
Patrick Cousot

Courant Institute, New York University

Abstract Interpretation and
(Hyper)-Logics

￼1Google, 2025/09/17 © P. Cousot

Google, 2025/09/17 © P. Cousot￼2

Abstract Interpretation

• Abstract interpretation is a theory formalizing the
abstraction of discrete systems properties (such as the
semantics of programming languages)

Google, 2025/09/17 © P. Cousot

• Abstract interpretation has been used to

• formalize the hierarchy of program semantics (e.g.  

operational, denotational, axiomatic, …)

• formalize program refinement techniques

• design sound program analysis methods (including model-
checking, runtime and static analysis, typing, …)

• We show that it can also be used to design program logics

￼3

Abstract Interpretation

Google, 2025/09/17 © P. Cousot￼4

Program logics

• Program logics formally define what must be proved to
ensure that the semantics of programs of a language has a
specified property 
 e.g. Hoare logic {P} C {Q}

• Program logics must be sound (and complete)

• So program logics define the soundness of static analyzes

Google, 2025/09/17 © P. Cousot￼5

Content

• Part I: logics to prove properties of any execution (e.g.
safety, termination)

• Part II: logics to prove properties of any set of executions
(e.g. security, privacy)

Part I:
Calculational Design of [In]Correctness

Program Logics by Abstract Interpretation

￼6Google, 2025/09/17 © P. Cousot

Patrick Cousot:

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation.
Proc. ACM Program. Lang. 8(POPL): 175-208 (2024)

https://dblp.org/db/journals/pacmpl/pacmpl8.html#Cousot24

Google, 2025/09/17 © P. Cousot￼7

Method to design program transformational logics

Transformational logic = Hoare style logics {P} S {Q}

Objective

Google, 2025/09/17 © P. Cousot8

1. Define the natural relational semantics ⟦S⟧⊥ of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction 𝛼({⟦S⟧⊥}) of the collecting

semantics {⟦S⟧⊥} (strongest (hyper) property)

3. Calculate the theory 𝛼({⟦S⟧⊥}) in structural fixpoint form by fixpoint abstraction

4. Calculate the proof system by fixpoint induction and Aczel correspondence
between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas

Method to design a program transformational logics

Google, 2025/09/17 © P. Cousot8

Method to design a program transformational logics

1. Define the natural relational semantics ⟦S⟧⊥ of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction 𝛼({⟦S⟧⊥}) of the collecting

semantics {⟦S⟧⊥} (strongest (hyper) property)

3. Calculate the theory 𝛼({⟦S⟧⊥}) in structural fixpoint form by fixpoint abstraction

4. Calculate the proof system by fixpoint induction and Aczel correspondence
between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas

Google, 2025/09/17 © P. Cousot8

Method to design a program transformational logics

1. Define the natural relational semantics ⟦S⟧⊥ of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction 𝛼({⟦S⟧⊥}) of the collecting

semantics {⟦S⟧⊥} (strongest (hyper) property)

3. Calculate the theory 𝛼({⟦S⟧⊥}) in structural fixpoint form by fixpoint abstraction

4. Calculate the proof system by fixpoint induction and Aczel correspondence
between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas

Google, 2025/09/17 © P. Cousot8

Method to design a program transformational logics

1. Define the natural relational semantics ⟦S⟧⊥ of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction 𝛼({⟦S⟧⊥}) of the collecting

semantics {⟦S⟧⊥} (strongest (hyper) property)

3. Calculate the theory 𝛼({⟦S⟧⊥}) in structural fixpoint form by fixpoint abstraction

4. Calculate the proof system by fixpoint induction and Aczel correspondence
between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas

Google, 2025/09/17 © P. Cousot9

Two simple examples*:

(1) Hoare (HL)

 (2) incorrectness logic (IL. aka
reverse Hoare logic)

* in ``On the Design of Program Logics’’ to appear in Proc. Festschrift Podelski 65th
Birthday. Springer (2024).

https://cs.nyu.edu/~pmc309/COUSOTpapers/Podelski24.shtml

Google, 2025/09/17 © P. Cousot10

General Idea
HL = strongest postcondition abstraction of the collecting semantics

+ over approximating consequence abstraction

+ over approximating fixpoint induction

+ Aczel correspondence fixpoint ⇿ proof system

IL = strongest property abstraction of the collecting semantics

+ under approximating consequence abstraction

+ under approximating fixpoint induction

+ Aczel fixpoint ⇿ proof system correspondence

theory

proof system

}
}

theory

proof system

}
}

Google, 2025/09/17 © P. Cousot10

General Idea
HL = strongest postcondition abstraction of the collecting semantics

+ over approximating consequence abstraction

+ over approximating fixpoint induction

+ Aczel correspondence fixpoint ⇿ proof system

IL = strongest postcondition abstraction of the collecting semantics

+ under approximating consequence abstraction

+ under approximating fixpoint induction

+ Aczel correspondence fixpoint ⇿ proof system

theory

proof system

}
}

theory

proof system

}
}

Google, 2025/09/17 © P. Cousot11

1. Angelic relational semantics ⟦S⟧e
• Syntax*:

• States:

• Angelic relational semantics:

* plus unbounded nondeterminism, breaks, and nontermination ⊥ in the POPL24 paper.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ"), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/"(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/"(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ"), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/"(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/"(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

ends

Google, 2025/09/17 © P. Cousot12

1. Angelic relational semantics ⟦S⟧ (in deductive form)
• Notations using judgements:

• ￼ for ￼

• ￼ for  leads to ′ after 0 or more iterations

• Semantics of the conditional iteration* :

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"

𝜎 ⊢ W
𝑖⇒ 𝜎 ′
⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→$→←−−−−−−

𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 71 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B") (no break) (51)

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.

CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.

Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation

ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES

S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break
Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ"), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/"(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/"(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

* plus breaks, and co-induction for nontermination ⊥ in the paper.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 71 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B") (no break) (51)

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot13

1. Angelic relational semantics ⟦S⟧ (in deductive form)
• Notations using judgements:

• ￼ for ￼

• ￼ for  leads to ′ after 0 or more iterations

• Semantics of the conditional iteration* :

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"

𝜎 ⊢ W
𝑖⇒ 𝜎 ′
⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→$→←−−−−−−

𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 71 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B") (no break) (51)

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.

CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.

Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation

ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES

S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break
Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ"), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/"(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/"(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

* plus breaks, and co-induction for nontermination ⊥ in the paper.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 71 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B") (no break) (51)

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot

• Semantics of the conditional iteration* :

• Derived using Aczel correspondence between deductive systems and set-
theoretic fixpoints

14

1. Angelic relational semantics ⟦S⟧ (in fixpoint form)

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.

CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.

Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation

ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (October 2024), 67 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES

S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break
Σ
!S" ∈ ℘(Σ × Σ)
W = while(B) S

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

⟨℘(℘(Σ × Σ")), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ"), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ"), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/"(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/"(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/10-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational
Program Logics by Abstract Interpretation
PATRICK COUSOT
We study transformational program logics for correctness and incorrectness that we extend to explicitly
handle both termination and nontermination. We show that the logics are abstract interpretations of the
right image transformer for a natural relational semantics covering both finite and infinite executions. This
understanding of logics as abstractions of a semantics facilitates their comparisons through their respective
abstractions of the semantics (rather that the much more difficult comparison through their formal proof
systems). More importantly, the formalization provides a calculational method for constructively designing
the sound and complete formal proof system by abstraction of the semantics. As an example, we extend
Hoare logic to cover all possible behaviors of nondeterministic programs and design a new precondition
(in)correctness logic.
CCS Concepts: • Theory of computation→ Logic and verification; Axiomatic semantics.
Additional Key Words and Phrases: program logic, transformer, semantics, correctness, incorrectness, termi-
nation, nontermination, abstract interpretation
ACM Reference Format:
Patrick Cousot. 2024. Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation. 1, 1 (November 2024), 71 pages. https://doi.org/XXXXXXX.XXXXXXX

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

Author’s address: Patrick Cousot, pcousot@cims.nyu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
XXXX-XXXX/2024/11-ART $15.00
https://doi.org/XXXXXXX.XXXXXXX

, Vol. 1, No. 1, Article . Publication date: November 2024.

Google, 2025/09/17 © P. Cousot15

Aczel correspondence between deductive systems and fixpoints

• Rules: (universe, premiss, conclusion, axiom)

• Deductive system :

• Subset of the universe ￼ defined by ￼ :

• Deductive system defining :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

← consequence operator

← model theoretic (gfp for coinduction)

proof theoretic ↓

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

Google, 2025/09/17 © P. Cousot15

Aczel correspondence between deductive systems and fixpoints

• Rules: (universe, premiss, conclusion, axiom)

• Deductive system :

• Subset of the universe ￼ defined by ￼ :

• Deductive system defining :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

← consequence operator

← model theoretic (gfp for coinduction)

proof theoretic ↓

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

Google, 2025/09/17 © P. Cousot16

Aczel correspondence between deductive systems and fixpoints

• Rules: (universe, premiss, conclusion, axiom)

• Deductive system :

• Subset of the universe ￼ defined by ￼ :

• Deductive system defining :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

← consequence operator

← model theoretic (gfp for coinduction)

proof theoretic ↓

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

Google, 2025/09/17 © P. Cousot16

Aczel correspondence between deductive systems and fixpoints

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

← consequence operator

← model theoretic (gfp for coinduction)

proof theoretic ↓

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

FOR SLIDES
S ∈ S ∶∶= x = A ∣ skip ∣ S;S ∣ if (B) S else S ∣ while (B) S ∣ x = [𝑎,𝑏] ∣ break

Σ
!S"𝑒 ∈ ℘(Σ × Σ)
W = while(B) S

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 (b) B!B"𝜎, 𝜎 ⊢ S

𝑒⇒ 𝜎 ′, 𝜎 ′ ⊢ W
𝑖⇒ 𝜎 ′′

𝜎 ⊢ W
𝑖⇒ 𝜎 ′′

(2)

(a) 𝜎 ⊢ W
𝑖⇒ 𝜎 ′, B!¬B"𝜎 ′
𝜎 ⊢ W

𝑒⇒ 𝜎 ′ (3)

{𝑃
𝑐
∣ 𝑃 ∈ ℘(U) ∧ 𝑐 ∈ 𝐹(𝑃) ∧ ∀𝑃 ′ ⊆ 𝑃 . 𝑐 ∉ 𝐹(𝑃 ′)}

𝜎 ⊢ S
𝑒⇒ 𝜎 ′⟨𝜎, 𝜎 ′⟩ ∈ !S"𝑒

𝜎 ⊢ while(B) S
𝑖⇒ 𝜎 ′

𝐹𝑒(𝑋) ≜ id ∪ (!B" # !S"𝑒 #𝑋), 𝑋 ∈ ℘(Σ × Σ) (49)
!while (B) S"𝑒 ≜ lfp⊆ 𝐹𝑒 # !¬B" (no break) (51)

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)

=
{𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

lfp⊆ 𝐹(𝑅)
𝐹(𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

𝑅𝐹 ≜ {𝑃
𝑐
∣ 𝑃 ⊆ U ∧ 𝑐 ∈ 𝐹(𝑃)} exactly defines lfp⊆ 𝐹

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→$→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→$→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
, Vol. 1, No. 1, Article . Publication date: November 2024.

• Rules: (universe, premiss, conclusion, axiom)

• Deductive system :

• Subset of the universe ￼ defined by ￼ :

• Deductive system defining :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ#)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ#), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot

• The composition of these abstractions is

• This is an oversimplification of Fig. 1 of the POPL24 paper, forgetting
about nontermination including total correctness and relational
predicates

17

2. Abstraction (much simplified)
2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

Google, 2025/09/17 © P. Cousot18

2. Abstraction (much simplified)
• Hyper properties to properties abstraction:

• Post-image isomorphism:

• Graph isomorphism (a function is isomorphic to its graph, which is a
function relation):…/…

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

Google, 2025/09/17 © P. Cousot18

2. Abstraction (much simplified)
• Hyper properties to properties abstraction:

• Post-image isomorphism:

• Graph isomorphism (a function is isomorphic to its graph, which is a
function relation):…/…

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

Google, 2025/09/17 © P. Cousot18

2. Abstraction (much simplified)
• Hyper properties to properties abstraction:

• Post-image isomorphism:

• Graph isomorphism (a function is isomorphic to its graph, which is a
function relation):…/…

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

2 Patrick Cousot

●
collecting
semantics{!S"}

●
relational
semantics

!S"

𝛼𝐶 ●
postcondition
transformer

post ●
antecedent/
consequent

pairs

𝛼G

●post(⊇.⊆)

●
post(⊆,⊇)

8◯ Hoare partial
correctness

10◯ reverse Hoare aka
incorrectness logic

Fig. 1. Forward semantics and logics

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {*})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
, Vol. 1, No. 1, Article . Publication date: November 2024.

Google, 2025/09/17 © P. Cousot

• Strongest postcondition logic theory (common to HL and IL with no
consequence rule):

• Notation:

• The next step is to express this theory in fixpoint form

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

19

2. Abstraction (much simplified)

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({!S"#})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot20

• Strongest postcondition logic theory (common to HL and IL with no
consequence rule):

• Notation:

• The next step is to express this theory in fixpoint form

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2. Abstraction (much simplified)

7:14 Patrick Cousot

⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−
𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } S{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 5.3 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 5.4. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 5.5. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Google, 2025/09/17 © P. Cousot21

2. Abstraction (much simplified)

• The abstraction of a fixpoint is a fixpoint (POPL 79)

• We get a fixpoint definition of the theory of strongest postconditions
logics (common to HL and IL with no consequences at all)

• For the iteration ￼ :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

34 Patrick Cousot

FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 21

where ⟨℘(Σ × Σ!), ⊑, Σ × {#}, Σ × Σ, ⊔, ⊓⟩ is a complete lattice for the computational ordering
𝑋 ⊑ 𝑌 ≜ (𝑋 ∩ (Σ × Σ)) ⊆ (𝑌 ∩ (Σ × Σ)) ∧ (𝑋 ∩ (Σ × {#})) ⊇ (𝑌 ∩ (Σ × {#})). It follows that the
definition of termination on normal exit or nontermination can be defined by a single transformer
[16,Theorem 9] (but termination !S"𝑒 and break !S"𝑏 cannot be mixed without losing information).

This relational natural semantics can be extended to record a relation between the initial and
current values of variables. This consists in considering the Galois connections ⟨𝛼↓2 , 𝛾↓2⟩ for asser-
tions and ⟨ .𝛼↓2 , .

𝛾↓2⟩ for relations in (24). This can be implemented using auxiliary variables without
modification of the semantics A◯.

II.2 FIXPOINT ABSTRACTION
We recall classic fixpoint abstraction theorems [16], [18, Ch. 18] to abstract the fixpoint definition
of the program relational semantics into a fixpoint definition of transformers (or their graph).

TheoRem II.2.1 (Fixpoint abstRaction [21]). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

As a simple application, we will need the following corollary A◯.

CoRollaRy II.2.2 (Pointwise abstRaction). Let ⟨𝐿, ⊑, ⊺, ⊔⟩ and ⟨𝐿′, ⊑′, ⊺′, ⊔′⟩ be complete
lattices. Assume that 𝐹 ∈ (𝐿 → 𝐿′) 𝑖#→ (𝐿 → 𝐿′) is increasing and that for all𝑄 ∈ 𝐿, 𝐹𝑄 ∈ 𝐿′ 𝑖#→ 𝐿′ is
increasing. Assume ∀𝑄 ∈ 𝐿 . ∀𝑓 ∈ 𝐿 → 𝐿′ . 𝐹(𝑓)𝑄 = 𝐹𝑄(𝑓 (𝑄)). Then ∀𝑄 ∈ 𝐿 . (lfp .⊑′ 𝐹)𝑄 = lfp⊑′ 𝐹𝑄 .

When the abstraction involves the negation abstraction 𝛼¬, Park’s classic fixpoint theorem [69,
equation (4,1,2)] is useful (and generalizes to complete Boolean lattices).

TheoRem II.2.3 (Complementdualization). If 𝑋 is a set and 𝑓 ∈ ℘(𝑋) 𝑖#→ ℘(𝑋) is ⊆-increasing
then lfp⊆ 𝛼∼(𝑓) = 𝛼¬(gfp⊆ 𝑓).

Abstraction can also be applied to deductive systems A◯.

II.3 FIXPOINT INDUCTION
Least or greatest fixpoint definitions of the graph of transformers provide strongest or antecedent-
consequence (or weakest consequence-antecedent) pairs. Then we need to take into account con-
sequence rules, that is, approximations discussed in Sect. I.3.4. In this section, and in addition to
[17] and [18, Ch. 24], we introduce fixpoint induction methods to handle such approximations
post(⊇,⊆), post(⊆,⊇), etc. In this section II.3, # is the infimum of a poset and possibly unrelated
to nontermination.
II.3.1 Least Fixpoint Over Approximation
The classic least fixpoint (lfp) over approximation theorem (and order dually over approximation
of greatest fixpoints (gfp)), called “fixpoint induction”, is due to Park [68] and follows directly from
Tarski’s fixpoint theorem [85], lfp⊑ 𝑓 =#{𝑥 ∣ 𝑓 (𝑥) ⊑ 𝑥}.

TheoRem II.3.1 (Least fixpoint oveR appRoximation). Let ⟨𝐿, ⊑, #, ⊺, ⊔, ⊓⟩ be a complete
lattice, 𝑓 ∈ 𝐿 𝑖#→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .

Example II.3.2. An invariant of a conditional iteration while(B) S with precondition 𝑃 must sat-
isfy lfp⊆ 𝝀𝑋 .𝑃 ∪ post!𝑆"(𝐵 ∩𝑋) ⊆ 𝐼 . The proof method provided by Park’s Th. II.3.1 is ∃𝐽 . 𝑃 ⊆
𝐽 ∧ post!𝑆"(𝐵 ∩ 𝐽) ⊆ 𝐽 ∧ 𝐽 ⊆ 𝐼 which is Turing [86]/Floyd [42] invariant proof method. ∎

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot22

2. Abstraction (much simplified)

• The abstraction of a fixpoint is a fixpoint (POPL 79)

• We get a fixpoint definition of the theory of strongest postconditions
logics (common to HL and IL with no consequences at all)

• For the iteration ￼ :

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

34 Patrick Cousot

FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 21

where ⟨℘(Σ × Σ!), ⊑, Σ × {#}, Σ × Σ, ⊔, ⊓⟩ is a complete lattice for the computational ordering
𝑋 ⊑ 𝑌 ≜ (𝑋 ∩ (Σ × Σ)) ⊆ (𝑌 ∩ (Σ × Σ)) ∧ (𝑋 ∩ (Σ × {#})) ⊇ (𝑌 ∩ (Σ × {#})). It follows that the
definition of termination on normal exit or nontermination can be defined by a single transformer
[16,Theorem 9] (but termination !S"𝑒 and break !S"𝑏 cannot be mixed without losing information).

This relational natural semantics can be extended to record a relation between the initial and
current values of variables. This consists in considering the Galois connections ⟨𝛼↓2 , 𝛾↓2⟩ for asser-
tions and ⟨ .𝛼↓2 , .

𝛾↓2⟩ for relations in (24). This can be implemented using auxiliary variables without
modification of the semantics A◯.

II.2 FIXPOINT ABSTRACTION
We recall classic fixpoint abstraction theorems [16], [18, Ch. 18] to abstract the fixpoint definition
of the program relational semantics into a fixpoint definition of transformers (or their graph).

TheoRem II.2.1 (Fixpoint abstRaction [21]). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

As a simple application, we will need the following corollary A◯.

CoRollaRy II.2.2 (Pointwise abstRaction). Let ⟨𝐿, ⊑, ⊺, ⊔⟩ and ⟨𝐿′, ⊑′, ⊺′, ⊔′⟩ be complete
lattices. Assume that 𝐹 ∈ (𝐿 → 𝐿′) 𝑖#→ (𝐿 → 𝐿′) is increasing and that for all𝑄 ∈ 𝐿, 𝐹𝑄 ∈ 𝐿′ 𝑖#→ 𝐿′ is
increasing. Assume ∀𝑄 ∈ 𝐿 . ∀𝑓 ∈ 𝐿 → 𝐿′ . 𝐹(𝑓)𝑄 = 𝐹𝑄(𝑓 (𝑄)). Then ∀𝑄 ∈ 𝐿 . (lfp .⊑′ 𝐹)𝑄 = lfp⊑′ 𝐹𝑄 .

When the abstraction involves the negation abstraction 𝛼¬, Park’s classic fixpoint theorem [69,
equation (4,1,2)] is useful (and generalizes to complete Boolean lattices).

TheoRem II.2.3 (Complementdualization). If 𝑋 is a set and 𝑓 ∈ ℘(𝑋) 𝑖#→ ℘(𝑋) is ⊆-increasing
then lfp⊆ 𝛼∼(𝑓) = 𝛼¬(gfp⊆ 𝑓).

Abstraction can also be applied to deductive systems A◯.

