
Patrick Cousot

Courant Institute, New York University

Calculational Design
of [In]Correctness Transformational Program Logics

by Abstract Interpretation

￼1POPL 2024, London © P. Cousot

POPL 2024, London © P. Cousot￼2

Method to design program transformational logics

Transformational logic = Hoare style logics {P} S {Q}

Objective

POPL 2024, London © P. Cousot3

1. Define the natural relational semantics ⟦S⟧⊥ of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction 𝛼({⟦S⟧⊥}) of the collecting

semantics {⟦S⟧⊥} (strongest (hyper) property)

3. Calculate the theory 𝛼({⟦S⟧⊥}) in structural fixpoint form by fixpoint abstraction

4. Calculate the proof system by fixpoint induction and Aczel correspondence
between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas

Method to design a program transformational logics

POPL 2024, London © P. Cousot3

Method to design a program transformational logics

1. Define the natural relational semantics ⟦S⟧⊥ of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction 𝛼({⟦S⟧⊥}) of the collecting

semantics {⟦S⟧⊥} (strongest (hyper) property)

3. Calculate the theory 𝛼({⟦S⟧⊥}) in structural fixpoint form by fixpoint abstraction

4. Calculate the proof system by fixpoint induction and Aczel correspondence
between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas

POPL 2024, London © P. Cousot3

Method to design a program transformational logics

1. Define the natural relational semantics ⟦S⟧⊥ of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction 𝛼({⟦S⟧⊥}) of the collecting

semantics {⟦S⟧⊥} (strongest (hyper) property)

3. Calculate the theory 𝛼({⟦S⟧⊥}) in structural fixpoint form by fixpoint abstraction

4. Calculate the proof system by fixpoint induction and Aczel correspondence
between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas

POPL 2024, London © P. Cousot3

Method to design a program transformational logics

1. Define the natural relational semantics ⟦S⟧⊥ of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction 𝛼({⟦S⟧⊥}) of the collecting

semantics {⟦S⟧⊥} (strongest (hyper) property)

3. Calculate the theory 𝛼({⟦S⟧⊥}) in structural fixpoint form by fixpoint abstraction

4. Calculate the proof system by fixpoint induction and Aczel correspondence
between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas

POPL 2024, London © P. Cousot4

Two simple examples*:

Hoare (HL) and reverse Hoare aka
incorrectness (IL) logics

* not in the paper (where the examples are more complicated).

POPL 2024, London © P. Cousot5

General Idea
HL = strongest postcondition abstraction of the collecting semantics

+ over approximating consequence abstraction

+ over approximating fixpoint induction

+ Aczel correspondence fixpoint ⇿ proof system

IL = strongest property abstraction of the collecting semantics

+ under approximating consequence abstraction

+ under approximating fixpoint induction

+ Aczel fixpoint ⇿ proof system correspondence

theory

proof system

}
}

theory

proof system

}
}

POPL 2024, London © P. Cousot5

General Idea
HL = strongest postcondition abstraction of the collecting semantics

+ over approximating consequence abstraction

+ over approximating fixpoint induction

+ Aczel correspondence fixpoint ⇿ proof system

IL = strongest postcondition abstraction of the collecting semantics

+ under approximating consequence abstraction

+ under approximating fixpoint induction

+ Aczel correspondence fixpoint ⇿ proof system

theory

proof system

}
}

theory

proof system

}
}

POPL 2024, London © P. Cousot6

1. Angelic relational semantics ⟦S⟧e
• Syntax*:

• States:

• Angelic relational semantics:

* plus unbounded nondeterminism, breaks, and nontermination ⊥ in the paper.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ"), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/"(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/"(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ"), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/"(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/"(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

ends

POPL 2024, London © P. Cousot7

1. Angelic relational semantics ⟦S⟧ (in deductive form)
• Notations using judgements:

• ￼ for ￼

• ￼ for  leads to ′ after 0 or more iterations

• Semantics of the conditional iteration* :

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"

𝜎 ⊢ W
𝑖⇒ 𝜎 ′
⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→$→←−−−−−−

𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 71 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B") (no break) (51)

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.

CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.

Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation

ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES

S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break
Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ"), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/"(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/"(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

* plus breaks, and co-induction for nontermination ⊥ in the paper.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 71 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B") (no break) (51)

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot7

1. Angelic relational semantics ⟦S⟧ (in deductive form)
• Notations using judgements:

• ￼ for ￼

• ￼ for  leads to ′ after 0 or more iterations

• Semantics of the conditional iteration* :

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"

𝜎 ⊢ W
𝑖⇒ 𝜎 ′
⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→$→←−−−−−−

𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 71 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B") (no break) (51)

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.

CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.

Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation

ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES

S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break
Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ"), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/"(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/"(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

* plus breaks, and co-induction for nontermination ⊥ in the paper.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 71 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B") (no break) (51)

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot

• Semantics of the conditional iteration* :

• Derived using Aczel correspondence between deductive systems and set-
theoretic fixpoints, see Ex. II.5.1

8

1. Angelic relational semantics ⟦S⟧ (in fixpoint form)

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.

CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.

Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation

ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES

S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break
Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ"), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/"(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/"(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (November 2024), 71 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/11-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: November 2024.

POPL 2024, London © P. Cousot9

Aczel correspondence between deductive systems and fixpoints

• Rules: (universe, premiss, conclusion, axiom)

• Deductive system :

• Subset of the universe ￼ defined by ￼ :

• Deductive system defining :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

← consequence operator

← model theoretic (gfp for coinduction)

proof theoretic ↓

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

POPL 2024, London © P. Cousot9

Aczel correspondence between deductive systems and fixpoints

• Rules: (universe, premiss, conclusion, axiom)

• Deductive system :

• Subset of the universe ￼ defined by ￼ :

• Deductive system defining :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

← consequence operator

← model theoretic (gfp for coinduction)

proof theoretic ↓

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

POPL 2024, London © P. Cousot9

Aczel correspondence between deductive systems and fixpoints

• Rules: (universe, premiss, conclusion, axiom)

• Deductive system :

• Subset of the universe ￼ defined by ￼ :

• Deductive system defining :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

← consequence operator

← model theoretic (gfp for coinduction)

proof theoretic ↓

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

POPL 2024, London © P. Cousot9

Aczel correspondence between deductive systems and fixpoints

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

← consequence operator

← model theoretic (gfp for coinduction)

proof theoretic ↓

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

• Rules: (universe, premiss, conclusion, axiom)

• Deductive system :

• Subset of the universe ￼ defined by ￼ :

• Deductive system defining :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot

• The composition of these abstractions is

• This is an oversimplification of Fig. 1 of the paper, forgetting about
nontermination including total correctness and relational predicates

10

2. Abstraction (much simplified)
2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

POPL 2024, London © P. Cousot11

2. Abstraction (much simplified)
• Hyper properties to properties abstraction:

• Post-image isomorphism:

• Graph isomorphism (a function is isomorphic to its graph, which is a
function relation):…/…

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

POPL 2024, London © P. Cousot11

2. Abstraction (much simplified)
• Hyper properties to properties abstraction:

• Post-image isomorphism:

• Graph isomorphism (a function is isomorphic to its graph, which is a
function relation):…/…

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

POPL 2024, London © P. Cousot11

2. Abstraction (much simplified)
• Hyper properties to properties abstraction:

• Post-image isomorphism:

• Graph isomorphism (a function is isomorphic to its graph, which is a
function relation):…/…

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

POPL 2024, London © P. Cousot

• Strongest postcondition logic theory (common to HL and IL with no
consequence rule):

• Notation:

• The next step is to express this theory in fixpoint form

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

12

2. Abstraction (much simplified)

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot12

• Strongest postcondition logic theory (common to HL and IL with no
consequence rule):

• Notation:

• The next step is to express this theory in fixpoint form

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2. Abstraction (much simplified)

7:14 Patrick Cousot

⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−
𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 5.3 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 5.4. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 5.5. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

POPL 2024, London © P. Cousot13

2. Abstraction (much simplified)

• The abstraction of a fixpoint is a fixpoint (POPL 79)

• We get a fixpoint definition of the theory of strongest postconditions
logics (common to HL and IL with no consequences at all)

• For the iteration ￼ :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

34 Patrick Cousot

FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 21

where ⟨℘(Σ × Σ!), ⊑, Σ × {#}, Σ × Σ, ⊔, ⊓⟩ is a complete lattice for the computational ordering
𝑋 ⊑ 𝑌 ≜ (𝑋 ∩ (Σ × Σ)) ⊆ (𝑌 ∩ (Σ × Σ)) ∧ (𝑋 ∩ (Σ × {#})) ⊇ (𝑌 ∩ (Σ × {#})). It follows that the
definition of termination on normal exit or nontermination can be defined by a single transformer
[16,Theorem 9] (but termination !S"𝑒 and break !S"𝑏 cannot be mixed without losing information).

This relational natural semantics can be extended to record a relation between the initial and
current values of variables. This consists in considering the Galois connections ⟨𝛼↓2 , 𝛾↓2⟩ for asser-
tions and ⟨ .𝛼↓2 , .

𝛾↓2⟩ for relations in (24). This can be implemented using auxiliary variables without
modification of the semantics A◯.

II.2 FIXPOINT ABSTRACTION
We recall classic fixpoint abstraction theorems [16], [18, Ch. 18] to abstract the fixpoint definition
of the program relational semantics into a fixpoint definition of transformers (or their graph).

TheoRem II.2.1 (Fixpoint abstRaction [21]). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

As a simple application, we will need the following corollary A◯.

CoRollaRy II.2.2 (Pointwise abstRaction). Let ⟨𝐿, ⊑, ⊺, ⊔⟩ and ⟨𝐿′, ⊑′, ⊺′, ⊔′⟩ be complete
lattices. Assume that 𝐹 ∈ (𝐿 → 𝐿′) 𝑖#→ (𝐿 → 𝐿′) is increasing and that for all𝑄 ∈ 𝐿, 𝐹𝑄 ∈ 𝐿′ 𝑖#→ 𝐿′ is
increasing. Assume ∀𝑄 ∈ 𝐿 . ∀𝑓 ∈ 𝐿 → 𝐿′ . 𝐹(𝑓)𝑄 = 𝐹𝑄(𝑓 (𝑄)). Then ∀𝑄 ∈ 𝐿 . (lfp .⊑′ 𝐹)𝑄 = lfp⊑′ 𝐹𝑄 .

When the abstraction involves the negation abstraction 𝛼¬, Park’s classic fixpoint theorem [69,
equation (4,1,2)] is useful (and generalizes to complete Boolean lattices).

TheoRem II.2.3 (Complementdualization). If 𝑋 is a set and 𝑓 ∈ ℘(𝑋) 𝑖#→ ℘(𝑋) is ⊆-increasing
then lfp⊆ 𝛼∼(𝑓) = 𝛼¬(gfp⊆ 𝑓).

Abstraction can also be applied to deductive systems A◯.

II.3 FIXPOINT INDUCTION
Least or greatest fixpoint definitions of the graph of transformers provide strongest or antecedent-
consequence (or weakest consequence-antecedent) pairs. Then we need to take into account con-
sequence rules, that is, approximations discussed in Sect. I.3.4. In this section, and in addition to
[17] and [18, Ch. 24], we introduce fixpoint induction methods to handle such approximations
post(⊇,⊆), post(⊆,⊇), etc. In this section II.3, # is the infimum of a poset and possibly unrelated
to nontermination.
II.3.1 Least Fixpoint Over Approximation
The classic least fixpoint (lfp) over approximation theorem (and order dually over approximation
of greatest fixpoints (gfp)), called “fixpoint induction”, is due to Park [68] and follows directly from
Tarski’s fixpoint theorem [85], lfp⊑ 𝑓 =#{𝑥 ∣ 𝑓 (𝑥) ⊑ 𝑥}.

TheoRem II.3.1 (Least fixpoint oveR appRoximation). Let ⟨𝐿, ⊑, #, ⊺, ⊔, ⊓⟩ be a complete
lattice, 𝑓 ∈ 𝐿 𝑖#→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .

Example II.3.2. An invariant of a conditional iteration while(B) S with precondition 𝑃 must sat-
isfy lfp⊆ 𝝀𝑋 .𝑃 ∪ post!𝑆"(𝐵 ∩𝑋) ⊆ 𝐼 . The proof method provided by Park’s Th. II.3.1 is ∃𝐽 . 𝑃 ⊆
𝐽 ∧ post!𝑆"(𝐵 ∩ 𝐽) ⊆ 𝐽 ∧ 𝐽 ⊆ 𝐼 which is Turing [86]/Floyd [42] invariant proof method. ∎

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot13

2. Abstraction (much simplified)

• The abstraction of a fixpoint is a fixpoint (POPL 79)

• We get a fixpoint definition of the theory of strongest postconditions
logics (common to HL and IL with no consequences at all)

• For the iteration ￼ :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

34 Patrick Cousot

FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 21

where ⟨℘(Σ × Σ!), ⊑, Σ × {#}, Σ × Σ, ⊔, ⊓⟩ is a complete lattice for the computational ordering
𝑋 ⊑ 𝑌 ≜ (𝑋 ∩ (Σ × Σ)) ⊆ (𝑌 ∩ (Σ × Σ)) ∧ (𝑋 ∩ (Σ × {#})) ⊇ (𝑌 ∩ (Σ × {#})). It follows that the
definition of termination on normal exit or nontermination can be defined by a single transformer
[16,Theorem 9] (but termination !S"𝑒 and break !S"𝑏 cannot be mixed without losing information).

This relational natural semantics can be extended to record a relation between the initial and
current values of variables. This consists in considering the Galois connections ⟨𝛼↓2 , 𝛾↓2⟩ for asser-
tions and ⟨ .𝛼↓2 , .

𝛾↓2⟩ for relations in (24). This can be implemented using auxiliary variables without
modification of the semantics A◯.

II.2 FIXPOINT ABSTRACTION
We recall classic fixpoint abstraction theorems [16], [18, Ch. 18] to abstract the fixpoint definition
of the program relational semantics into a fixpoint definition of transformers (or their graph).

TheoRem II.2.1 (Fixpoint abstRaction [21]). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

As a simple application, we will need the following corollary A◯.

CoRollaRy II.2.2 (Pointwise abstRaction). Let ⟨𝐿, ⊑, ⊺, ⊔⟩ and ⟨𝐿′, ⊑′, ⊺′, ⊔′⟩ be complete
lattices. Assume that 𝐹 ∈ (𝐿 → 𝐿′) 𝑖#→ (𝐿 → 𝐿′) is increasing and that for all𝑄 ∈ 𝐿, 𝐹𝑄 ∈ 𝐿′ 𝑖#→ 𝐿′ is
increasing. Assume ∀𝑄 ∈ 𝐿 . ∀𝑓 ∈ 𝐿 → 𝐿′ . 𝐹(𝑓)𝑄 = 𝐹𝑄(𝑓 (𝑄)). Then ∀𝑄 ∈ 𝐿 . (lfp .⊑′ 𝐹)𝑄 = lfp⊑′ 𝐹𝑄 .

When the abstraction involves the negation abstraction 𝛼¬, Park’s classic fixpoint theorem [69,
equation (4,1,2)] is useful (and generalizes to complete Boolean lattices).

TheoRem II.2.3 (Complementdualization). If 𝑋 is a set and 𝑓 ∈ ℘(𝑋) 𝑖#→ ℘(𝑋) is ⊆-increasing
then lfp⊆ 𝛼∼(𝑓) = 𝛼¬(gfp⊆ 𝑓).

Abstraction can also be applied to deductive systems A◯.

II.3 FIXPOINT INDUCTION
Least or greatest fixpoint definitions of the graph of transformers provide strongest or antecedent-
consequence (or weakest consequence-antecedent) pairs. Then we need to take into account con-
sequence rules, that is, approximations discussed in Sect. I.3.4. In this section, and in addition to
[17] and [18, Ch. 24], we introduce fixpoint induction methods to handle such approximations
post(⊇,⊆), post(⊆,⊇), etc. In this section II.3, # is the infimum of a poset and possibly unrelated
to nontermination.
II.3.1 Least Fixpoint Over Approximation
The classic least fixpoint (lfp) over approximation theorem (and order dually over approximation
of greatest fixpoints (gfp)), called “fixpoint induction”, is due to Park [68] and follows directly from
Tarski’s fixpoint theorem [85], lfp⊑ 𝑓 =#{𝑥 ∣ 𝑓 (𝑥) ⊑ 𝑥}.

