
CMACS Workshop on Systems Biology and Formals Methods
(SBFM'12)

Patrick Cousot
cs.nyu.edu/~pcousot

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

di.ens.fr/~cousot

NYU, 29–30 March 2012

A casual introduction to
Abstract Interpretation

1

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Examples of
Abstractions

2

P. Cousot & R. Cousot. A gentle introduction to formal verification of computer systems by abstract interpretation. In Logics and Languages for Reliability and Security, J. Esparza, O. Grumberg, &
M. Broy (Eds), NATO Science Series III: Computer and Systems Sciences, © IOS Press, 2010, Pages 1—29.

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstractions of Dora Maar by Picasso

3

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Pixelation of a photo by Jay Maisel

4

www.petapixel.com/2011/06/23/how-much-pixelation-is-needed-before-a-photo-becomes-transformed/
Image credit: Photograph by Jay Maisel

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

An old idea...

5

The concrete is not always well-known!

20 000 years old picture in a spanish cave:

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstractions of a man / crowd

6

Height

Fingerprint

Eye color

DNA

...

...

,

Individual heights

min, max

NFM 2012 — 4th NASA Formal Methods Symposium — Norfolk, VA, April 3–5, 2012 © P Cousot

Numerical abstractions in Astrée

7

II.P. Combination of abstract domains

Abstract interpretation-based tools usually use several di�erent abstract domains, since the design of a
complex one is best decomposed into a combination of simpler abstract domains. Here are a few abstract
domain examples used in the Astrée static analyzer:2

x

y

x

y

x

y

Collecting semantics:1,5 Intervals:20 Simple congruences:24

partial traces x ⌃ [a, b] x ⌅ a[b]

x

y

x

y

t

y

Octagons:25 Ellipses:26 Exponentials:27

±x± y ⇥ a x2 + by2 � axy ⇥ d �abt ⇥ y(t) ⇥ abt

Such abstract domains (and more) are described in more details in Sects. III.H–III.I.
The following classic abstract domains, however, are not used in Astrée because they are either too

imprecise, not scalable, di⌅cult to implement correctly (for instance, soundness may be an issue in the event
of floating-point rounding), or out of scope (determining program properties which are usually of no interest
to prove the specification):

x

y

x

y

x

y

Polyhedra:9 Signs:7 Linear congruences:28

too costly too imprecise out of scope

Because abstract domains do not use a uniform machine representation of the information they manip-
ulate, combining them is not completely trivial. The conjunction of abstract program properties has to be
performed, ideally, by a reduced product7 for Galois connection abstractions. In absence of a Galois connec-
tion or for performance reasons, the conjunction is performed using an easily computable but not optimal
over-approximation of this combination of abstract domains.

Assume that we have designed several abstract domains and compute lfp�F1 ⌃ D1, . . . , lfp�Fn ⌃ Dn

in these abstract domains D1, . . . , Dn, relative to a collecting semantics CJtKI. The combination of these
analyses is sound as CJtKI ⇧ �1(lfp�F1) � · · · � �n(lfp�Fn). However, only combining the analysis results is
not very precise, as it does not permit analyses to improve each other during the computation. Consider, for
instance, that interval and parity analyses find respectively that x ⌃ [0, 100] and x is odd at some iteration.
Combining the results would enable the interval analysis to continue with the interval x ⌃ [1, 99] and, e.g.,
avoid a useless widening. This is not possible with analyses carried out independently.

Combining the analyses by a reduced product, the proof becomes “let F (x1, . . . , xn⌦) � ⇥(F1(x1), . . . ,
Fn(xn⌦) and r1, . . . , rn⌦ = lfp�F in CJtKI ⇧ �1(r1) � · · · � �n(rn)” where ⇥ performs the reduction between
abstract domains. For example ⇥([0, 100], odd⌦) = [1, 99], odd⌦.

10 of 38

American Institute of Aeronautics and Astronautics

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

A slightly more detailled
example

8

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Set of functions abstraction

9

t

fi(t)

i=0
i=1
i=2

i=3

i=4

How to approximate { f1, f2, f3, f4 } ?