II.3 FIXPOINT INDUCTION
Least or greatest fixpoint definitions of the graph of transformers provide strongest or antecedent-
consequence (or weakest consequence-antecedent) pairs. Then we need to take into account con-
sequence rules, that is, approximations discussed in Sect. I.3.4. In this section, and in addition to
[17] and [18, Ch. 24], we introduce fixpoint induction methods to handle such approximations
post(⊇,⊆), post(⊆,⊇), etc. In this section II.3, # is the infimum of a poset and possibly unrelated
to nontermination.
II.3.1 Least Fixpoint Over Approximation
The classic least fixpoint (lfp) over approximation theorem (and order dually over approximation
of greatest fixpoints (gfp)), called “fixpoint induction”, is due to Park [68] and follows directly from
Tarski’s fixpoint theorem [85], lfp⊑ 𝑓 =#{𝑥 ∣ 𝑓 (𝑥) ⊑ 𝑥}.

TheoRem II.3.1 (Least fixpoint oveR appRoximation). Let ⟨𝐿, ⊑, #, ⊺, ⊔, ⊓⟩ be a complete
lattice, 𝑓 ∈ 𝐿 𝑖#→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .

Example II.3.2. An invariant of a conditional iteration while(B) S with precondition 𝑃 must sat-
isfy lfp⊆ 𝝀𝑋 .𝑃 ∪ post!𝑆"(𝐵 ∩𝑋) ⊆ 𝐼 . The proof method provided by Park’s Th. II.3.1 is ∃𝐽 . 𝑃 ⊆
𝐽 ∧ post!𝑆"(𝐵 ∩ 𝐽) ⊆ 𝐽 ∧ 𝐽 ⊆ 𝐼 which is Turing [86]/Floyd [42] invariant proof method. ∎

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:3

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post!S"𝑃 ′ ⊆ 𝑄 ′}
#(⊆) by Galois connection (12), post is increasing so that 𝑃 ′ ⊆ 𝑃 ∧ post!S"𝑃 ⊆ 𝑄 ′ implies
post!S"𝑃 ′ ⊆ post!S"𝑃 ∧ post!S"𝑃 ⊆ 𝑄 ′ hence post!S"𝑃 ′ ⊆ 𝑄 ′ by transitivity;
(⊇) take 𝑃 = 𝑃 ′$

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ′ = 𝑃 ∧ post!S"𝑃 ⊆ 𝑄 ′} #def. =$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨𝑃, post!S"𝑃⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} #def. =,⊆$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨⟨𝑃, post!S"𝑃⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} #def. ∈$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} #def. ∈$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ T (S) . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ =,⊆} #Lem. 1.3$
= post(=,⊆)(T (S)) #def. (10) of post$
= post(=,⊆) ○ T (S) #def. function composition ○$!

For simplicity, we consider conditional iteration W = while (B) S with no break.

Lemma 1.5 (Commutation). post ○ 𝐹 ′𝑒 = 𝐹𝑒 ○ post where 𝐹𝑒(𝑋) ≜ id
.∪ (post(!B" % !S"𝑒) ○ 𝑋)

and 𝐹 ′𝑒 ≜ 𝝀𝑋 . id ∪ (𝑋 % !B" % !S"𝑒), 𝑋 ∈ ℘(Σ × Σ) by (70).

PRoof of Lem. 1.5.
post(𝐹 ′𝑒(𝑋)) #where 𝑋 ∈ ℘(Σ)$

= post(id ∪ (𝑋 % !B" % !S"𝑒)) #def. 𝐹𝑒$
= post(id) .∪ post(𝑋 % !B" % !S"𝑒) #join preservation in Galois connection (12)$
= id

.∪ (post(!B" % !S"𝑒) ○ post(𝑋)) #def. post and composition Lem. 1.1$
= 𝐹𝑒(post(𝑋)) #def. 𝐹𝑒$!

Lemma 1.6 (Pointwise commutation). ∀𝑋 ∈ ℘(Σ) → ℘(Σ) . ∀𝑃 ∈ ℘(Σ) . 𝐹𝑒(𝑋)𝑃 ≜ ¯̄𝐹𝑒𝑃(𝑋(𝑃))
where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋 .

PRoof of Lem. 1.6.
𝐹𝑒(𝑋)𝑃

= (id .∪ (post(!B" % !S"𝑒) ○ 𝑋))𝑃 #def. 𝐹𝑒$
= id(𝑃) ∪ (post(!B" % !S"𝑒) ○ 𝑋)(𝑃) #pointwise def. .∪ and function composition ○$
= 𝑃 ∪ post(!B" % !S"𝑒)(𝑋(𝑃)) #def. identity id and function application$
= ¯̄𝐹𝑒𝑃(𝑋(𝑃)) #def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋$!

TheoRem 1.7 (IteRation stRongest postcondition). post!W"𝑃 = post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) where
¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋 .

PRoof of Th. 1.7.
post!W"

= post(lfp⊆ 𝐹𝑒 % !¬B") #def. (49) of !W" in absence of break$
= post!¬B" ○ post(lfp⊆ 𝐹𝑒) #composition Lem. 1.1$
= post!¬B" ○ post(lfp⊆ 𝐹 ′𝑒) #since lfp⊆ 𝐹𝑒 = lfp⊆ 𝐹 ′𝑒 in (70)$
= post!¬B"(lfp⊆ 𝐹𝑒) #commutation Lem. 1.5 and fixpoint abstraction Th. II.2.2$

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

23

7:2 Patrick Cousot

1 PROPERTIES OF STRONGEST POSTCONDITIONS
Lemma 1.1 (Composition). post(𝑋 !𝑌) = post(𝑌) ○ post(𝑋).
PRoof of Lem. 1.1.
post(𝑋 !𝑌)

= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′′⟩ ∈ 𝑋 !𝑌} "def. post#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ∈ 𝑃 . ∃𝜎 ′ . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑋 ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. !#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ′ . 𝜎 ′ ∈ {𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑋} ∧ ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. ∃ and ∈#
= 𝝀𝑃 .{𝜎 ′′ ∣ ∃𝜎 ′ ∈ post(𝑋)𝑃 . ⟨𝜎 ′, 𝜎 ′′⟩ ∈ 𝑌} "def. post#
= 𝝀𝑃 .post(𝑌)(post(𝑋)𝑃) "def. post#
= post(𝑌) ○ post(𝑋) "def. function composition ○# !

Lemma 1.2 (test). post$B%𝑃 = 𝑃 ∩B$B%.

PRoof of Lem. 1.2.
post$B%𝑃

= {𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 . ⟨𝜎, 𝜎 ′⟩ ∈ $B%} "def. post#
= {𝜎 ∣ 𝜎 ∈ 𝑃 ∧ 𝜎 ∈ B$B%} "def. $B% ≜ {⟨𝜎, 𝜎⟩ ∣ 𝜎 ∈ B$B%}#
= 𝑃 ∩B$B% "def. intersection ∪# !

Lemma 1.3 (StRongest postcondition). T (S) = 𝛼G ○ post$S% = {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}.
PRoof of Lem. 1.3.
T (S)

= 𝛼G ○ post ○ 𝛼/# ○ 𝛼𝐶({$S%#}) "def. T #
= 𝛼G ○ post ○ 𝛼/#($S%#) "def. 𝛼𝐶#
= 𝛼G ○ post($S%# ∩ (Σ × Σ)) "def. 𝛼/##
= 𝛼G ○ post$S% "def. (1) of the angelic semantics $S%#
= {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} "def. 𝛼G# !

Lemma 1.4 (StRongest postcondition oveR appRoximation).
THL(S) ≜ post(⊇.⊆) ○ T (S) = {⟨𝑃, 𝑄⟩ ∣ post$S%𝑃 ⊆ 𝑄} = post(=,⊆) ○ T (S)

PRoof of Lem. 1.4.
post(⊇.⊆) ○ T (S)

= post(⊇.⊆)(T (S)) "def. function composition ○#
= post(⊇.⊆)({⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}) "Lem. 1.3#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, post$S%𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊇.⊆} "def. (10) of post#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨⟨𝑃, post$S%𝑃⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊇.⊆} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨𝑃, post$S%𝑃⟩ ⊇.⊆ ⟨𝑃 ′, 𝑄 ′⟩} "def. ∈#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ⊇ 𝑃 ′ ∧ post$S%𝑃 ⊆ 𝑄 ′} "def. ⊇.⊆#
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . 𝑃 ′ ⊆ 𝑃 ∧ post$S%𝑃 ⊆ 𝑄 ′} "def. ⊇#
Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

7:4 Patrick Cousot

= post!¬B" ○ 𝝀𝑃 . lfp⊆ ¯̄𝐹𝑒𝑃
#pointwise commutation Lem. 1.6 and pointwise abstraction Cor. II.2.2$!

CoRollaRy 1.8 (Conditional iteRation stRongest postcondition gRaph). T (W) = {⟨𝑃,
post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)} where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋 .

PRoof of CoR. 1.8.
T (W)

= 𝛼G ○ post(!W") #Lem. 1.3$
= 𝛼G ○ post!¬B" ○ 𝝀𝑃 . lfp⊆ ¯̄𝐹𝑒𝑃 #Th. 1.7$
= {⟨𝑃, post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)} #def. (7) of 𝛼G$!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Google, 2025/09/17 © P. Cousot24

3. Approximation
• The component wise approximation:

• The over approximation abstraction for HL:

• The (order dual) under approximation abstraction for IL:

• Shows what it shared by HL and IL: all but the consequence rule (?)

34 Patrick Cousot

FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, lfp⊆ 𝝀𝑋 .𝑃 ∪ 𝑃𝑋 # ¬!B"⟩ ∣ 𝑃 ∈ ℘(Σ) ∧ ⟨𝑋 , 𝑃𝑋 ⟩ ∈ !B" # T (S)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

T𝐻𝐿(S)T𝐼𝐿(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot

• The component wise approximation:

• The over approximation abstraction for HL:

• The (order dual) under approximation abstraction for IL:

• Shows what it shared by HL and IL: all but the consequence rule (?)
24

3. Approximation

34 Patrick Cousot

FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, lfp⊆ 𝝀𝑋 .𝑃 ∪ 𝑃𝑋 # ¬!B"⟩ ∣ 𝑃 ∈ ℘(Σ) ∧ ⟨𝑋 , 𝑃𝑋 ⟩ ∈ !B" # T (S)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

T𝐻𝐿(S)T𝐼𝐿(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot24

3. Approximation
• The component wise approximation:

• The over approximation abstraction for HL:

• The (order dual) under approximation abstraction for IL:

• Shows what it shared by HL and IL: all but the consequence rule (?)

34 Patrick Cousot

FOR SLIDES

⟨℘(℘(Σ × Σ!)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ!), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ!), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/!(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/!(𝑅) ≜ 𝑅 ∪ (Σ × {&})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼/! ○ 𝛼𝐶({!S"!}) = {{𝑃} S{post(!S")𝑃} ∣ 𝑃 ∈ ℘(Σ)}
TheoRem II.10.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, lfp⊆ 𝝀𝑋 .𝑃 ∪ 𝑃𝑋 # ¬!B"⟩ ∣ 𝑃 ∈ ℘(Σ) ∧ ⟨𝑋 , 𝑃𝑋 ⟩ ∈ !B" # T (S)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

T𝐻𝐿(S)T𝐼𝐿(S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

𝑃
𝑐 𝑃 ∈ ℘fin(U) 𝑐 ∈ U U∅
𝑐

𝑅 = {𝑃𝑖𝑐𝑖 ∣ 𝑖 ∈ Δ}, 𝑅 ∈ ℘(℘fin(U) × U)
𝛼I(𝑅) = {𝑡𝑛 ∈ U ∣ ∃𝑡1, . . . , 𝑡𝑛−1 ∈ U . ∀𝑘 ∈ [1,𝑛] . ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ {𝑡1, . . . , 𝑡𝑘−1} ∧ 𝑡𝑘 = 𝑐}

𝛼I(𝑅) = lfp⊆ 𝛼𝐹 (𝑅)
𝛼𝐹 (𝑅)𝑋 ≜ {𝑐 ∣ ∃𝑃

𝑐
∈ 𝑅 . 𝑃 ⊆ 𝑋}

⟨℘(℘fin(U) × U), ⊆⟩ −−−−→"→←−−−−−−
𝛼I
𝛾I ⟨℘(U), ⊆⟩

⟨℘(℘(Σ × Σ)), ⊆⟩ −−−−→"→←−−−−−−
𝛼𝐶

𝛾𝐶 ⟨℘(Σ × Σ), ⊆⟩ 𝛼𝐶(𝑃) ≜⋃𝑃 𝛾𝐶(𝑆) ≜ ℘(𝑆)
⟨℘(Σ × Σ#), ⊆⟩ −−−−→"→←−−−−−−

𝛼/!
𝛾/! ⟨℘(Σ × Σ), ⊆⟩ 𝛼/#(𝑅) ≜ 𝑅 ∩ (Σ × Σ) 𝛾/#(𝑅) ≜ 𝑅 ∪ (Σ × {)})

⟨℘(Σ × Σ), ⊆⟩ −−−−−→"→←←"−−−−−
post

p̃re ⟨℘(Σ)→ ℘(Σ), ⊆⟩ post(𝑅) ≜ 𝝀𝑃 .{𝜎 ′ ∣ ∃𝜎 ∈ 𝑃 ∧ ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}
p̃re(𝑅) ≜ 𝝀𝑋 .{𝜎 ∣ ∀𝜎 ′ ∈ 𝑄 . ⟨𝜎, 𝜎 ′⟩ ∈ 𝑅}

⟨℘(Σ)→ ℘(Σ), =⟩ −−−−→"→←←"−−−−
𝛼G

𝛾G ⟨℘fun(℘(Σ) × ℘(Σ)), =⟩ 𝑓 ∈ ℘(Σ)→ ℘(Σ)
𝛼G(𝑓) = {⟨𝑃, 𝑓 (𝑃)⟩ ∣ 𝑃 ∈ ℘(Σ)}
𝛾G(𝑅) ≜ 𝝀𝑃 . (𝑄 such that ⟨𝑃, 𝑆⟩ ∈ 𝑅)

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"}) = {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}{𝑃 } !S"{𝑄 } ≜ ⟨𝑃, 𝑄⟩ ∈ T (S)
TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between

complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖"→ 𝐶 and 𝑓 ∈ 𝐴 𝑖"→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

W = while (B) ST (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=.⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot25

4. Fixpoint induction

• Deriving the proof system at this stage by Aczel correspondence would
be great!

• A common part and different consequence rules for HL and IL

• But then the HL proof system for iteration would be

1. Prove strongest postconditions (≫≫ total correctness)

2. Approximate with a consequence rule to get partial correctness

• This is sound and complete

• But too demanding ⟹ not so great!

• What we miss is fixpoint induction

Google, 2025/09/17 © P. Cousot25

4. Fixpoint induction

• Deriving the proof system at this stage by Aczel correspondence would
be great!

• A common part and different consequence rules for HL and IL

• But then the HL proof system for iteration would be

1. Prove strongest postconditions (≫≫≫≫≫ total correctness)

2. Approximate with a consequence rule to get partial correctness

• This is sound and complete

• But too demanding ⟹ not so great!

• What we miss is fixpoint induction

Google, 2025/09/17 © P. Cousot25

4. Fixpoint induction

• Deriving the proof system at this stage by Aczel correspondence would
be great!

• A common part and different consequence rules for HL and IL

• But then the HL proof system for iteration would be

1. Prove strongest postconditions (≫≫≫≫≫ total correctness)

2. Approximate with a consequence rule to get partial correctness

• This is sound and complete

• But too demanding ⟹ not so great!

• What we miss is fixpoint induction

Google, 2025/09/17 © P. Cousot26

4. Fixpoint inductionCalculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 3

TheoRem 0.2. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = #) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

, Vol. 1, No. 1, Article . Publication date: October 2024.

28 Patrick Cousot

that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

As a simple application, we will need the following corollary A◯.

CoRollaRy II.2.2 (Pointwise abstRaction). Let ⟨𝐿, ⊑, ⊺, ⊔⟩ and ⟨𝐿′, ⊑′, ⊺′, ⊔′⟩ be complete
lattices. Assume that 𝐹 ∈ (𝐿 → 𝐿′) 𝑖"→ (𝐿 → 𝐿′) is increasing and that for all𝑄 ∈ 𝐿, 𝐹𝑄 ∈ 𝐿′ 𝑖"→ 𝐿′ is
increasing. Assume ∀𝑄 ∈ 𝐿 . ∀𝑓 ∈ 𝐿 → 𝐿′ . 𝐹(𝑓)𝑄 = 𝐹𝑄(𝑓 (𝑄)). Then ∀𝑄 ∈ 𝐿 . (lfp .⊑′ 𝐹)𝑄 = lfp⊑′ 𝐹𝑄 .

When the abstraction involves the negation abstraction 𝛼¬, Park’s classic fixpoint theorem [69,
equation (4,1,2)] is useful (and generalizes to complete Boolean lattices).

TheoRem II.2.3 (Complementdualization). If 𝑋 is a set and 𝑓 ∈ ℘(𝑋) 𝑖"→ ℘(𝑋) is ⊆-increasing
then lfp⊆ 𝛼∼(𝑓) = 𝛼¬(gfp⊆ 𝑓).

Abstraction can also be applied to deductive systems A◯.

II.3 FIXPOINT INDUCTION
Least or greatest fixpoint definitions of the graph of transformers provide strongest or antecedent-
consequence (or weakest consequence-antecedent) pairs. Then we need to take into account con-
sequence rules, that is, approximations discussed in Sect. I.3.4. In this section, and in addition to
[17] and [18, Ch. 24], we introduce fixpoint induction methods to handle such approximations
post(⊇.⊆), post(⊆,⊇), etc. In this section II.3, & is the infimum of a poset and possibly unrelated to
nontermination.
II.3.1 Least Fixpoint Over Approximation
The classic least fixpoint (lfp) over approximation theorem (and order dually over approximation
of greatest fixpoints (gfp)), called “fixpoint induction”, is due to Park [68] and follows directly from
Tarski’s fixpoint theorem [85], lfp⊑ 𝑓 =!{𝑥 ∣ 𝑓 (𝑥) ⊑ 𝑥}.

TheoRem II.3.1 (Least fixpoint oveR appRoximation). Let ⟨𝐿, ⊑, &, ⊺, ⊔, ⊓⟩ be a complete
lattice, 𝑓 ∈ 𝐿 𝑖"→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .

Example II.3.2. An invariant of a conditional iteration while(B) S with precondition 𝑃 must sat-
isfy lfp⊆ 𝝀𝑋 .𝑃 ∪ post"𝑆#(𝐵 ∩𝑋) ⊆ 𝐼 . The proof method provided by Park’s Th. II.3.1 is ∃𝐽 . 𝑃 ⊆
𝐽 ∧ post"𝑆#(𝐵 ∩ 𝐽) ⊆ 𝐽 ∧ 𝐽 ⊆ 𝐼 which is Turing [86]/Floyd [42] invariant proof method. ∎
By order-duality, this is sound and complete greatest fixpoint under approximation 𝑝 ⊑ gfp⊑ 𝑓

proof method. 𝑖 is called an invariant (a co-invariant for greatest fixpoints).

Example II.3.3. Continuing example II.3.2, by contraposition, the invariant must satisfy ¬𝐼 ⊆¬lfp⊆ 𝝀𝑋 .𝑃 ∪ post"𝑆#(𝐵 ∩𝑋) that is ¬𝐼 ⊆ gfp⊆ 𝝀𝑋 .¬𝑃 ∩ p̃ost"𝑆#(¬𝐵 ∪𝑋) by Park’sTh. II.2.3.The
dual of Th. II.3.1 suggest the proof method ∃𝐽 . 𝐽 ⊆ ¬𝑃 ∧ 𝐽 ⊆ p̃ost"𝑆#(¬𝐵 ∪ 𝐽) ∧ 𝐼 ⊆ ¬𝐽 which is
methods (i−̃1) and (I−̃1) of [22]. ∎
II.3.2 Ordinals
We let ⟨O, ∈, ∅, O, ∪, ∩⟩ be the von Neumann’s ordinals [94], writing the more intuitive < for ∈, 0
for ∅, + 1 for the successor function, sometimes max for ∪, min for ∩, and 𝜔 for the first infinite
limit ordinal. If necessary, a short refresher on ordinals is given in Sect. H of the appendix A◯.
II.3.3 Overapproximation of the Image of a Least Fixpoint
To solve the problem 𝛼(lfp⊑ 𝐹) ⊑ 𝑃 where 𝛼 is a function on the domain of 𝐹 , we can try to
use fixpoint abstraction Th. II.2.1 to get 𝛼(lfp⊑ 𝐹) = lfp⊑ 𝐹 and then check lfp⊑ 𝐹 ⊑ 𝑃 by fixpoint
induction Th. II.3.1. But Th. II.2.1 requires 𝛼 to preserves joins, which is not always the case (for

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot27

4. Fixpoint induction

 bounded by ω for continuous 𝑓.

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 3

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})
= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}

⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′
post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 0.2. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 0.3. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
TheoRem 0.4. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)

Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ such that
(1) 𝑋 0 = !,
(2) 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for successor ordinals,
(3) ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and
(4) ∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = %) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

, Vol. 1, No. 1, Article . Publication date: November 2024.

