Calculational Design of Hyperlogics
by Abstract Interpretation

Patrick Cousot & Jeffery VWang

Courant Institute, New York University

POPL 2024, London I

P. Cousot

Objective

Conceive a method to design program
transformational hyperlogics

Transformational logic = Hoare style logics {P} S {Q}

2

Understanding a program logic

* What is the program semantics? S[F]

* \What is the strongest program semantic property (collecting
semantics)? {S[P]}

 What is the strongest program property of interest? os{S[P]}

* The properties of interest derive by implication (consequence
rule) ocoas{S[P]} (theory of the logic)

e \What are the proof rules??

Reminder (POPL 2024)

Relational semantics S[P] <-------- Structural fixpoint definition
l AS.{S} ::..calcu‘us
”

Collecting sem. {S[P]}<«---Structural fixpoint characterization
l X = Xc o Us Ca{CM{MS

"A
Theory of the logic a{S[P]}+-Structural fixpoint characterization

l Aczel+Park & ... 7 caleulus

‘e

Proof rules of the logiC «--------------------- Deductive system

Methodology

Can we calculate hyperlogics proof systems by
structural abstractions of the program semantics?

We will conclude that Yes”, but

* For hyperlogics, the strongest program property of interest
IS the collecting semantics itself {S[P]}

* There is no abstraction os (in general)

* Any proof of a general hyperproperty must characterize the
program semantics exactly!

 Unmanageable In practice!

* The only workaround Is to consider only abstract
hyperproperties!

0

Which semantics?

Which semantics?

* Hoare logic soundness/completeness for invariants
IS with respect to a relational semantics

* The logic would be essentially the same with
execution traces (but for primitives)

* |Is there a semantics covering both cases (and even
many others)?

Algebraic semantics:
a structural fixpoint definition

Algebraic semantics

 Parameterized by an abstract semantic domain
providing the model of executions and effect of
primitives

)ﬂ = ([L_HF, EL L_”F, |_|”, init! assignﬂﬂx Al
rassign®[x, a, b], test![B], break!, skip*, s*)

o2 (! TH |—|E>O, gﬂ)

oY) —OO

10

Algebraic semantics (contd)

o Structural fixpoint definition of the effect of
commands

* E£.g. assignment

* £.9. break
[x = A]! = assignt{x, A] [break])* =)b
[x = AJ! SR [break]! £ break!

[x = A]! = b [break]! S,

11

Algebraic semantics (cont’d)
e £.9. Iteration while (B) S
Fi 2 2AXel! «inith Ut ([B;S]! oF X)
Ft 2 AXeld -[B;S]lst X
[while (8) S|t = (Ifp™ Fi) st ([-8]% Lt [B;S]})
[while (B) S]i = !
[while (B) S]i. = (Ifp=* F!) st [B;s]!
[while (B) S]J}. = gfp=c F!
[while (B) SJ' = [while (B) SJi. uf, [while (B) S|

12

Algebraic semantics (cont’d)

* [he classic postulated presentation by equational
axioms "’ can be calculated by

e structural induction

* Aczel correspondence between fixpoints and
deductive systems (see POPL 2024)

(*) C. A.R. Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W. Roscoe, Jeft W. Sanders, Ib Holm Serensen, J. Michael
Spivey, and Bernard Sufrin. 1987. Laws of Programming. Commun. ACM 30, 8 (1987), 672—-686. https://doi.org/10.
1145/27651.27653

13

How to express
program properties?

“Programs are predicates’ °

* \We are only interested in properties of programs (not
in arbitrary properties)

e A program encodes a program execution property
defined by its semantics

* So defining properties as programs, we don’t need a
language for programs + another language for
predicates!

(*) Eric C. R. Hehner. 1990. A Practical Theory of Programming. Sci. Comput. Program. 14, 2-3 (1990), 133-158. https:

//doi.org/10.1016/0167-6423(90)90018-9 s

Property transformer

Algebraic property transformer

* Forward property transformer:

posth e L# 2> 0 25 |
post'(S)P = Pgts

A structural fixpoint
characterization of the property
transformer

A calculus of algebraic execution properties

e (Galois connection

pre(S)
VSel . (L c) ﬁ (L, &) ((L,E, u) is a poset)
pOS
* Using the abstraction methodology of POPL 2024, we

generalize POPL 2024 to

e a structural fixpoint algebraic calculus of execution
properties

* (and the lattice of algebraic transformational logics)

19

Hyperproperties

Algebraic hyperproperties

e | is the semantic domain (e.g. set of finite and
infinite traces, input-output relation)

e ©O([) is the set of hyperproperties (defined in
extension)

e C Is logical implication

21

Hyperproperty transformer

Algebraic hyperproperty transformer

e Transformer

Post € Lt (L) —Zp(Lh)
Post!(S)P = {post!(S)P | P e P}

e (Galois connection

Pre(S)

(p(LF), c) 2 > (p (L), c)

Post? (S)

23

Structural fixpoint characterization
of the hyperproperty transformer

Incomplete structural characterization of Post#($)

* Counter-example

Post![if (B) S; else S,['P
= {post|1 B; S, |FP U post|1 -B;S,|'P | P e P}

C {pOStH B;Sl le |_||1 pOSJ[|1 —lB;SZ HPZ P1 S PAPZ S 7)}
— {Ql |_||1 Qz | Q1€POStH B,Sl HP A\ QzEPOStH —IB;SZ HP}