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

t

f(t)

Set of functions abstraction

10

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

A less precise abstraction

11

t

f(t)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Concrete questions answered in the abstract

12

t

f(t)

M

m

on the fi

∃ i, t ∈ [l, h]: fi(t) < m ? No

∃ i, t ∈ [l,h] : fi(t) > M ?

l h

Min/max questions on the fi

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Concrete questions answered in the abstract

13

t

f(t)

M

∃ i, t ∈ [l,h] : fi(t) < m ? No
m

∃ i, t ∈ [l,h]: fi(t) > M ? I don’t know

Min/max questions on the fi

l h

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

• No concrete case is ever forgotten:

Soundness of the abstraction

14

t

f(t)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

A more precise/refined abstraction

15

t

f(t)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

An even more precise/refined abstraction

16

t

f(t)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Passing to the limit

17

t

f(t)

Sound and complete abstraction for min/max questions on
the fi

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

A non-comparable abstraction

1811

t

f(t)

Sound and incomplete abstraction for min/max questions on
the fi

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

The hierarchy of abstractions

19

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Elements of Abstract
Interpretation Theory

Explained with ... Flowers

20

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse És Sciences
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, Proceedings of the second international symposium on Programming, Paris,
France, pages 106—130, April 13-15 1976, Dunod, Paris.

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot21

Elements of Abstract
Interpretation Theory

Explained with ... Flowers

Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse És Sciences
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

Patrick Cousot & Radhia Cousot. Static Determination of Dynamic Properties of Programs. In B. Robinet, editor, Proceedings of the second international symposium on Programming, Paris,
France, pages 106—130, April 13-15 1976, Dunod, Paris.

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

The concrete world

22

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

A mini graphical language

23

• Objects o ∈ O

• Operations on objects On O, n ≥ 0

• Logical operations on objects On Booleans, n ≥ 0

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Objects
• An object o ∈ O is defined by

• An origin (a reference point)

• A set of (infinitely small) black pixels (on a white
background)

• Example I of object:

24

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

An example II of object: a flower

25

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

• Inclusion ⊆

• Examples:

Logical operations on objects

26

⊆ ⊆
⊆ ⊆

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Constant objects
• A petal is an example of constant object

 petal =

27

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

• rotation

 r[a](o)

rotates the object o clockwise by angle a degrees
around its origin

Operation on objects: rotation

28

a

o r[a](o)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Example I of rotation

29

petal = r[45](petal) =

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Example II of rotation

30

flower = r[-45](flower) =

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Operation on objects: add a stem
• Add a stem

 stem(o)

adds a stem to object o (up to the origin of object o,
with new origin at the root of the stem)

31

o = stem(o) =

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Operation on objects: union
• The union o1 U o2 of objects o1 and o2 is the

superposition of the pixels of o1 and o2 at their
origins

• Example:

o1 = o2 = o1Uo2 =

32

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Example: corolla

• corolla = petal U r[45](petal) U r[90](petal) U
r[135](petal) U r[180](petal) U r[225](petal) U
r[270](petal) U r[315](petal)

33

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

 flower

34

corolla =

flower = stem(corolla) =

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Building a corolla iteratively

35

F0 F1 F2 F3 F4

F5 F6 F7 F8 Fn, n≥8

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

• F(X) = r[45]X U petal

• Example:

• X =

• r[45]X =

• r[45]X U petal =

Corolla transformer

36

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Iterates of a transformer to a fixpoint

• The iterates Fn, n≥0, of F from the empty set ∅ are

• Least fixpoint: F(lfp F) = lfp F, and
 F(x)=x implies lfp F ⊆ x

37

F0 = ∅
F1 = F(F0)
F2 = F(F1)
…
Fn+1 = F(Fn)
…
Fω = Un≥0 Fn = lfp F

Patrick Cousot & Radhia Cousot. Constructive versions of Tarski's fixed point theorems. In Pacific Journal of Mathematics, Vol. 82, No. 1, 1979, pp. 43—57.