30 Patrick Cousot

By order-duality, this is sound and complete greatest fixpoint under approximation 𝑝 ⊑ gfp⊑ 𝑓
proof method. 𝑖 is called an invariant (a co-invariant for greatest fixpoints).

Example II.3.3. Continuing example II.3.2, by contraposition, the invariant must satisfy ¬𝐼 ⊆¬lfp⊆ 𝝀𝑋 .𝑃 ∪ post!𝑆"(𝐵 ∩𝑋) that is ¬𝐼 ⊆ gfp⊆ 𝝀𝑋 .¬𝑃 ∩ p̃ost!𝑆"(¬𝐵 ∪𝑋) by Park’sTh. II.2.3.The
dual of Th. II.3.1 suggest the proof method ∃𝐽 . 𝐽 ⊆ ¬𝑃 ∧ 𝐽 ⊆ p̃ost!𝑆"(¬𝐵 ∪ 𝐽) ∧ 𝐼 ⊆ ¬𝐽 which is
methods (i−̃1) and (I−̃1) of [22]. ∎
II.3.2 Ordinals
We let ⟨O, ∈, ∅, O, ∪, ∩⟩ be the von Neumann’s ordinals [94], writing the more intuitive < for ∈, 0
for ∅, + 1 for the successor function, sometimes max for ∪, min for ∩, and 𝜔 for the first infinite
limit ordinal. If necessary, a short refresher on ordinals is given in Sect. H of the appendix A◯.
II.3.3 Overapproximation of the Image of a Least Fixpoint
To solve the problem 𝛼(lfp⊑ 𝐹) ⊑ 𝑃 where 𝛼 is a function on the domain of 𝐹 , we can try to
use fixpoint abstraction Th. II.2.1 to get 𝛼(lfp⊑ 𝐹) = lfp⊑ 𝐹 and then check lfp⊑ 𝐹 ⊑ 𝑃 by fixpoint
induction Th. II.3.1. But Th. II.2.1 requires 𝛼 to preserves joins, which is not always the case (for
the dual problem 𝛼 = pre in remark I.3.12 is a counter-example). If 𝛼 does not preserves joins, we
can nevertheless use the following theorem A◯.

TheoRem II.3.4 (OveRappRoximation of a least fixpoint image). Let ⟨𝐿, ⊑, (, ⊔⟩ and ⟨𝐿, ⊑̄,⊺̄, ⊔̄⟩ be complete lattices 2, 𝐹 ∈ 𝐿 𝑖!→ 𝐿 and 𝛼 ∈ 𝐿 𝑖!→ 𝐿 be increasing functions, and 𝑃 ∈ 𝐿.
Then 𝛼(lfp⊑ 𝐹) ⊑̄ 𝑃 if and only if there exists 𝐼 ∈ 𝐿 such that (1) 𝛼(() ⊑̄ 𝐼 (2) ∀𝑋 ∈ 𝐿 . 𝛼(𝑋) ⊑̄ 𝐼 ⇒

𝛼(𝐹(𝑋)) ⊑̄ 𝐼 , (3) for any ⊑-increasing chain ⟨𝑋𝛿 , 𝛿 ∈ O⟩ of elements 𝑋𝛿 ⊑ lfp⊑ 𝐹 , ∀𝛽 < 𝜆 . 𝛼(𝑋 𝛽) ⊑̄ 𝐼
implies 𝛼(⊔𝛽<𝜆 𝑋 𝛽) ⊑̄ 𝐼 , and (4) 𝐼 ⊑̄ 𝑃 .

Let ⟨𝐹𝛿 , 𝛿 ∈ O⟩ be the increasing iterates of 𝐹 from (ultimately stationary at rank 𝜖 [20]. Then
condition (2) is only necessary for all 𝑋 = 𝐹𝛿 , 𝛿 ⩽ 𝜖 while condition (3) is only necessary for ⟨𝑋𝛿 ,
𝛿 ⩽ 𝜖⟩ = ⟨𝐹𝛿 , 𝛿 ⩽ 𝜖⟩. These weaker conditions are assumed to prove completeness (“only if” in Th.
II.3.4).
II.3.4 Fixpoint Under Approximation by Transfinite Iterates
For under approximation of least fixpoints (or order dually over approximation of greatest fix-
points), we can use the generalization [17] of Scott-Kleene induction based on transfinite induc-
tion when continuity does not apply and follows directly from the constructive version of Tarski’s
fixpoint theorem [20].

Definition II.3.5 (Ultimately Over Approximating Transfinite Sequence). We say that “the transfi-
nite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ of elements of poset ⟨𝐿, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿 ultimately over approximates
𝑃 ∈ 𝐿” if and only if 𝑋 0 = (, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals
𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and ∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

The condition can equivalently be expressed as ∀𝛿 ∈ O . 𝑋𝛿 ⊑ 𝑓 (⊔𝛽<𝛿 𝑋 𝛽 + 1) which avoids to
have to make the distinction between successor and limit ordinals A◯.

TheoRem II.3.6 (Fixpoint UndeR AppRoximation by TRansfinite IteRates). Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿
be an increasing function on a cpo ⟨𝐿, ⊑, (, ⊔⟩ (i.e. every increasing chain in 𝐿 has a least upper
bound in 𝐿, including (= ⊔∅). 𝑃 ∈ 𝐿 is a fixpoint underapproximation, i.e. 𝑃 ⊑ lfp⊑ 𝑓 , if and only
if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ for 𝑓 ultimately over approximating 𝑃
(Def. II.3.5).

2or CPOs.

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot28

5. Calculational design of HL

• Theory of HL (for iteration):

• HL proof system:

8 Patrick Cousot

HOARE LOGIC RULES
TheoRem 3 (HoaRe Rules foR conditional iteRation).

𝑃 ⊆ 𝐼 , {𝐼 ∩B} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄
{𝑃} while (B) S{𝑄}

PRoof. We write {𝑃} S{𝑄} ≜ ⟨𝑃, 𝑄⟩ ∈ T (S);
By structural induction (S being a strict component of while (B) S), the rule for {𝑃} S{𝑄} have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝑃 ⊆ 𝐼 , {𝐼 ∩

B} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄 ;
Traditionally, the side condition is considered a premiss, to get

𝑃 ⊆ 𝐼 , {𝐼 ∩B} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄
{𝑃} while (B) S{𝑄}

𝑃 ⊆ 𝐼 , {𝐼 ∩B} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

REVERSE HOARE AKA INCORRECTNESS LOGIC THEORY
Lemma 7 (stRongest postcondition undeR appRoximation).

T𝑅𝐿(S) ≜ post(⊆.⊇) ○ S(S) = {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!S"𝑃} = post(⊆.=) ○ S(S)

PRoof. TO DO
post(⊆.⊇) ○ S(S)

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ 𝑄 ′ ⊆ post!S"𝑃 ′} #⊆-order dual of lem. 4$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . 𝑄 ⊆ post!S"𝑃 ′ ∧𝑄 ′ = 𝑄} #def. =$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . ⟨𝑃 ′, 𝑄 ′⟩ ⊆.= ⟨post!S"𝑃 ′, 𝑆⟩} #def. ⊆.=$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑃 . ⟨⟨𝑃, post!S"𝑃⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊆.=} #def. ∈$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)} . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊆.=} #def. ∈$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ S(S) . ⟨⟨𝑃, 𝑄⟩, ⟨𝑃 ′, 𝑄 ′⟩⟩ ∈ ⊆.=} #lem. 3$
= post(⊆.=)(S(S)) #def. (10) of post$
= post(⊆.=) ○ S(S) #def. function composition ○$!

TheoRem 4 (theoRy of RL).
TRL(W) ≜ post(⊆.⊇) ○ S(W)= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B, 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄}

PRoof.

, Vol. 1, No. 1, Article . Publication date: October 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:5

2 CALCULATIONAL DESIGN OF HOARE LOGIC HL
2.1 Calculational Design of Hoare Logic Theory

TheoRem 2.1 (TheoRy of HoaRe logic HL).
THL(W) ≜ post(⊇.⊆) ○ T (W)= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄}

PRoof of Th. 2.1 .
THL(W)

= post(⊇.⊆) ○ T (W) #def. THL$
= post(=,⊆) ○ T (W) #Lem. 1.4$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . ⟨𝑃, 𝑄⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} #def. post$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . 𝑃 = 𝑃 ′ ∧𝑄 ⊆ 𝑄 ′} #component wise def. =,⊆$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ⟨𝑃, 𝑄⟩ ∈ T (W) . 𝑄 ⊆ 𝑄 ′} #def. =$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′} #Th. 1.7$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ′}

#(⊆) ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′ and transitivity;
(⊇) take 𝑄 = 𝑄 ′$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . lfp⊆ ¯̄𝐹𝑒𝑃 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′}
#(⊆) take 𝑄 = lfp⊆ ¯̄𝐹𝑒𝑃 ; (⊇) post!¬B" is increasing by (12)$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ 𝐼 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′} #Park fixpoint induction Th. II.3.1$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄 ′}

#(⊆) 𝐼 ⊆ 𝑄 implies post!¬B"(𝐼) ⊆ post!¬B"(𝑄) since post!¬B" is increasing by (12) hence
post!¬B"(𝐼) ⊆ 𝑄 ′ by transitivity;(⊇) take 𝑄 = 𝐼$

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S"𝑒)(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #renaming, def. ¯̄𝐹𝑒𝑃$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S")(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #!S"𝑒 = !S" in absence of breaks$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post(!B" % !S")𝐼 ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #def. ⊆ and ∪$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(post!B"𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #composition Lem. 1.1$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(𝐼 ∩B!B") ⊆ 𝐼 ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄} #test Lem. 1.2$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post!S"𝑃 ⊆ 𝑄} ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #def. ∈$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ post(=,⊆) ○ T (S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Google, 2025/09/17 © P. Cousot28

5. Calculational design of HL

• Theory of HL (for iteration):

• HL proof system:

8 Patrick Cousot

HOARE LOGIC RULES
TheoRem 3 (HoaRe Rules foR conditional iteRation).

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄
{𝑃} while (B) S{𝑄}

PRoof. We write {𝑃} S{𝑄} ≜ ⟨𝑃, 𝑄⟩ ∈ THL(S);
By structural induction (S being a strict component of while (B) S), the rule for {𝑃} S{𝑄} have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝑃 ⊆ 𝐼 , {𝐼 ∩

B} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄 ;
Traditionally, the side condition is considered a premiss, to get

𝑃 ⊆ 𝐼 , {𝐼 ∩B} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄
{𝑃} while (B) S{𝑄}

𝑃 ⊆ 𝐼 , {𝐼 ∩B} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

, Vol. 1, No. 1, Article . Publication date: November 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:5

2 CALCULATIONAL DESIGN OF HOARE LOGIC HL
2.1 Calculational Design of Hoare Logic Theory

TheoRem 2.1 (TheoRy of HoaRe logic HL).
THL(W) ≜ post(⊇.⊆) ○ T (W)= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄}

PRoof of Th. 2.1 .
THL(W)

= post(⊇.⊆) ○ T (W) #def. THL$
= post(=,⊆) ○ T (W) #Lem. 1.4$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . ⟨𝑃, 𝑄⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} #def. post$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . 𝑃 = 𝑃 ′ ∧𝑄 ⊆ 𝑄 ′} #component wise def. =,⊆$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ⟨𝑃, 𝑄⟩ ∈ T (W) . 𝑄 ⊆ 𝑄 ′} #def. =$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′} #Th. 1.7$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ′}

#(⊆) ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′ and transitivity;
(⊇) take 𝑄 = 𝑄 ′$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . lfp⊆ ¯̄𝐹𝑒𝑃 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′}
#(⊆) take 𝑄 = lfp⊆ ¯̄𝐹𝑒𝑃 ; (⊇) post!¬B" is increasing by (12)$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ 𝐼 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′} #Park fixpoint induction Th. II.3.1$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄 ′}

#(⊆) 𝐼 ⊆ 𝑄 implies post!¬B"(𝐼) ⊆ post!¬B"(𝑄) since post!¬B" is increasing by (12) hence
post!¬B"(𝐼) ⊆ 𝑄 ′ by transitivity;(⊇) take 𝑄 = 𝐼$

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S"𝑒)(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #renaming, def. ¯̄𝐹𝑒𝑃$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S")(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #!S"𝑒 = !S" in absence of breaks$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post(!B" % !S")𝐼 ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #def. ⊆ and ∪$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(post!B"𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #composition Lem. 1.1$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(𝐼 ∩B!B") ⊆ 𝐼 ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄} #test Lem. 1.2$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post!S"𝑃 ⊆ 𝑄} ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #def. ∈$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ post(=,⊆) ○ T (S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Google, 2025/09/17 © P. Cousot

7:6 Patrick Cousot

2.2 Hoare logic rules
TheoRem 2.2 (HoaRe Rules foR conditional iteRation).

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄
{𝑃} while (B) S{𝑄} (1)

PRoof of Th. 2.2. We write {𝑃} S{𝑄} ≜ ⟨𝑃, 𝑄⟩ ∈ THL(S);
By structural induction (S being a strict component of while (B) S), the rule for {𝑃} S{𝑄} have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝑃 ⊆ 𝐼 , {𝐼 ∩

B!B"} S{𝐼}, (𝐼 ∩ ¬B!B") ⊆ 𝑄 ;
Traditionally, the side condition is written as a premiss, to get (1).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:5

2 CALCULATIONAL DESIGN OF HOARE LOGIC HL
2.1 Calculational Design of Hoare Logic Theory

TheoRem 2.1 (TheoRy of HoaRe logic HL).
THL(W) ≜ post(⊇.⊆) ○ T (W)= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄}

PRoof of Th. 2.1 .
THL(W)

= post(⊇.⊆) ○ T (W) #def. THL$
= post(=,⊆) ○ T (W) #Lem. 1.4$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . ⟨𝑃, 𝑄⟩ =,⊆ ⟨𝑃 ′, 𝑄 ′⟩} #def. post$
= {⟨𝑃 ′, 𝑄 ′⟩ ∣⟨ 𝑃, 𝑄⟩ ∈ T (W) . 𝑃 = 𝑃 ′ ∧𝑄 ⊆ 𝑄 ′} #component wise def. =,⊆$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ⟨𝑃, 𝑄⟩ ∈ T (W) . 𝑄 ⊆ 𝑄 ′} #def. =$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′} #Th. 1.7$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ′}

#(⊆) ∃𝑄 . post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) ⊆ 𝑄 ∧𝑄 ⊆ 𝑄 ′ and transitivity;
(⊇) take 𝑄 = 𝑄 ′$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . lfp⊆ ¯̄𝐹𝑒𝑃 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′}
#(⊆) take 𝑄 = lfp⊆ ¯̄𝐹𝑒𝑃 ; (⊇) post!¬B" is increasing by (12)$

= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝑄 . ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ 𝐼 ⊆ 𝑄 ∧ post!¬B"(𝑄) ⊆ 𝑄 ′} #Park fixpoint induction Th. II.3.1$
= {⟨𝑃, 𝑄 ′⟩ ∣ ∃𝐼 . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄 ′}

#(⊆) 𝐼 ⊆ 𝑄 implies post!¬B"(𝐼) ⊆ post!¬B"(𝑄) since post!¬B" is increasing by (12) hence
post!¬B"(𝐼) ⊆ 𝑄 ′ by transitivity;(⊇) take 𝑄 = 𝐼$

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S"𝑒)(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #renaming, def. ¯̄𝐹𝑒𝑃$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ∪ post(!B" % !S")(𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #!S"𝑒 = !S" in absence of breaks$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post(!B" % !S")𝐼 ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #def. ⊆ and ∪$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(post!B"𝐼) ⊆ 𝐼 ∧ post!¬B"(𝐼) ⊆ 𝑄} #composition Lem. 1.1$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ post!S"(𝐼 ∩B!B") ⊆ 𝐼 ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄} #test Lem. 1.2$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post!S"𝑃 ⊆ 𝑄} ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #def. ∈$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ post(=,⊆) ○ T (S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑃 ⊆ 𝐼 ∧ ⟨𝐼 ∩B!B", 𝐼⟩ ∈ 𝑇HL(S) ∧ (𝐼 ∩ ¬B!B") ⊆ 𝑄 #Lem. 1.4$!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

29

Sound and complete by construction

Machine checkable, if not machine checked!

Google, 2025/09/17 © P. Cousot

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 3

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})
= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}

⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′
post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 0.2. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 0.3. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
TheoRem 0.4. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)

Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ for 𝑓 ultimately
over approximating 𝑃 (Def. II.3.5).

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = %) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

, Vol. 1, No. 1, Article . Publication date: November 2024.30

Surprised to find a variant of HL proof system

yields the sound and complete proof system:

no need for Hoare left consequence rule (but for iteration):

3.2. RULES OF CONSEQUENCE
In addition to axioms, a deductive science requires at

least one rule of inference, which permits the deduction of
new theorems from one or more axioms or theorems al-
ready proved. A rule of inference takes the form " I f ~-X
and ~- Y then ~-Z", i.e. if assertions of the form X and Y
have been proved as theorems, then Z also is thereby
proved as a theorem. The simplest example of an inference
rule states tha t if the execution of a program Q en-
sures the t ru th of the assertion R, then it also ensures the
t ru th of every assertion logically implied by R. Also, if
P is known to be a precondition for a program Q to pro-
duce result R, then so is any other assertion which logically
implies P. These rules may be expressed more formally:

D1 Rules of Consequence
If ~-P{Q}R and ~-R D S then ~-P{Q}S
If ~-P{Q}R and ~-S ~ P then ~-S{Q}R

3.3. RULE OF COMPOSITION
A program generally consists of a sequence of statements

which are executed one after another. The statements may
be separated by a semicolon or equivalent symbol denoting
procedural composition: (Q1 ; Q2 ; " '" ; Q~). In order to
avoid the awkwardness of dots, it is possible to deal ini-
tially with only two statements (Q1 ; Q2), since longer se-
quences can be reconstructed by nesting, thus (Q~ ; (Q2 ;
(" " (Q,-1 ; Q.) - ' "))) . The removal of the brackets of
this nest may be regarded as convention based on the
associativity of the ";-operator", in the same way as brack-
ets are removed from an arithmetic expression (6 + (t2 +
(. . - (t,_~ + t ,) - - .))) .

The inference rule associated with composition states
tha t if the proven result of the first par t of a program is
identical with the precondition under which the second par t
of the program produces its intended result, then the whole
program will produce the intended result, provided that the
precondition of the first part is satisfied.

In more formal terms:

D2 Rule of Composition
If ~-P{QdR1 and ~-R~{Q2}R then ~-P{ (Q~ ; Q2)}R

3.4. RvL~ OF ITERATION
The essential feature of a stored program computer is

the ability to execute some portion of program (S) re-
peatedly until a condition (B) goes false. A simple way of
expressing such an iteration is to adapt the ALGOL 60
w h i l e notation:

w h i l e B d o S

In executing this statement, a computer first tests the con-
dition B. If this is false, S is omitted, and execution of the
loop is complete. Otherwise, S is executed and B is tested
again. This action is repeated until B is found to be false.
The reasoning which leads to a formulation of an inference
rule for iteration is as follows. Suppose P to be an assertion
which is always true on completion of S, provided tha t it is
also true on initiation. Then obviously P will still be true
after any number of iterations of the s tatement S (even

no iterations). Furthermore, it is known tha t the con-
trolling condition B is false when the iteration finally
terminates. A slightly more powerful formulation is pos-
sible in light of the fact tha t B may be assumed to be true
on initiation of S:

D3 Rule of Iteration
If ~P A B{S}P then ~-P{while B do S} ~ B A P

3.5. EXAMPLE
The axioms quoted above are sufficient to construct the

proof of properties of simple programs, for example, a
routine intended to find the quotient q and remainder r
obtained on dividing x by y. All variables are assumed to
range over a set of nonnegative integers conforming to the
axioms listed in Table I. For simplicity we use the trivial
but inefficient method of successive subtraction. The pro-
posed program is:

((r := x; q := 0); w h i l e
y < r d o (r : = r - - y ; q : = l + q))

An important property of this program is tha t when it
terminates, we can recover the numerator x by adding to
the remainder r the product of the divisor y and the quo-
t ient q (i.e. x = r + y X q). Furthermore, the remainder
is less than the divisor. These properties may be expressed
formally:

t r u e { Q } ~ y ~< r A x = r + y X q

where Q stands for the program displayed above. This
expresses a necessary (but not sufficient) condition for
the "correctness" of the program.

A formal proof of this theorem is given in Table III .
Like all formal proofs, it is excessively tedious, and it
would be fairly easy to introduce notational conventions
which would significantly shorten it. An even more power-
ful method of reducing the tedium of formal proofs is to
derive general rules for proof construction out of the simple
rules accepted as postulates. These general rules would be
shown to be valid by demonstrating how every theorem
proved with their assistance could equally well (if more
tediously) have been proved without. Once a powerful set
of supplementary rules has been developed, a "formal
proof" reduces to little more than an informal indication
of how a formal proof could be constructed.