TheoRem II.3.1 (Least fixpoint oveR appRoximation). Let ⟨𝐿, ⊑, #, ⊺, ⊔, ⊓⟩ be a complete
lattice, 𝑓 ∈ 𝐿 𝑖#→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .

Example II.3.2. An invariant of a conditional iteration while(B) S with precondition 𝑃 must sat-
isfy lfp⊆ 𝝀𝑋 .𝑃 ∪ post!𝑆"(𝐵 ∩𝑋) ⊆ 𝐼 . The proof method provided by Park’s Th. II.3.1 is ∃𝐽 . 𝑃 ⊆
𝐽 ∧ post!𝑆"(𝐵 ∩ 𝐽) ⊆ 𝐽 ∧ 𝐽 ⊆ 𝐼 which is Turing [86]/Floyd [42] invariant proof method. ∎

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:3

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post!S"𝑃 ′ ⊆ 𝑄 ′}
#(⊆) by Galois connection (12), post is increasing so that 𝑃 ′ ⊆ 𝑃 ∧ post!S"𝑃 ⊆ 𝑄 ′ implies
post!S"𝑃 ′ ⊆ post!S"𝑃 ∧ post!S"𝑃 ⊆ 𝑄 ′ hence post!S"𝑃 ′ ⊆ 𝑄 ′ by transitivity;
(⊇) take 𝑃 = 𝑃 ′$

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ′ = 𝑃 ∧ post!S"𝑃 ⊆ 𝑄 ′} #def. =$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨𝑃, post!S"𝑃⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} #def. =,⊆$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨⟨𝑃, post!S"𝑃⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} #def. ∈$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} #def. ∈$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ T (S) . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} #Lem. 1.3$
= post(=,⊆)(T (S)) #def. (10) of post$
= post(=,⊆) ○ T (S) #def. function composition ○$!

For simplicity, we consider conditional iteration W = while (B) S with no break.

Lemma 1.5 (Commutation). post ○ 𝐹 ′𝑒 = 𝐹𝑒 ○ post where 𝐹𝑒(𝑋) ≜ id
.∪ (post(!B" % !S"𝑒) ○ 𝑋)

and 𝐹 ′𝑒 ≜ 𝝀𝑋 . id ∪ (𝑋 % !B" % !S"𝑒), 𝑋 ∈ ℘(Σ × Σ) by (70).

PRoof of Lem. 1.5.
post(𝐹 ′𝑒(𝑋)) #where 𝑋 ∈ ℘(Σ)$

= post(id ∪ (𝑋 % !B" % !S"𝑒)) #def. 𝐹𝑒$
= post(id) .∪ post(𝑋 % !B" % !S"𝑒) #join preservation in Galois connection (12)$
= id

.∪ (post(!B" % !S"𝑒) ○ post(𝑋)) #def. post and composition Lem. 1.1$
= 𝐹𝑒(post(𝑋)) #def. 𝐹𝑒$!

Lemma 1.6 (Pointwise commutation). ∀𝑋 ∈ ℘(Σ) → ℘(Σ) . ∀𝑃 ∈ ℘(Σ) . 𝐹𝑒(𝑋)𝑃 ≜ ¯̄𝐹𝑒𝑃(𝑋(𝑃))
where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋 .

PRoof of Lem. 1.6.
𝐹𝑒(𝑋)𝑃

= (id .∪ (post(!B" % !S"𝑒) ○ 𝑋))𝑃 #def. 𝐹𝑒$
= id(𝑃) ∪ (post(!B" % !S"𝑒) ○ 𝑋)(𝑃) #pointwise def. .∪ and function composition ○$
= 𝑃 ∪ post(!B" % !S"𝑒)(𝑋(𝑃)) #def. identity id and function application$
= ¯̄𝐹𝑒𝑃(𝑋(𝑃)) #def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋$!

TheoRem 1.7 (IteRation stRongest postcondition). post!W"𝑃 = post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) where
¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋 .

PRoof of Th. 1.7.
post!W"

= post(lfp⊆ 𝐹𝑒 % !¬B") #def. (49) of !W" in absence of break$
= post!¬B" ○ post(lfp⊆ 𝐹𝑒) #composition Lem. 1.1$
= post!¬B" ○ post(lfp⊆ 𝐹 ′𝑒) #since lfp⊆ 𝐹𝑒 = lfp⊆ 𝐹 ′𝑒 in (70)$
= post!¬B"(lfp⊆ 𝐹𝑒) #commutation Lem. 1.5 and fixpoint abstraction Th. II.2.2$

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

14

7:2 Patrick Cousot

1 PROPERTIES OF STRONGEST POSTCONDITIONS
Lemma 1.1 (Composition). post(𝑋 !𝑌) = post(𝑌) ○ post(𝑋).
PRoof of Lem. 1.1.
post(𝑋 !𝑌)

= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′′⟩ ∈ 𝑋 !𝑌} "def. post#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑋 ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. !#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ′ . 𝜎 ′ ∈ {𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑋} ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. ∃ and ∈#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ′ ∈ post(𝑋)𝑃 . ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. post#
= 𝝀𝑃 .post(𝑌)(post(𝑋)𝑃) "def. post#
= post(𝑌) ○ post(𝑋) "def. function composition ○# !

Lemma 1.2 (test). post$B%𝑃 = 𝑃 ∩B$B%.

PRoof of Lem. 1.2.
post$B%𝑃

= {𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ $B%} "def. post#
= {𝜎 ∣ 𝜎 ∈ 𝑃 ∧ 𝜎 ∈ B$B%} "def. $B% ≜ {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ B$B%}#
= 𝑃 ∩B$B% "def. intersection ∪# !

Lemma 1.3 (StRongest postcondition). T (S) = 𝛼G ○ post$S% = {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}.
PRoof of Lem. 1.3.
T (S)

= 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({$S%#}) "def. T #
= 𝛼G ○ post ○ 𝛼/#($S%#) "def. 𝛼𝐶#
= 𝛼G ○ post($S%# ∩ (Σ × Σ)) "def. 𝛼/##
= 𝛼G ○ post$S% "def. (1) of the angelic semantics $S%#
= {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} "def. 𝛼G# !

Lemma 1.4 (StRongest postcondition oveR appRoximation).
THL(S) ≜ post(⊇.⊆) ○ T (S) = {⟨𝑃, 𝑄⟩ ∣ post$S%𝑃 ⊆ 𝑄} = post(=,⊆) ○ T (S)

PRoof of Lem. 1.4.
post(⊇.⊆) ○ T (S)

= post(⊇.⊆)(T (S)) "def. function composition ○#
= post(⊇.⊆)({⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}) "Lem. 1.3#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊇.⊆} "def. (10) of post#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨⟨𝑃, post$S%𝑃⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊇.⊆} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨𝑃, post$S%𝑃⟩ ⊇.⊆ ⟨𝑃 ′, 𝑄 ′⟩} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ⊇ 𝑃 ′ ∧ post$S%𝑃 ⊆ 𝑄 ′} "def. ⊇.⊆#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ′ ⊆ 𝑃 ∧ post$S%𝑃 ⊆ 𝑄 ′} "def. ⊇#
Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

7:4 Patrick Cousot

= post!¬B" ○ 𝝀𝑃 . lfp⊆ ¯̄𝐹𝑒𝑃
#pointwise commutation Lem. 1.6 and pointwise abstraction Cor. II.2.2$!

CoRollaRy 1.8 (Conditional iteRation stRongest postcondition gRaph). T (W) = {⟨𝑃,
post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)} where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋 .

PRoof of CoR. 1.8.
T (W)

= 𝛼G ○ post(!W") #Lem. 1.3$
= 𝛼G ○ post!¬B" ○ 𝝀𝑃 . lfp⊆ ¯̄𝐹𝑒𝑃 #Th. 1.7$
= {⟨𝑃, post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)} #def. (7) of 𝛼G$!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

POPL 2024, London © P. Cousot15

3. Approximation
• The component wise approximation:

• The over approximation abstraction for HL:

• The (order dual) under approximation abstraction for IL:

• Shows what it shared by HL and IL: all but the consequence rule (?)

34 Patrick Cousot

FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, lfp⊆ 𝝀𝑋 .𝑃 ∪ 𝑃𝑋 # ¬!B"⟩ ∣ 𝑃 ∈ ℘(Σ) ∧ ⟨𝑋 , 𝑃𝑋 ⟩ ∈ !B" # T (S)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

T𝐻𝐿(S)T𝐼𝐿(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot

• The component wise approximation:

• The over approximation abstraction for HL:

• The (order dual) under approximation abstraction for IL:

• Shows what it shared by HL and IL: all but the consequence rule (?)
15

3. Approximation

34 Patrick Cousot

FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, lfp⊆ 𝝀𝑋 .𝑃 ∪ 𝑃𝑋 # ¬!B"⟩ ∣ 𝑃 ∈ ℘(Σ) ∧ ⟨𝑋 , 𝑃𝑋 ⟩ ∈ !B" # T (S)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

T𝐻𝐿(S)T𝐼𝐿(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot15

3. Approximation
• The component wise approximation:

• The over approximation abstraction for HL:

• The (order dual) under approximation abstraction for IL:

• Shows what it shared by HL and IL: all but the consequence rule (?)

34 Patrick Cousot

FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, lfp⊆ 𝝀𝑋 .𝑃 ∪ 𝑃𝑋 # ¬!B"⟩ ∣ 𝑃 ∈ ℘(Σ) ∧ ⟨𝑋 , 𝑃𝑋 ⟩ ∈ !B" # T (S)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

T𝐻𝐿(S)T𝐼𝐿(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot16

4. Fixpoint induction

• Deriving the proof system at this stage by Aczel correspondence would
be great!

• A common part and different consequence rules for HL and IL

• But then the HL proof system for iteration would be

1. Prove strongest postconditions (≫≫ total correctness)

2. Approximate with a consequence rule to get partial correctness

• This is sound and complete

• But too demanding ⟹ not so great!

• What we miss is fixpoint induction

POPL 2024, London © P. Cousot16

4. Fixpoint induction

• Deriving the proof system at this stage by Aczel correspondence would
be great!

• A common part and different consequence rules for HL and IL

• But then the HL proof system for iteration would be

1. Prove strongest postconditions (≫≫≫≫≫ total correctness)

2. Approximate with a consequence rule to get partial correctness

• This is sound and complete

• But too demanding ⟹ not so great!

• What we miss is fixpoint induction

POPL 2024, London © P. Cousot16

4. Fixpoint induction

• Deriving the proof system at this stage by Aczel correspondence would
be great!

• A common part and different consequence rules for HL and IL

• But then the HL proof system for iteration would be

1. Prove strongest postconditions (≫≫≫≫≫ total correctness)

2. Approximate with a consequence rule to get partial correctness

• This is sound and complete

• But too demanding ⟹ not so great!

• What we miss is fixpoint induction

POPL 2024, London © P. Cousot17

4. Fixpoint inductionCalculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 3

TheoRem 0.2. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = #) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

, Vol. 1, No. 1, Article . Publication date: October 2024.

28 Patrick Cousot

that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

As a simple application, we will need the following corollary A◯.

CoRollaRy II.2.2 (Pointwise abstRaction). Let ⟨𝐿, ⊑, ⊺, ⊔⟩ and ⟨𝐿′, ⊑′, ⊺′, ⊔′⟩ be complete
lattices. Assume that 𝐹 ∈ (𝐿 → 𝐿′) 𝑖"→ (𝐿 → 𝐿′) is increasing and that for all𝑄 ∈ 𝐿, 𝐹𝑄 ∈ 𝐿′ 𝑖"→ 𝐿′ is
increasing. Assume ∀𝑄 ∈ 𝐿 . ∀𝑓 ∈ 𝐿 → 𝐿′ . 𝐹(𝑓)𝑄 = 𝐹𝑄(𝑓 (𝑄)). Then ∀𝑄 ∈ 𝐿 . (lfp .⊑′ 𝐹)𝑄 = lfp⊑′ 𝐹𝑄 .

When the abstraction involves the negation abstraction 𝛼¬, Park’s classic fixpoint theorem [69,
equation (4,1,2)] is useful (and generalizes to complete Boolean lattices).

TheoRem II.2.3 (Complementdualization). If 𝑋 is a set and 𝑓 ∈ ℘(𝑋) 𝑖"→ ℘(𝑋) is ⊆-increasing
then lfp⊆ 𝛼∼(𝑓) = 𝛼¬(gfp⊆ 𝑓).

Abstraction can also be applied to deductive systems A◯.

II.3 FIXPOINT INDUCTION
Least or greatest fixpoint definitions of the graph of transformers provide strongest or antecedent-
consequence (or weakest consequence-antecedent) pairs. Then we need to take into account con-
sequence rules, that is, approximations discussed in Sect. I.3.4. In this section, and in addition to
[17] and [18, Ch. 24], we introduce fixpoint induction methods to handle such approximations
post(⊇.⊆), post(⊆,⊇), etc. In this section II.3, & is the infimum of a poset and possibly unrelated to
nontermination.
II.3.1 Least Fixpoint Over Approximation
The classic least fixpoint (lfp) over approximation theorem (and order dually over approximation
of greatest fixpoints (gfp)), called “fixpoint induction”, is due to Park [68] and follows directly from
Tarski’s fixpoint theorem [85], lfp⊑ 𝑓 =!{𝑥 ∣ 𝑓 (𝑥) ⊑ 𝑥}.

TheoRem II.3.1 (Least fixpoint oveR appRoximation). Let ⟨𝐿, ⊑, &, ⊺, ⊔, ⊓⟩ be a complete
lattice, 𝑓 ∈ 𝐿 𝑖"→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .

Example II.3.2. An invariant of a conditional iteration while(B) S with precondition 𝑃 must sat-
isfy lfp⊆ 𝝀𝑋 .𝑃 ∪ post"𝑆#(𝐵 ∩𝑋) ⊆ 𝐼 . The proof method provided by Park’s Th. II.3.1 is ∃𝐽 . 𝑃 ⊆
𝐽 ∧ post"𝑆#(𝐵 ∩ 𝐽) ⊆ 𝐽 ∧ 𝐽 ⊆ 𝐼 which is Turing [86]/Floyd [42] invariant proof method. ∎
By order-duality, this is sound and complete greatest fixpoint under approximation 𝑝 ⊑ gfp⊑ 𝑓

proof method. 𝑖 is called an invariant (a co-invariant for greatest fixpoints).

Example II.3.3. Continuing example II.3.2, by contraposition, the invariant must satisfy ¬𝐼 ⊆¬lfp⊆ 𝝀𝑋 .𝑃 ∪ post"𝑆#(𝐵 ∩𝑋) that is ¬𝐼 ⊆ gfp⊆ 𝝀𝑋 .¬𝑃 ∩ p̃ost"𝑆#(¬𝐵 ∪𝑋) by Park’sTh. II.2.3.The
dual of Th. II.3.1 suggest the proof method ∃𝐽 . 𝐽 ⊆ ¬𝑃 ∧ 𝐽 ⊆ p̃ost"𝑆#(¬𝐵 ∪ 𝐽) ∧ 𝐼 ⊆ ¬𝐽 which is
methods (i−̃1) and (I−̃1) of [22]. ∎
II.3.2 Ordinals
We let ⟨O, ∈, ∅, O, ∪, ∩⟩ be the von Neumann’s ordinals [94], writing the more intuitive < for ∈, 0
for ∅, + 1 for the successor function, sometimes max for ∪, min for ∩, and 𝜔 for the first infinite
limit ordinal. If necessary, a short refresher on ordinals is given in Sect. H of the appendix A◯.
II.3.3 Overapproximation of the Image of a Least Fixpoint
To solve the problem 𝛼(lfp⊑ 𝐹) ⊑ 𝑃 where 𝛼 is a function on the domain of 𝐹 , we can try to
use fixpoint abstraction Th. II.2.1 to get 𝛼(lfp⊑ 𝐹) = lfp⊑ 𝐹 and then check lfp⊑ 𝐹 ⊑ 𝑃 by fixpoint
induction Th. II.3.1. But Th. II.2.1 requires 𝛼 to preserves joins, which is not always the case (for

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot18

4. Fixpoint induction

 bounded by ω for continuous 𝑓.