(assuming F continuous)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Fixpoint corolla
• F(X) = r[45]X U petal

• corolla = lfp F =

• Proof: the iterates are

38CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Building a corolla iteratively

34

F0 F1 F2 F3 F4

F5 F6 F7 F8 Fn, n≥8

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

• bouquet = r[-45](flower) U flower U r[45](flower)

Concrete bouquet

39

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

The abstract world

40

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Over-approximation

41

• An over-approximation of an object o is an object o
with

• same origin

• more pixels

• The dual is an under-approximation, with less pixels

(I) Patrick Cousot. Méthodes itératives de construction et d'approximation de points fixes d'opérateurs monotones sur un treillis, analyse sémantique des programmes. Thèse És Sciences
Mathématiques, Université Joseph Fourier, Grenoble, France, 21 March 1978

Patrick Cousot. Semantic foundations of program analysis. In S.S. Muchnick & N.D. Jones, editors, Program Flow Analysis: Theory and Applications, Ch. 10, pages 303—342, Prentice-
Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1981.

(I)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Examples of over-approximations of flowers

42

⊆ ⊆

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstraction
• An abstraction of an object o is a mathematical/

computer representation of an over-approximation
of this object o

• The abstraction is sometimes exact else is a strict
over-approximation

• Examples abstraction by plain squares

 exact

 strict over-approximation

43

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

• Encode a concrete over-approximation by its outline

mm

Examples of abstractions of flowers

44

concrete abstract more abstract

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

A Touch of Abstract
Interpretation Theory

45

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstract domain
• An abstract domain is

• a set of abstract objects O (abstracting concrete
objects)

• a set of abstract operations (abstracting the
concrete operations) On O, n ≥ 0

• a set of logical abstract operations

On Booleans, n ≥ 0

46

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstraction function

• The abstraction function α ∈ O O maps concrete
objects o ∈ O to their approximation by an abstract
object α(o) ∈ O

• Example I of abstraction function by plain squares:

47

Patrick Cousot, Radhia Cousot, Laurent Mauborgne: The Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

α

α

o α(o)

exact

approximate
α

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Example II of abstraction function

48

Outlining brush:

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Example III of abstraction function

49

Outlining brush of infinite diameter

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

• Larger brush diameter: more abstract

• Different brush shapes: may be non-comparable
abstractions

The hierarchy of abstractions

50

Oval outlining brush:

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Concretization function
• A concretization function γ ∈ O O maps an ab-

stract object o ∈ O to the concrete objects γ(o) ∈ O
that is represents/approximates

• γ(o) is the concrete meaning/semantics of o

51

Patrick Cousot, Radhia Cousot, Laurent Mauborgne: The Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Example of concretization

52

γ(o)o γ

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstract logical operation: abstract inclusion

• The abstract flower inclusion is defined as

 o1 m o2 if and only if γ(o1) ⊆ γ(o2)

• Example:

53

m ⊆since

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Galois connection 1/4
• α is increasing

The larger the concrete, the larger the abstract

54

⊆ mimplies

Patrick Cousot, Radhia Cousot, Laurent Mauborgne: The Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Galois connection 2/4
• γ is increasing

• Proof: by definition of m, o1 m o2 implies γ(o1) ⊆ γ(o2)

55

m implies

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Galois connection 3/4
• For all concrete objects x ∈ O, x ⊆ γ o α(x)

• Intuition: soudness (over-approximation)

56

flower α(flower) γ(α(flower))

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Galois connection 4/4

• For all abstract objects y ∈ O, α o γ(y) = y

• Intuition: α returns the most precise abstraction

57

flower γ(flower) α(γ(flower))

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Galois connection: all in one

• Notation:

• Equivalent definition

 ∀ o ∈ O, o ∈ O: α(o) m o iff o ⊆ γ(o)

 α surjective

58

⇒ soundness
⇐ best abstractionand

Patrick Cousot, Radhia Cousot, Laurent Mauborgne: The Reduced Product of Abstract Domains and the Combination of Decision Procedures. FOSSACS 2011: 456-472
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

α

γ
<O, ⊆ > <O, m >

(otherwise α o γ(y) m y)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Example of biological abstraction

59

Set of reachable chemical species

Let R = {R
i

} be a set of rules.
Let Species be the set of all chemical species (C, c

1

, c

0
1

, . . . , c

k

, c

0
k

, . . . 2 Species).
Let Species

0

be the set of initial .
We write:

c

1

, . . . , c

m

!
R

k

c

0
1

, . . . , c

0
n

whenever:
1. there is an embedding of the lhs of R

k

in the solution c

1

, . . . , c

m

;
2. the (embedding/rule) produces the solution c

0
1

, . . . , c

0
n

.