4. G e n e r a l R e s e r v a t i o n s

The axioms and rules of inference quoted in this paper
have implicitly assumed the absence of side effects of the
evaluation of expressions and conditions. In proving prop-
erties of programs expressed in a language permitting side
effects, it would be necessary to prove their absence in
each ease before applying the appropriate proof technique.
I f the main purpose of a high level programming language
is to assist in the construction and verification of correct
programs, it is doubtful whether the use of functional
notation to call procedures with side effects is a genuine
advantage.

Another deficiency in the axioms and rules quoted above

578 Communica t ions of the ACM Volume 12 / Number 10 / October, 1969

We also have (post is increasing):

⊆ comes from
Th. II.3.1

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 3

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})
= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}

⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′
post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 0.2. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 0.3. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
TheoRem 0.4. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)

Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ for 𝑓 ultimately
over approximating 𝑃 (Def. II.3.5).

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = %) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

, Vol. 1, No. 1, Article . Publication date: November 2024.

Google, 2025/09/17 © P. Cousot

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 3

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})
= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}

⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′
post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 0.2. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 0.3. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
TheoRem 0.4. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)

Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ for 𝑓 ultimately
over approximating 𝑃 (Def. II.3.5).

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = %) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

, Vol. 1, No. 1, Article . Publication date: November 2024.30

Surprised to find a variant of HL proof system

yields the sound and complete proof system:

no (strict) need for Hoare left consequence rule (but for iteration):

3.2. RULES OF CONSEQUENCE
In addition to axioms, a deductive science requires at

least one rule of inference, which permits the deduction of
new theorems from one or more axioms or theorems al-
ready proved. A rule of inference takes the form " I f ~-X
and ~- Y then ~-Z", i.e. if assertions of the form X and Y
have been proved as theorems, then Z also is thereby
proved as a theorem. The simplest example of an inference
rule states tha t if the execution of a program Q en-
sures the t ru th of the assertion R, then it also ensures the
t ru th of every assertion logically implied by R. Also, if
P is known to be a precondition for a program Q to pro-
duce result R, then so is any other assertion which logically
implies P. These rules may be expressed more formally:

D1 Rules of Consequence
If ~-P{Q}R and ~-R D S then ~-P{Q}S
If ~-P{Q}R and ~-S ~ P then ~-S{Q}R

3.3. RULE OF COMPOSITION
A program generally consists of a sequence of statements

which are executed one after another. The statements may
be separated by a semicolon or equivalent symbol denoting
procedural composition: (Q1 ; Q2 ; " '" ; Q~). In order to
avoid the awkwardness of dots, it is possible to deal ini-
tially with only two statements (Q1 ; Q2), since longer se-
quences can be reconstructed by nesting, thus (Q~ ; (Q2 ;
(" " (Q,-1 ; Q.) - ' "))) . The removal of the brackets of
this nest may be regarded as convention based on the
associativity of the ";-operator", in the same way as brack-
ets are removed from an arithmetic expression (6 + (t2 +
(. . - (t,_~ + t ,) - - .))) .

The inference rule associated with composition states
tha t if the proven result of the first par t of a program is
identical with the precondition under which the second par t
of the program produces its intended result, then the whole
program will produce the intended result, provided that the
precondition of the first part is satisfied.

In more formal terms:

D2 Rule of Composition
If ~-P{QdR1 and ~-R~{Q2}R then ~-P{ (Q~ ; Q2)}R

3.4. RvL~ OF ITERATION
The essential feature of a stored program computer is

the ability to execute some portion of program (S) re-
peatedly until a condition (B) goes false. A simple way of
expressing such an iteration is to adapt the ALGOL 60
w h i l e notation:

w h i l e B d o S

In executing this statement, a computer first tests the con-
dition B. If this is false, S is omitted, and execution of the
loop is complete. Otherwise, S is executed and B is tested
again. This action is repeated until B is found to be false.
The reasoning which leads to a formulation of an inference
rule for iteration is as follows. Suppose P to be an assertion
which is always true on completion of S, provided tha t it is
also true on initiation. Then obviously P will still be true
after any number of iterations of the s tatement S (even

no iterations). Furthermore, it is known tha t the con-
trolling condition B is false when the iteration finally
terminates. A slightly more powerful formulation is pos-
sible in light of the fact tha t B may be assumed to be true
on initiation of S:

D3 Rule of Iteration
If ~P A B{S}P then ~-P{while B do S} ~ B A P

3.5. EXAMPLE
The axioms quoted above are sufficient to construct the

proof of properties of simple programs, for example, a
routine intended to find the quotient q and remainder r
obtained on dividing x by y. All variables are assumed to
range over a set of nonnegative integers conforming to the
axioms listed in Table I. For simplicity we use the trivial
but inefficient method of successive subtraction. The pro-
posed program is:

((r := x; q := 0); w h i l e
y < r d o (r : = r - - y ; q : = l + q))

An important property of this program is tha t when it
terminates, we can recover the numerator x by adding to
the remainder r the product of the divisor y and the quo-
t ient q (i.e. x = r + y X q). Furthermore, the remainder
is less than the divisor. These properties may be expressed
formally:

t r u e { Q } ~ y ~< r A x = r + y X q

where Q stands for the program displayed above. This
expresses a necessary (but not sufficient) condition for
the "correctness" of the program.

A formal proof of this theorem is given in Table III .
Like all formal proofs, it is excessively tedious, and it
would be fairly easy to introduce notational conventions
which would significantly shorten it. An even more power-
ful method of reducing the tedium of formal proofs is to
derive general rules for proof construction out of the simple
rules accepted as postulates. These general rules would be
shown to be valid by demonstrating how every theorem
proved with their assistance could equally well (if more
tediously) have been proved without. Once a powerful set
of supplementary rules has been developed, a "formal
proof" reduces to little more than an informal indication
of how a formal proof could be constructed.

4. G e n e r a l R e s e r v a t i o n s

The axioms and rules of inference quoted in this paper
have implicitly assumed the absence of side effects of the
evaluation of expressions and conditions. In proving prop-
erties of programs expressed in a language permitting side
effects, it would be necessary to prove their absence in
each ease before applying the appropriate proof technique.
I f the main purpose of a high level programming language
is to assist in the construction and verification of correct
programs, it is doubtful whether the use of functional
notation to call procedures with side effects is a genuine
advantage.

Another deficiency in the axioms and rules quoted above

578 Communica t ions of the ACM Volume 12 / Number 10 / October, 1969

We also have (post is increasing):

⊆ comes from
Th. II.3.1

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 3

T (S) ≜ 𝛼G ○ post ○ 𝛼𝐶({!S"})
= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}

⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′
post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
THL(S) ≜ post(⊇.⊆) ○ T (S)
THL(S) = post(=,⊆) ○ T (S)

post(⊇,⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ T (S)

TheoRem 0.2. (PaRK fixpoint oveR appRoximation)
Let ⟨𝐿, ⊑, !, ⊺, ⊔, ⊓⟩ be a complete lattice, 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be increasing, and 𝑝 ∈ 𝐿. Then
lfp⊑ 𝑓 ⊑ 𝑝 if and only if ∃𝑖 ∈ 𝐿 . 𝑓 (𝑖) ⊑ 𝑖 ∧ 𝑖 ⊑ 𝑝 .
Definition 0.3. (Ultimately Over Approximating Transfinite Sequence) We say

that “the transfinite sequence ⟨𝑋𝛿 ,𝛿 ∈ O⟩ of elements of poset ⟨𝐿,!, ⊑⟩ for 𝑓 ∈ 𝐿 → 𝐿
ultimately over approximates 𝑃 ∈ 𝐿” if and only if 𝑋 0 = !, 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for
successor ordinals, ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .
TheoRem 0.4. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)

Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ for 𝑓 ultimately
over approximating 𝑃 (Def. II.3.5).

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = %) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

, Vol. 1, No. 1, Article . Publication date: November 2024.

Google, 2025/09/17 © P. Cousot31

5. Calculational design of Incorrectness Logic IL
• Theory of IL (for iteration):

• IL proof system:

(similar to O’Hearn backward variant since the consequence rule can also be separated)

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 11

IL RULES
TheoRem 5 (IL Rules foR conditional iteRation).

𝐽 0 = 𝑃, [𝐽𝑛 ∩B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"
[𝑃] while (B) S [𝑄]

PRoof. We write [𝑃] S [𝑄] ≜ ⟨𝑃, 𝑄⟩ ∈ TIL(S);
By structural induction (S being a strict component of while (B) S), the rule for [𝑃] S [𝑄] have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝐽 0 = 𝑃, [𝐽𝑛 ∩

B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃𝑛∈N 𝐽𝑛) ∩B!¬B";
Traditionally, the side condition is considered a premiss, to get

𝐽 0 = 𝑃, [𝐽𝑛 ∩B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"
[𝑃] while (B) S [𝑄]

, Vol. 1, No. 1, Article . Publication date: November 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:7

3 CALCULATIONAL DESIGN OF REVERSE HOARE AKA INCORRECTNESS LOGIC
(IL)

3.1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory
TheoRem 3.1 (TheoRy of IL).
TIL(W) ≜ post(⊆.⊇) ○ T (W)

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B!B", 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"}
PRoof of Th. 3.1.
TIL(W)

= post(⊆.⊇) ○ T (W) #def. TIL$
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!W"𝑃} #⊆-order dual of Lem. 1.4$
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃)} #Th. 1.7 where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post!¬B"(𝐼) ∧ 𝐼 ⊆ lfp⊆ ¯̄𝐹𝑒𝑃}

#(⊆) Take 𝐼 = lfp⊆ ¯̄𝐹𝑒𝑃 and reflexivity;
(⊇) By Galois connection (12), post!¬B" is increasing so 𝑄 ⊆ post!¬B"(𝐼) ⊆
post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) and transitivity$

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post!¬B"(𝐼) ∧ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧ 𝐼 ⊆ ⋃
𝑛<𝜔 𝐽𝑛}

#fixpoint underapproximation Th. II.3.6$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃

𝑛<𝜔 𝐽𝑛)}
#(⊆) By Galois connection (12), post!¬B" is increasing so 𝑄 ⊆ post!¬B"(𝐼) ⊆
post!¬B"(⋃𝑛<𝜔 𝐽𝑛) and transitivity;
(⊇) take 𝐼 = ⋃𝑛<𝜔 𝐽𝑛$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ (𝑃 ∪ post(!B" % !S"𝑒)(𝐽𝑛)) ∧𝑄 ⊆ post!¬B"(⋃
𝑛<𝜔 𝐽𝑛)}

#def. ¯̄𝐹𝑒𝑃$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 1 ⩽ 𝑛 < 𝜔⟩ . 𝐽 1 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post(!B" % !S"𝑒)(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃

1⩽𝑛<𝜔 𝐽𝑛)}
#getting rid of 𝐽 0 = ∅$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post(!B" % !S"𝑒)(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃
𝑛∈N 𝐽

𝑛)}
#changing 𝑛 + 1 to 𝑛$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post!S"𝑒(𝐽𝑛 ∩B!B") ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"}
#Lem. 1.2$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩ B!B", 𝐽𝑛+1⟩ ∈ {⟨𝑃 ′, 𝑄 ′⟩ ∣ 𝑄 ′ ⊆ post!S"𝑒)𝑃)} ∧ 𝑄 ⊆(⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"} #def. ∈$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B!B", 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃

𝑛∈N 𝐽
𝑛) ∩B!¬B"} #def. TIL$

!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Google, 2025/09/17 © P. Cousot31

5. Calculational design of IL
• Theory of IL (for iteration):

• IL proof system:

(similar to O’Hearn backward variant since the consequence rule can also be separated)

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 11

IL RULES
TheoRem 5 (IL Rules foR conditional iteRation).

𝐽 0 = 𝑃, [𝐽𝑛 ∩B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"
[𝑃] while (B) S [𝑄]

PRoof. We write [𝑃] S [𝑄] ≜ ⟨𝑃, 𝑄⟩ ∈ TIL(S);
By structural induction (S being a strict component of while (B) S), the rule for [𝑃] S [𝑄] have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝐽 0 = 𝑃, [𝐽𝑛 ∩

B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃𝑛∈N 𝐽𝑛) ∩B!¬B";
Traditionally, the side condition is considered a premiss, to get

𝐽 0 = 𝑃, [𝐽𝑛 ∩B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"
[𝑃] while (B) S [𝑄]

, Vol. 1, No. 1, Article . Publication date: November 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:7

3 CALCULATIONAL DESIGN OF REVERSE HOARE AKA INCORRECTNESS LOGIC
(IL)

3.1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory
TheoRem 3.1 (TheoRy of IL).
TIL(W) ≜ post(⊆.⊇) ○ T (W)

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B!B", 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"}
PRoof of Th. 3.1.
TIL(W)

= post(⊆.⊇) ○ T (W) #def. TIL$
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!W"𝑃} #⊆-order dual of Lem. 1.4$
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃)} #Th. 1.7 where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post!¬B"(𝐼) ∧ 𝐼 ⊆ lfp⊆ ¯̄𝐹𝑒𝑃}

#(⊆) Take 𝐼 = lfp⊆ ¯̄𝐹𝑒𝑃 and reflexivity;
(⊇) By Galois connection (12), post!¬B" is increasing so 𝑄 ⊆ post!¬B"(𝐼) ⊆
post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) and transitivity$

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post!¬B"(𝐼) ∧ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧ 𝐼 ⊆ ⋃
𝑛<𝜔 𝐽𝑛}

#fixpoint underapproximation Th. II.3.6$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃

𝑛<𝜔 𝐽𝑛)}
#(⊆) By Galois connection (12), post!¬B" is increasing so 𝑄 ⊆ post!¬B"(𝐼) ⊆
post!¬B"(⋃𝑛<𝜔 𝐽𝑛) and transitivity;
(⊇) take 𝐼 = ⋃𝑛<𝜔 𝐽𝑛$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ (𝑃 ∪ post(!B" % !S"𝑒)(𝐽𝑛)) ∧𝑄 ⊆ post!¬B"(⋃
𝑛<𝜔 𝐽𝑛)}

#def. ¯̄𝐹𝑒𝑃$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 1 ⩽ 𝑛 < 𝜔⟩ . 𝐽 1 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post(!B" % !S"𝑒)(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃

1⩽𝑛<𝜔 𝐽𝑛)}
#getting rid of 𝐽 0 = ∅$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post(!B" % !S"𝑒)(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃
𝑛∈N 𝐽

𝑛)}
#changing 𝑛 + 1 to 𝑛$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post!S"𝑒(𝐽𝑛 ∩B!B") ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"}
#Lem. 1.2$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩ B!B", 𝐽𝑛+1⟩ ∈ {⟨𝑃 ′, 𝑄 ′⟩ ∣ 𝑄 ′ ⊆ post!S"𝑒)𝑃)} ∧ 𝑄 ⊆(⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"} #def. ∈$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B!B", 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃

𝑛∈N 𝐽
𝑛) ∩B!¬B"} #def. TIL$

!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Google, 2025/09/17 © P. Cousot32

Calculational design of ILAuxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:7

3 CALCULATIONAL DESIGN OF REVERSE HOARE AKA INCORRECTNESS LOGIC
(IL)

3.1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory
TheoRem 3.1 (TheoRy of IL).
TIL(W) ≜ post(⊆.⊇) ○ T (W)

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B!B", 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"}
PRoof of Th. 3.1.
TIL(W)

= post(⊆.⊇) ○ T (W) #def. TIL$
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!W"𝑃} #⊆-order dual of Lem. 1.4$
= {⟨𝑃, 𝑄⟩ ∣ 𝑄 ⊆ post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃)} #Th. 1.7 where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(!B" % !S"𝑒)𝑋$
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post!¬B"(𝐼) ∧ 𝐼 ⊆ lfp⊆ ¯̄𝐹𝑒𝑃}

#(⊆) Take 𝐼 = lfp⊆ ¯̄𝐹𝑒𝑃 and reflexivity;
(⊇) By Galois connection (12), post!¬B" is increasing so 𝑄 ⊆ post!¬B"(𝐼) ⊆
post!¬B"(lfp⊆ ¯̄𝐹𝑒𝑃) and transitivity$

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 . 𝑄 ⊆ post!¬B"(𝐼) ∧ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧ 𝐼 ⊆ ⋃
𝑛<𝜔 𝐽𝑛}

#fixpoint underapproximation Th. II.3.6$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ ¯̄𝐹𝑒𝑃(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃

𝑛<𝜔 𝐽𝑛)}
#(⊆) By Galois connection (12), post!¬B" is increasing so 𝑄 ⊆ post!¬B"(𝐼) ⊆
post!¬B"(⋃𝑛<𝜔 𝐽𝑛) and transitivity;
(⊇) take 𝐼 = ⋃𝑛<𝜔 𝐽𝑛$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 < 𝜔⟩ . 𝐽 0 = ∅ ∧ 𝐽𝑛+1 ⊆ (𝑃 ∪ post(!B" % !S"𝑒)(𝐽𝑛)) ∧𝑄 ⊆ post!¬B"(⋃
𝑛<𝜔 𝐽𝑛)}

#def. ¯̄𝐹𝑒𝑃$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 1 ⩽ 𝑛 < 𝜔⟩ . 𝐽 1 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post(!B" % !S"𝑒)(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃

1⩽𝑛<𝜔 𝐽𝑛)}
#getting rid of 𝐽 0 = ∅$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post(!B" % !S"𝑒)(𝐽𝑛) ∧𝑄 ⊆ post!¬B"(⋃
𝑛∈N 𝐽

𝑛)}
#changing 𝑛 + 1 to 𝑛$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ 𝐽𝑛+1 ⊆ post!S"𝑒(𝐽𝑛 ∩B!B") ∧𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"}
#Lem. 1.2$

= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩ B!B", 𝐽𝑛+1⟩ ∈ {⟨𝑃 ′, 𝑄 ′⟩ ∣ 𝑄 ′ ⊆ post!S"𝑒)𝑃)} ∧ 𝑄 ⊆(⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"} #def. ∈$
= {⟨𝑃, 𝑄⟩ ∣ ∃⟨𝐽𝑛, 𝑛 ∈ N⟩ . 𝐽 0 = 𝑃 ∧ ⟨𝐽𝑛 ∩B!B", 𝐽𝑛+1⟩ ∈ TIL(S) ∧𝑄 ⊆ (⋃

𝑛∈N 𝐽
𝑛) ∩B!¬B"} #def. TIL$

!

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

7:8 Patrick Cousot

3.2 Calculational design of IL rules

𝐽 0 = 𝑃, [𝐽𝑛 ∩B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃
𝑛∈N 𝐽

𝑛) ∩B!¬B"
[𝑃] while (B) S [𝑄] (2)

PRoof. We write [𝑃] S [𝑄] ≜ ⟨𝑃, 𝑄⟩ ∈ TIL(S);
By structural induction (S being a strict component of while (B) S), the rule for [𝑃] S [𝑄] have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅{𝑃} while (B) S{𝑄} with side condition 𝐽 0 = 𝑃, [𝐽𝑛 ∩

B!B"] S [𝐽𝑛+1], 𝑄 ⊆ (⋃𝑛∈N 𝐽𝑛) ∩B!¬B";
Traditionally, the side condition is written as a premiss, to get (2).

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Google, 2025/09/17 © P. Cousot33

Much more in the POPL24 paper

Google, 2025/09/17 © P. Cousot24

Much more in the POPL24 paper
• Bi-inductive relational semantics with break and non termination (⊥),

for termination and nontermination proofs

• Many more abstractions and combinations → hundreds of
transformational logics theories (including property negations, proofs by
contradictions, backward logics, etc.)

• Taxonomies based on theory
 abstractions (not proof systems)

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 15

means Hoare triple {𝛾1(𝑃)} S{𝛾2(𝑄)}. Without appropriate hypotheses on the abstraction, some
rules of Hoare logic like disjunction and conjunction may be invalid in the abstract, see counter-
examples and sufficient hypotheses in [Cousot et al. 2012, pages 219–221]. Similarly, [Gotsman
et al. 2011] provides a counterexample showing the unsoundness of the conjunction rule. This is
an argument for the use of a principled method for designing logics.

Another abstract logic [Bruni et al. 2023] combines an over approximation (for correctness) and
an under approximation (for incorrectness) in the same abstract domain.The “(relax)” rule requires
that the under approximation uses abstract properties 𝛼(𝑃) that exactly represent concrete prop-
erties 𝑃 by requiring that 𝛾 ○ 𝛼(𝑃) = 𝑃 . This restricts the concrete points that can be used in
the under approximation, and will be a source of incompleteness and imprecision for most static
analyses.

Under approximation is the order semidual of an over approximation, with abstraction ⟨℘(Σ"),⊆⟩ −−−→←−−−𝛼𝛾 ⟨A, ⊒⟩ exploited e.g. in [Ball et al. 2005].The study by [Ascari et al. 2022] provides a number
of classic abstract domain examples showing the imprecision of such under approximation static
analyses, but for few exceptions like [Asadi et al. 2021; Miné 2014].