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 3

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})
= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}

⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′
post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 0.2. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 0.3. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
TheoRem 0.4. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)

Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ such that
(1) 𝑋 0 = !,
(2) 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for successor ordinals,
(3) ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and
(4) ∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = %) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

, Vol. 1, No. 1, Article . Publication date: November 2024.

30 Patrick Cousot

By order-duality, this is sound and complete greatest fixpoint under approximation 𝑝 ⊑ gfp⊑ 𝑓
proof method. 𝑖 is called an invariant (a co-invariant for greatest fixpoints).

Example II.3.3. Continuing example II.3.2, by contraposition, the invariant must satisfy ¬𝐼 ⊆¬lfp⊆ 𝝀𝑋 .𝑃 ∪ post!𝑆"(𝐵 ∩𝑋) that is ¬𝐼 ⊆ gfp⊆ 𝝀𝑋 .¬𝑃 ∩ p̃ost!𝑆"(¬𝐵 ∪𝑋) by Park’sTh. II.2.3.The
dual of Th. II.3.1 suggest the proof method ∃𝐽 . 𝐽 ⊆ ¬𝑃 ∧ 𝐽 ⊆ p̃ost!𝑆"(¬𝐵 ∪ 𝐽) ∧ 𝐼 ⊆ ¬𝐽 which is
methods (i−̃1) and (I−̃1) of [22]. ∎
II.3.2 Ordinals
We let ⟨O, ∈, ∅, O, ∪, ∩⟩ be the von Neumann’s ordinals [94], writing the more intuitive < for ∈, 0
for ∅, + 1 for the successor function, sometimes max for ∪, min for ∩, and 𝜔 for the first infinite
limit ordinal. If necessary, a short refresher on ordinals is given in Sect. H of the appendix A◯.
II.3.3 Overapproximation of the Image of a Least Fixpoint
To solve the problem 𝛼(lfp⊑ 𝐹) ⊑ 𝑃 where 𝛼 is a function on the domain of 𝐹 , we can try to
use fixpoint abstraction Th. II.2.1 to get 𝛼(lfp⊑ 𝐹) = lfp⊑ 𝐹 and then check lfp⊑ 𝐹 ⊑ 𝑃 by fixpoint
induction Th. II.3.1. But Th. II.2.1 requires 𝛼 to preserves joins, which is not always the case (for
the dual problem 𝛼 = pre in remark I.3.12 is a counter-example). If 𝛼 does not preserves joins, we
can nevertheless use the following theorem A◯.

TheoRem II.3.4 (OveRappRoximation of a least fixpoint image). Let ⟨𝐿, ⊑, (, ⊔⟩ and ⟨𝐿, ⊑̄,⊺̄, ⊔̄⟩ be complete lattices 2, 𝐹 ∈ 𝐿 𝑖!→ 𝐿 and 𝛼 ∈ 𝐿 𝑖!→ 𝐿 be increasing functions, and 𝑃 ∈ 𝐿.
Then 𝛼(lfp⊑ 𝐹) ⊑̄ 𝑃 if and only if there exists 𝐼 ∈ 𝐿 such that (1) 𝛼(() ⊑̄ 𝐼 (2) ∀𝑋 ∈ 𝐿 . 𝛼(𝑋) ⊑̄ 𝐼 ⇒

𝛼(𝐹(𝑋)) ⊑̄ 𝐼 , (3) for any ⊑-increasing chain ⟨𝑋𝛿 , 𝛿 ∈ O⟩ of elements 𝑋𝛿 ⊑ lfp⊑ 𝐹 , ∀𝛽 < 𝜆 . 𝛼(𝑋 𝛽) ⊑̄ 𝐼
implies 𝛼(⊔𝛽<𝜆 𝑋 𝛽) ⊑̄ 𝐼 , and (4) 𝐼 ⊑̄ 𝑃 .

Let ⟨𝐹𝛿 , 𝛿 ∈ O⟩ be the increasing iterates of 𝐹 from (ultimately stationary at rank 𝜖 [20]. Then
condition (2) is only necessary for all 𝑋 = 𝐹𝛿 , 𝛿 ⩽ 𝜖 while condition (3) is only necessary for ⟨𝑋𝛿 ,
𝛿 ⩽ 𝜖⟩ = ⟨𝐹𝛿 , 𝛿 ⩽ 𝜖⟩. These weaker conditions are assumed to prove completeness (“only if” in Th.
II.3.4).
II.3.4 Fixpoint Under Approximation by Transfinite Iterates
For under approximation of least fixpoints (or order dually over approximation of greatest fix-
points), we can use the generalization [17] of Scott-Kleene induction based on transfinite induc-
tion when continuity does not apply and follows directly from the constructive version of Tarski’s
fixpoint theorem [20].

Definition II.3.5 (Ultimately Over Approximating Transfinite Sequence). We say that “the transfi-
nite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ of elements of poset ⟨𝐿, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿 ultimately over approximates
𝑃 ∈ 𝐿” if and only if 𝑋 0 = (, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals
𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and ∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

The condition can equivalently be expressed as ∀𝛿 ∈ O . 𝑋𝛿 ⊑ 𝑓 (⊔𝛽<𝛿 𝑋 𝛽 + 1) which avoids to
have to make the distinction between successor and limit ordinals A◯.

TheoRem II.3.6 (Fixpoint UndeR AppRoximation by TRansfinite IteRates). Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿
be an increasing function on a cpo ⟨𝐿, ⊑, (, ⊔⟩ (i.e. every increasing chain in 𝐿 has a least upper
bound in 𝐿, including (= ⊔∅). 𝑃 ∈ 𝐿 is a fixpoint underapproximation, i.e. 𝑃 ⊑ lfp⊑ 𝑓 , if and only
if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ for 𝑓 ultimately over approximating 𝑃
(Def. II.3.5).

2or CPOs.

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot19

5. Calculational design of HL

• Theory of HL (for iteration):

• HL proof system:

8 Patrick Cousot

HOARE LOGIC RULES
TheoRem 3 (HoaRe Rules foR conditional iteRation).

𝑃 ⊆ 𝐼 , {𝐼 ∩B} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄
{𝑃} while (B) S{𝑄}

PRoof. We write {𝑃} S{𝑄} ≜ ⟨𝑃, 𝑄⟩ ∈ T (S);
By structural induction (S being a strict component of while (B) S), the rule for {𝑃} S{𝑄} have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝑃 ⊆ 𝐼 , {𝐼 ∩

B} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄 ;
Traditionally, the side condition is considered a premiss, to get

𝑃 ⊆ 𝐼 , {𝐼 ∩B} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄
{𝑃} while (B) S{𝑄}

𝑃 ⊆ 𝐼 , {𝐼 ∩B} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

REVERSE HOARE AKA INCORRECTNESS LOGIC THEORY
Lemma 7 (stRongest postcondition undeR appRoximation).

T𝑅𝐿(S) ≜ post(⊆.⊇) ○ S(S) = {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!S"𝑃} = post(⊆.=) ○ S(S)

PRoof. TO DO
post(⊆.⊇) ○ S(S)

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ 𝑄 ′ ⊆ post!S"𝑃 ′} #⊆-order dual of lem. 4$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . 𝑄 ⊆ post!S"𝑃 ′ ∧𝑄 ′ = 𝑄} #def. =$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . ⟨𝑃 ′, 𝑄 ′⟩ ⊆.= ⟨post!S"𝑃 ′, 𝑆⟩} #def. ⊆.=$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨⟨𝑃, post!S"𝑃⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊆.=} #def. ∈$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊆.=} #def. ∈$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ S(S) . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊆.=} #lem. 3$
= post(⊆.=)(S(S)) #def. (10) of post$
= post(⊆.=) ○ S(S) #def. function composition ○$!

TheoRem 4 (theoRy of RL).
TRL(W) ≜ post(⊆.⊇) ○ S(W)= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B, 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄}

PRoof.

, Vol. 1, No. 1, Article . Publication date: October 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:5

2 CALCULATIONAL DESIGN OF HOARE LOGIC HL
2.1 Calculational Design of Hoare Logic Theory

TheoRem 2.1 (TheoRy of HoaRe logic HL).
THL(W) ≜ post(⊇.⊆) ○ T (W)= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄}

PRoof of Th. 2.1 .
THL(W)

= post(⊇.⊆) ○ T (W) #def. THL$
= post(=,⊆) ○ T (W) #Lem. 1.4$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . ⟨𝑃, 𝑄⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} #def. post$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . 𝑃 = 𝑃 ′ ∧𝑄 ⊆ 𝑄 ′} #component wise def. =,⊆$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ⟨𝑃, 𝑄⟩ ∈ T (W) . 𝑄 ⊆ 𝑄 ′} #def. =$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′} #Th. 1.7$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ′}

#(⊆) ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′ and transitivity;
(⊇) take 𝑄 = 𝑄 ′$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . lfp⊆ ¯̄𝐹𝑒𝑃 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′}
#(⊆) take 𝑄 = lfp⊆ ¯̄𝐹𝑒𝑃 ; (⊇) post!¬B" is increasing by (12)$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ 𝐼 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′} #Park fixpoint induction Th. II.3.1$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄 ′}

#(⊆) 𝐼 ⊆ 𝑄 implies post!¬B"(𝐼) ⊆ post!¬B"(𝑄) since post!¬B" is increasing by (12) hence
post!¬B"(𝐼) ⊆ 𝑄 ′ by transitivity;(⊇) take 𝑄 = 𝐼$

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S"𝑒)(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #renaming, def. ¯̄𝐹𝑒𝑃$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S")(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #!S"𝑒 = !S" in absence of breaks$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post(!B" % !S")𝐼 ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #def. ⊆ and ∪$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(post!B"𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #composition Lem. 1.1$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(𝐼 ∩B!B") ⊆ 𝐼 ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄} #test Lem. 1.2$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post!S"𝑃 ⊆ 𝑄} ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #def. ∈$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ post(=,⊆) ○ T (S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

POPL 2024, London © P. Cousot19

5. Calculational design of HL

• Theory of HL (for iteration):

• HL proof system:

8 Patrick Cousot

HOARE LOGIC RULES
TheoRem 3 (HoaRe Rules foR conditional iteRation).

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄
{𝑃} while (B) S{𝑄}

PRoof. We write {𝑃} S{𝑄} ≜ ⟨𝑃, 𝑄⟩ ∈ THL(S);
By structural induction (S being a strict component of while (B) S), the rule for {𝑃} S{𝑄} have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝑃 ⊆ 𝐼 , {𝐼 ∩

B} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄 ;
Traditionally, the side condition is considered a premiss, to get

𝑃 ⊆ 𝐼 , {𝐼 ∩B} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄
{𝑃} while (B) S{𝑄}

𝑃 ⊆ 𝐼 , {𝐼 ∩B} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

, Vol. 1, No. 1, Article . Publication date: November 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:5

2 CALCULATIONAL DESIGN OF HOARE LOGIC HL
2.1 Calculational Design of Hoare Logic Theory

TheoRem 2.1 (TheoRy of HoaRe logic HL).
THL(W) ≜ post(⊇.⊆) ○ T (W)= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄}

PRoof of Th. 2.1 .
THL(W)

= post(⊇.⊆) ○ T (W) #def. THL$
= post(=,⊆) ○ T (W) #Lem. 1.4$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . ⟨𝑃, 𝑄⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} #def. post$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . 𝑃 = 𝑃 ′ ∧𝑄 ⊆ 𝑄 ′} #component wise def. =,⊆$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ⟨𝑃, 𝑄⟩ ∈ T (W) . 𝑄 ⊆ 𝑄 ′} #def. =$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′} #Th. 1.7$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ′}

#(⊆) ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′ and transitivity;
(⊇) take 𝑄 = 𝑄 ′$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . lfp⊆ ¯̄𝐹𝑒𝑃 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′}
#(⊆) take 𝑄 = lfp⊆ ¯̄𝐹𝑒𝑃 ; (⊇) post!¬B" is increasing by (12)$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ 𝐼 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′} #Park fixpoint induction Th. II.3.1$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄 ′}

#(⊆) 𝐼 ⊆ 𝑄 implies post!¬B"(𝐼) ⊆ post!¬B"(𝑄) since post!¬B" is increasing by (12) hence
post!¬B"(𝐼) ⊆ 𝑄 ′ by transitivity;(⊇) take 𝑄 = 𝐼$

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S"𝑒)(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #renaming, def. ¯̄𝐹𝑒𝑃$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S")(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #!S"𝑒 = !S" in absence of breaks$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post(!B" % !S")𝐼 ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #def. ⊆ and ∪$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(post!B"𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #composition Lem. 1.1$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(𝐼 ∩B!B") ⊆ 𝐼 ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄} #test Lem. 1.2$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post!S"𝑃 ⊆ 𝑄} ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #def. ∈$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ post(=,⊆) ○ T (S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

POPL 2024, London © P. Cousot

7:6 Patrick Cousot

2.2 Hoare logic rules
TheoRem 2.2 (HoaRe Rules foR conditional iteRation).

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄
{𝑃} while (B) S{𝑄} (1)

PRoof of Th. 2.2. We write {𝑃} S{𝑄} ≜ ⟨𝑃, 𝑄⟩ ∈ THL(S);
By structural induction (S being a strict component of while (B) S), the rule for {𝑃} S{𝑄} have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝑃 ⊆ 𝐼 , {𝐼 ∩

B!B"} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄 ;
Traditionally, the side condition is written as a premiss, to get (1).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:5

2 CALCULATIONAL DESIGN OF HOARE LOGIC HL
2.1 Calculational Design of Hoare Logic Theory

TheoRem 2.1 (TheoRy of HoaRe logic HL).
THL(W) ≜ post(⊇.⊆) ○ T (W)= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄}

PRoof of Th. 2.1 .
THL(W)

= post(⊇.⊆) ○ T (W) #def. THL$
= post(=,⊆) ○ T (W) #Lem. 1.4$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . ⟨𝑃, 𝑄⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} #def. post$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . 𝑃 = 𝑃 ′ ∧𝑄 ⊆ 𝑄 ′} #component wise def. =,⊆$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ⟨𝑃, 𝑄⟩ ∈ T (W) . 𝑄 ⊆ 𝑄 ′} #def. =$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′} #Th. 1.7$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ′}

#(⊆) ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′ and transitivity;
(⊇) take 𝑄 = 𝑄 ′$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . lfp⊆ ¯̄𝐹𝑒𝑃 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′}
#(⊆) take 𝑄 = lfp⊆ ¯̄𝐹𝑒𝑃 ; (⊇) post!¬B" is increasing by (12)$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ 𝐼 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′} #Park fixpoint induction Th. II.3.1$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄 ′}

#(⊆) 𝐼 ⊆ 𝑄 implies post!¬B"(𝐼) ⊆ post!¬B"(𝑄) since post!¬B" is increasing by (12) hence
post!¬B"(𝐼) ⊆ 𝑄 ′ by transitivity;(⊇) take 𝑄 = 𝐼$

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S"𝑒)(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #renaming, def. ¯̄𝐹𝑒𝑃$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S")(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #!S"𝑒 = !S" in absence of breaks$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post(!B" % !S")𝐼 ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #def. ⊆ and ∪$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(post!B"𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #composition Lem. 1.1$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(𝐼 ∩B!B") ⊆ 𝐼 ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄} #test Lem. 1.2$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post!S"𝑃 ⊆ 𝑄} ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #def. ∈$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ post(=,⊆) ○ T (S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

20

Sound and complete by construction

Machine checkable, if not machine checked!

POPL 2024, London © P. Cousot

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 3

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})
= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}

⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′
post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 0.2. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 0.3. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
TheoRem 0.4. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)

Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ for 𝑓 ultimately
over approximating 𝑃 (Def. II.3.5).