We are interested in Species

!

the set of all chemical species that can be
constructed in one or several applications of rules in R starting from the set
Species

0

of initial chemical species.

(We do not care about the number of occurrences of each chemical species).

Jérôme Feret 20 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

Local views

E

R

E

R

R

E

r

l.

l

r

Y1

u

l

Y1

r.

u

↵({R(Y1⇠u,l!1), E(r!1)}) = {R(Y1⇠u,l!r.E); E(r!l.R)}.

Jérôme Feret 22 January 2012

Local views

E

R

E

R

R

E

r

l.

l

r

Y1

u

l

Y1

r.

u

↵({R(Y1⇠u,l!1), E(r!1)}) = {R(Y1⇠u,l!r.E); E(r!l.R)}.

Jérôme Feret 22 January 2012

Local views

E

R

E

R

R

E

r

l.

l

r

Y1

u

l

Y1

r.

u

↵({R(Y1⇠u,l!1), E(r!1)}) = {R(Y1⇠u,l!r.E); E(r!l.R)}.

Jérôme Feret 22 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

•
•
•

•

•

Vincent Danos, Jérôme Feret, Walter Fontana, Jean Krivine: Abstract Interpretation of Cellular Signalling Networks. VMCAI 2008: 83-97

Jérôme Feret. Reachability Analysis of Biological Signalling Pathways by Abstract Interpretation. In Proceedings of the International Conference of Computational Methods in Sciences and Engineering
(ICCMSE'2007), Corfu, Greece, 25--30 september, T.E. Simos(Ed.), 2007, American Institute of Physics conference proceedings 963.(2), pp 619--622.

Galois connexion

Let Local_view be the set of all local views.

Let ↵ 2 }(Species)! }(Local_view) be the function that maps any set of
complexes into the set of their local views.

The set }(Local_view) is a complete lattice.
The function ↵ is a [-complete morphism.

Thus, it defines a Galois connexion:

}(Species) --! --
↵

�

}(Local_view).

(The function � maps a set of local views into the set of complexes that can
be built with these local views).

Jérôme Feret 23 January 2012

•

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

• cte = α(cte)

op1(x) = α(op1(γ(x)))

op2(x, y) = α(op2(γ(x), γ(y)))

….

opn(x1,…,xn) = α(opn(γ(x1), …,γ(xn)))

• Can be less precise

α(opn(γ(x1), …,γ(xn))) m opn(x1,…,xn)

Specification of abstract operations

60

constant

unary

binary

…

n-ary
D

D

D

D

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstract constants
• Abstract petal

α() =

61

D

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

• Abstract rotation

 r[a](o) = α(r[a](γ(o)))

 = α(γ(r[a](o)))

 = r[a](o)

• Example:

Abstract rotation

62

D
definition

rotation preserves shape

identity

a

o

a

γ(o) α(r[a](γ(o)))r[a](γ(o))

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

A commutation theorem on rotation
• α(r[a](y)) = r[a](α(y)) ∀ y ∈ O

• Proof:

= α(r[a](y))

= α(γ(α(r[a](y))))

= α(γ(r[a](α(y))))

= α(r[a](γ(α(y))))

= r[a](α(y))

63

α o γ is the identity

α preserves rotation

γ preserves rotation

definition abstract rotationD

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstract stems
• stem(y) = α(stem(γ(y)))

• Example:

64

α(stem(γ(corolla)))stem(γ(corolla))γ(corolla)corolla

D

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstract union
• x + y = α(γ(x) U γ(y))

• Join abstraction theorem:

α(x) + α(y) = α(x U y) Galois connection

65

D

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstract bouquet (cont’d)
• bouquet = r[-45](flower) + flower + r[45](flower)