These under approximation approaches are based onTh. II.3.6 for fixpoint under approximation
by transfinite iterates. Termination proofs do not use an under approximation but instead an over
approximation and a variant function as, e.g., inTh. II.3.8. Alternatively, over approximating static
analysis is classic and variant functions can also be inferred by abstract interpretation [D’Silva and
Urban 2015; Urban 2013, 2015; Urban et al. 2016; Urban and Miné 2014a,b, 2015].

I.3.14 The subhierarchy of assertional logics
Comparing logics means comparing their theories, that is their expressivity, through their respec-
tive abstractions of the collecting semantics (as formalized by fixpoint abstraction in Sect. II.2), and
comparing the induction principles induced by their abstractions (as formalized in Sect. II.3 by fix-
point induction). For example, figure 3 shows that Hoare logic and subgoal induction are different
but equivalent abstractions of the collecting semantics so have the same theory and equivalent but
different proof systems.

16 Patrick Cousot

pre!S"! ●

p̃re!S"! ●

pre!S" ●

p̃re!S"●

● post!S"!

● p̃ost!S"!

● post!S"

● p̃ost!S"

.
𝛼−1

.
𝛼
∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

←"𝛼/" "→𝛼/"

"→𝛼/"←"𝛼/!

17◯●
●
19◯ Possible accessibility or

nontermination logic
(application 2)

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
20◯

18◯●
post(⊇,⊆) ○ 𝛼𝐺

post(⊆,⊇) ○ 𝛼𝐺

11◯●
[Zilberstein et al. 2023] ●

[Dijkstra 1982] 13◯
[Cousot and Cousot 1982, (i−1)]

[Ascari et al. 2023, (SIL)]

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

[Morris Jr. and Wegbreit 1977] ●
[Cousot and Cousot 1982, (ĩ)] 14◯

[Ascari et al. 2023, (NC)]

12◯●
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺

[Apt and Plotkin 1986]
7◯●

●
9◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
22◯

21◯●
’𝑠𝑝𝑜𝑠𝑡(⊆,⊇) ○ 𝛼𝐺

23◯●
𝛼¬

[Hoare 1969]
[Cousot and Cousot 1982, (i)]

8◯●
●

[de Vries and Koutavas 2011] 10◯
[O’Hearn 2020] x

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

15◯●
●
16◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺●
●

●

●
●

●

Galois connection (different logics to prove the same property)

Fig. 4. Hierarchical taxonomy of transformational assertional logics

The taxonomy for direct proofs (the hypothesis implies the conclusion) is illustrated in Fig. 4.

I.3.14.1 Partial definite accessibility of some final state from all initial states post!S"𝑃 ⊆ 𝑄 ⇔
𝑃 ⊆ p̃re!S"𝑄 , 𝑃,𝑄 ∈ ℘(Σ). Partial correctness, allowing blocking states, characterizes executions
starting from any initial state in 𝑃 , which, if terminating normally, do terminate in a state of 𝑄
and no other one. So blocking states are not excluded. This is Naur [Naur 1966], Hoare [Hoare
1969] partial correctness, and Dijkstra weakest liberal preconditions [Dijkstra 1976] and the partial
correctness part of Turing [Turing 1950] and Floyd [Floyd 1967] total correctness.
8◯ post(⊇,⊆) ○ 𝛼𝐺(post!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ) × ℘(Σ) ∣ post!S"𝑃 ⊆ 𝑄} yields the theory of Hoare
logic [Hoare 1969]. This claim can be substantiated by (re)constructing Hoare logic by abstracting
the angelic relational semantics !S" = 𝛼!(!S"!) by post(⊇,⊆) ○ 𝛼𝐺 ○ post. This has been done, e.g.,
in [Cook 1978,Theorem 1, page 79] (modulo a later correction in [Cook 1981]) as well as in [Cousot
2021, Chapter 26], although using the intermediate abstractions into an equational semantics and
then verification conditions to explain Turing-Floyd’s transition based invariance proof method.
14◯ By Galois connection (39.b), post(⊆,⊇) ○ 𝛼𝐺(p̃re!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ)×℘(Σ) ∣ 𝑃 ⊆ p̃re!S"𝑄} is
equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit’s subgoal induction
[Morris Jr. and Wegbreit 1977] or necessary preconditions [Ascari et al. 2023; Cousot et al. 2013,
2011].

, Vol. 1, No. 1, Article . Publication date: November 2024.

Fig. 3. Taxonomy of assertional logics

These abstractions yield the hierarchical taxon-
omy of assertional transformational logics of Fig. 3,
which is a subset of Fig. 2. Fig. 3 is commented there-
after.

We use universal to mean for all initial or final
states and existential to mean there exists at least
one initial or final state. We use reachability (often
forward) for initial to final states and accessibility
(often backward) for final to initial states. We use
definite to mean “for all executions” and possible to
mean “for some execution” (maybe none). In both
cases, the qualification does not exclude possible
nontermination or blocking states, which is empha-
sized by partial. We use total to mean that all exe-
cutions must be finite. We use blocking to mean a
state, which is not final, but from which execution
cannot go on. No such blocking states exist in the
semantics !S"" of statements S in Sect. I.1.1 and II.1 but would correspond e.g. to an aborted exe-
cution after a runtime error (like a division by zero).

, Vol. 1, No. 1, Article . Publication date: November 2024.

34

Google, 2025/09/17 © P. Cousot24

Much more in the POPL24 paper
• Bi-inductive relational semantics with break and non termination (⊥),

for termination and nontermination proofs

• Many more abstractions and combinations → hundreds of
transformational logics theories (including property negations, proofs by
contradictions, backward logics, etc.)

• Taxonomies based on theory
 abstractions (not proof systems)

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 15

means Hoare triple {𝛾1(𝑃)} S{𝛾2(𝑄)}. Without appropriate hypotheses on the abstraction, some
rules of Hoare logic like disjunction and conjunction may be invalid in the abstract, see counter-
examples and sufficient hypotheses in [Cousot et al. 2012, pages 219–221]. Similarly, [Gotsman
et al. 2011] provides a counterexample showing the unsoundness of the conjunction rule. This is
an argument for the use of a principled method for designing logics.

Another abstract logic [Bruni et al. 2023] combines an over approximation (for correctness) and
an under approximation (for incorrectness) in the same abstract domain.The “(relax)” rule requires
that the under approximation uses abstract properties 𝛼(𝑃) that exactly represent concrete prop-
erties 𝑃 by requiring that 𝛾 ○ 𝛼(𝑃) = 𝑃 . This restricts the concrete points that can be used in
the under approximation, and will be a source of incompleteness and imprecision for most static
analyses.

Under approximation is the order semidual of an over approximation, with abstraction ⟨℘(Σ"),⊆⟩ −−−→←−−−𝛼𝛾 ⟨A, ⊒⟩ exploited e.g. in [Ball et al. 2005].The study by [Ascari et al. 2022] provides a number
of classic abstract domain examples showing the imprecision of such under approximation static
analyses, but for few exceptions like [Asadi et al. 2021; Miné 2014].

These under approximation approaches are based onTh. II.3.6 for fixpoint under approximation
by transfinite iterates. Termination proofs do not use an under approximation but instead an over
approximation and a variant function as, e.g., inTh. II.3.8. Alternatively, over approximating static
analysis is classic and variant functions can also be inferred by abstract interpretation [D’Silva and
Urban 2015; Urban 2013, 2015; Urban et al. 2016; Urban and Miné 2014a,b, 2015].

I.3.14 The subhierarchy of assertional logics
Comparing logics means comparing their theories, that is their expressivity, through their respec-
tive abstractions of the collecting semantics (as formalized by fixpoint abstraction in Sect. II.2), and
comparing the induction principles induced by their abstractions (as formalized in Sect. II.3 by fix-
point induction). For example, figure 3 shows that Hoare logic and subgoal induction are different
but equivalent abstractions of the collecting semantics so have the same theory and equivalent but
different proof systems.

16 Patrick Cousot

pre!S"! ●

p̃re!S"! ●

pre!S" ●

p̃re!S"●

● post!S"!

● p̃ost!S"!

● post!S"

● p̃ost!S"

.
𝛼−1

.
𝛼
∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

←"𝛼/" "→𝛼/"

"→𝛼/"←"𝛼/!

17◯●
●
19◯ Possible accessibility or

nontermination logic
(application 2)

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
20◯

18◯●
post(⊇,⊆) ○ 𝛼𝐺

post(⊆,⊇) ○ 𝛼𝐺

11◯●
[Zilberstein et al. 2023] ●

[Dijkstra 1982] 13◯
[Cousot and Cousot 1982, (i−1)]

[Ascari et al. 2023, (SIL)]

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

[Morris Jr. and Wegbreit 1977] ●
[Cousot and Cousot 1982, (ĩ)] 14◯

[Ascari et al. 2023, (NC)]

12◯●
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺

[Apt and Plotkin 1986]
7◯●

●
9◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
22◯

21◯●
’𝑠𝑝𝑜𝑠𝑡(⊆,⊇) ○ 𝛼𝐺

23◯●
𝛼¬

[Hoare 1969]
[Cousot and Cousot 1982, (i)]

8◯●
●

[de Vries and Koutavas 2011] 10◯
[O’Hearn 2020] x

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

15◯●
●
16◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺●
●

●

●
●

●

Galois connection (different logics to prove the same property)

Fig. 4. Hierarchical taxonomy of transformational assertional logics

The taxonomy for direct proofs (the hypothesis implies the conclusion) is illustrated in Fig. 4.

I.3.14.1 Partial definite accessibility of some final state from all initial states post!S"𝑃 ⊆ 𝑄 ⇔
𝑃 ⊆ p̃re!S"𝑄 , 𝑃,𝑄 ∈ ℘(Σ). Partial correctness, allowing blocking states, characterizes executions
starting from any initial state in 𝑃 , which, if terminating normally, do terminate in a state of 𝑄
and no other one. So blocking states are not excluded. This is Naur [Naur 1966], Hoare [Hoare
1969] partial correctness, and Dijkstra weakest liberal preconditions [Dijkstra 1976] and the partial
correctness part of Turing [Turing 1950] and Floyd [Floyd 1967] total correctness.
8◯ post(⊇,⊆) ○ 𝛼𝐺(post!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ) × ℘(Σ) ∣ post!S"𝑃 ⊆ 𝑄} yields the theory of Hoare
logic [Hoare 1969]. This claim can be substantiated by (re)constructing Hoare logic by abstracting
the angelic relational semantics !S" = 𝛼!(!S"!) by post(⊇,⊆) ○ 𝛼𝐺 ○ post. This has been done, e.g.,
in [Cook 1978,Theorem 1, page 79] (modulo a later correction in [Cook 1981]) as well as in [Cousot
2021, Chapter 26], although using the intermediate abstractions into an equational semantics and
then verification conditions to explain Turing-Floyd’s transition based invariance proof method.
14◯ By Galois connection (39.b), post(⊆,⊇) ○ 𝛼𝐺(p̃re!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ)×℘(Σ) ∣ 𝑃 ⊆ p̃re!S"𝑄} is
equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit’s subgoal induction
[Morris Jr. and Wegbreit 1977] or necessary preconditions [Ascari et al. 2023; Cousot et al. 2013,
2011].

, Vol. 1, No. 1, Article . Publication date: November 2024.

Fig. 3. Taxonomy of assertional logics

These abstractions yield the hierarchical taxon-
omy of assertional transformational logics of Fig. 3,
which is a subset of Fig. 2. Fig. 3 is commented there-
after.

We use universal to mean for all initial or final
states and existential to mean there exists at least
one initial or final state. We use reachability (often
forward) for initial to final states and accessibility
(often backward) for final to initial states. We use
definite to mean “for all executions” and possible to
mean “for some execution” (maybe none). In both
cases, the qualification does not exclude possible
nontermination or blocking states, which is empha-
sized by partial. We use total to mean that all exe-
cutions must be finite. We use blocking to mean a
state, which is not final, but from which execution
cannot go on. No such blocking states exist in the
semantics !S"" of statements S in Sect. I.1.1 and II.1 but would correspond e.g. to an aborted exe-
cution after a runtime error (like a division by zero).

, Vol. 1, No. 1, Article . Publication date: November 2024.

34

Google, 2025/09/17 © P. Cousot34

Much more in the POPL24 paper
• Bi-inductive relational semantics with break and non termination (⊥),

for termination and nontermination proofs

• Many more abstractions and combinations → hundreds of
transformational logics theories (including property negations, proofs by
contradictions, backward logics, etc.)

• Taxonomies based on theory abstractions (not proof systems)

20 Patrick Cousot

RemaRK I.3.12. By (39) pre preserves joins (∪) but not necessarily meets (∩). Same remark for
post. A◯ ∎
I.3.12 To terminate or not to terminate abstraction for transformers
We have shown in Sect. I.3.5 that we can abstract antecedant-consequence pairs by (15) or (18) to
take nontermination into account (e.g. total correctness) or not (partial correctness). An equivalent
alternative uses the natural semantics !S"! or the angelic one !S" in (1). We can also abstract
transformers, which we do in the assertional case, by

𝛼/!(𝑃) ≜ 𝑃 ∖ {&} !→𝛼/!(𝜃) ≜ 𝛼/! ○ 𝜃 ←!𝛼/!(𝜃) ≜ 𝜃 ○ 𝛾/! (40)
𝛾/!(𝑄) ≜ 𝑄 ∪ {&} !→𝛾 /!(𝜃) ≜ 𝛾/! ○ 𝜃 ←!𝛾 /!(𝜃) ≜ 𝜃 ○ 𝛼/! (41)

which yield Galois connections A◯
⟨℘(Σ!), ⊆⟩ −−−−→←−−−−𝛼/!

𝛾/! ⟨℘(Σ), ⊆⟩ ⟨X → ℘(Σ!), .⊆⟩ −−−−→←−−−−!→𝛼/!
!→𝛾/! ⟨X → ℘(Σ), .⊆⟩ (42)

⟨℘(Σ!) 𝑖!→ ℘(Σ), .⊆⟩ −−−−→←−−−−←!𝛼/!
←!𝛾/! ⟨℘(Σ) 𝑖!→ ℘(Σ), .⊆⟩

I.3.13 Abstract logics
Finally logics may refer to any abstraction of the antecedents and consequenst of a transforma-
tional logics. For example, [29] is an abstraction of Hoare logic such that {𝑃} S{𝑄} means Hoare
triple {𝛾1(𝑃)} S{𝛾2(𝑄)}. Without appropriate hypotheses on the abstraction, some rules of Hoare
logic like disjunction and conjunction may be invalid in the abstract, see counter-examples and
sufficient hypotheses in [29, pages 219–221]. Similarly, [43] provides a counterexample showing
the unsoundness of the conjunction rule. This is an argument for the use of a principled method
for designing logics.

Another abstract logic is [9] combining an over approximation (for correctness) and an under
approximation (for incorrectness) in the same abstract domain. The “(relax)” rule requires that the
under approximation uses abstract properties 𝛼(𝑃) that exactly represent concrete properties 𝑃
by requiring that 𝛾 ○ 𝛼(𝑃) = 𝑃 . This restricts the concrete points that can be used in the under
approximation, and will be a source of incompleteness and imprecision for most static analyses.

16 Patrick Cousot

pre!S"! ●

p̃re!S"! ●

pre!S" ●

p̃re!S" ●

● post!S"!

● p̃ost!S"!

● post!S"

● p̃ost!S"

.
𝛼−1

.
𝛼
∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

←"𝛼/" "→𝛼/"

"→𝛼/"←"𝛼/!

17◯●
●
19◯ Possible accessibility or

nontermination logic
(application 2)

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
20◯

18◯●
post(⊇,⊆) ○ 𝛼𝐺

post(⊆,⊇) ○ 𝛼𝐺

11◯●
●

Outcome logic [98] 13◯
Dijkstra’s subgoal induction [36]

[22, (i−1) p. 100]

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
Subgoal induction [51] 14◯

[22, (ĩ) p. 100]

12◯●
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺

7◯ Apt & Plotkin
total correctness [6]●

●
9◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
22◯

21◯●
post(⊆,⊇) ○ 𝛼𝐺

8◯ Hoare logic [49]
[22, (i) p. 100]●

●
Reverse Hoare [32] 10◯

aka incorrectness [67] logic

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

15◯●
●
16◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

23◯●
𝛼¬

post(⊇,⊆) ○ 𝛼𝐺●
●

●

●
●

●

Galois connection (different logics to prove the same property)

Fig. 4. Hierarchical taxonomy of transformational assertional logics

14◯ By Galois connection (39.b), post(⊆,⊇) ○ 𝛼𝐺(p̃re!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ)×℘(Σ) ∣ 𝑃 ⊆ p̃re!S"𝑄} is
equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit’s subgoal induction
[51] or necessary preconditions [27, 28].

Hoare and subgoal induction logics can be used to prove universal partial correctness (𝑄 is good,
as in static accessibility analysis [19]) and universal partial incorrectness (𝑄 is bad, as in necessary
preconditions analyses [27, 28]). Both logics can be also used to prove bounded termination, by
introducing a counter incremented in loops and proved to be bounded [57]. However, this is in-
complete for unbounded nondeterminism. post!S"𝑃 ⊆ ∅ ⇔ 𝑃 ⊆ p̃re!S"∅ ⇔ 𝑃 ⊆ ¬pre!S"Σ ⇔
pre!S"Σ ⊆ ¬𝑃 is definite nontermination from all initial states (executions from any initial state of
𝑃 do not terminate).

Subgoal induction is exploited in necessary preconditions analyses [27, 28]. Finding 𝑃 such that
post!S"𝑃 ⊆ 𝑄 is equivalent to finding 𝑃 such that 𝑃 ⊆ p̃re!S"𝑄 for the given error postcondition
𝑄 , which the necessary precondition analysis does by under approximating p̃re!S" defined struc-
turally on the programming language and using fixpoint under approximation to handle iteration
and recursion.

I.3.14.2 Total definite accessibility of some final states from all initial states post!S"!𝑃 ⊆ 𝑄 ⇔ 𝑃 ⊆
p̃re!S"!𝑄 , 𝑃,𝑄 ∈ ℘(Σ). Total correctness, allowing blocking states, characterizes executions from

, Vol. 1, No. 1, Article . Publication date: October 2024.

Fig. 3. Taxonomy of assertional logics

Under approximation is the order semidual
of an over approximation, with abstraction
⟨℘(Σ!), ⊆⟩ −−−→←−−−𝛼𝛾 ⟨A, ⊒⟩. The study by [7] pro-
vides a number of classic abstract domain ex-
amples showing the imprecision of such under
approximation static analyses, but for few ex-
ceptions like [63].

These under approximation approaches are
based on Th. II.3.6 for fixpoint under approx-
imation by transfinite iterates. Termination
proofs do not use an under approximation but
instead an over approximation and a variant
function as, e.g., in Th. II.3.8. Alternatively,
over approximating static analysis is classic
and variant functions can also be inferred by
abstract interpretation [40, 87–92].

, Vol. 1, No. 1, Article . Publication date: October 2024.

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 15

means Hoare triple {𝛾1(𝑃)} S{𝛾2(𝑄)}. Without appropriate hypotheses on the abstraction, some
rules of Hoare logic like disjunction and conjunction may be invalid in the abstract, see counter-
examples and sufficient hypotheses in [Cousot et al. 2012, pages 219–221]. Similarly, [Gotsman
et al. 2011] provides a counterexample showing the unsoundness of the conjunction rule. This is
an argument for the use of a principled method for designing logics.

Another abstract logic [Bruni et al. 2023] combines an over approximation (for correctness) and
an under approximation (for incorrectness) in the same abstract domain.The “(relax)” rule requires
that the under approximation uses abstract properties 𝛼(𝑃) that exactly represent concrete prop-
erties 𝑃 by requiring that 𝛾 ○ 𝛼(𝑃) = 𝑃 . This restricts the concrete points that can be used in
the under approximation, and will be a source of incompleteness and imprecision for most static
analyses.

Under approximation is the order semidual of an over approximation, with abstraction ⟨℘(Σ"),⊆⟩ −−−→←−−−𝛼𝛾 ⟨A, ⊒⟩ exploited e.g. in [Ball et al. 2005].The study by [Ascari et al. 2022] provides a number
of classic abstract domain examples showing the imprecision of such under approximation static
analyses, but for few exceptions like [Asadi et al. 2021; Miné 2014].

These under approximation approaches are based onTh. II.3.6 for fixpoint under approximation
by transfinite iterates. Termination proofs do not use an under approximation but instead an over
approximation and a variant function as, e.g., inTh. II.3.8. Alternatively, over approximating static
analysis is classic and variant functions can also be inferred by abstract interpretation [D’Silva and
Urban 2015; Urban 2013, 2015; Urban et al. 2016; Urban and Miné 2014a,b, 2015].

I.3.14 The subhierarchy of assertional logics
Comparing logics means comparing their theories, that is their expressivity, through their respec-
tive abstractions of the collecting semantics (as formalized by fixpoint abstraction in Sect. II.2), and
comparing the induction principles induced by their abstractions (as formalized in Sect. II.3 by fix-
point induction). For example, figure 3 shows that Hoare logic and subgoal induction are different
but equivalent abstractions of the collecting semantics so have the same theory and equivalent but
different proof systems.