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = %) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

, Vol. 1, No. 1, Article . Publication date: November 2024.21

Surprised to find a variant of HL proof system

yields the sound and complete proof system:

no need for Hoare left consequence rule (but for iteration):

3.2. RULES OF CONSEQUENCE
In addition to axioms, a deductive science requires at

least one rule of inference, which permits the deduction of
new theorems from one or more axioms or theorems al-
ready proved. A rule of inference takes the form " I f ~-X
and ~- Y then ~-Z", i.e. if assertions of the form X and Y
have been proved as theorems, then Z also is thereby
proved as a theorem. The simplest example of an inference
rule states tha t if the execution of a program Q en-
sures the t ru th of the assertion R, then it also ensures the
t ru th of every assertion logically implied by R. Also, if
P is known to be a precondition for a program Q to pro-
duce result R, then so is any other assertion which logically
implies P. These rules may be expressed more formally:

D1 Rules of Consequence
If ~-P{Q}R and ~-R D S then ~-P{Q}S
If ~-P{Q}R and ~-S ~ P then ~-S{Q}R

3.3. RULE OF COMPOSITION
A program generally consists of a sequence of statements

which are executed one after another. The statements may
be separated by a semicolon or equivalent symbol denoting
procedural composition: (Q1 ; Q2 ; " '" ; Q~). In order to
avoid the awkwardness of dots, it is possible to deal ini-
tially with only two statements (Q1 ; Q2), since longer se-
quences can be reconstructed by nesting, thus (Q~ ; (Q2 ;
(" " (Q,-1 ; Q.) - ' "))) . The removal of the brackets of
this nest may be regarded as convention based on the
associativity of the ";-operator", in the same way as brack-
ets are removed from an arithmetic expression (6 + (t2 +
(. . - (t,_~ + t ,) - - .))) .

The inference rule associated with composition states
tha t if the proven result of the first par t of a program is
identical with the precondition under which the second par t
of the program produces its intended result, then the whole
program will produce the intended result, provided that the
precondition of the first part is satisfied.

In more formal terms:

D2 Rule of Composition
If ~-P{QdR1 and ~-R~{Q2}R then ~-P{ (Q~ ; Q2)}R

3.4. RvL~ OF ITERATION
The essential feature of a stored program computer is

the ability to execute some portion of program (S) re-
peatedly until a condition (B) goes false. A simple way of
expressing such an iteration is to adapt the ALGOL 60
w h i l e notation:

w h i l e B d o S

In executing this statement, a computer first tests the con-
dition B. If this is false, S is omitted, and execution of the
loop is complete. Otherwise, S is executed and B is tested
again. This action is repeated until B is found to be false.
The reasoning which leads to a formulation of an inference
rule for iteration is as follows. Suppose P to be an assertion
which is always true on completion of S, provided tha t it is
also true on initiation. Then obviously P will still be true
after any number of iterations of the s tatement S (even

no iterations). Furthermore, it is known tha t the con-
trolling condition B is false when the iteration finally
terminates. A slightly more powerful formulation is pos-
sible in light of the fact tha t B may be assumed to be true
on initiation of S:

D3 Rule of Iteration
If ~P A B{S}P then ~-P{while B do S} ~ B A P

3.5. EXAMPLE
The axioms quoted above are sufficient to construct the

proof of properties of simple programs, for example, a
routine intended to find the quotient q and remainder r
obtained on dividing x by y. All variables are assumed to
range over a set of nonnegative integers conforming to the
axioms listed in Table I. For simplicity we use the trivial
but inefficient method of successive subtraction. The pro-
posed program is:

((r := x; q := 0); w h i l e
y < r d o (r : = r - - y ; q : = l + q))

An important property of this program is tha t when it
terminates, we can recover the numerator x by adding to
the remainder r the product of the divisor y and the quo-
t ient q (i.e. x = r + y X q). Furthermore, the remainder
is less than the divisor. These properties may be expressed
formally:

t r u e { Q } ~ y ~< r A x = r + y X q

where Q stands for the program displayed above. This
expresses a necessary (but not sufficient) condition for
the "correctness" of the program.

A formal proof of this theorem is given in Table III .
Like all formal proofs, it is excessively tedious, and it
would be fairly easy to introduce notational conventions
which would significantly shorten it. An even more power-
ful method of reducing the tedium of formal proofs is to
derive general rules for proof construction out of the simple
rules accepted as postulates. These general rules would be
shown to be valid by demonstrating how every theorem
proved with their assistance could equally well (if more
tediously) have been proved without. Once a powerful set
of supplementary rules has been developed, a "formal
proof" reduces to little more than an informal indication
of how a formal proof could be constructed.

4. G e n e r a l R e s e r v a t i o n s

The axioms and rules of inference quoted in this paper
have implicitly assumed the absence of side effects of the
evaluation of expressions and conditions. In proving prop-
erties of programs expressed in a language permitting side
effects, it would be necessary to prove their absence in
each ease before applying the appropriate proof technique.
I f the main purpose of a high level programming language
is to assist in the construction and verification of correct
programs, it is doubtful whether the use of functional
notation to call procedures with side effects is a genuine
advantage.

Another deficiency in the axioms and rules quoted above

578 Communica t ions of the ACM Volume 12 / Number 10 / October, 1969

We also have (post is increasing):

⊆ comes from
Th. II.3.1

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 3

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})
= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}

⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′
post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 0.2. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 0.3. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
TheoRem 0.4. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)

Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ for 𝑓 ultimately
over approximating 𝑃 (Def. II.3.5).

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = %) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

, Vol. 1, No. 1, Article . Publication date: November 2024.

POPL 2024, London © P. Cousot

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 3

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})
= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}

⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′
post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 0.2. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 0.3. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
TheoRem 0.4. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)

Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ for 𝑓 ultimately
over approximating 𝑃 (Def. II.3.5).

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = %) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

, Vol. 1, No. 1, Article . Publication date: November 2024.21

Surprised to find a variant of HL proof system

yields the sound and complete proof system:

no need for Hoare left consequence rule (but for iteration):

3.2. RULES OF CONSEQUENCE
In addition to axioms, a deductive science requires at

least one rule of inference, which permits the deduction of
new theorems from one or more axioms or theorems al-
ready proved. A rule of inference takes the form " I f ~-X
and ~- Y then ~-Z", i.e. if assertions of the form X and Y
have been proved as theorems, then Z also is thereby
proved as a theorem. The simplest example of an inference
rule states tha t if the execution of a program Q en-
sures the t ru th of the assertion R, then it also ensures the
t ru th of every assertion logically implied by R. Also, if
P is known to be a precondition for a program Q to pro-
duce result R, then so is any other assertion which logically
implies P. These rules may be expressed more formally:

D1 Rules of Consequence
If ~-P{Q}R and ~-R D S then ~-P{Q}S
If ~-P{Q}R and ~-S ~ P then ~-S{Q}R

3.3. RULE OF COMPOSITION
A program generally consists of a sequence of statements

which are executed one after another. The statements may
be separated by a semicolon or equivalent symbol denoting
procedural composition: (Q1 ; Q2 ; " '" ; Q~). In order to
avoid the awkwardness of dots, it is possible to deal ini-
tially with only two statements (Q1 ; Q2), since longer se-
quences can be reconstructed by nesting, thus (Q~ ; (Q2 ;
(" " (Q,-1 ; Q.) - ' "))) . The removal of the brackets of
this nest may be regarded as convention based on the
associativity of the ";-operator", in the same way as brack-
ets are removed from an arithmetic expression (6 + (t2 +
(. . - (t,_~ + t ,) - - .))) .

The inference rule associated with composition states
tha t if the proven result of the first par t of a program is
identical with the precondition under which the second par t
of the program produces its intended result, then the whole
program will produce the intended result, provided that the
precondition of the first part is satisfied.

In more formal terms:

D2 Rule of Composition
If ~-P{QdR1 and ~-R~{Q2}R then ~-P{ (Q~ ; Q2)}R

3.4. RvL~ OF ITERATION
The essential feature of a stored program computer is

the ability to execute some portion of program (S) re-
peatedly until a condition (B) goes false. A simple way of
expressing such an iteration is to adapt the ALGOL 60
w h i l e notation:

w h i l e B d o S

In executing this statement, a computer first tests the con-
dition B. If this is false, S is omitted, and execution of the
loop is complete. Otherwise, S is executed and B is tested
again. This action is repeated until B is found to be false.
The reasoning which leads to a formulation of an inference
rule for iteration is as follows. Suppose P to be an assertion
which is always true on completion of S, provided tha t it is
also true on initiation. Then obviously P will still be true
after any number of iterations of the s tatement S (even

no iterations). Furthermore, it is known tha t the con-
trolling condition B is false when the iteration finally
terminates. A slightly more powerful formulation is pos-
sible in light of the fact tha t B may be assumed to be true
on initiation of S:

D3 Rule of Iteration
If ~P A B{S}P then ~-P{while B do S} ~ B A P

3.5. EXAMPLE
The axioms quoted above are sufficient to construct the

proof of properties of simple programs, for example, a
routine intended to find the quotient q and remainder r
obtained on dividing x by y. All variables are assumed to
range over a set of nonnegative integers conforming to the
axioms listed in Table I. For simplicity we use the trivial
but inefficient method of successive subtraction. The pro-
posed program is:

((r := x; q := 0); w h i l e
y < r d o (r : = r - - y ; q : = l + q))

An important property of this program is tha t when it
terminates, we can recover the numerator x by adding to
the remainder r the product of the divisor y and the quo-
t ient q (i.e. x = r + y X q). Furthermore, the remainder
is less than the divisor. These properties may be expressed
formally:

t r u e { Q } ~ y ~< r A x = r + y X q

where Q stands for the program displayed above. This
expresses a necessary (but not sufficient) condition for
the "correctness" of the program.

A formal proof of this theorem is given in Table III .
Like all formal proofs, it is excessively tedious, and it
would be fairly easy to introduce notational conventions
which would significantly shorten it. An even more power-
ful method of reducing the tedium of formal proofs is to
derive general rules for proof construction out of the simple
rules accepted as postulates. These general rules would be
shown to be valid by demonstrating how every theorem
proved with their assistance could equally well (if more
tediously) have been proved without. Once a powerful set
of supplementary rules has been developed, a "formal
proof" reduces to little more than an informal indication
of how a formal proof could be constructed.

4. G e n e r a l R e s e r v a t i o n s

The axioms and rules of inference quoted in this paper
have implicitly assumed the absence of side effects of the
evaluation of expressions and conditions. In proving prop-
erties of programs expressed in a language permitting side
effects, it would be necessary to prove their absence in
each ease before applying the appropriate proof technique.
I f the main purpose of a high level programming language
is to assist in the construction and verification of correct
programs, it is doubtful whether the use of functional
notation to call procedures with side effects is a genuine
advantage.

Another deficiency in the axioms and rules quoted above

578 Communica t ions of the ACM Volume 12 / Number 10 / October, 1969

We also have (post is increasing):

⊆ comes from
Th. II.3.1

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 3

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})
= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}

⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′
post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 0.2. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 0.3. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
TheoRem 0.4. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)

Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ for 𝑓 ultimately
over approximating 𝑃 (Def. II.3.5).

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = %) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

, Vol. 1, No. 1, Article . Publication date: November 2024.

POPL 2024, London © P. Cousot￼40

5. Calculational design of IL
• Theory of IL (for iteration):

• IL proof system:

(similar to O’Hearn backward variant since the consequence rule can also be separated)

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 11

IL RULES
TheoRem 5 (IL Rules foR conditional iteRation).

𝐽 0 = 𝑃, [𝐽𝑛 ∩B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"
[𝑃] while (B) S [𝑄]

PRoof. We write [𝑃] S [𝑄] ≜ ⟨𝑃, 𝑄⟩ ∈ TIL(S);
By structural induction (S being a strict component of while (B) S), the rule for [𝑃] S [𝑄] have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝐽 0 = 𝑃, [𝐽𝑛 ∩

B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃𝑛∈N 𝐽𝑛) ∩B!¬B";
Traditionally, the side condition is considered a premiss, to get

𝐽 0 = 𝑃, [𝐽𝑛 ∩B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"
[𝑃] while (B) S [𝑄]

, Vol. 1, No. 1, Article . Publication date: November 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:7

3 CALCULATIONAL DESIGN OF REVERSE HOARE AKA INCORRECTNESS LOGIC
(IL)

3.1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory
TheoRem 3.1 (TheoRy of IL).
TIL(W) ≜ post(⊆.⊇) ○ T (W)

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B!B", 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"}
PRoof of Th. 3.1.
TIL(W)

= post(⊆.⊇) ○ T (W) #def. TIL$
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!W"𝑃} #⊆-order dual of Lem. 1.4$
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃)} #Th. 1.7 where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post!¬B"(𝐼) ∧ 𝐼 ⊆ lfp⊆ ¯̄𝐹𝑒𝑃}

#(⊆) Take 𝐼 = lfp⊆ ¯̄𝐹𝑒𝑃 and reflexivity;
(⊇) By Galois connection (12), post!¬B" is increasing so 𝑄 ⊆ post!¬B"(𝐼) ⊆
post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) and transitivity$

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post!¬B"(𝐼) ∧ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧ 𝐼 ⊆ ⋃
𝑛<𝜔 𝐽𝑛}

#fixpoint underapproximation Th. II.3.6$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃

𝑛<𝜔 𝐽𝑛)}
#(⊆) By Galois connection (12), post!¬B" is increasing so 𝑄 ⊆ post!¬B"(𝐼) ⊆
post!¬B"(⋃𝑛<𝜔 𝐽𝑛) and transitivity;
(⊇) take 𝐼 = ⋃𝑛<𝜔 𝐽𝑛$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ (𝑃 ∪ post(!B" % !S"𝑒)(𝐽𝑛)) ∧𝑄 ⊆ post!¬B"(⋃
𝑛<𝜔 𝐽𝑛)}

#def. ¯̄𝐹𝑒𝑃$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 1 ⩽ 𝑛 < 𝜔⟩ . 𝐽 1 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post(!B" % !S"𝑒)(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃

1⩽𝑛<𝜔 𝐽𝑛)}
#getting rid of 𝐽 0 = ∅$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post(!B" % !S"𝑒)(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃
𝑛∈N 𝐽

𝑛)}
#changing 𝑛 + 1 to 𝑛$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post!S"𝑒(𝐽𝑛 ∩B!B") ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"}
#Lem. 1.2$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩ B!B", 𝐽𝑛+1⟩ ∈ {⟨𝑃 ′, 𝑄 ′⟩ ∣ 𝑄 ′ ⊆ post!S"𝑒)𝑃)} ∧ 𝑄 ⊆(⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"} #def. ∈$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B!B", 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃

𝑛∈N 𝐽
𝑛) ∩B!¬B"} #def. TIL$

!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

POPL 2024, London © P. Cousot￼41

5. Calculational design of IL
• Theory of IL (for iteration):

• IL proof system:

(similar to O’Hearn backward variant since the consequence rule can also be separated)

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 11

IL RULES
TheoRem 5 (IL Rules foR conditional iteRation).