66

++
= =

=

=

()α (γ U) (γ) U (γ)
U U()α

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstract bouquet (cont’d)

67

()α

U U()α

=

=

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

A theorem on abstract bouquets
• bouquet

r[-45](flower) + flower + r[45](flower)

r[-45](α(flower)) + α(flower) + r[45](α(flower))

α(r[-45](flower)) + α(flower) + α(r[45](flower))

α(r[-45](flower) U flower U r[45](flower))

α(bouquet)

68

=

=

=

=

flower = α(flower)

rotation commutation theorem

join abstraction theorem

=
definition concrete bouquet

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstract corolla transformer
• Corolla transformer commutation theorem:

• α(F(x))

= α(petal U r[45](x))

= α(petal) + α(r[45](x))

= petal + α(r[45](x))

= petal + r[45](α(x))

= F(α(x))

 by defining F(y) = petal + r[45](y)

69

join abstraction theorem

definition F

rotation commut. theorem

definition abstract petal

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstract transformer
• An abstract transformer is

• Sound iff

• Complete iff

70

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

258

Patrick Cousot, Radhia Cousot: Abstract Interpretation: A Unified Lattice Model for Static Analysis of Programs by Construction or Approximation of Fixpoints. POPL 1977: 238-252
Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

258

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Example of biological transformer
• Concrete rule:

• Abstract rule:

71
Vincent Danos, Jérôme Feret, Walter Fontana, Jean Krivine: Abstract Interpretation of Cellular Signalling Networks. VMCAI 2008: 83-97

Jérôme Feret. Reachability Analysis of Biological Signalling Pathways by Abstract Interpretation. In Proceedings of the International Conference of Computational Methods in Sciences and Engineering
(ICCMSE'2007), Corfu, Greece, 25--30 september, T.E. Simos(Ed.), 2007, American Institute of Physics conference proceedings 963.(2), pp 619--622.

Abstract rules

#

l

R R RR

E

R

RR E

RR
..

R

r r rr

u

Y1

u

Y1

l

r.

p

Y1

r.

r

r.

r
l r l

r.

p

Y1

r

Jérôme Feret 27 January 2012

Abstract rules

#

l

R R RR

E

R

RR E

RR
..

R

r r rr

u

Y1

u

Y1

l

r.

p

Y1

r.

r

r.

r
l r l

r.

p

Y1

r

Jérôme Feret 27 January 2012

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Fixpoint abstraction
• For an increasing and sound abstract transformer, we

have a fixpoint approximation

• For an increasing, sound, and complete abstract
transformer, we have an exact fixpoint abstraction

72

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

258

↵t(T) , T \ ⌃+JPK
P

↵t(⌧+1JPK) = ⌧+1JPK
x � y

x > y

=)

()

↵rk

;

!

↵A

↵G

f1 vv f2

↵rk 2 }(⌃ ⇥ ⌃) 7! (⌃ 67! O)
↵rk(r)s , 0 when 8s0 2 ⌃ : hs, s0i < r

↵rk(r)s , sup
n

↵rk(r)s0 + 1
�

�

� 9s0 2 ⌃ : hs, s0i 2 r ^
8s0 2 ⌃ : hs, s0i 2 r =) s0 2 dom(↵rk(r))

o

9k : ⌫(x, y) = k, x � y � 2k = 0, k > 0

k = ⌫(x, y)

↵⇥({⌧+1JPK}) = ⌧+1JPK

hP, 6, 0, 1, _, ^i

S JPK = lfp6FJPK
FJPK 2 P! P, increasing (or continuous)

S JPK 6 P

, lfp6FJPK 6 P
, 9I : FJPK(I) 6 I ^ I 6 P

hA, v, ?, >, t, ui

P 2 P ↵(P) 2 A

hP, 6i ���! ���↵
�
hA, vi

8P 2 P : 8Q 2 A : ↵(P) v Q, P 6 �(Q)

F 2 A! A

8P 2 P : ↵ � F(P) v F � ↵(P)

8P 2 P : ↵ � F(P) = F � ↵(P)