16 Patrick Cousot

pre!S"! ●

p̃re!S"! ●

pre!S" ●

p̃re!S"●

● post!S"!

● p̃ost!S"!

● post!S"

● p̃ost!S"

.
𝛼−1

.
𝛼
∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

←"𝛼/" "→𝛼/"

"→𝛼/"←"𝛼/!

17◯●
●
19◯ Possible accessibility or

nontermination logic
(application 2)

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
20◯

18◯●
post(⊇,⊆) ○ 𝛼𝐺

post(⊆,⊇) ○ 𝛼𝐺

11◯●
[Zilberstein et al. 2023] ●

[Dijkstra 1982] 13◯
[Cousot and Cousot 1982, (i−1)]

[Ascari et al. 2023, (SIL)]

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

[Morris Jr. and Wegbreit 1977] ●
[Cousot and Cousot 1982, (ĩ)] 14◯

[Ascari et al. 2023, (NC)]

12◯●
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺

[Apt and Plotkin 1986]
7◯●

●
9◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
22◯

21◯●
’𝑠𝑝𝑜𝑠𝑡(⊆,⊇) ○ 𝛼𝐺

23◯●
𝛼¬

[Hoare 1969]
[Cousot and Cousot 1982, (i)]

8◯●
●

[de Vries and Koutavas 2011] 10◯
[O’Hearn 2020] x

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

15◯●
●
16◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺●
●

●

●
●

●

Galois connection (different logics to prove the same property)

Fig. 4. Hierarchical taxonomy of transformational assertional logics

The taxonomy for direct proofs (the hypothesis implies the conclusion) is illustrated in Fig. 4.

I.3.14.1 Partial definite accessibility of some final state from all initial states post!S"𝑃 ⊆ 𝑄 ⇔
𝑃 ⊆ p̃re!S"𝑄 , 𝑃,𝑄 ∈ ℘(Σ). Partial correctness, allowing blocking states, characterizes executions
starting from any initial state in 𝑃 , which, if terminating normally, do terminate in a state of 𝑄
and no other one. So blocking states are not excluded. This is Naur [Naur 1966], Hoare [Hoare
1969] partial correctness, and Dijkstra weakest liberal preconditions [Dijkstra 1976] and the partial
correctness part of Turing [Turing 1950] and Floyd [Floyd 1967] total correctness.
8◯ post(⊇,⊆) ○ 𝛼𝐺(post!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ) × ℘(Σ) ∣ post!S"𝑃 ⊆ 𝑄} yields the theory of Hoare
logic [Hoare 1969]. This claim can be substantiated by (re)constructing Hoare logic by abstracting
the angelic relational semantics !S" = 𝛼!(!S"!) by post(⊇,⊆) ○ 𝛼𝐺 ○ post. This has been done, e.g.,
in [Cook 1978,Theorem 1, page 79] (modulo a later correction in [Cook 1981]) as well as in [Cousot
2021, Chapter 26], although using the intermediate abstractions into an equational semantics and
then verification conditions to explain Turing-Floyd’s transition based invariance proof method.
14◯ By Galois connection (39.b), post(⊆,⊇) ○ 𝛼𝐺(p̃re!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ)×℘(Σ) ∣ 𝑃 ⊆ p̃re!S"𝑄} is
equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit’s subgoal induction
[Morris Jr. and Wegbreit 1977] or necessary preconditions [Ascari et al. 2023; Cousot et al. 2013,
2011].

, Vol. 1, No. 1, Article . Publication date: November 2024.

Fig. 3. Taxonomy of assertional logics

These abstractions yield the hierarchical taxon-
omy of assertional transformational logics of Fig. 3,
which is a subset of Fig. 2. Fig. 3 is commented there-
after.

We use universal to mean for all initial or final
states and existential to mean there exists at least
one initial or final state. We use reachability (often
forward) for initial to final states and accessibility
(often backward) for final to initial states. We use
definite to mean “for all executions” and possible to
mean “for some execution” (maybe none). In both
cases, the qualification does not exclude possible
nontermination or blocking states, which is empha-
sized by partial. We use total to mean that all exe-
cutions must be finite. We use blocking to mean a
state, which is not final, but from which execution
cannot go on. No such blocking states exist in the
semantics !S"" of statements S in Sect. I.1.1 and II.1 but would correspond e.g. to an aborted exe-
cution after a runtime error (like a division by zero).

, Vol. 1, No. 1, Article . Publication date: November 2024.

Google, 2025/09/17 © P. Cousot35

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation 15

means Hoare triple {𝛾1(𝑃)} S{𝛾2(𝑄)}. Without appropriate hypotheses on the abstraction, some
rules of Hoare logic like disjunction and conjunction may be invalid in the abstract, see counter-
examples and sufficient hypotheses in [Cousot et al. 2012, pages 219–221]. Similarly, [Gotsman
et al. 2011] provides a counterexample showing the unsoundness of the conjunction rule. This is
an argument for the use of a principled method for designing logics.

Another abstract logic [Bruni et al. 2023] combines an over approximation (for correctness) and
an under approximation (for incorrectness) in the same abstract domain.The “(relax)” rule requires
that the under approximation uses abstract properties 𝛼(𝑃) that exactly represent concrete prop-
erties 𝑃 by requiring that 𝛾 ○ 𝛼(𝑃) = 𝑃 . This restricts the concrete points that can be used in
the under approximation, and will be a source of incompleteness and imprecision for most static
analyses.

Under approximation is the order semidual of an over approximation, with abstraction ⟨℘(Σ"),⊆⟩ −−−→←−−−𝛼𝛾 ⟨A, ⊒⟩ exploited e.g. in [Ball et al. 2005].The study by [Ascari et al. 2022] provides a number
of classic abstract domain examples showing the imprecision of such under approximation static
analyses, but for few exceptions like [Asadi et al. 2021; Miné 2014].

These under approximation approaches are based onTh. II.3.6 for fixpoint under approximation
by transfinite iterates. Termination proofs do not use an under approximation but instead an over
approximation and a variant function as, e.g., inTh. II.3.8. Alternatively, over approximating static
analysis is classic and variant functions can also be inferred by abstract interpretation [D’Silva and
Urban 2015; Urban 2013, 2015; Urban et al. 2016; Urban and Miné 2014a,b, 2015].

I.3.14 The subhierarchy of assertional logics
Comparing logics means comparing their theories, that is their expressivity, through their respec-
tive abstractions of the collecting semantics (as formalized by fixpoint abstraction in Sect. II.2), and
comparing the induction principles induced by their abstractions (as formalized in Sect. II.3 by fix-
point induction). For example, figure 3 shows that Hoare logic and subgoal induction are different
but equivalent abstractions of the collecting semantics so have the same theory and equivalent but
different proof systems.

16 Patrick Cousot

pre!S"! ●

p̃re!S"! ●

pre!S" ●

p̃re!S"●

● post!S"!

● p̃ost!S"!

● post!S"

● p̃ost!S"

.
𝛼−1

.
𝛼
∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

←"𝛼/" "→𝛼/"

"→𝛼/"←"𝛼/!

17◯●
●
19◯ Possible accessibility or

nontermination logic
(application 2)

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
20◯

18◯●
post(⊇,⊆) ○ 𝛼𝐺

post(⊆,⊇) ○ 𝛼𝐺

11◯●
[Zilberstein et al. 2023] ●

[Dijkstra 1982] 13◯
[Cousot and Cousot 1982, (i−1)]

[Ascari et al. 2023, (SIL)]

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

[Morris Jr. and Wegbreit 1977] ●
[Cousot and Cousot 1982, (ĩ)] 14◯

[Ascari et al. 2023, (NC)]

12◯●
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺

[Apt and Plotkin 1986]
7◯●

●
9◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
22◯

21◯●
’𝑠𝑝𝑜𝑠𝑡(⊆,⊇) ○ 𝛼𝐺

23◯●
𝛼¬

[Hoare 1969]
[Cousot and Cousot 1982, (i)]

8◯●
●

[de Vries and Koutavas 2011] 10◯
[O’Hearn 2020] x

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

15◯●
●
16◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺●
●

●

●
●

●

Galois connection (different logics to prove the same property)

Fig. 4. Hierarchical taxonomy of transformational assertional logics

The taxonomy for direct proofs (the hypothesis implies the conclusion) is illustrated in Fig. 4.

I.3.14.1 Partial definite accessibility of some final state from all initial states post!S"𝑃 ⊆ 𝑄 ⇔
𝑃 ⊆ p̃re!S"𝑄 , 𝑃,𝑄 ∈ ℘(Σ). Partial correctness, allowing blocking states, characterizes executions
starting from any initial state in 𝑃 , which, if terminating normally, do terminate in a state of 𝑄
and no other one. So blocking states are not excluded. This is Naur [Naur 1966], Hoare [Hoare
1969] partial correctness, and Dijkstra weakest liberal preconditions [Dijkstra 1976] and the partial
correctness part of Turing [Turing 1950] and Floyd [Floyd 1967] total correctness.
8◯ post(⊇,⊆) ○ 𝛼𝐺(post!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ) × ℘(Σ) ∣ post!S"𝑃 ⊆ 𝑄} yields the theory of Hoare
logic [Hoare 1969]. This claim can be substantiated by (re)constructing Hoare logic by abstracting
the angelic relational semantics !S" = 𝛼!(!S"!) by post(⊇,⊆) ○ 𝛼𝐺 ○ post. This has been done, e.g.,
in [Cook 1978,Theorem 1, page 79] (modulo a later correction in [Cook 1981]) as well as in [Cousot
2021, Chapter 26], although using the intermediate abstractions into an equational semantics and
then verification conditions to explain Turing-Floyd’s transition based invariance proof method.
14◯ By Galois connection (39.b), post(⊆,⊇) ○ 𝛼𝐺(p̃re!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ)×℘(Σ) ∣ 𝑃 ⊆ p̃re!S"𝑄} is
equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit’s subgoal induction
[Morris Jr. and Wegbreit 1977] or necessary preconditions [Ascari et al. 2023; Cousot et al. 2013,
2011].

, Vol. 1, No. 1, Article . Publication date: November 2024.

Fig. 3. Taxonomy of assertional logics

These abstractions yield the hierarchical taxon-
omy of assertional transformational logics of Fig. 3,
which is a subset of Fig. 2. Fig. 3 is commented there-
after.

We use universal to mean for all initial or final
states and existential to mean there exists at least
one initial or final state. We use reachability (often
forward) for initial to final states and accessibility
(often backward) for final to initial states. We use
definite to mean “for all executions” and possible to
mean “for some execution” (maybe none). In both
cases, the qualification does not exclude possible
nontermination or blocking states, which is empha-
sized by partial. We use total to mean that all exe-
cutions must be finite. We use blocking to mean a
state, which is not final, but from which execution
cannot go on. No such blocking states exist in the
semantics !S"" of statements S in Sect. I.1.1 and II.1 but would correspond e.g. to an aborted exe-
cution after a runtime error (like a division by zero).

, Vol. 1, No. 1, Article . Publication date: November 2024.

20 Patrick Cousot

RemaRK I.3.12. By (39) pre preserves joins (∪) but not necessarily meets (∩). Same remark for
post. A◯ ∎
I.3.12 To terminate or not to terminate abstraction for transformers
We have shown in Sect. I.3.5 that we can abstract antecedant-consequence pairs by (15) or (18) to
take nontermination into account (e.g. total correctness) or not (partial correctness). An equivalent
alternative uses the natural semantics !S"! or the angelic one !S" in (1). We can also abstract
transformers, which we do in the assertional case, by

𝛼/!(𝑃) ≜ 𝑃 ∖ {&} !→𝛼/!(𝜃) ≜ 𝛼/! ○ 𝜃 ←!𝛼/!(𝜃) ≜ 𝜃 ○ 𝛾/! (40)
𝛾/!(𝑄) ≜ 𝑄 ∪ {&} !→𝛾 /!(𝜃) ≜ 𝛾/! ○ 𝜃 ←!𝛾 /!(𝜃) ≜ 𝜃 ○ 𝛼/! (41)

which yield Galois connections A◯
⟨℘(Σ!), ⊆⟩ −−−−→←−−−−𝛼/!

𝛾/! ⟨℘(Σ), ⊆⟩ ⟨X → ℘(Σ!), .⊆⟩ −−−−→←−−−−!→𝛼/!
!→𝛾/! ⟨X → ℘(Σ), .⊆⟩ (42)

⟨℘(Σ!) 𝑖!→ ℘(Σ), .⊆⟩ −−−−→←−−−−←!𝛼/!
←!𝛾/! ⟨℘(Σ) 𝑖!→ ℘(Σ), .⊆⟩

I.3.13 Abstract logics
Finally logics may refer to any abstraction of the antecedents and consequenst of a transforma-
tional logics. For example, [29] is an abstraction of Hoare logic such that {𝑃} S{𝑄} means Hoare
triple {𝛾1(𝑃)} S{𝛾2(𝑄)}. Without appropriate hypotheses on the abstraction, some rules of Hoare
logic like disjunction and conjunction may be invalid in the abstract, see counter-examples and
sufficient hypotheses in [29, pages 219–221]. Similarly, [43] provides a counterexample showing
the unsoundness of the conjunction rule. This is an argument for the use of a principled method
for designing logics.

Another abstract logic is [9] combining an over approximation (for correctness) and an under
approximation (for incorrectness) in the same abstract domain. The “(relax)” rule requires that the
under approximation uses abstract properties 𝛼(𝑃) that exactly represent concrete properties 𝑃
by requiring that 𝛾 ○ 𝛼(𝑃) = 𝑃 . This restricts the concrete points that can be used in the under
approximation, and will be a source of incompleteness and imprecision for most static analyses.

16 Patrick Cousot

pre!S"! ●

p̃re!S"! ●

pre!S" ●

p̃re!S" ●

● post!S"!

● p̃ost!S"!

● post!S"

● p̃ost!S"

.
𝛼−1

.
𝛼
∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

.
𝛼−1

.
𝛼∼

←"𝛼/" "→𝛼/"

"→𝛼/"←"𝛼/!

17◯●
●
19◯ Possible accessibility or

nontermination logic
(application 2)

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
20◯

18◯●
post(⊇,⊆) ○ 𝛼𝐺

post(⊆,⊇) ○ 𝛼𝐺

11◯●
●

Outcome logic [98] 13◯
Dijkstra’s subgoal induction [36]

[22, (i−1) p. 100]

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
Subgoal induction [51] 14◯

[22, (ĩ) p. 100]

12◯●
post(⊆,⊇) ○ 𝛼𝐺

post(⊇,⊆) ○ 𝛼𝐺

7◯ Apt & Plotkin
total correctness [6]●

●
9◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

●
22◯

21◯●
post(⊆,⊇) ○ 𝛼𝐺

8◯ Hoare logic [49]
[22, (i) p. 100]●

●
Reverse Hoare [32] 10◯

aka incorrectness [67] logic

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

15◯●
●
16◯

post(⊇,⊆) ○ 𝛼𝐺
post(⊆,⊇) ○ 𝛼𝐺

23◯●
𝛼¬

post(⊇,⊆) ○ 𝛼𝐺●
●

●

●
●

●

Galois connection (different logics to prove the same property)

Fig. 4. Hierarchical taxonomy of transformational assertional logics

14◯ By Galois connection (39.b), post(⊆,⊇) ○ 𝛼𝐺(p̃re!S") ≜ {⟨𝑃, 𝑄⟩ ∈ ℘(Σ)×℘(Σ) ∣ 𝑃 ⊆ p̃re!S"𝑄} is
equivalent and yields the theory of a logic axiomatizing Morris and Wegbreit’s subgoal induction
[51] or necessary preconditions [27, 28].

Hoare and subgoal induction logics can be used to prove universal partial correctness (𝑄 is good,
as in static accessibility analysis [19]) and universal partial incorrectness (𝑄 is bad, as in necessary
preconditions analyses [27, 28]). Both logics can be also used to prove bounded termination, by
introducing a counter incremented in loops and proved to be bounded [57]. However, this is in-
complete for unbounded nondeterminism. post!S"𝑃 ⊆ ∅ ⇔ 𝑃 ⊆ p̃re!S"∅ ⇔ 𝑃 ⊆ ¬pre!S"Σ ⇔
pre!S"Σ ⊆ ¬𝑃 is definite nontermination from all initial states (executions from any initial state of
𝑃 do not terminate).

Subgoal induction is exploited in necessary preconditions analyses [27, 28]. Finding 𝑃 such that
post!S"𝑃 ⊆ 𝑄 is equivalent to finding 𝑃 such that 𝑃 ⊆ p̃re!S"𝑄 for the given error postcondition
𝑄 , which the necessary precondition analysis does by under approximating p̃re!S" defined struc-
turally on the programming language and using fixpoint under approximation to handle iteration
and recursion.

I.3.14.2 Total definite accessibility of some final states from all initial states post!S"!𝑃 ⊆ 𝑄 ⇔ 𝑃 ⊆
p̃re!S"!𝑄 , 𝑃,𝑄 ∈ ℘(Σ). Total correctness, allowing blocking states, characterizes executions from

, Vol. 1, No. 1, Article . Publication date: October 2024.

Fig. 3. Taxonomy of assertional logics

Under approximation is the order semidual
of an over approximation, with abstraction
⟨℘(Σ!), ⊆⟩ −−−→←−−−𝛼𝛾 ⟨A, ⊒⟩. The study by [7] pro-
vides a number of classic abstract domain ex-
amples showing the imprecision of such under
approximation static analyses, but for few ex-
ceptions like [63].

These under approximation approaches are
based on Th. II.3.6 for fixpoint under approx-
imation by transfinite iterates. Termination
proofs do not use an under approximation but
instead an over approximation and a variant
function as, e.g., in Th. II.3.8. Alternatively,
over approximating static analysis is classic
and variant functions can also be inferred by
abstract interpretation [40, 87–92].

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot36

• Many more fixpoint induction principles (including P ⊑ lfp⊑ F, lfp⊑ F ⊑ P,

P ⊑ gfp⊑ F, gfp⊑ F ⊑ P, lfp⊑ F ⊓ P = ∅, gfp⊑ F ⊓ P = ∅, etc)

• Calculational design I of a logic for partial correctness + total correctness +
non termination

Much more in the POPL24 paper

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }

, Vol. 1, No. 1, Article . Publication date: October 2024.

/ /

Google, 2025/09/17 © P. Cousot37

• Example I: calculational design of a logic for partial correctness + total
correctness + non termination

Much more in the POPL24 paper

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot38

• Example II: calculational design of an incorrectness logic including non
termination

• A specification for factorial:

• False alarm ￼ with a (totally imprecise) interval analysis

• The alarm is false by nontermination

• Not provable with RH (non termination missing)

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }
{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]

, Vol. 1, No. 1, Article . Publication date: October 2024.

Much more in the POPL24 paper

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }
{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

Example 0.2. Consider the factorial of example I.3.1 specified by {𝑓 = 1} fact{𝑓 > 0}. This con-
tract is obviously satisfied since on exit 𝑓 =!𝑛 > 0. However, an interval analysis of this program
with initially n ∈ Z is totally imprecise and will produce an alarm on program exit with postcon-
dition 𝑄 = f ⩽ 0. This is a false alarm since the loop exit is unreachable. This unreachability is not
provable by incorrectness logic. This is provable by Hoare logic as {𝑛 < 0 ∧ 𝑓 = 1} fact{false}
but then we need two different logics to prove incorrectness, the main motivation for recent work
on combining logics (e.g. [9, 58, 61, 98], etc). This is also provable by the natural transformational
under approximation logic which extends incorrectness logic to nontermination, that is, in the
assertional form of Sect. I.3.6, {'} ⊆ Post(!fact""){𝑛 < 0 ∧ 𝑓 = 1}, see example II.8.1. ∎

Example 0.3. Continuing Ex. I.3.1 and I.3.5, consider the factorial with postcondition contract
f > 0. An interval analysis produces an alarm 𝑄 = 𝑄 /" = f ⩽ 0 where ' ∉ 𝑄 so 𝑄" = ∅ and 𝑃"ℓ = ∅.
Take 𝑅" = 𝑅𝑏 = ∅ since the loop body terminates with no break. Let 𝐼𝑘 = 𝑛 ⩽ 𝑘∧ 𝑓 ⩽ 0 and 𝑅𝑒𝑘 = 𝐼𝑘−1
so that {𝑅𝑒𝑘} !f = f*n; n = n-1;" ⃗{𝑜𝑘 ∶ 𝐼𝑘 ,𝑏𝑟 ∶ ∅}. Take 𝑃 = 𝐼 ∣𝑛∣. By (62), {𝑃} fact ⃗{𝑜𝑘 ∶ 𝑄,𝑏𝑟 ∶ ∅}.
But 𝑃 implies f ⩽ 0 in contradiction {∅} f=1; ⃗{𝑜𝑘 ∶ 𝑃,𝑏𝑟 ∶ ∅} with the initialization f=1 proving
the unreachable alarm to be false, which incorrectness and outcome logics [67, 98] cannot do. ∎

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot38

• Example II: calculational design of an incorrectness logic including non
termination

• A specification for factorial:

• False alarm ￼ with a (totally imprecise) interval analysis

• The alarm is false by nontermination

• Not provable with RH (non termination missing)

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }
{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]

, Vol. 1, No. 1, Article . Publication date: October 2024.