𝐽 0 = 𝑃, [𝐽𝑛 ∩B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"
[𝑃] while (B) S [𝑄]

PRoof. We write [𝑃] S [𝑄] ≜ ⟨𝑃, 𝑄⟩ ∈ TIL(S);
By structural induction (S being a strict component of while (B) S), the rule for [𝑃] S [𝑄] have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝐽 0 = 𝑃, [𝐽𝑛 ∩

B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃𝑛∈N 𝐽𝑛) ∩B!¬B";
Traditionally, the side condition is considered a premiss, to get

𝐽 0 = 𝑃, [𝐽𝑛 ∩B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"
[𝑃] while (B) S [𝑄]

, Vol. 1, No. 1, Article . Publication date: November 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:7

3 CALCULATIONAL DESIGN OF REVERSE HOARE AKA INCORRECTNESS LOGIC
(IL)

3.1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory
TheoRem 3.1 (TheoRy of IL).
TIL(W) ≜ post(⊆.⊇) ○ T (W)

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B!B", 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"}
PRoof of Th. 3.1.
TIL(W)

= post(⊆.⊇) ○ T (W) #def. TIL$
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!W"𝑃} #⊆-order dual of Lem. 1.4$
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃)} #Th. 1.7 where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post!¬B"(𝐼) ∧ 𝐼 ⊆ lfp⊆ ¯̄𝐹𝑒𝑃}

#(⊆) Take 𝐼 = lfp⊆ ¯̄𝐹𝑒𝑃 and reflexivity;
(⊇) By Galois connection (12), post!¬B" is increasing so 𝑄 ⊆ post!¬B"(𝐼) ⊆
post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) and transitivity$

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post!¬B"(𝐼) ∧ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧ 𝐼 ⊆ ⋃
𝑛<𝜔 𝐽𝑛}

#fixpoint underapproximation Th. II.3.6$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃

𝑛<𝜔 𝐽𝑛)}
#(⊆) By Galois connection (12), post!¬B" is increasing so 𝑄 ⊆ post!¬B"(𝐼) ⊆
post!¬B"(⋃𝑛<𝜔 𝐽𝑛) and transitivity;
(⊇) take 𝐼 = ⋃𝑛<𝜔 𝐽𝑛$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ (𝑃 ∪ post(!B" % !S"𝑒)(𝐽𝑛)) ∧𝑄 ⊆ post!¬B"(⋃
𝑛<𝜔 𝐽𝑛)}

#def. ¯̄𝐹𝑒𝑃$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 1 ⩽ 𝑛 < 𝜔⟩ . 𝐽 1 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post(!B" % !S"𝑒)(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃

1⩽𝑛<𝜔 𝐽𝑛)}
#getting rid of 𝐽 0 = ∅$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post(!B" % !S"𝑒)(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃
𝑛∈N 𝐽

𝑛)}
#changing 𝑛 + 1 to 𝑛$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post!S"𝑒(𝐽𝑛 ∩B!B") ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"}
#Lem. 1.2$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩ B!B", 𝐽𝑛+1⟩ ∈ {⟨𝑃 ′, 𝑄 ′⟩ ∣ 𝑄 ′ ⊆ post!S"𝑒)𝑃)} ∧ 𝑄 ⊆(⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"} #def. ∈$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B!B", 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃

𝑛∈N 𝐽
𝑛) ∩B!¬B"} #def. TIL$

!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

POPL 2024, London © P. Cousot22

Calculational design of ILAuxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:7

3 CALCULATIONAL DESIGN OF REVERSE HOARE AKA INCORRECTNESS LOGIC
(IL)

3.1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory
TheoRem 3.1 (TheoRy of IL).
TIL(W) ≜ post(⊆.⊇) ○ T (W)

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B!B", 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"}
PRoof of Th. 3.1.
TIL(W)

= post(⊆.⊇) ○ T (W) #def. TIL$
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!W"𝑃} #⊆-order dual of Lem. 1.4$
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃)} #Th. 1.7 where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post!¬B"(𝐼) ∧ 𝐼 ⊆ lfp⊆ ¯̄𝐹𝑒𝑃}

#(⊆) Take 𝐼 = lfp⊆ ¯̄𝐹𝑒𝑃 and reflexivity;
(⊇) By Galois connection (12), post!¬B" is increasing so 𝑄 ⊆ post!¬B"(𝐼) ⊆
post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) and transitivity$

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post!¬B"(𝐼) ∧ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧ 𝐼 ⊆ ⋃
𝑛<𝜔 𝐽𝑛}

#fixpoint underapproximation Th. II.3.6$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃

𝑛<𝜔 𝐽𝑛)}
#(⊆) By Galois connection (12), post!¬B" is increasing so 𝑄 ⊆ post!¬B"(𝐼) ⊆
post!¬B"(⋃𝑛<𝜔 𝐽𝑛) and transitivity;
(⊇) take 𝐼 = ⋃𝑛<𝜔 𝐽𝑛$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ (𝑃 ∪ post(!B" % !S"𝑒)(𝐽𝑛)) ∧𝑄 ⊆ post!¬B"(⋃
𝑛<𝜔 𝐽𝑛)}

#def. ¯̄𝐹𝑒𝑃$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 1 ⩽ 𝑛 < 𝜔⟩ . 𝐽 1 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post(!B" % !S"𝑒)(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃

1⩽𝑛<𝜔 𝐽𝑛)}
#getting rid of 𝐽 0 = ∅$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post(!B" % !S"𝑒)(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃
𝑛∈N 𝐽

𝑛)}
#changing 𝑛 + 1 to 𝑛$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post!S"𝑒(𝐽𝑛 ∩B!B") ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"}
#Lem. 1.2$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩ B!B", 𝐽𝑛+1⟩ ∈ {⟨𝑃 ′, 𝑄 ′⟩ ∣ 𝑄 ′ ⊆ post!S"𝑒)𝑃)} ∧ 𝑄 ⊆(⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"} #def. ∈$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B!B", 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃

𝑛∈N 𝐽
𝑛) ∩B!¬B"} #def. TIL$

!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

7:8 Patrick Cousot

3.2 Calculational design of IL rules

𝐽 0 = 𝑃, [𝐽𝑛 ∩B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"
[𝑃] while (B) S [𝑄] (2)

PRoof. We write [𝑃] S [𝑄] ≜ ⟨𝑃, 𝑄⟩ ∈ TIL(S);
By structural induction (S being a strict component of while (B) S), the rule for [𝑃] S [𝑄] have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝐽 0 = 𝑃, [𝐽𝑛 ∩

B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃𝑛∈N 𝐽𝑛) ∩B!¬B";
Traditionally, the side condition is written as a premiss, to get (2).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

POPL 2024, London © P. Cousot23

Much more in the paper

POPL 2024, London © P. Cousot24

Much more in the paper
• Bi-inductive relational semantics with break and non termination (⊥),

for termination and nontermination proofs

• Many more abstractions and combinations → hundreds of
transformational logics theories (including property negations, proofs by
contradictions, backward logics, etc.)

• Taxonomies based on theory
 abstractions (not proof systems)

20 Patrick Cousot

RemaRK I.3.12. By (39) pre preserves joins (∪) but not necessarily meets (∩). Same remark for
post. A◯ ∎
I.3.12 To terminate or not to terminate abstraction for transformers
We have shown in Sect. I.3.5 that we can abstract antecedant-consequence pairs by (15) or (18) to
take nontermination into account (e.g. total correctness) or not (partial correctness). An equivalent
alternative uses the natural semantics !S"! or the angelic one !S" in (1). We can also abstract
transformers, which we do in the assertional case, by

𝛼/!(𝑃) ≜ 𝑃 ∖ {&} !→𝛼/!(𝜃) ≜ 𝛼/! ○ 𝜃 ←!𝛼/!(𝜃) ≜ 𝜃 ○ 𝛾/! (40)
𝛾/!(𝑄) ≜ 𝑄 ∪ {&} !→𝛾 /!(𝜃) ≜ 𝛾/! ○ 𝜃 ←!𝛾 /!(𝜃) ≜ 𝜃 ○ 𝛼/! (41)

which yield Galois connections A◯
⟨℘(Σ!), ⊆⟩ −−−−→←−−−−𝛼/!

𝛾/! ⟨℘(Σ), ⊆⟩ ⟨X → ℘(Σ!), .⊆⟩ −−−−→←−−−−!→𝛼/!
!→𝛾/! ⟨X → ℘(Σ), .⊆⟩ (42)

⟨℘(Σ!) 𝑖!→ ℘(Σ), .⊆⟩ −−−−→←−−−−←!𝛼/!
←!𝛾/! ⟨℘(Σ) 𝑖!→ ℘(Σ), .⊆⟩

I.3.13 Abstract logics
Finally logics may refer to any abstraction of the antecedents and consequenst of a transforma-
tional logics. For example, [29] is an abstraction of Hoare logic such that {𝑃} S{𝑄} means Hoare
triple {𝛾1(𝑃)} S{𝛾2(𝑄)}. Without appropriate hypotheses on the abstraction, some rules of Hoare
logic like disjunction and conjunction may be invalid in the abstract, see counter-examples and
sufficient hypotheses in [29, pages 219–221]. Similarly, [43] provides a counterexample showing
the unsoundness of the conjunction rule. This is an argument for the use of a principled method
for designing logics.

Another abstract logic is [9] combining an over approximation (for correctness) and an under
approximation (for incorrectness) in the same abstract domain. The “(relax)” rule requires that the
under approximation uses abstract properties 𝛼(𝑃) that exactly represent concrete properties 𝑃
by requiring that 𝛾 ○ 𝛼(𝑃) = 𝑃 . This restricts the concrete points that can be used in the under
approximation, and will be a source of incompleteness and imprecision for most static analyses.

16 Patrick Cousot

pre!S"! ●

p̃re!S"! ●

pre!S" ●

p̃re!S" ●

● post!S"!

● p̃ost!S"!

● post!S"

● p̃ost!S"

.
𝛼−1

.
𝛼
∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

←"𝛼/" "→𝛼/"

"→𝛼/"←"𝛼/!

17◯●
●
19◯ Possible accessibility or

nontermination logic
(application 2)

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
20◯

18◯●
post(⊇,⊆) ○ 𝛼𝐺

post(⊆,⊇) ○ 𝛼𝐺

11◯●
●

Outcome logic [98] 13◯
Dijkstra’s subgoal induction [36]

[22, (i−1) p. 100]

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
Subgoal induction [51] 14◯

[22, (ĩ) p. 100]

12◯●
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺

7◯ Apt & Plotkin
total correctness [6]●

●
9◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
22◯

21◯●
post(⊆,⊇) ○ 𝛼𝐺

8◯ Hoare logic [49]
[22, (i) p. 100]●

●
Reverse Hoare [32] 10◯

aka incorrectness [67] logic

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

15◯●
●
16◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

23◯●
𝛼¬

post(⊇,⊆) ○ 𝛼𝐺●
●

●

●
●

●

Galois connection (different logics to prove the same property)

Fig. 4. Hierarchical taxonomy of transformational assertional logics

14◯ By Galois connection (39.b), post(⊆,⊇) ○ 𝛼𝐺(p̃re!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ)×℘(Σ) ∣ 𝑃 ⊆ p̃re!S"𝑄} is
equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit’s subgoal induction
[51] or necessary preconditions [27, 28].

Hoare and subgoal induction logics can be used to prove universal partial correctness (𝑄 is good,
as in static accessibility analysis [19]) and universal partial incorrectness (𝑄 is bad, as in necessary
preconditions analyses [27, 28]). Both logics can be also used to prove bounded termination, by
introducing a counter incremented in loops and proved to be bounded [57]. However, this is in-
complete for unbounded nondeterminism. post!S"𝑃 ⊆ ∅ ⇔ 𝑃 ⊆ p̃re!S"∅ ⇔ 𝑃 ⊆ ¬pre!S"Σ ⇔
pre!S"Σ ⊆ ¬𝑃 is definite nontermination from all initial states (executions from any initial state of
𝑃 do not terminate).

Subgoal induction is exploited in necessary preconditions analyses [27, 28]. Finding 𝑃 such that
post!S"𝑃 ⊆ 𝑄 is equivalent to finding 𝑃 such that 𝑃 ⊆ p̃re!S"𝑄 for the given error postcondition
𝑄 , which the necessary precondition analysis does by under approximating p̃re!S" defined struc-
turally on the programming language and using fixpoint under approximation to handle iteration
and recursion.

I.3.14.2 Total definite accessibility of some final states from all initial states post!S"!𝑃 ⊆ 𝑄 ⇔ 𝑃 ⊆
p̃re!S"!𝑄 , 𝑃,𝑄 ∈ ℘(Σ). Total correctness, allowing blocking states, characterizes executions from

, Vol. 1, No. 1, Article . Publication date: October 2024.

Fig. 3. Taxonomy of assertional logics

Under approximation is the order semidual
of an over approximation, with abstraction
⟨℘(Σ!), ⊆⟩ −−−→←−−−𝛼𝛾 ⟨A, ⊒⟩. The study by [7] pro-
vides a number of classic abstract domain ex-
amples showing the imprecision of such under
approximation static analyses, but for few ex-
ceptions like [63].

These under approximation approaches are
based on Th. II.3.6 for fixpoint under approx-
imation by transfinite iterates. Termination
proofs do not use an under approximation but
instead an over approximation and a variant
function as, e.g., in Th. II.3.8. Alternatively,
over approximating static analysis is classic
and variant functions can also be inferred by
abstract interpretation [40, 87–92].

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 15

means Hoare triple {𝛾1(𝑃)} S{𝛾2(𝑄)}. Without appropriate hypotheses on the abstraction, some
rules of Hoare logic like disjunction and conjunction may be invalid in the abstract, see counter-
examples and sufficient hypotheses in [Cousot et al. 2012, pages 219–221]. Similarly, [Gotsman
et al. 2011] provides a counterexample showing the unsoundness of the conjunction rule. This is
an argument for the use of a principled method for designing logics.

Another abstract logic [Bruni et al. 2023] combines an over approximation (for correctness) and
an under approximation (for incorrectness) in the same abstract domain.The “(relax)” rule requires
that the under approximation uses abstract properties 𝛼(𝑃) that exactly represent concrete prop-
erties 𝑃 by requiring that 𝛾 ○ 𝛼(𝑃) = 𝑃 . This restricts the concrete points that can be used in
the under approximation, and will be a source of incompleteness and imprecision for most static
analyses.

Under approximation is the order semidual of an over approximation, with abstraction ⟨℘(Σ"),⊆⟩ −−−→←−−−𝛼𝛾 ⟨A, ⊒⟩ exploited e.g. in [Ball et al. 2005].The study by [Ascari et al. 2022] provides a number
of classic abstract domain examples showing the imprecision of such under approximation static
analyses, but for few exceptions like [Asadi et al. 2021; Miné 2014].

These under approximation approaches are based onTh. II.3.6 for fixpoint under approximation
by transfinite iterates. Termination proofs do not use an under approximation but instead an over
approximation and a variant function as, e.g., inTh. II.3.8. Alternatively, over approximating static
analysis is classic and variant functions can also be inferred by abstract interpretation [D’Silva and
Urban 2015; Urban 2013, 2015; Urban et al. 2016; Urban and Miné 2014a,b, 2015].

I.3.14 The subhierarchy of assertional logics
Comparing logics means comparing their theories, that is their expressivity, through their respec-
tive abstractions of the collecting semantics (as formalized by fixpoint abstraction in Sect. II.2), and
comparing the induction principles induced by their abstractions (as formalized in Sect. II.3 by fix-
point induction). For example, figure 3 shows that Hoare logic and subgoal induction are different
but equivalent abstractions of the collecting semantics so have the same theory and equivalent but
different proof systems.

16 Patrick Cousot

pre!S"! ●

p̃re!S"! ●

pre!S" ●

p̃re!S"●

● post!S"!

● p̃ost!S"!

● post!S"

● p̃ost!S"

.
𝛼−1

.
𝛼
∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

←"𝛼/" "→𝛼/"

"→𝛼/"←"𝛼/!

17◯●
●
19◯ Possible accessibility or

nontermination logic
(application 2)

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
20◯

18◯●
post(⊇,⊆) ○ 𝛼𝐺

post(⊆,⊇) ○ 𝛼𝐺

11◯●
[Zilberstein et al. 2023] ●

[Dijkstra 1982] 13◯
[Cousot and Cousot 1982, (i−1)]

[Ascari et al. 2023, (SIL)]

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

[Morris Jr. and Wegbreit 1977] ●
[Cousot and Cousot 1982, (ĩ)] 14◯

[Ascari et al. 2023, (NC)]

12◯●
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺

[Apt and Plotkin 1986]
7◯●

●
9◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
22◯

21◯●
’𝑠𝑝𝑜𝑠𝑡(⊆,⊇) ○ 𝛼𝐺

23◯●
𝛼¬

[Hoare 1969]
[Cousot and Cousot 1982, (i)]

8◯●
●

[de Vries and Koutavas 2011] 10◯
[O’Hearn 2020] x

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

15◯●
●
16◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺●
●

●

●
●

●

Galois connection (different logics to prove the same property)

Fig. 4. Hierarchical taxonomy of transformational assertional logics

The taxonomy for direct proofs (the hypothesis implies the conclusion) is illustrated in Fig. 4.

