234649)

• Predator: static analyzer of C dynamic data structures using separation 
logic (www.fit.vutbr.cz/research/groups/verifit/tools/predator/)

• Terminator: termination proof (www.cs.ucl.ac.uk/staff/p.ohearn/
Invader/Invader/Invader_Home.html)

• etc

• Apron numerical domains library (apron.cri.ensmp.fr/library/)

• Parma Polyhedral Library (bugseng.com/products/ppl/)

• etc

80

Libraries:
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Hardware
• (Generalized) symbolic trajectory evaluation (Intel)

81

Example of ternary simulation
If some inputs are undefined, the output often is too, but not
always:

X
X
1
X
1
X
X

X
7-input
AND gate

X
X
0
X
X
X
X

0
7-input
AND gate

16

Quaternary simulation

It’s theoretically convenient to generalize ternary to quaternary
simulation, introducing an ‘overconstrained’ value T .
We can think of each quaternary value as standing for a set of
possible values:

T = {}
0 = {0}
1 = {1}
X = {0, 1}

This is essentially a simple case of an abstraction mapping, and we
can think of the abstract values partially ordered by information.

18

Intel’s Successes with Formal Methods

John Harrison

Intel Corporation

15 March 2012

1
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Jin Yang and Carl-Johan H. Seger, Generalized Symbolic Trajectory Evaluation — Abstraction in Action, Formal Methods in Computer-Aided Design, Lecture Notes in Computer Science, 2002, Volume 
2517/2002, 70–87.

Jin Yang;   Seger, C.-J.H.;  Introduction to generalized symbolic trajectory evaluation, IEEE Transactions onVery Large Scale Integration (VLSI) Systems 11(3), June 2003, 345–353.
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System biology
• See SBFM‘2012 !

82
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Conclusion

83
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Conclusion

84

If the simulation/analysis/checking of your 
model does not scale up, consider using (sound 
(and complete)) abstractions