Much more in the POPL24 paper

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }
{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]

, Vol. 1, No. 1, Article . Publication date: October 2024.

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

Example 0.2. Consider the factorial of example I.3.1 specified by {𝑓 = 1} fact{𝑓 > 0}. This con-
tract is obviously satisfied since on exit 𝑓 =!𝑛 > 0. However, an interval analysis of this program
with initially n ∈ Z is totally imprecise and will produce an alarm on program exit with postcon-
dition 𝑄 = f ⩽ 0. This is a false alarm since the loop exit is unreachable. This unreachability is not
provable by incorrectness logic. This is provable by Hoare logic as {𝑛 < 0 ∧ 𝑓 = 1} fact{false}
but then we need two different logics to prove incorrectness, the main motivation for recent work
on combining logics (e.g. [9, 58, 61, 98], etc). This is also provable by the natural transformational
under approximation logic which extends incorrectness logic to nontermination, that is, in the
assertional form of Sect. I.3.6, {'} ⊆ Post(!fact""){𝑛 < 0 ∧ 𝑓 = 1}, see example II.8.1. ∎

Example 0.3. Continuing Ex. I.3.1 and I.3.5, consider the factorial with postcondition contract
f > 0. An interval analysis produces an alarm 𝑄 = 𝑄 /" = f ⩽ 0 where ' ∉ 𝑄 so 𝑄" = ∅ and 𝑃"ℓ = ∅.
Take 𝑅" = 𝑅𝑏 = ∅ since the loop body terminates with no break. Let 𝐼𝑘 = 𝑛 ⩽ 𝑘∧ 𝑓 ⩽ 0 and 𝑅𝑒𝑘 = 𝐼𝑘−1
so that {𝑅𝑒𝑘} !f = f*n; n = n-1;" ⃗{𝑜𝑘 ∶ 𝐼𝑘 ,𝑏𝑟 ∶ ∅}. Take 𝑃 = 𝐼 ∣𝑛∣. By (62), {𝑃} fact ⃗{𝑜𝑘 ∶ 𝑄,𝑏𝑟 ∶ ∅}.
But 𝑃 implies f ⩽ 0 in contradiction {∅} f=1; ⃗{𝑜𝑘 ∶ 𝑃,𝑏𝑟 ∶ ∅} with the initialization f=1 proving
the unreachable alarm to be false, which incorrectness and outcome logics [67, 98] cannot do. ∎

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot38

• Example II: calculational design of an incorrectness logic including non
termination

• A specification for factorial:

• False alarm ￼ with a (totally imprecise) interval analysis

• The alarm is false by nontermination, not provable with IL

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }
{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]

, Vol. 1, No. 1, Article . Publication date: October 2024.

Much more in the paper

2 Patrick Cousot

TheoRem 0.1 (Fixpoint abstRaction). If ⟨𝐶, ⊑⟩ −−−→←−−−𝛼𝛾 ⟨𝐴, ⪯⟩ is a Galois connection between
complete lattices ⟨𝐶, ⊑⟩ and ⟨𝐴, ⪯⟩, 𝑓 ∈ 𝐶 𝑖#→ 𝐶 and 𝑓 ∈ 𝐴 𝑖#→ 𝐴 are increasing and commuting,
that is, 𝛼 ○ 𝑓 = 𝑓 ○ 𝛼 , then 𝛼(lfp⊑ 𝑓) = lfp⪯ 𝑓 (while semi-commutation 𝛼 ○ 𝑓 ⪯ 𝑓 ○ 𝛼 implies
𝛼(lfp⊑ 𝑓) ⪯ lfp⪯ 𝑓).

T (W) ≜ {⟨𝑃, post!¬B"(lfp⊆ 𝝀𝑋 .𝑃 ∪ post(!B" # !S"𝑒)𝑋)⟩ ∣ 𝑃 ∈ ℘(Σ)}
S(S) ≜ 𝛼G ○ post ○ 𝛼/" ○ 𝛼𝐶({!S""})

= {⟨𝑃, post!S"𝑃⟩ ∣ 𝑃 ∈ ℘(Σ)}
⟨𝑥, 𝑦⟩ ⊑,⪯ ⟨𝑥 ′, 𝑦′⟩ ≜ 𝑥 ⊑ 𝑥 ′ ∧𝑦 ⪯ 𝑦′

post(⊆,⊇) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ⊆ 𝑃 ′ ∧𝑄 ′ ⊆ 𝑄}
T𝐻𝐿(S) ≜ post(⊇.⊆) ○ S(S)
T𝐻𝐿(S) = post(=.⊆) ○ S(S)

post(⊇.⊆) = 𝝀𝑅 .{⟨𝑃, 𝑄⟩ ∣ ∃⟨𝑃 ′, 𝑄 ′⟩ ∈ 𝑅 . 𝑃 ′ ⊆ 𝑃 ∧𝑄 ⊆ 𝑄 ′}
T𝑅𝐿(S) ≜ post(⊆,⊇) ○ S(S)
{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = ') }
{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]

, Vol. 1, No. 1, Article . Publication date: October 2024.

Google, 2025/09/17 © P. Cousot

• IL is not Hoare incorrectness logic (sufficient, not necessary)

• The logic can be
calculated by the design method (and does not need a consequence
rule)

39

About incorrectness

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:9

4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC
4.1 Calculational Design of Hoare Incorrectness Logic Theory

TheoRem 4.1 (Eivalent definitions of HL theoRies).
THL(W) ≜ post(⊆,⊇) ○ 𝛼¬ ○ THL(W) = 𝛼¬ ○ THL(W) W = while (B) S

Observe thatTh. 4.1 shows that post(⊆,⊇) can be dispensedwith.This implies that the consequence
rule is useless for Hoare incorrectness logic.

PRoof of Th. 4.1.
THL(W) = post(⊆,⊇) ○ 𝛼¬ ○ THL(W) !def. THL"

= post((⊆,⊇)(¬{⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ⊆ 𝑄})
!Lem. 1.4 and def. (30) of 𝛼¬"

= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)}) !def. ¬"
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅}) !def. ⊆ and ¬"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅} . ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. post"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. ∈"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ ∧𝑄 ⊇ 𝑄 ′} !component wise def. of ⊆,⊇"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ ∧𝑄 ⊇ 𝑄 ′}

!(⊆) if 𝑃 ⊆ 𝑃 ′ then post#W$𝑃 ⊆ post#W$𝑃 ′ by (12) so that post#W$𝑃 ∩ ¬𝑄 ≠ ∅ implies
post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅;
(⊇) conversely, if ∃𝑄 . post#W$𝑃 ′, then ∃𝑃 . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ by choosing
𝑃 = 𝑃 ′. "

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅}
!(⊆) if 𝑄 ⊇ 𝑄 ′ then ¬𝑄 ′ ⊇ ¬𝑄 so post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ implies post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅;
(⊇) conversely post#W$𝑃 ′∩¬𝑄 ′ ≠ ∅ implies ∃𝑄 . post#W$𝑃 ′∩¬𝑄 ≠ ∅∧𝑄 ⊇ 𝑄 ′ by choosing
𝑄 = 𝑄 ′. "

= {⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)} !def. ⊆ and ¬"
= 𝛼¬ ○ THL(W) !def. 𝛼¬ and THL for Hoare logic" !

TheoRem 4.2 (TheoRy of HL).
THL(W) = {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[. ⟨B#B$ ∩ {𝜎𝑖}, {𝜎𝑖+1}⟩ ∈ THL(S) ∧ 𝜎𝑛 /∈ B#B$ ∧ 𝜎𝑛 /∈ 𝑄}
PRoof of Th. 4.2.

= {⟨𝑃, 𝑄⟩ ∣ post#¬B$(lfp⊆ ¯̄𝐹𝑒𝑃) ∩ ¬𝑄 ≠ ∅} !Lem. 1.3, where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 "
= {⟨𝑃, 𝑄⟩ ∣ lfp⊆ ¯̄𝐹𝑒𝑃 ∩ pre#¬B$(¬𝑄) ≠ ∅} !(39.d)"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈

¯̄𝐹𝑒𝑃(∅) ∧ ∀𝑖 ∈ [1,∞] . 𝜎𝑖+1 ∈ ¯̄𝐹𝑒𝑃({𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈[1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ {𝜎𝑖} ∩ pre#¬B$(¬𝑄) ≠ 0} !Th. H.3"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(#B$ % #S$𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖+1 ∈ 𝑃 ∨ {𝜎𝑖+1} ⊆ post(#B$ % #S$𝑒){𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠
𝜎𝑖+1)⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre#¬B$(¬𝑄)}

!def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 , ⊆, and post, which is ∅-strict"
Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:15

TheoRem 5.6. (Fixpoint UndeR AppRoximation by TRansfinite IteRates)
Let 𝑓 ∈ 𝐿 𝑖!→ 𝐿 be an increasing function on a cpo ⟨𝐿, ⊑, !, ⊔⟩. 𝑃 ⊑ lfp⊑ 𝑓 , if and
only if there exists an increasing transfinite sequence ⟨𝑋𝛿 , 𝛿 ∈ O⟩ such that
(1) 𝑋 0 = !,
(2) 𝑋𝛿+1 ⊑ 𝑓 (𝑋𝛿) for successor ordinals,
(3) ⊔𝛿<𝜆 𝑋𝛿 exists for limit ordinals 𝜆 such that 𝑋𝜆 ⊑ ⊔𝛿<𝜆 𝑋𝛿 , and
(4) ∃𝛿 ∈ O . 𝑃 ⊑ 𝑋𝛿 .

{ 𝑛 = 𝑛 ∧ 𝑓 = 1 }
while (n!=0) { f = f * n; n = n - 1;}{ (𝑛 ⩾ 0 ∧ 𝑓 =!𝑛) ∨ (𝑛 < 0 ∧𝑛 = 𝑓 = #) }

{ 𝑛 ∈ [−∞,∞] ∧ 𝑓 ∈ [1, 1] }
while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ∈ [1,∞] }
𝑓 ∈ [−∞, 0]
{∅} f=1; while (n!=0) { f = f * n; n = n - 1;}{ 𝑓 ⩽ 0 }

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

𝑃 ⊆ 𝐼 , {𝐼 ∩B!B"} S{𝐼}
{𝑃} while (B) S{𝐼 ∩ ¬B!B"}

{𝑃} S{𝑄}, 𝑄 ⊆ 𝑄 ′
{𝑃} S{𝑄 ′}

¬({𝑃} S{𝑄}) /⇒⇐ [𝑃]S[¬𝑄]⇔ ∃𝑅 ∈ ℘(Σ) . [𝑃] S [𝑅] ∧ 𝑅 ∩ ¬𝑄 ≠ ∅⇔ ∃𝜎 ∈ Σ . [𝑃] S [{𝜎}] ∧ 𝜎 /∈ 𝑄

Received 2023-07-11; accepted 2023-11-07

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Google, 2025/09/17 © P. Cousot

Auxiliary Material for the Slides “Calculational Design of [In]Correctness Transformational Program Logics by Abstract
Interpretation” at POPL 2024, London 7:9

4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC
4.1 Calculational Design of Hoare Incorrectness Logic Theory

TheoRem 4.1 (Eivalent definitions of HL theoRies).
THL(W) ≜ post(⊆,⊇) ○ 𝛼¬ ○ THL(W) = 𝛼¬ ○ THL(W) W = while (B) S

Observe thatTh. 4.1 shows that post(⊆,⊇) can be dispensedwith.This implies that the consequence
rule is useless for Hoare incorrectness logic.

PRoof of Th. 4.1.
THL(W) = post(⊆,⊇) ○ 𝛼¬ ○ THL(W) !def. THL"

= post((⊆,⊇)(¬{⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ⊆ 𝑄})
!Lem. 1.4 and def. (30) of 𝛼¬"

= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)}) !def. ¬"
= post(⊆,⊇)({⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅}) !def. ⊆ and ¬"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ ∈ {⟨𝑃, 𝑄⟩ ∣ post#W$𝑃 ∩ ¬𝑄 ≠ ∅} . ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. post"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ ⟨𝑃, 𝑄⟩ ⊆,⊇ ⟨𝑃 ′, 𝑄 ′⟩} !def. ∈"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃⟨𝑃, 𝑄⟩ . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ ∧𝑄 ⊇ 𝑄 ′} !component wise def. of ⊆,⊇"
= {⟨𝑃 ′, 𝑄 ′⟩ ∣ ∃𝑄 . post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ ∧𝑄 ⊇ 𝑄 ′}

!(⊆) if 𝑃 ⊆ 𝑃 ′ then post#W$𝑃 ⊆ post#W$𝑃 ′ by (12) so that post#W$𝑃 ∩ ¬𝑄 ≠ ∅ implies
post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅;
(⊇) conversely, if ∃𝑄 . post#W$𝑃 ′, then ∃𝑃 . post#W$𝑃 ∩ ¬𝑄 ≠ ∅ ∧ 𝑃 ⊆ 𝑃 ′ by choosing
𝑃 = 𝑃 ′. "

= {⟨𝑃 ′, 𝑄 ′⟩ ∣ post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅}
!(⊆) if 𝑄 ⊇ 𝑄 ′ then ¬𝑄 ′ ⊇ ¬𝑄 so post#W$𝑃 ′ ∩ ¬𝑄 ≠ ∅ implies post#W$𝑃 ′ ∩ ¬𝑄 ′ ≠ ∅;
(⊇) conversely post#W$𝑃 ′∩¬𝑄 ′ ≠ ∅ implies ∃𝑄 . post#W$𝑃 ′∩¬𝑄 ≠ ∅∧𝑄 ⊇ 𝑄 ′ by choosing
𝑄 = 𝑄 ′. "

= {⟨𝑃, 𝑄⟩ ∣ ¬(post#W$𝑃 ⊆ 𝑄)} !def. ⊆ and ¬"
= 𝛼¬ ○ THL(W) !def. 𝛼¬ and THL for Hoare logic" !

TheoRem 4.2 (TheoRy of HL).
THL(W) = {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[. ⟨B#B$ ∩ {𝜎𝑖}, {𝜎𝑖+1}⟩ ∈ THL(S) ∧ 𝜎𝑛 /∈ B#B$ ∧ 𝜎𝑛 /∈ 𝑄}
PRoof of Th. 4.2.
THL(W)

= {⟨𝑃, 𝑄⟩ ∣ post#¬B$(lfp⊆ ¯̄𝐹𝑒𝑃) ∩ ¬𝑄 ≠ ∅} !Lem. 1.3, where ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post(#B$ % #S$𝑒)𝑋 "
= {⟨𝑃, 𝑄⟩ ∣ lfp⊆ ¯̄𝐹𝑒𝑃 ∩ pre#¬B$(¬𝑄) ≠ ∅} !(39.d)"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . ¯̄𝐹𝑒𝑃(𝐼) ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈

¯̄𝐹𝑒𝑃(∅) ∧ ∀𝑖 ∈ [1,∞] . 𝜎𝑖+1 ∈ ¯̄𝐹𝑒𝑃({𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈[1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ {𝜎𝑖} ∩ pre#¬B$(¬𝑄) ≠ 0} !induction principle Th. H.3"
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post(#B$ % #S$𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖+1 ∈ 𝑃 ∨ {𝜎𝑖+1} ⊆ post(#B$ % #S$𝑒){𝜎𝑖}) ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠
𝜎𝑖+1)⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre#¬B$(¬𝑄)}

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024. 40

Calculational design of Hoare incorrectness logic HL
_

7:10 Patrick Cousot

!def. ¯̄𝐹𝑒𝑃(𝑋) ≜ 𝑃 ∪ post("B# $ "S#𝑒)𝑋 , ⊆, and post, which is ∅-strict%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post("B# $ "S#𝑒)𝐼 ⊆ 𝐼 ∧ ∃⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣 . ∃𝜈 ∈ 𝐼 → 𝑊 . ∃⟨𝜎𝑖 ∈ 𝐼 ,

𝑖 ∈ [1,∞]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,∞] . {𝜎𝑖+1} ⊆ post("B# $ "S#𝑒){𝜎𝑖} ∧ ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒(𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1) ∧ ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1)⇒ 𝜎𝑖 ∈ pre"¬B#(¬𝑄)}
!since if 𝜎𝑖+1 ∈ 𝑃 , we can equivalently consider the sequence ⟨𝜎 𝑗 ∈ 𝐼 , 𝑗 ∈ [𝑖 + 1,∞]⟩%

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post("B# $ "S#𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[. {𝜎𝑖+1} ⊆ post("B# $ "S#𝑒){𝜎𝑖} ∧ 𝜎𝑛 ∈ pre"¬B#(¬𝑄)}
!(⊆) By ⟨𝑊 , ⩽⟩ ∈ 𝔚𝔣, 𝜈 ∈ 𝐼 → 𝑊 , ∀𝑖 ∈ [1,∞] . (𝜎𝑖 ≠ 𝜎𝑖+1) ⇒ (𝜈(𝜎𝑖) > 𝜈(𝜎𝑖+1), the
sequence is ultimately stationary at some rank 𝑛. For then on, 𝜎𝑖+1 = 𝜎𝑖 , 𝑖 ⩾ 𝑛 and so
𝜈(𝜎𝑖) = 𝜈(𝜎𝑖+1). Therefore ∀𝑖 ∈ [1,∞] . (𝜈(𝜎𝑖) /> 𝜈(𝜎𝑖+1) ⇒ 𝜎𝑖 /∈ 𝑄 implies that 𝜎𝑛 ∈
pre"¬B#(¬𝑄);
(⊇) Conversely, from ⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ we can define𝑊 = {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛]} ∪ {−∞} with−∞ < 𝜎𝑖 < 𝜎𝑖+1 and 𝜈(𝑥) = &𝑥 ∈ {𝜎𝑖 ∣ 𝑖 ∈ [1,𝑛] ? 𝑥 : −∞ ' and the sequence ⟨𝜎 𝑗 ∈ 𝐼 ,
𝑗 ∈ [1,∞]⟩ repeats 𝜎𝑛 ad infimum for 𝑗 ⩾ 𝑛.%

= {⟨𝑃, 𝑄⟩ ∣ ∃𝐼 ∈ ℘(Σ) . 𝑃 ⊆ 𝐼 ∧ post("B# $ "S#𝑒)𝐼 ⊆ 𝐼 ∧ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈[1,𝑛[. {𝜎𝑖+1} ⊆ post("B# $ "S#𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !def. pre%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. {𝜎𝑖+1} ⊆ post("B# $ "S#𝑒){𝜎𝑖} ∧ 𝜎𝑛 /∈B"B# ∧ 𝜎𝑛 /∈ 𝑄} !𝐼 is not used and can always be chosen to be Σ%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[. post("B#$"S#𝑒){𝜎𝑖}∩{𝜎𝑖+1} ≠ ∅∧𝜎𝑛 /∈B"B# ∧ 𝜎𝑛 /∈ 𝑄} !since 𝑥 ∈ 𝑋 ⇔ 𝑋 ∩ {𝑥} ≠ ∅%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. post("B# $ "S#𝑒){𝜎𝑖} ∩ ¬(¬{𝜎𝑖+1}) ≠∅ ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !def. ¬𝑋 = Σ ∖𝑋%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. ¬(post("B# $ "S#𝑒){𝜎𝑖} ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !¬(𝑋 ⊆ 𝑌)⇔ (𝑋 ∩ ¬𝑌 ≠ ∅%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. ¬(post("S#𝑒)(B"B# ∩ {𝜎𝑖}) ⊆(¬{𝜎𝑖+1})) ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !def. post, "B#, and $%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. ⟨B"B# ∩ {𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ {⟨𝑃,

𝑄⟩ ∣ ¬(post("S#𝑒)𝑃 ⊆ 𝑄)} ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄} !def. ∈%
= {⟨𝑃, 𝑄⟩ ∣ ∃𝑛 ⩾ 1 . ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧∀𝑖 ∈ [1,𝑛[. ⟨B"B#∩{𝜎𝑖}, ¬{𝜎𝑖+1}⟩ ∈ THL(S)∧𝜎𝑛 /∈B"B# ∧ 𝜎𝑛 ∈ 𝑄} !def. THL(S)% !

4.2 Calculational Design of HL Proof Rules
TheoRem 4.3 (HL Rules foR conditional iteRation).
∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈ [1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. &B"B# ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄

&𝑃 ' while (B) S &𝑄 '
(3)

PRoof of (3). We write &𝑃 ' S &𝑄 ' ≜ ⟨𝑃, 𝑄⟩ ∈ HL(S);
By structural induction (S being a strict component of while (B) S), the rule for &𝑃 ' S &𝑄 ' have

already been defined;
By Aczel method, the (constant) fixpoint lfp⊆ 𝝀𝑋 .𝑆 is defined by {∅𝑐 ∣ 𝑐 ∈ 𝑆};
So for while (B) S we have an axiom ∅

&𝑃 ' while (B) S &𝑄 ' with side condition ∃⟨𝜎𝑖 ∈ 𝐼 , 𝑖 ∈
[1,𝑛]⟩ . 𝜎1 ∈ 𝑃 ∧ ∀𝑖 ∈ [1,𝑛[. &B"B# ∩ {𝜎𝑖} ' S &¬{𝜎𝑖+1} ' ∧ 𝜎𝑛 /∈ B"B# ∧ 𝜎𝑛 /∈ 𝑄 where &B"B# ∩{𝜎𝑖} ' S &¬{𝜎𝑖+1} ' is well-defined by structural induction;
Traditionally, the side condition is written as a premiss, to get (3). !