I.3.14.1 Partial definite accessibility of some final state from all initial states post!S"𝑃 ⊆ 𝑄 ⇔
𝑃 ⊆ p̃re!S"𝑄 , 𝑃,𝑄 ∈ ℘(Σ). Partial correctness, allowing blocking states, characterizes executions
starting from any initial state in 𝑃 , which, if terminating normally, do terminate in a state of 𝑄
and no other one. So blocking states are not excluded. This is Naur [Naur 1966], Hoare [Hoare
1969] partial correctness, and Dijkstra weakest liberal preconditions [Dijkstra 1976] and the partial
correctness part of Turing [Turing 1950] and Floyd [Floyd 1967] total correctness.
8◯ post(⊇,⊆) ○ 𝛼𝐺(post!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ) × ℘(Σ) ∣ post!S"𝑃 ⊆ 𝑄} yields the theory of Hoare
logic [Hoare 1969]. This claim can be substantiated by (re)constructing Hoare logic by abstracting
the angelic relational semantics !S" = 𝛼!(!S"!) by post(⊇,⊆) ○ 𝛼𝐺 ○ post. This has been done, e.g.,
in [Cook 1978,Theorem 1, page 79] (modulo a later correction in [Cook 1981]) as well as in [Cousot
2021, Chapter 26], although using the intermediate abstractions into an equational semantics and
then verification conditions to explain Turing-Floyd’s transition based invariance proof method.
14◯ By Galois connection (39.b), post(⊆,⊇) ○ 𝛼𝐺(p̃re!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ)×℘(Σ) ∣ 𝑃 ⊆ p̃re!S"𝑄} is
equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit’s subgoal induction
[Morris Jr. and Wegbreit 1977] or necessary preconditions [Ascari et al. 2023; Cousot et al. 2013,
2011].

, Vol. 1, No. 1, Article . Publication date: November 2024.

Fig. 3. Taxonomy of assertional logics

These abstractions yield the hierarchical taxon-
omy of assertional transformational logics of Fig. 3,
which is a subset of Fig. 2. Fig. 3 is commented there-
after.

We use universal to mean for all initial or final
states and existential to mean there exists at least
one initial or final state. We use reachability (often
forward) for initial to final states and accessibility
(often backward) for final to initial states. We use
definite to mean “for all executions” and possible to
mean “for some execution” (maybe none). In both
cases, the qualification does not exclude possible
nontermination or blocking states, which is empha-
sized by partial. We use total to mean that all exe-
cutions must be finite. We use blocking to mean a
state, which is not final, but from which execution
cannot go on. No such blocking states exist in the
semantics !S"" of statements S in Sect. I.1.1 and II.1 but would correspond e.g. to an aborted exe-
cution after a runtime error (like a division by zero).

, Vol. 1, No. 1, Article . Publication date: November 2024.

POPL 2024, London © P. Cousot24

Much more in the paper
• Bi-inductive relational semantics with break and non termination (⊥),

for termination and nontermination proofs

• Many more abstractions and combinations → hundreds of
transformational logics theories (including property negations, proofs by
contradictions, backward logics, etc.)

• Taxonomies based on theory
 abstractions (not proof systems)

20 Patrick Cousot

RemaRK I.3.12. By (39) pre preserves joins (∪) but not necessarily meets (∩). Same remark for
post. A◯ ∎
I.3.12 To terminate or not to terminate abstraction for transformers
We have shown in Sect. I.3.5 that we can abstract antecedant-consequence pairs by (15) or (18) to
take nontermination into account (e.g. total correctness) or not (partial correctness). An equivalent
alternative uses the natural semantics !S"! or the angelic one !S" in (1). We can also abstract
transformers, which we do in the assertional case, by

𝛼/!(𝑃) ≜ 𝑃 ∖ {&} !→𝛼/!(𝜃) ≜ 𝛼/! ○ 𝜃 ←!𝛼/!(𝜃) ≜ 𝜃 ○ 𝛾/! (40)
𝛾/!(𝑄) ≜ 𝑄 ∪ {&} !→𝛾 /!(𝜃) ≜ 𝛾/! ○ 𝜃 ←!𝛾 /!(𝜃) ≜ 𝜃 ○ 𝛼/! (41)

which yield Galois connections A◯
⟨℘(Σ!), ⊆⟩ −−−−→←−−−−𝛼/!

𝛾/! ⟨℘(Σ), ⊆⟩ ⟨X → ℘(Σ!), .⊆⟩ −−−−→←−−−−!→𝛼/!
!→𝛾/! ⟨X → ℘(Σ), .⊆⟩ (42)

⟨℘(Σ!) 𝑖!→ ℘(Σ), .⊆⟩ −−−−→←−−−−←!𝛼/!
←!𝛾/! ⟨℘(Σ) 𝑖!→ ℘(Σ), .⊆⟩

I.3.13 Abstract logics
Finally logics may refer to any abstraction of the antecedents and consequenst of a transforma-
tional logics. For example, [29] is an abstraction of Hoare logic such that {𝑃} S{𝑄} means Hoare
triple {𝛾1(𝑃)} S{𝛾2(𝑄)}. Without appropriate hypotheses on the abstraction, some rules of Hoare
logic like disjunction and conjunction may be invalid in the abstract, see counter-examples and
sufficient hypotheses in [29, pages 219–221]. Similarly, [43] provides a counterexample showing
the unsoundness of the conjunction rule. This is an argument for the use of a principled method
for designing logics.

Another abstract logic is [9] combining an over approximation (for correctness) and an under
approximation (for incorrectness) in the same abstract domain. The “(relax)” rule requires that the
under approximation uses abstract properties 𝛼(𝑃) that exactly represent concrete properties 𝑃
by requiring that 𝛾 ○ 𝛼(𝑃) = 𝑃 . This restricts the concrete points that can be used in the under
approximation, and will be a source of incompleteness and imprecision for most static analyses.

16 Patrick Cousot

pre!S"! ●

p̃re!S"! ●

pre!S" ●

p̃re!S" ●

● post!S"!

● p̃ost!S"!

● post!S"

● p̃ost!S"

.
𝛼−1

.
𝛼
∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

←"𝛼/" "→𝛼/"

"→𝛼/"←"𝛼/!

17◯●
●
19◯ Possible accessibility or

nontermination logic
(application 2)

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
20◯

18◯●
post(⊇,⊆) ○ 𝛼𝐺

post(⊆,⊇) ○ 𝛼𝐺

11◯●
●

Outcome logic [98] 13◯
Dijkstra’s subgoal induction [36]

[22, (i−1) p. 100]

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
Subgoal induction [51] 14◯

[22, (ĩ) p. 100]

12◯●
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺

7◯ Apt & Plotkin
total correctness [6]●

●
9◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
22◯

21◯●
post(⊆,⊇) ○ 𝛼𝐺

8◯ Hoare logic [49]
[22, (i) p. 100]●

●
Reverse Hoare [32] 10◯

aka incorrectness [67] logic

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

15◯●
●
16◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

23◯●
𝛼¬

post(⊇,⊆) ○ 𝛼𝐺●
●

●

●
●

●

Galois connection (different logics to prove the same property)

Fig. 4. Hierarchical taxonomy of transformational assertional logics

14◯ By Galois connection (39.b), post(⊆,⊇) ○ 𝛼𝐺(p̃re!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ)×℘(Σ) ∣ 𝑃 ⊆ p̃re!S"𝑄} is
equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit’s subgoal induction
[51] or necessary preconditions [27, 28].

Hoare and subgoal induction logics can be used to prove universal partial correctness (𝑄 is good,
as in static accessibility analysis [19]) and universal partial incorrectness (𝑄 is bad, as in necessary
preconditions analyses [27, 28]). Both logics can be also used to prove bounded termination, by
introducing a counter incremented in loops and proved to be bounded [57]. However, this is in-
complete for unbounded nondeterminism. post!S"𝑃 ⊆ ∅ ⇔ 𝑃 ⊆ p̃re!S"∅ ⇔ 𝑃 ⊆ ¬pre!S"Σ ⇔
pre!S"Σ ⊆ ¬𝑃 is definite nontermination from all initial states (executions from any initial state of
𝑃 do not terminate).

Subgoal induction is exploited in necessary preconditions analyses [27, 28]. Finding 𝑃 such that
post!S"𝑃 ⊆ 𝑄 is equivalent to finding 𝑃 such that 𝑃 ⊆ p̃re!S"𝑄 for the given error postcondition
𝑄 , which the necessary precondition analysis does by under approximating p̃re!S" defined struc-
turally on the programming language and using fixpoint under approximation to handle iteration
and recursion.

I.3.14.2 Total definite accessibility of some final states from all initial states post!S"!𝑃 ⊆ 𝑄 ⇔ 𝑃 ⊆
p̃re!S"!𝑄 , 𝑃,𝑄 ∈ ℘(Σ). Total correctness, allowing blocking states, characterizes executions from

, Vol. 1, No. 1, Article . Publication date: October 2024.

Fig. 3. Taxonomy of assertional logics

Under approximation is the order semidual
of an over approximation, with abstraction
⟨℘(Σ!), ⊆⟩ −−−→←−−−𝛼𝛾 ⟨A, ⊒⟩. The study by [7] pro-
vides a number of classic abstract domain ex-
amples showing the imprecision of such under
approximation static analyses, but for few ex-
ceptions like [63].

These under approximation approaches are
based on Th. II.3.6 for fixpoint under approx-
imation by transfinite iterates. Termination
proofs do not use an under approximation but
instead an over approximation and a variant
function as, e.g., in Th. II.3.8. Alternatively,
over approximating static analysis is classic
and variant functions can also be inferred by
abstract interpretation [40, 87–92].

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 15

means Hoare triple {𝛾1(𝑃)} S{𝛾2(𝑄)}. Without appropriate hypotheses on the abstraction, some
rules of Hoare logic like disjunction and conjunction may be invalid in the abstract, see counter-
examples and sufficient hypotheses in [Cousot et al. 2012, pages 219–221]. Similarly, [Gotsman
et al. 2011] provides a counterexample showing the unsoundness of the conjunction rule. This is
an argument for the use of a principled method for designing logics.

Another abstract logic [Bruni et al. 2023] combines an over approximation (for correctness) and
an under approximation (for incorrectness) in the same abstract domain.The “(relax)” rule requires
that the under approximation uses abstract properties 𝛼(𝑃) that exactly represent concrete prop-
erties 𝑃 by requiring that 𝛾 ○ 𝛼(𝑃) = 𝑃 . This restricts the concrete points that can be used in
the under approximation, and will be a source of incompleteness and imprecision for most static
analyses.

Under approximation is the order semidual of an over approximation, with abstraction ⟨℘(Σ"),⊆⟩ −−−→←−−−𝛼𝛾 ⟨A, ⊒⟩ exploited e.g. in [Ball et al. 2005].The study by [Ascari et al. 2022] provides a number
of classic abstract domain examples showing the imprecision of such under approximation static
analyses, but for few exceptions like [Asadi et al. 2021; Miné 2014].

These under approximation approaches are based onTh. II.3.6 for fixpoint under approximation
by transfinite iterates. Termination proofs do not use an under approximation but instead an over
approximation and a variant function as, e.g., inTh. II.3.8. Alternatively, over approximating static
analysis is classic and variant functions can also be inferred by abstract interpretation [D’Silva and
Urban 2015; Urban 2013, 2015; Urban et al. 2016; Urban and Miné 2014a,b, 2015].

I.3.14 The subhierarchy of assertional logics
Comparing logics means comparing their theories, that is their expressivity, through their respec-
tive abstractions of the collecting semantics (as formalized by fixpoint abstraction in Sect. II.2), and
comparing the induction principles induced by their abstractions (as formalized in Sect. II.3 by fix-
point induction). For example, figure 3 shows that Hoare logic and subgoal induction are different
but equivalent abstractions of the collecting semantics so have the same theory and equivalent but
different proof systems.

16 Patrick Cousot

pre!S"! ●

p̃re!S"! ●

pre!S" ●

p̃re!S"●

● post!S"!

● p̃ost!S"!

● post!S"

● p̃ost!S"

.
𝛼−1

.
𝛼
∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

←"𝛼/" "→𝛼/"

"→𝛼/"←"𝛼/!

17◯●
●
19◯ Possible accessibility or

nontermination logic
(application 2)

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
20◯

18◯●
post(⊇,⊆) ○ 𝛼𝐺

post(⊆,⊇) ○ 𝛼𝐺

11◯●
[Zilberstein et al. 2023] ●

[Dijkstra 1982] 13◯
[Cousot and Cousot 1982, (i−1)]

[Ascari et al. 2023, (SIL)]

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

[Morris Jr. and Wegbreit 1977] ●
[Cousot and Cousot 1982, (ĩ)] 14◯

[Ascari et al. 2023, (NC)]

12◯●
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺

[Apt and Plotkin 1986]
7◯●

●
9◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
22◯

21◯●
’𝑠𝑝𝑜𝑠𝑡(⊆,⊇) ○ 𝛼𝐺

23◯●
𝛼¬

[Hoare 1969]
[Cousot and Cousot 1982, (i)]

8◯●
●

[de Vries and Koutavas 2011] 10◯
[O’Hearn 2020] x

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

15◯●
●
16◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺●
●

●

●
●

●

Galois connection (different logics to prove the same property)

Fig. 4. Hierarchical taxonomy of transformational assertional logics

The taxonomy for direct proofs (the hypothesis implies the conclusion) is illustrated in Fig. 4.

I.3.14.1 Partial definite accessibility of some final state from all initial states post!S"𝑃 ⊆ 𝑄 ⇔
𝑃 ⊆ p̃re!S"𝑄 , 𝑃,𝑄 ∈ ℘(Σ). Partial correctness, allowing blocking states, characterizes executions
starting from any initial state in 𝑃 , which, if terminating normally, do terminate in a state of 𝑄
and no other one. So blocking states are not excluded. This is Naur [Naur 1966], Hoare [Hoare
1969] partial correctness, and Dijkstra weakest liberal preconditions [Dijkstra 1976] and the partial
correctness part of Turing [Turing 1950] and Floyd [Floyd 1967] total correctness.
8◯ post(⊇,⊆) ○ 𝛼𝐺(post!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ) × ℘(Σ) ∣ post!S"𝑃 ⊆ 𝑄} yields the theory of Hoare
logic [Hoare 1969]. This claim can be substantiated by (re)constructing Hoare logic by abstracting
the angelic relational semantics !S" = 𝛼!(!S"!) by post(⊇,⊆) ○ 𝛼𝐺 ○ post. This has been done, e.g.,
in [Cook 1978,Theorem 1, page 79] (modulo a later correction in [Cook 1981]) as well as in [Cousot
2021, Chapter 26], although using the intermediate abstractions into an equational semantics and
then verification conditions to explain Turing-Floyd’s transition based invariance proof method.
14◯ By Galois connection (39.b), post(⊆,⊇) ○ 𝛼𝐺(p̃re!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ)×℘(Σ) ∣ 𝑃 ⊆ p̃re!S"𝑄} is
equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit’s subgoal induction
[Morris Jr. and Wegbreit 1977] or necessary preconditions [Ascari et al. 2023; Cousot et al. 2013,
2011].

, Vol. 1, No. 1, Article . Publication date: November 2024.

Fig. 3. Taxonomy of assertional logics

These abstractions yield the hierarchical taxon-
omy of assertional transformational logics of Fig. 3,
which is a subset of Fig. 2. Fig. 3 is commented there-
after.