↵(lfp6F) v lfpvF

↵(lfp6F) = lfpvF

258

Patrick Cousot, Radhia Cousot: Systematic Design of Program Analysis Frameworks. POPL 1979: 269-282

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstract corolla
• corolla = α(corolla) = α(lfp⊆ F) = lfpm F

since F(x) = petal U r[45](x)

and F(y) = petal + r[45](y)

do commute: α(F(x)) = F(α(x))

73

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Iterates for the abstract corolla

74

F0 F1 F2 F3 F4

F5 F6 F7 F8 Fn, n≥8

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Example of biological fixpoint
• Concrete reachability transformer:

• Reachable species from

 lfp⊆ λ X. ∪ (X)

• Abstract reachability transformer:

75

Inductive definition

We define the mapping F as follows:

F :

8
>><

>>:

}(Species) ! }(Species)

X 7! X [
�
c

0
j

����
9R

k

2 R, c

1

, . . . , c

m

2 X,

c

1

, . . . , c

m

!
R

k

c

0
1

, . . . , c

0
n

✏
.

The set }(Species) is a complete lattice.
The mapping F is an extensive [-complete morphism.

We define the set of reachable chemical species as follows:

Species

!

=
[�

Fn(Species

0

)
��
n 2 N

.

Jérôme Feret 21 January 2012

Abstract counterpart to F

We define F] as:

F] :

8
>><

>>:

}(Local_view) ! }(Local_view)

X 7! X [
�

lv

0
j

����
9R

k

2 R, lv

1

, . . . , lv

m

2 X,

lv

1

, . . . , lv

m

!]
R

k

lv

0
1

, . . . , lv

0
n

✏
.

We have:
• F] is extensive;
• F] is monotonic;

• F � �
.

✓ � � F];
• F] � ↵ = ↵ � F � � � ↵ (we will see later why).

Jérôme Feret 28 January 2012

Vincent Danos, Jérôme Feret, Walter Fontana, Jean Krivine: Abstract Interpretation of Cellular Signalling Networks. VMCAI 2008: 83-97

Jérôme Feret. Reachability Analysis of Biological Signalling Pathways by Abstract Interpretation. In Proceedings of the International Conference of Computational Methods in Sciences and Engineering
(ICCMSE'2007), Corfu, Greece, 25--30 september, T.E. Simos(Ed.), 2007, American Institute of Physics conference proceedings 963.(2), pp 619--622.

Set of reachable chemical species

Let R = {R
i

} be a set of rules.
Let Species be the set of all chemical species (C, c

1

, c

0
1

, . . . , c

k

, c

0
k

, . . . 2 Species).
Let Species

0

be the set of initial .
We write:

c

1

, . . . , c

m

!
R

k

c

0
1

, . . . , c

0
n

whenever:
1. there is an embedding of the lhs of R

k

in the solution c

1

, . . . , c

m

;
2. the (embedding/rule) produces the solution c

0
1

, . . . , c

0
n

.

We are interested in Species

!

the set of all chemical species that can be
constructed in one or several applications of rules in R starting from the set
Species

0

of initial chemical species.

(We do not care about the number of occurrences of each chemical species).

Jérôme Feret 20 January 2012

Inductive definition

We define the mapping F as follows:

F :

8
>><

>>:

}(Species) ! }(Species)

X 7! X [
�
c

0
j

����
9R

k

2 R, c

1

, . . . , c

m

2 X,

c

1

, . . . , c

m

!
R

k

c

0
1

, . . . , c

0
n

✏
.

The set }(Species) is a complete lattice.
The mapping F is an extensive [-complete morphism.

We define the set of reachable chemical species as follows:

Species

!

=
[�

Fn(Species

0

)
��
n 2 N

.

Jérôme Feret 21 January 2012

Set of reachable chemical species

Let R = {R
i

} be a set of rules.
Let Species be the set of all chemical species (C, c

1

, c

0
1

, . . . , c

k

, c

0
k

, . . . 2 Species).
Let Species

0

be the set of initial .
We write:

c

1

, . . . , c

m

!
R

k

c

0
1

, . . . , c

0
n

whenever:
1. there is an embedding of the lhs of R

k

in the solution c

1

, . . . , c

m

;
2. the (embedding/rule) produces the solution c

0
1

, . . . , c

0
n

.