* This structural collecting semantics () is incomplete

() Thibault Dardinier and Peter Miiller. 2024. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties. Proceedings
of the ACM on Programming Languages (PACMPL) 8, Issue PLDI, Article No.: 207 (June 2024), 1485-1509. https:

//doi.org/10.1145/3656437 o5

Complete structural characterization of Post#($S)

{post!(S)P} = Post'(S){P}
* Example:
Post'[if (B) S; else S,[IP
= {post|1 B;S,['P L post|1 -B;S,|'P| P eP)
= {0, Ut O, | O; € {post![B; S, [P} A O, € {post'[-B;S,]{P} AP e P}
= {0; ut Q, | Oy € Post![[B; S,]*{P} A O, € Post![-B;S,[{P} AP e P}

 We get a complete elementwise characterization of Post#(S)

20

Calculational design of the
algebraic hyperlogic rules

Upper and lower algebraic hyperlogics

e Definition

Post![s]'P c O
O c Post![s]tP

{Pls{elt
iPisicl

* The proof system is derived by calculational design
(as in POPL 2024)

28

Upper algebraic hyperlogic for iteration

(Pe=1ip™ Ef(P') A {{Pe} | -B{{Qe} b A {{Pe}}B;S{{Qb}] A
[{P}}B;S{{Que} b A Qup=gfp™Fi A P eP) =
((e:Qe E Op, L:Quel, Qp, br : Py,) € Q)

{Z) while B) S{Qf

* Requires an EXACT characterization of the program
semantics

» Unmanageable In practice

29

Abstractions

Abstractions

* Since proofs of general hyperproperties are
unmanageable, we consider abstractions of

-+ the algebraic semantics

0..
~
-
by

*e program properties

.
o**
.
R
.
N

0..
~
-
by

A)
Y 2
.
.
.
o*
'S

31

Algebraic semantics abstraction

* An abstraction of the algebraic semantics is another
iInstance of the algebraic semantics

* e.g. trace semantics — relational semantics
* This extends to logics and hyperlogics

* But still proofs require exact characterizations of the
(abstract) semantics

32

Hyperproperty abstraction

Hyperproperty abstraction

A dozen abstractions are considered In the paper
* This leads to a lattice of hyperlogics

34

Hierarchy of hyperlogics

subset closed

[67] .
F sub‘set closed <---#;-veeeinnens 5
[64, Th. 1] . .
T e e 57,65] *
e e e a e \v/*El* ... D> \v/ (k_safety) > V(HL)

Chain limit order ideal
abstraction

Chain limit order ideal abstraction (cont'd)

* The chain limit order ideal abstraction of algebraic
hyperproperties is an algebraic generalization of the
abstraction to v*3" hyperproperties

e v*3* hyperproperties (for traces in 1) AEH =
{{Pep(Il) |Vm €eP.3meP . (m, m)ecA} |Acp(Il xII)}

37

Chain limit order ideal abstraction

OKT(P) = {| |Pi| (Pi, i € N) € P isanincreasing chain with existing lub }
1€N
a(P) = {P'elL|3PeP.P cP}
O(ET L - o O(T (extensive, increasing, not idempotent)
a=T(P) = IfpsAX-Pua(X) (upper closure operator hence G.C.)

* In particular for traces:

AEH < &'(p(p(1D)))

38

Conclusion

Conclusion

* \We have introduced a new algebraic semantics (instantiable
to any classic semantics)

* \We have considered programs (i.e. their semantics) as
properties

* We have designed by calculus a general algebraic logic
(sound & complete and generalizing POPL 2024)

* We have designed by calculus a general algebraic hyperlogic
(sound & complete but unmanageable in practice)

* All this for terminating and nonterminating executions

40

Conclusion (cont’d)

* \We have considered abstractions of algebraic
nyperproperties :

* [ess expressive than general hyperproperties

* pbut with sound and complete hyperlogics using only
approximations of the program semantics

e This was illustrated by an algebraic generalization of v*3*
hyperproperties

41

More in the paper

 Various instanciations of the algebraic semantics

* Abstractions of the algebraic semantics leading to complete
hyperlogics

* A dozen of other abstractions of hyperproperties

* Including algebraic generalizations of 3"v* as well as v*v*
hyperproperties

» Correction of errors and generalizations of results in the literature
* etC

42

Conclusion of the conclusion

A transformational hyperlogic

IS

an abstract interpretation
of

an hypertransformer
of
an Instantiation

of

an algebraic semantics.

28

(Conclusion of the conclusion)-!

A (hyper)logic is
another (complicated) way
of defining
an abstract interpretation
of

an Instantiation
of
an algebraic semantics.

28

The End, Thank You

* Online full version of the clickable paper + appendix:
e auxiliary material of the ACM digital library
* my web page (https://cs.nyu.edu/~pcousot/) + slides

o arXiv https://arxiv.org/abs/2411.11113
e Zenodo https://zenodo.org/records/ 14173478

POPL 2024, London 29 © P Cousot

https://arxiv.org/abs/2411.11113
https://zenodo.org/records/14173478