We use universal to mean for all initial or final
states and existential to mean there exists at least
one initial or final state. We use reachability (often
forward) for initial to final states and accessibility
(often backward) for final to initial states. We use
definite to mean “for all executions” and possible to
mean “for some execution” (maybe none). In both
cases, the qualification does not exclude possible
nontermination or blocking states, which is empha-
sized by partial. We use total to mean that all exe-
cutions must be finite. We use blocking to mean a
state, which is not final, but from which execution
cannot go on. No such blocking states exist in the
semantics !S"" of statements S in Sect. I.1.1 and II.1 but would correspond e.g. to an aborted exe-
cution after a runtime error (like a division by zero).

, Vol. 1, No. 1, Article . Publication date: November 2024.

POPL 2024, London © P. Cousot24

Much more in the paper
• Bi-inductive relational semantics with break and non termination (⊥),

for termination and nontermination proofs

• Many more abstractions and combinations → hundreds of
transformational logics theories (including property negations, proofs by
contradictions, backward logics, etc.)

• Taxonomies based on theory
 abstractions (not proof systems)

20 Patrick Cousot

RemaRK I.3.12. By (39) pre preserves joins (∪) but not necessarily meets (∩). Same remark for
post. A◯ ∎
I.3.12 To terminate or not to terminate abstraction for transformers
We have shown in Sect. I.3.5 that we can abstract antecedant-consequence pairs by (15) or (18) to
take nontermination into account (e.g. total correctness) or not (partial correctness). An equivalent
alternative uses the natural semantics !S"! or the angelic one !S" in (1). We can also abstract
transformers, which we do in the assertional case, by

𝛼/!(𝑃) ≜ 𝑃 ∖ {&} !→𝛼/!(𝜃) ≜ 𝛼/! ○ 𝜃 ←!𝛼/!(𝜃) ≜ 𝜃 ○ 𝛾/! (40)
𝛾/!(𝑄) ≜ 𝑄 ∪ {&} !→𝛾 /!(𝜃) ≜ 𝛾/! ○ 𝜃 ←!𝛾 /!(𝜃) ≜ 𝜃 ○ 𝛼/! (41)

which yield Galois connections A◯
⟨℘(Σ!), ⊆⟩ −−−−→←−−−−𝛼/!

𝛾/! ⟨℘(Σ), ⊆⟩ ⟨X → ℘(Σ!), .⊆⟩ −−−−→←−−−−!→𝛼/!
!→𝛾/! ⟨X → ℘(Σ), .⊆⟩ (42)

⟨℘(Σ!) 𝑖!→ ℘(Σ), .⊆⟩ −−−−→←−−−−←!𝛼/!
←!𝛾/! ⟨℘(Σ) 𝑖!→ ℘(Σ), .⊆⟩

I.3.13 Abstract logics
Finally logics may refer to any abstraction of the antecedents and consequenst of a transforma-
tional logics. For example, [29] is an abstraction of Hoare logic such that {𝑃} S{𝑄} means Hoare
triple {𝛾1(𝑃)} S{𝛾2(𝑄)}. Without appropriate hypotheses on the abstraction, some rules of Hoare
logic like disjunction and conjunction may be invalid in the abstract, see counter-examples and
sufficient hypotheses in [29, pages 219–221]. Similarly, [43] provides a counterexample showing
the unsoundness of the conjunction rule. This is an argument for the use of a principled method
for designing logics.

Another abstract logic is [9] combining an over approximation (for correctness) and an under
approximation (for incorrectness) in the same abstract domain. The “(relax)” rule requires that the
under approximation uses abstract properties 𝛼(𝑃) that exactly represent concrete properties 𝑃
by requiring that 𝛾 ○ 𝛼(𝑃) = 𝑃 . This restricts the concrete points that can be used in the under
approximation, and will be a source of incompleteness and imprecision for most static analyses.

16 Patrick Cousot

pre!S"! ●

p̃re!S"! ●

pre!S" ●

p̃re!S" ●

● post!S"!

● p̃ost!S"!

● post!S"

● p̃ost!S"

.
𝛼−1

.
𝛼
∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

←"𝛼/" "→𝛼/"

"→𝛼/"←"𝛼/!

17◯●
●
19◯ Possible accessibility or

nontermination logic
(application 2)

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
20◯

18◯●
post(⊇,⊆) ○ 𝛼𝐺

post(⊆,⊇) ○ 𝛼𝐺

11◯●
●

Outcome logic [98] 13◯
Dijkstra’s subgoal induction [36]

[22, (i−1) p. 100]

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
Subgoal induction [51] 14◯

[22, (ĩ) p. 100]

12◯●
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺

7◯ Apt & Plotkin
total correctness [6]●

●
9◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
22◯

21◯●
post(⊆,⊇) ○ 𝛼𝐺

8◯ Hoare logic [49]
[22, (i) p. 100]●

●
Reverse Hoare [32] 10◯

aka incorrectness [67] logic

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

15◯●
●
16◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

23◯●
𝛼¬

post(⊇,⊆) ○ 𝛼𝐺●
●

●

●
●

●

Galois connection (different logics to prove the same property)

Fig. 4. Hierarchical taxonomy of transformational assertional logics

14◯ By Galois connection (39.b), post(⊆,⊇) ○ 𝛼𝐺(p̃re!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ)×℘(Σ) ∣ 𝑃 ⊆ p̃re!S"𝑄} is
equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit’s subgoal induction
[51] or necessary preconditions [27, 28].

Hoare and subgoal induction logics can be used to prove universal partial correctness (𝑄 is good,
as in static accessibility analysis [19]) and universal partial incorrectness (𝑄 is bad, as in necessary
preconditions analyses [27, 28]). Both logics can be also used to prove bounded termination, by
introducing a counter incremented in loops and proved to be bounded [57]. However, this is in-
complete for unbounded nondeterminism. post!S"𝑃 ⊆ ∅ ⇔ 𝑃 ⊆ p̃re!S"∅ ⇔ 𝑃 ⊆ ¬pre!S"Σ ⇔
pre!S"Σ ⊆ ¬𝑃 is definite nontermination from all initial states (executions from any initial state of
𝑃 do not terminate).

Subgoal induction is exploited in necessary preconditions analyses [27, 28]. Finding 𝑃 such that
post!S"𝑃 ⊆ 𝑄 is equivalent to finding 𝑃 such that 𝑃 ⊆ p̃re!S"𝑄 for the given error postcondition
𝑄 , which the necessary precondition analysis does by under approximating p̃re!S" defined struc-
turally on the programming language and using fixpoint under approximation to handle iteration
and recursion.

I.3.14.2 Total definite accessibility of some final states from all initial states post!S"!𝑃 ⊆ 𝑄 ⇔ 𝑃 ⊆
p̃re!S"!𝑄 , 𝑃,𝑄 ∈ ℘(Σ). Total correctness, allowing blocking states, characterizes executions from

, Vol. 1, No. 1, Article . Publication date: October 2024.

Fig. 3. Taxonomy of assertional logics

Under approximation is the order semidual
of an over approximation, with abstraction
⟨℘(Σ!), ⊆⟩ −−−→←−−−𝛼𝛾 ⟨A, ⊒⟩. The study by [7] pro-
vides a number of classic abstract domain ex-
amples showing the imprecision of such under
approximation static analyses, but for few ex-
ceptions like [63].

These under approximation approaches are
based on Th. II.3.6 for fixpoint under approx-
imation by transfinite iterates. Termination
proofs do not use an under approximation but
instead an over approximation and a variant
function as, e.g., in Th. II.3.8. Alternatively,
over approximating static analysis is classic
and variant functions can also be inferred by
abstract interpretation [40, 87–92].

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 15

means Hoare triple {𝛾1(𝑃)} S{𝛾2(𝑄)}. Without appropriate hypotheses on the abstraction, some
rules of Hoare logic like disjunction and conjunction may be invalid in the abstract, see counter-
examples and sufficient hypotheses in [Cousot et al. 2012, pages 219–221]. Similarly, [Gotsman
et al. 2011] provides a counterexample showing the unsoundness of the conjunction rule. This is
an argument for the use of a principled method for designing logics.

Another abstract logic [Bruni et al. 2023] combines an over approximation (for correctness) and
an under approximation (for incorrectness) in the same abstract domain.The “(relax)” rule requires
that the under approximation uses abstract properties 𝛼(𝑃) that exactly represent concrete prop-
erties 𝑃 by requiring that 𝛾 ○ 𝛼(𝑃) = 𝑃 . This restricts the concrete points that can be used in
the under approximation, and will be a source of incompleteness and imprecision for most static
analyses.

Under approximation is the order semidual of an over approximation, with abstraction ⟨℘(Σ"),⊆⟩ −−−→←−−−𝛼𝛾 ⟨A, ⊒⟩ exploited e.g. in [Ball et al. 2005].The study by [Ascari et al. 2022] provides a number
of classic abstract domain examples showing the imprecision of such under approximation static
analyses, but for few exceptions like [Asadi et al. 2021; Miné 2014].

These under approximation approaches are based onTh. II.3.6 for fixpoint under approximation
by transfinite iterates. Termination proofs do not use an under approximation but instead an over
approximation and a variant function as, e.g., inTh. II.3.8. Alternatively, over approximating static
analysis is classic and variant functions can also be inferred by abstract interpretation [D’Silva and
Urban 2015; Urban 2013, 2015; Urban et al. 2016; Urban and Miné 2014a,b, 2015].

I.3.14 The subhierarchy of assertional logics
Comparing logics means comparing their theories, that is their expressivity, through their respec-
tive abstractions of the collecting semantics (as formalized by fixpoint abstraction in Sect. II.2), and
comparing the induction principles induced by their abstractions (as formalized in Sect. II.3 by fix-
point induction). For example, figure 3 shows that Hoare logic and subgoal induction are different
but equivalent abstractions of the collecting semantics so have the same theory and equivalent but
different proof systems.

16 Patrick Cousot

pre!S"! ●

p̃re!S"! ●

pre!S" ●

p̃re!S"●

● post!S"!

● p̃ost!S"!

● post!S"

● p̃ost!S"

.
𝛼−1

.
𝛼
∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

←"𝛼/" "→𝛼/"

"→𝛼/"←"𝛼/!

17◯●
●
19◯ Possible accessibility or

nontermination logic
(application 2)

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
20◯

18◯●
post(⊇,⊆) ○ 𝛼𝐺

post(⊆,⊇) ○ 𝛼𝐺

11◯●
[Zilberstein et al. 2023] ●

[Dijkstra 1982] 13◯
[Cousot and Cousot 1982, (i−1)]

[Ascari et al. 2023, (SIL)]

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

[Morris Jr. and Wegbreit 1977] ●
[Cousot and Cousot 1982, (ĩ)] 14◯

[Ascari et al. 2023, (NC)]

12◯●
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺

[Apt and Plotkin 1986]
7◯●

●
9◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
22◯

21◯●
’𝑠𝑝𝑜𝑠𝑡(⊆,⊇) ○ 𝛼𝐺

23◯●
𝛼¬

[Hoare 1969]
[Cousot and Cousot 1982, (i)]

8◯●
●

[de Vries and Koutavas 2011] 10◯
[O’Hearn 2020] x

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

15◯●
●
16◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺●
●

●

●
●

●

Galois connection (different logics to prove the same property)

Fig. 4. Hierarchical taxonomy of transformational assertional logics

The taxonomy for direct proofs (the hypothesis implies the conclusion) is illustrated in Fig. 4.

I.3.14.1 Partial definite accessibility of some final state from all initial states post!S"𝑃 ⊆ 𝑄 ⇔
𝑃 ⊆ p̃re!S"𝑄 , 𝑃,𝑄 ∈ ℘(Σ). Partial correctness, allowing blocking states, characterizes executions
starting from any initial state in 𝑃 , which, if terminating normally, do terminate in a state of 𝑄
and no other one. So blocking states are not excluded. This is Naur [Naur 1966], Hoare [Hoare
1969] partial correctness, and Dijkstra weakest liberal preconditions [Dijkstra 1976] and the partial
correctness part of Turing [Turing 1950] and Floyd [Floyd 1967] total correctness.
8◯ post(⊇,⊆) ○ 𝛼𝐺(post!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ) × ℘(Σ) ∣ post!S"𝑃 ⊆ 𝑄} yields the theory of Hoare
logic [Hoare 1969]. This claim can be substantiated by (re)constructing Hoare logic by abstracting
the angelic relational semantics !S" = 𝛼!(!S"!) by post(⊇,⊆) ○ 𝛼𝐺 ○ post. This has been done, e.g.,
in [Cook 1978,Theorem 1, page 79] (modulo a later correction in [Cook 1981]) as well as in [Cousot
2021, Chapter 26], although using the intermediate abstractions into an equational semantics and
then verification conditions to explain Turing-Floyd’s transition based invariance proof method.
14◯ By Galois connection (39.b), post(⊆,⊇) ○ 𝛼𝐺(p̃re!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ)×℘(Σ) ∣ 𝑃 ⊆ p̃re!S"𝑄} is
equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit’s subgoal induction
[Morris Jr. and Wegbreit 1977] or necessary preconditions [Ascari et al. 2023; Cousot et al. 2013,
2011].

, Vol. 1, No. 1, Article . Publication date: November 2024.

Fig. 3. Taxonomy of assertional logics

These abstractions yield the hierarchical taxon-
omy of assertional transformational logics of Fig. 3,
which is a subset of Fig. 2. Fig. 3 is commented there-
after.

We use universal to mean for all initial or final
states and existential to mean there exists at least
one initial or final state. We use reachability (often
forward) for initial to final states and accessibility
(often backward) for final to initial states. We use
definite to mean “for all executions” and possible to
mean “for some execution” (maybe none). In both
cases, the qualification does not exclude possible
nontermination or blocking states, which is empha-
sized by partial. We use total to mean that all exe-
cutions must be finite. We use blocking to mean a
state, which is not final, but from which execution
cannot go on. No such blocking states exist in the
semantics !S"" of statements S in Sect. I.1.1 and II.1 but would correspond e.g. to an aborted exe-
cution after a runtime error (like a division by zero).

, Vol. 1, No. 1, Article . Publication date: November 2024.

POPL 2024, London © P. Cousot25

• Many more fixpoint induction principles (including P ⊑ lfp⊑ F, lfp⊑ F ⊑ P,

P ⊑ gfp⊑ F, gfp⊑ F ⊑ P, lfp⊑ F ⊓ P = ∅, gfp⊑ F ⊓ P = ∅, etc)

• Calculational design I of a logic for partial correctness + total correctness +
non termination

Much more in the paper

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }

, Vol. 1, No. 1, Article . Publication date: October 2024.

/ /

POPL 2024, London © P. Cousot25

• Example I: calculational design of a logic for partial correctness + total
correctness + non termination

Much more in the paper

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot26

• Example II: calculational design of an incorrectness logic including non
termination

• A specification for factorial:

• False alarm ￼ with a (totally imprecise) interval analysis

• The alarm is false by nontermination

• Not provable with RH (non termination missing)

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }
{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]

, Vol. 1, No. 1, Article . Publication date: October 2024.

Much more in the paper

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }
{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

Example 0.2. Consider the factorial of example I.3.1 specified by {𝑓 = 1} fact{𝑓 > 0}. This con-
tract is obviously satisfied since on exit 𝑓 =!𝑛 > 0. However, an interval analysis of this program
with initially n ∈ Z is totally imprecise and will produce an alarm on program exit with postcon-
dition 𝑄 = f ⩽ 0. This is a false alarm since the loop exit is unreachable. This unreachability is not
provable by incorrectness logic. This is provable by Hoare logic as {𝑛 < 0 ∧ 𝑓 = 1} fact{false}
but then we need two different logics to prove incorrectness, the main motivation for recent work
on combining logics (e.g. [9, 58, 61, 98], etc). This is also provable by the natural transformational
under approximation logic which extends incorrectness logic to nontermination, that is, in the
assertional form of Sect. I.3.6, {'} ⊆ Post(!fact""){𝑛 < 0 ∧ 𝑓 = 1}, see example II.8.1. ∎

Example 0.3. Continuing Ex. I.3.1 and I.3.5, consider the factorial with postcondition contract
f > 0. An interval analysis produces an alarm 𝑄 = 𝑄 /" = f ⩽ 0 where ' ∉ 𝑄 so 𝑄" = ∅ and 𝑃"ℓ = ∅.
Take 𝑅" = 𝑅𝑏 = ∅ since the loop body terminates with no break. Let 𝐼𝑘 = 𝑛 ⩽ 𝑘∧ 𝑓 ⩽ 0 and 𝑅𝑒𝑘 = 𝐼𝑘−1
so that {𝑅𝑒𝑘} !f = f*n; n = n-1;" ⃗{𝑜𝑘 ∶ 𝐼𝑘 ,𝑏𝑟 ∶ ∅}. Take 𝑃 = 𝐼 ∣𝑛∣. By (62), {𝑃} fact ⃗{𝑜𝑘 ∶ 𝑄,𝑏𝑟 ∶ ∅}.
But 𝑃 implies f ⩽ 0 in contradiction {∅} f=1; ⃗{𝑜𝑘 ∶ 𝑃,𝑏𝑟 ∶ ∅} with the initialization f=1 proving
the unreachable alarm to be false, which incorrectness and outcome logics [67, 98] cannot do. ∎

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot26

• Example II: calculational design of an incorrectness logic including non
termination

• A specification for factorial:

• False alarm ￼ with a (totally imprecise) interval analysis

• The alarm is false by nontermination

• Not provable with RH (non termination missing)

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }
{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]

, Vol. 1, No. 1, Article . Publication date: October 2024.