We are interested in Species

!

the set of all chemical species that can be
constructed in one or several applications of rules in R starting from the set
Species

0

of initial chemical species.

(We do not care about the number of occurrences of each chemical species).

Jérôme Feret 20 January 2012

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Convergence acceleration with widening

76

Infinite iteration Accelerated iteration with widening
(e.g. with a widening based on the

derivative as in Newton-Raphson method)

F

l fp F

F

l fp F x

F(x)6x

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Abstraction of the graphical language
• Any graphical program can be abstracted by replacing

the concrete objects/operations by abstract ones

• The soundness follows by induction on the syntax of
programs

77

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Applications of Abstract
Interpretation in

Computer Science

78

See Software Horror Stories (www.cs.tau.ac.il/~nachumd/horror.html)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Software

79

• Ait: static analysis of the worst-case execution time of control/command
software (www.absint.com/ait/)

• Astrée: proof of absence of runtime errors in embedded synchronous
real time control/command software (www.absint.com/astree/),
AstréeA for asynchronous programs (www.astreea.ens.fr/)

• C Global Surveyor, NASA, static analyzer for flight software of NASA
m i s s i o n s (www.cmu.edu/silicon-valley/faculty-staff/venet-
arnaud.html)

• Checkmate: static analyzer of multi-threaded Java programs
(www.pietro.ferrara.name/checkmate/)

• CodeContracts Static Checker, Microsoft (msdn.microsoft.com/en-us/
devlabs/dd491992.aspx)

• Fluctuat: static analysis of the precision of numerical computations (www-
list.cea.fr/labos/gb/LSL/fluctuat/index.html)

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Software
• Infer: Static analyzer for C/C++ (monoidics.com/)

• Ju l i a : s t a t i c a n a l y z e r f o r J av a a nd And ro i d p ro g r ams
(www.juliasoft.com/juliasoft-android-java-verification.aspx?
Id=201177234649)

• Predator: static analyzer of C dynamic data structures using separation
logic (www.fit.vutbr.cz/research/groups/verifit/tools/predator/)

• Terminator: termination proof (www.cs.ucl.ac.uk/staff/p.ohearn/
Invader/Invader/Invader_Home.html)

• etc

• Apron numerical domains library (apron.cri.ensmp.fr/library/)

• Parma Polyhedral Library (bugseng.com/products/ppl/)

• etc

80

Libraries:

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Hardware
• (Generalized) symbolic trajectory evaluation (Intel)

81

Example of ternary simulation
If some inputs are undefined, the output often is too, but not
always:

X
X
1
X
1
X
X

X
7-input
AND gate

X
X
0
X
X
X
X

0
7-input
AND gate

16

Quaternary simulation

It’s theoretically convenient to generalize ternary to quaternary
simulation, introducing an ‘overconstrained’ value T .
We can think of each quaternary value as standing for a set of
possible values:

T = {}
0 = {0}
1 = {1}
X = {0, 1}

This is essentially a simple case of an abstraction mapping, and we
can think of the abstract values partially ordered by information.

18

Intel’s Successes with Formal Methods

John Harrison

Intel Corporation

15 March 2012

1

����������������������	��������������
����������������������������������

Jin Yang and Carl-Johan H. Seger, Generalized Symbolic Trajectory Evaluation — Abstraction in Action, Formal Methods in Computer-Aided Design, Lecture Notes in Computer Science, 2002, Volume
2517/2002, 70–87.

Jin Yang; Seger, C.-J.H.; Introduction to generalized symbolic trajectory evaluation, IEEE Transactions onVery Large Scale Integration (VLSI) Systems 11(3), June 2003, 345–353.

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

System biology
• See SBFM‘2012 !

82

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Conclusion

83

CMACS Workshop on Systems Biology and Formals Methods (SBFM'12), NYU, 29–30 March 2012 © P. Cousot

Conclusion

84

If the simulation/analysis/checking of your
model does not scale up, consider using (sound
(and complete)) abstractions