Much more in the paper

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }
{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

Example 0.2. Consider the factorial of example I.3.1 specified by {𝑓 = 1} fact{𝑓 > 0}. This con-
tract is obviously satisfied since on exit 𝑓 =!𝑛 > 0. However, an interval analysis of this program
with initially n ∈ Z is totally imprecise and will produce an alarm on program exit with postcon-
dition 𝑄 = f ⩽ 0. This is a false alarm since the loop exit is unreachable. This unreachability is not
provable by incorrectness logic. This is provable by Hoare logic as {𝑛 < 0 ∧ 𝑓 = 1} fact{false}
but then we need two different logics to prove incorrectness, the main motivation for recent work
on combining logics (e.g. [9, 58, 61, 98], etc). This is also provable by the natural transformational
under approximation logic which extends incorrectness logic to nontermination, that is, in the
assertional form of Sect. I.3.6, {'} ⊆ Post(!fact""){𝑛 < 0 ∧ 𝑓 = 1}, see example II.8.1. ∎

Example 0.3. Continuing Ex. I.3.1 and I.3.5, consider the factorial with postcondition contract
f > 0. An interval analysis produces an alarm 𝑄 = 𝑄 /" = f ⩽ 0 where ' ∉ 𝑄 so 𝑄" = ∅ and 𝑃"ℓ = ∅.
Take 𝑅" = 𝑅𝑏 = ∅ since the loop body terminates with no break. Let 𝐼𝑘 = 𝑛 ⩽ 𝑘∧ 𝑓 ⩽ 0 and 𝑅𝑒𝑘 = 𝐼𝑘−1
so that {𝑅𝑒𝑘} !f = f*n; n = n-1;" ⃗{𝑜𝑘 ∶ 𝐼𝑘 ,𝑏𝑟 ∶ ∅}. Take 𝑃 = 𝐼 ∣𝑛∣. By (62), {𝑃} fact ⃗{𝑜𝑘 ∶ 𝑄,𝑏𝑟 ∶ ∅}.
But 𝑃 implies f ⩽ 0 in contradiction {∅} f=1; ⃗{𝑜𝑘 ∶ 𝑃,𝑏𝑟 ∶ ∅} with the initialization f=1 proving
the unreachable alarm to be false, which incorrectness and outcome logics [67, 98] cannot do. ∎

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot26

• Example II: calculational design of an incorrectness logic including non
termination

• A specification for factorial:

• False alarm ￼ with a (totally imprecise) interval analysis

• The alarm is false by nontermination, not provable with IL

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }
{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]

, Vol. 1, No. 1, Article . Publication date: October 2024.

Much more in the paper

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }
{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]

, Vol. 1, No. 1, Article . Publication date: October 2024.

POPL 2024, London © P. Cousot

• IL is not Hoare incorrectness logic (sufficient, not necessary)

• The logic can be
calculated by the design method (and does not need a consequence
rule)

27

About incorrectness

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:9

4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC
4.1 Calculational Design of Hoare Incorrectness Logic Theory

TheoRem 4.1 (Eivalent definitions of HL theoRies).
THL(W) ≜ post(⊆,⊇) ○ 𝛼¬ ○ THL(W) = 𝛼¬ ○ THL(W) W = while (B) S

Observe thatTh. 4.1 shows that post(⊆,⊇) can be dispensedwith.This implies that the consequence
rule is useless for Hoare incorrectness logic.

PRoof of Th. 4.1.
THL(W) = post(⊆,⊇) ○ 𝛼¬ ○ THL(W) !def. THL"

= post((⊆,⊇)(¬{⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ⊆ 𝑄})
!Lem. 1.4 and def. (30) of 𝛼¬"

= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)}) !def. ¬"
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅}) !def. ⊆ and ¬"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅} . ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. post"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. ∈"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ ∧𝑄 ⊇ 𝑄 ′} !component wise def. of ⊆,⊇"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ ∧𝑄 ⊇ 𝑄 ′}

!(⊆) if 𝑃 ⊆ 𝑃 ′ then post#W$𝑃 ⊆ post#W$𝑃 ′ by (12) so that post#W$𝑃 ∩ ¬𝑄 ≠ ∅ implies
post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅;
(⊇) conversely, if ∃𝑄 . post#W$𝑃 ′, then ∃𝑃 . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ by choosing
𝑃 = 𝑃 ′. "

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅}
!(⊆) if 𝑄 ⊇ 𝑄 ′ then ¬𝑄 ′ ⊇ ¬𝑄 so post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ implies post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅;
(⊇) conversely post#W$𝑃 ′∩¬𝑄 ′ ≠ ∅ implies ∃𝑄 . post#W$𝑃 ′∩¬𝑄 ≠ ∅∧𝑄 ⊇ 𝑄 ′ by choosing
𝑄 = 𝑄 ′. "

= {⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)} !def. ⊆ and ¬"
= 𝛼¬ ○ THL(W) !def. 𝛼¬ and THL for Hoare logic" !

TheoRem 4.2 (TheoRy of HL).
THL(W) = {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[. ⟨B#B$ ∩ {𝜎𝑖}, {𝜎𝑖+1}⟩ ∈ THL(S) ∧ 𝜎𝑛 /∈ B#B$ ∧ 𝜎𝑛 /∈ 𝑄}
PRoof of Th. 4.2.

= {⟨𝑃, 𝑄⟩ ∣ post#¬B$(lfp⊆ ¯̄𝐹𝑒𝑃) ∩ ¬𝑄 ≠ ∅} !Lem. 1.3, where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 "
= {⟨𝑃, 𝑄⟩ ∣ lfp⊆ ¯̄𝐹𝑒𝑃 ∩ pre#¬B$(¬𝑄) ≠ ∅} !(39.d)"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈

¯̄𝐹𝑒𝑃(∅) ∧ ∀𝑖 ∈ [1,∞] . 𝜎𝑖+1 ∈ ¯̄𝐹𝑒𝑃({𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈[1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ {𝜎𝑖} ∩ pre#¬B$(¬𝑄) ≠ 0} !Th. H.3"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(#B$ % #S$𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖+1 ∈ 𝑃 ∨ {𝜎𝑖+1} ⊆ post(#B$ % #S$𝑒){𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠
𝜎𝑖+1)⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre#¬B$(¬𝑄)}

!def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 , ⊆, and post, which is ∅-strict"
Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:15

TheoRem 5.6. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)
Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ such that
(1) 𝑋 0 = !,
(2) 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for successor ordinals,
(3) ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and
(4) ∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = #) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

¬({𝑃} S{𝑄}) /⇒⇐ [𝑃]S[¬𝑄]⇔ ∃𝑅 ∈ ℘(Σ) . [𝑃] S [𝑅] ∧ 𝑅 ∩ ¬𝑄 ≠ ∅⇔ ∃𝜎 ∈ Σ . [𝑃] S [{𝜎}] ∧ 𝜎 /∈ 𝑄

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

POPL 2024, London © P. Cousot

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:9

4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC
4.1 Calculational Design of Hoare Incorrectness Logic Theory

TheoRem 4.1 (Eivalent definitions of HL theoRies).
THL(W) ≜ post(⊆,⊇) ○ 𝛼¬ ○ THL(W) = 𝛼¬ ○ THL(W) W = while (B) S

Observe thatTh. 4.1 shows that post(⊆,⊇) can be dispensedwith.This implies that the consequence
rule is useless for Hoare incorrectness logic.

PRoof of Th. 4.1.
THL(W) = post(⊆,⊇) ○ 𝛼¬ ○ THL(W) !def. THL"

= post((⊆,⊇)(¬{⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ⊆ 𝑄})
!Lem. 1.4 and def. (30) of 𝛼¬"

= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)}) !def. ¬"
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅}) !def. ⊆ and ¬"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅} . ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. post"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. ∈"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ ∧𝑄 ⊇ 𝑄 ′} !component wise def. of ⊆,⊇"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ ∧𝑄 ⊇ 𝑄 ′}

!(⊆) if 𝑃 ⊆ 𝑃 ′ then post#W$𝑃 ⊆ post#W$𝑃 ′ by (12) so that post#W$𝑃 ∩ ¬𝑄 ≠ ∅ implies
post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅;
(⊇) conversely, if ∃𝑄 . post#W$𝑃 ′, then ∃𝑃 . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ by choosing
𝑃 = 𝑃 ′. "

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅}
!(⊆) if 𝑄 ⊇ 𝑄 ′ then ¬𝑄 ′ ⊇ ¬𝑄 so post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ implies post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅;
(⊇) conversely post#W$𝑃 ′∩¬𝑄 ′ ≠ ∅ implies ∃𝑄 . post#W$𝑃 ′∩¬𝑄 ≠ ∅∧𝑄 ⊇ 𝑄 ′ by choosing
𝑄 = 𝑄 ′. "

= {⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)} !def. ⊆ and ¬"
= 𝛼¬ ○ THL(W) !def. 𝛼¬ and THL for Hoare logic" !

TheoRem 4.2 (TheoRy of HL).
THL(W) = {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[. ⟨B#B$ ∩ {𝜎𝑖}, {𝜎𝑖+1}⟩ ∈ THL(S) ∧ 𝜎𝑛 /∈ B#B$ ∧ 𝜎𝑛 /∈ 𝑄}
PRoof of Th. 4.2.
THL(W)

= {⟨𝑃, 𝑄⟩ ∣ post#¬B$(lfp⊆ ¯̄𝐹𝑒𝑃) ∩ ¬𝑄 ≠ ∅} !Lem. 1.3, where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 "
= {⟨𝑃, 𝑄⟩ ∣ lfp⊆ ¯̄𝐹𝑒𝑃 ∩ pre#¬B$(¬𝑄) ≠ ∅} !(39.d)"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈

¯̄𝐹𝑒𝑃(∅) ∧ ∀𝑖 ∈ [1,∞] . 𝜎𝑖+1 ∈ ¯̄𝐹𝑒𝑃({𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈[1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ {𝜎𝑖} ∩ pre#¬B$(¬𝑄) ≠ 0} !induction principle Th. H.3"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(#B$ % #S$𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖+1 ∈ 𝑃 ∨ {𝜎𝑖+1} ⊆ post(#B$ % #S$𝑒){𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠
𝜎𝑖+1)⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre#¬B$(¬𝑄)}

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024. 27

Calculational design of Hoare incorrectness logic HL
_

7:10 Patrick Cousot

!def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post("B# $ "S#𝑒)𝑋 , ⊆, and post, which is ∅-strict%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post("B# $ "S#𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . {𝜎𝑖+1} ⊆ post("B# $ "S#𝑒){𝜎𝑖} ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒(𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre"¬B#(¬𝑄)}
!since if 𝜎𝑖+1 ∈ 𝑃 , we can equivalently consider the sequence ⟨𝜎 𝑗 ∈ 𝐼 , 𝑗 ∈ [𝑖 + 1,∞]⟩%

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post("B# $ "S#𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[. {𝜎𝑖+1} ⊆ post("B# $ "S#𝑒){𝜎𝑖} ∧ 𝜎𝑛 ∈ pre"¬B#(¬𝑄)}
!(⊆) By ⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣, 𝜈 ∈ 𝐼 → 𝑊 , ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1), the
sequence is ultimately stationary at some rank 𝑛. For then on, 𝜎𝑖+1 = 𝜎𝑖 , 𝑖 ⩾ 𝑛 and so
𝜈(𝜎𝑖) = 𝜈(𝜎𝑖+1). Therefore ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1) ⇒ 𝜎𝑖 /∈ 𝑄 implies that 𝜎𝑛 ∈
pre"¬B#(¬𝑄);
(⊇) Conversely, from ⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ we can define𝑊 = {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛]} ∪ {−∞} with−∞ < 𝜎𝑖 < 𝜎𝑖+1 and 𝜈(𝑥) = &𝑥 ∈ {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛] ? 𝑥 : −∞ ' and the sequence ⟨𝜎 𝑗 ∈ 𝐼 ,
𝑗 ∈ [1,∞]⟩ repeats 𝜎𝑛 ad infimum for 𝑗 ⩾ 𝑛.%

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post("B# $ "S#𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[. {𝜎𝑖+1} ⊆ post("B# $ "S#𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !def. pre%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. {𝜎𝑖+1} ⊆ post("B# $ "S#𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈B"B# ∧ 𝜎𝑛 /∈ 𝑄} !𝐼 is not used and can always be chosen to be Σ%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[. post("B#$"S#𝑒){𝜎𝑖}∩{𝜎𝑖+1} ≠ ∅∧𝜎𝑛 /∈B"B# ∧ 𝜎𝑛 /∈ 𝑄} !since 𝑥 ∈ 𝑋 ⇔ 𝑋 ∩ {𝑥} ≠ ∅%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. post("B# $ "S#𝑒){𝜎𝑖} ∩ ¬(¬{𝜎𝑖+1}) ≠∅ ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !def. ¬𝑋 = Σ ∖𝑋%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. ¬(post("B# $ "S#𝑒){𝜎𝑖} ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !¬(𝑋 ⊆ 𝑌)⇔ (𝑋 ∩ ¬𝑌 ≠ ∅%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. ¬(post("S#𝑒)(B"B# ∩ {𝜎𝑖}) ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !def. post, "B#, and $%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. ⟨B"B# ∩ {𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ {⟨𝑃,

𝑄⟩ ∣ ¬(post("S#𝑒)𝑃 ⊆ 𝑄)} ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !def. ∈%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[. ⟨B"B#∩{𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ THL(S)∧𝜎𝑛 /∈B"B# ∧ 𝜎𝑛 ∈ 𝑄} !def. THL(S)% !

4.2 Calculational Design of HL Proof Rules
TheoRem 4.3 (HL Rules foR conditional iteRation).
∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. &B"B# ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄

&𝑃 ' while (B) S &𝑄 '
(3)

PRoof of (3). We write &𝑃 ' S &𝑄 ' ≜ ⟨𝑃, 𝑄⟩ ∈ HL(S);
By structural induction (S being a strict component of while (B) S), the rule for &𝑃 ' S &𝑄 ' have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅

&𝑃 ' while (B) S &𝑄 ' with side condition ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈
[1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. &B"B# ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄 where &B"B# ∩{𝜎𝑖} ' S &¬{𝜎𝑖+1} ' is well-defined by structural induction;
Traditionally, the side condition is written as a premiss, to get (3). !

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

POPL 2024, London © P. Cousot28

Conclusion

A transformational logic is

an abstract interpretation of

a natural relational semantics

POPL 2024, London © P. Cousot29

The End, Thank You

• slides + calculational design + recording are online on my web page
(https://cs.nyu.edu/~pcousot/)

• paper + appendix = 1 clickable file on Zenodo https://zenodo.org/records/10439109
 DOI 10.5281/zenodo.10439108.

https://zenodo.org/records/10439109
https://zenodo.org/doi/10.5281/zenodo.10439108