Proc. ACM Program. Lang., Vol. 8, No. POPL, Article 7. Publication date: January 2024.

Google, 2025/09/17 © P. Cousot41

Conclusion of part I

A transformational logic is

an abstract interpretation of

a natural relational semantics

Google, 2025/09/17 © P. Cousot42

Part II:
Calculational Design of Hyperlogics by

Abstract Interpretation

Patrick Cousot, Jeffery Wang:

Calculational Design of Hyperlogics by Abstract Interpretation. Proc. ACM Program. Lang. 9(POPL):
446-478 (2025)

https://dblp.org/pid/c/PCousot.html
https://dblp.org/db/journals/pacmpl/pacmpl9.html#CousotW25

Google, 2025/09/17 © P. Cousot43

Transformational logic = Hoare style logics {P} S {Q}

Conceive a method to design program
transformational hyperlogics

Objective

Google, 2025/09/17 © P. Cousot

• What is the program semantics? S⟦P⟧

• What is the strongest program semantic property (collecting
semantics)? {S⟦P⟧}

• What is the strongest program property of interest? αs{S⟦P⟧}

• The properties of interest derive by implication (consequence
rule) αc o αs{S⟦P⟧} (theory of the logic)

• What are the proof rules?
44

Understanding a program logic in Part I

Google, 2025/09/17 © P. Cousot45

Reminder (of Part I, POPL 2024)
Relational semantics S⟦P⟧

Collecting sem. {S⟦P⟧}

Theory of the logic α{S⟦P⟧}

Proof rules of the logic

α = αc o αs

S.{S}

Aczel+Park & …

Structural fixpoint definition

Structural fixpoint characterization

Structural fixpoint characterization

Deductive system

Google, 2025/09/17 © P. Cousot46

Can we calculate hyperlogics proof systems by
structural abstractions of the program semantics?

Methodology

Google, 2025/09/17 © P. Cousot

• For hyperlogics, the strongest program property of interest
is the collecting semantics itself {S⟦P⟧}

• There is no abstraction αs (in general)

• Any proof of a general hyperproperty must characterize the
program semantics exactly!

• Unmanageable in practice!

• The only workaround is to consider only abstract
hyperproperties!

47

We will conclude that ``Yes’’, but

Google, 2025/09/17 © P. Cousot

Which semantics?

48

Google, 2025/09/17 © P. Cousot49

Which semantics?

• Hoare logic soundness/completeness for invariants
is with respect to a relational semantics

• The logic would be essentially the same with
execution traces (but for primitives)

• Is there a semantics covering both cases (and even
many others)?

Google, 2025/09/17 © P. Cousot

Algebraic semantics:
a structural fixpoint definition

50

Google, 2025/09/17 © P. Cousot51

Algebraic semantics (cont’d)

• Parameterized by an abstract semantic domain
providing the model of executions and effect of
primitives

Calculational Design of Hyperlogics by Abstract Interpretation 16:5

3.1 Syntax
We consider an imperative language S with assignments, sequential composition, conditionals,
and conditional iteration with breaks. The syntax is S ∈ S ∶∶= x = A ∣ x = [𝐿,"] ∣ skip ∣ S;S ∣
if (B) S else S ∣ while (B) S ∣ break. A is an arithmetic expression. The nondeterministic as-
signment x = [𝐿, "] with 𝐿 ∈ Z ∪ {−∞} and " ∈ Z ∪ {∞}, −∞ − 1 = −∞, ∞ + 1 = ∞ (or any,
possibly unbounded, order isomorphic set). The Boolean expressions B include the negation ¬B. A
break exits the closest enclosing loop (which existence is to be checked syntactically).

3.2 Structural Definitions
Let ⊲ be the “immediate strict syntactic component” well-founded partial order on statements
S such that S1 ⊲ S1;S2, S2 ⊲ S1;S2, S1 ⊲ if (B) S1 else S2, S2 ⊲ if (B) S1 else S2, S ⊲
while (B) S, and is otherwise false.

Given a nonempty set V , the function # ∈ S → V has a structural definition if and only if
(S) ∈ V for basic commands (defined as minimal elements of ⊲) and, otherwise, is of the form
(S) = $S({⟨S′, # (S′)⟩ ∣ S′ ⊲ S}) where $S ∈ {⟨S′, 𝑃 ′⟩ ∣ S′ ⊲ S ∧ 𝑃 ′ ∈ V} → V is a total function.
Denotational semantics, Hoare logic, predicate transformers, and the abstract semantics of sect.
3.4 all have structural definitions (called “compositional” in denotational semantics).

3.3 Algebraic Computational Domain
We consider computational domains D♯+ and D♯∞ to be abstract domains respectively abstracting
the finite and infinite computations of statements and partially ordered by the respective compu-
tational orderings ⊑♯+ and ⊑♯∞, as follows (!♯ is polymorphic).
D♯+ ≜ ⟨L♯+, ⊑♯+, &♯+, ⊔♯+, init♯, assign♯"x, A#, rassign♯"x,𝐿,"#, test♯"B#, break♯, skip♯, !♯⟩ (1)
D♯∞ ≜ ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊓♯∞, !♯⟩ (2)

Example 3.1. Bi-inductive definitions [24] are used in [18] to define a trace semantics on states Σ
which can be isomorphically decomposed into the domain of finite traces ⟨L♯+, ⊑♯+, &♯+,⊔♯+⟩ = ⟨℘(Σ∗),⊆, ∅, ∪⟩ (where ∪ is the lub of increasing chains starting form∅ for least fixpoints) and the domain
of infinite traces ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊓♯∞⟩ = ⟨℘(Σ!), ⊆, Σ! , ∩⟩ (where ∩ is the glb of decreasing chains
starting form Σ! for greatest fixpoints), which abstractions yield a hierarchy of classic semantics,
including Hoare logic.

Our objective in part I is to study hyperlogics abstracting away from a particular semantics
thus allowing for multiple instantiations (such as traces in sect. B) and, in part II, for multiple
abstractions (which include Hoare logic).

A single domain D♯ ≜ D♯+ ∪D♯∞ is used in denotational semantics [78, 80] but this is not always
possible e.g. when D♯+∩D♯∞ ≠ ∅. Moreover the separation into two different domains for finite and
infinite executions allows e.g. for the use of input-output relations for finite behaviors and traces
for infinite behaviors. (see also the discussion in remark B.5 in the appendix.) ∎

Definition 3.2 (Abstract domain well-definedness). We say that D♯ ≜ ⟨D♯+, D♯∞⟩ is a well-defined
chain-complete lattice (respectively complete lattice) with increasing (respectively finite limit-
preserving, continuous, and existing limit-preserving) composition, if and only if
A. The finitary calculational domain ⟨L♯+, ⊑♯+, &♯+, ⊔♯+⟩ is an increasing chain-complete join semi-

lattice with infimum, (respectively ⟨L♯+, ⊑♯+, &♯+, ⊺♯+, ⊔♯+, ⊓♯+⟩ is a complete lattice);
B. init♯, break♯, skip♯ ∈ L♯+, assign♯"x, A#, rassign♯"x,𝐿,"#, test♯"B# ∈ L♯+ are well-defined in L♯+;
C. The infinitary calculational domain ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩ is a decreasing chain-complete

join lattice with supremum (respectively ⟨L♯∞, ⊑♯∞, &♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩ is a complete lattice);

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Calculational Design of Hyperlogics by Abstract Interpretation 16:5

3.1 Syntax
We consider an imperative language S with assignments, sequential composition, conditionals,
and conditional iteration with breaks. The syntax is S ∈ S ∶∶= x = A ∣ x = [𝐿,"] ∣ skip ∣ S;S ∣
if (B) S else S ∣ while (B) S ∣ break. A is an arithmetic expression. The nondeterministic as-
signment x = [𝐿, "] with 𝐿 ∈ Z ∪ {−∞} and " ∈ Z ∪ {∞}, −∞ − 1 = −∞, ∞ + 1 = ∞ (or any,
possibly unbounded, order isomorphic set). The Boolean expressions B include the negation ¬B. A
break exits the closest enclosing loop (which existence is to be checked syntactically).

3.2 Structural Definitions
Let ⊲ be the “immediate strict syntactic component” well-founded partial order on statements
S such that S1 ⊲ S1;S2, S2 ⊲ S1;S2, S1 ⊲ if (B) S1 else S2, S2 ⊲ if (B) S1 else S2, S ⊲
while (B) S, and is otherwise false.

Given a nonempty set V , the function # ∈ S → V has a structural definition if and only if
(S) ∈ V for basic commands (defined as minimal elements of ⊲) and, otherwise, is of the form
(S) = $S({⟨S′, # (S′)⟩ ∣ S′ ⊲ S}) where $S ∈ {⟨S′, 𝑃 ′⟩ ∣ S′ ⊲ S ∧ 𝑃 ′ ∈ V} → V is a total function.
Denotational semantics, Hoare logic, predicate transformers, and the abstract semantics of sect.
3.4 all have structural definitions (called “compositional” in denotational semantics).

3.3 Algebraic Computational Domain
We consider computational domains D♯+ and D♯∞ to be abstract domains respectively abstracting
the finite and infinite computations of statements and partially ordered by the respective compu-
tational orderings ⊑♯+ and ⊑♯∞, as follows (!♯ is polymorphic).
D♯+ ≜ ⟨L♯+, ⊑♯+, &♯+, ⊔♯+, init♯, assign♯"x, A#, rassign♯"x,𝐿,"#, test♯"B#, break♯, skip♯, !♯⟩ (1)
D♯∞ ≜ ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊓♯∞, !♯⟩ (2)

Example 3.1. Bi-inductive definitions [24] are used in [18] to define a trace semantics on states Σ
which can be isomorphically decomposed into the domain of finite traces ⟨L♯+, ⊑♯+, &♯+,⊔♯+⟩ = ⟨℘(Σ∗),⊆, ∅, ∪⟩ (where ∪ is the lub of increasing chains starting form∅ for least fixpoints) and the domain
of infinite traces ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊓♯∞⟩ = ⟨℘(Σ!), ⊆, Σ! , ∩⟩ (where ∩ is the glb of decreasing chains
starting form Σ! for greatest fixpoints), which abstractions yield a hierarchy of classic semantics,
including Hoare logic.

Our objective in part I is to study hyperlogics abstracting away from a particular semantics
thus allowing for multiple instantiations (such as traces in sect. B) and, in part II, for multiple
abstractions (which include Hoare logic).

A single domain D♯ ≜ D♯+ ∪D♯∞ is used in denotational semantics [78, 80] but this is not always
possible e.g. when D♯+∩D♯∞ ≠ ∅. Moreover the separation into two different domains for finite and
infinite executions allows e.g. for the use of input-output relations for finite behaviors and traces
for infinite behaviors. (see also the discussion in remark B.5 in the appendix.) ∎

Definition 3.2 (Abstract domain well-definedness). We say that D♯ ≜ ⟨D♯+, D♯∞⟩ is a well-defined
chain-complete lattice (respectively complete lattice) with increasing (respectively finite limit-
preserving, continuous, and existing limit-preserving) composition, if and only if
A. The finitary calculational domain ⟨L♯+, ⊑♯+, &♯+, ⊔♯+⟩ is an increasing chain-complete join semi-

lattice with infimum, (respectively ⟨L♯+, ⊑♯+, &♯+, ⊺♯+, ⊔♯+, ⊓♯+⟩ is a complete lattice);
B. init♯, break♯, skip♯ ∈ L♯+, assign♯"x, A#, rassign♯"x,𝐿,"#, test♯"B# ∈ L♯+ are well-defined in L♯+;
C. The infinitary calculational domain ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩ is a decreasing chain-complete

join lattice with supremum (respectively ⟨L♯∞, ⊑♯∞, &♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩ is a complete lattice);

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Calculational Design of Hyperlogics by Abstract Interpretation 16:5

3.1 Syntax
We consider an imperative language S with assignments, sequential composition, conditionals,
and conditional iteration with breaks. The syntax is S ∈ S ∶∶= x = A ∣ x = [𝐿,"] ∣ skip ∣ S;S ∣
if (B) S else S ∣ while (B) S ∣ break. A is an arithmetic expression. The nondeterministic as-
signment x = [𝐿, "] with 𝐿 ∈ Z ∪ {−∞} and " ∈ Z ∪ {∞}, −∞ − 1 = −∞, ∞ + 1 = ∞ (or any,
possibly unbounded, order isomorphic set). The Boolean expressions B include the negation ¬B. A
break exits the closest enclosing loop (which existence is to be checked syntactically).

3.2 Structural Definitions
Let ⊲ be the “immediate strict syntactic component” well-founded partial order on statements
S such that S1 ⊲ S1;S2, S2 ⊲ S1;S2, S1 ⊲ if (B) S1 else S2, S2 ⊲ if (B) S1 else S2, S ⊲
while (B) S, and is otherwise false.

Given a nonempty set V , the function # ∈ S → V has a structural definition if and only if
(S) ∈ V for basic commands (defined as minimal elements of ⊲) and, otherwise, is of the form
(S) = $S({⟨S′, # (S′)⟩ ∣ S′ ⊲ S}) where $S ∈ {⟨S′, 𝑃 ′⟩ ∣ S′ ⊲ S ∧ 𝑃 ′ ∈ V} → V is a total function.
Denotational semantics, Hoare logic, predicate transformers, and the abstract semantics of sect.
3.4 all have structural definitions (called “compositional” in denotational semantics).

3.3 Algebraic Computational Domain
We consider computational domains D♯+ and D♯∞ to be abstract domains respectively abstracting
the finite and infinite computations of statements and partially ordered by the respective compu-
tational orderings ⊑♯+ and ⊑♯∞, as follows (!♯ is polymorphic).
D♯+ ≜ ⟨L♯+, ⊑♯+, &♯+, ⊔♯+, init♯, assign♯"x, A#, rassign♯"x,𝐿,"#, test♯"B#, break♯, skip♯, !♯⟩ (1)
D♯∞ ≜ ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊓♯∞, !♯⟩ (2)

Example 3.1. Bi-inductive definitions [24] are used in [18] to define a trace semantics on states Σ
which can be isomorphically decomposed into the domain of finite traces ⟨L♯+, ⊑♯+, &♯+,⊔♯+⟩ = ⟨℘(Σ∗),⊆, ∅, ∪⟩ (where ∪ is the lub of increasing chains starting form∅ for least fixpoints) and the domain
of infinite traces ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊓♯∞⟩ = ⟨℘(Σ!), ⊆, Σ! , ∩⟩ (where ∩ is the glb of decreasing chains
starting form Σ! for greatest fixpoints), which abstractions yield a hierarchy of classic semantics,
including Hoare logic.

Our objective in part I is to study hyperlogics abstracting away from a particular semantics
thus allowing for multiple instantiations (such as traces in sect. B) and, in part II, for multiple
abstractions (which include Hoare logic).

A single domain D♯ ≜ D♯+ ∪D♯∞ is used in denotational semantics [78, 80] but this is not always
possible e.g. when D♯+∩D♯∞ ≠ ∅. Moreover the separation into two different domains for finite and
infinite executions allows e.g. for the use of input-output relations for finite behaviors and traces
for infinite behaviors. (see also the discussion in remark B.5 in the appendix.) ∎

Definition 3.2 (Abstract domain well-definedness). We say that D♯ ≜ ⟨D♯+, D♯∞⟩ is a well-defined
chain-complete lattice (respectively complete lattice) with increasing (respectively finite limit-
preserving, continuous, and existing limit-preserving) composition, if and only if
A. The finitary calculational domain ⟨L♯+, ⊑♯+, &♯+, ⊔♯+⟩ is an increasing chain-complete join semi-

lattice with infimum, (respectively ⟨L♯+, ⊑♯+, &♯+, ⊺♯+, ⊔♯+, ⊓♯+⟩ is a complete lattice);
B. init♯, break♯, skip♯ ∈ L♯+, assign♯"x, A#, rassign♯"x,𝐿,"#, test♯"B# ∈ L♯+ are well-defined in L♯+;
C. The infinitary calculational domain ⟨L♯∞, ⊑♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩ is a decreasing chain-complete

join lattice with supremum (respectively ⟨L♯∞, ⊑♯∞, &♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩ is a complete lattice);

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Google, 2025/09/17 © P. Cousot52

• Structural fixpoint definition of the effect of
commands

• E.g. assignment • E.g. break

16:6 P. Cousot and J. Wang

D. The sequential composition !♯ ∈ (L♯+×L♯+ → L♯+)∪(((L♯+×L♯∞)∪(L♯∞×L♯+)∪(L♯∞×L♯∞))→ L♯∞)
is associative and satisfies the following conditions (where ⟨L♯! , ⊑♯! , #♯! , ⊺♯! , ⊔♯! , ⊓♯! ⟩, 𝐿 ∈ {+,∞}
designates ⟨L♯+, ⊑♯+, #♯+, ⊺♯+, ⊔♯+, ⊓♯+⟩when 𝐿 = + and ⟨L♯∞, ⊑♯∞, #♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩when 𝐿 =∞).
a. ∀" ∈ L♯+ . " !♯ init♯ = init♯ !♯ " = " ;
b. ∀" ∈ L♯+ . " !♯ #♯+ = #♯+ and ∀" ∈ L♯! . #♯+ !♯ " = #♯+ (same for L♯∞ when #♯∞ exists);
c. ∀" ∈ L♯∞ . ∀" ′ ∈ L♯! . " !♯ " ′ = " ;
d. In its left, right, or both parameters, the sequential composition !♯ is either

i. increasing for ⊑♯+ and/or ⊑♯∞;
ii. finite join preserving for ⊔♯+ and/or ⊔♯∞;
iii. in addition to 3.2.D.d.ii, is lower continuous for ⊓♯+ and/or ⊓♯∞ and/or upper contin-

uous for ⊔♯+ and/or ⊔♯∞;
iv. existing arbitrary ⊔♯+-preserving and/or existing arbitrary ⊓♯∞-preserving.

RemaRK 3.3. In case L♯+ ∩L♯∞ = ∅, we can define L♯ ≜ L♯+ ∪L♯∞ with #+ ≜ # ∩L♯+, #∞ ≜ # ∩L♯∞,
and # ⊑♯ $ ≜ #+ ⊑♯+ $+ ∧ #∞ ⊑♯∞ $∞ which corresponds to the bi-inductive definitions [24]
mentioned in example 3.1. ∎

RemaRK 3.4. Hypotheses 3.2.B, 3.2.D.d.i and 3.2.D.d.ii determine the precision of the semantic
of basic commands, composition, choices, conditionals, and iteration in the algebraic semantics.
These hypotheses as well as 3.2.D.d.iii and 3.2.D.d.iv determine whether fixpoint iterations should
be infinite or transfinite (see proposition 2.4). ∎
3.4 Definition of the Algebraic Semantics
The algebraic semantics of statements S ∈ S is an abstract property of executions. The basic com-
mands S are assignment, random assignment, break out of the immediately enclosing loop, and
skip, with the following "S#♯" and break "S#♯# finite/ending/terminating semantics in L♯+ as well as
infinite/nonterminating "S#♯$ abstract semantics in L♯∞.
3.4.1 Basic Statements.
"x = A#♯" ≜ assign♯"x, A# "x = A#♯# ≜ #♯+ "x = A#♯$ ≜ #♯∞
"x = [𝑃, 𝑄]#♯" ≜ rassign♯"x,𝑃,𝑄# "x = [𝑃, 𝑄]#♯# ≜ #♯+ "x = [𝑃, 𝑄]#♯$ ≜ #♯∞
"break#♯" ≜ #♯+ "break#♯# ≜ break♯ "break#♯$ ≜ #♯∞ (3)
"skip#♯" ≜ skip♯ "skip#♯# ≜ #♯+ "skip#♯$ ≜ #♯∞
"B#♯" ≜ test♯"B# "B#♯# ≜ #♯+ "B#♯$ ≜ #♯∞
For the assignment x = A, the abstract semantics assign♯"x, A# is specified by the abstract domain,
and so, is well-defined by 3.2.B. "x = A#♯# = #♯+ because the assignment cannot break. "x = A#♯$ =#♯∞ since the assignment always terminates. The algebraic semantics of the other primitives is
similar, except for the break statement. "break#♯" = #♯+ since the break cannot continue in sequence.
The semantics "break#♯# of the break is given by the abstract domain primitive break♯which is finite
and well-defined. "break#♯$ = #♯∞ since a break always terminates.
3.4.2 Structural Statements. For the sequential composition and the conditional where "B;S#♯! ≜
test♯"B# !♯ "S#♯! , 𝐿 ∈ {𝑅,𝑄,#}, we define
"S1;S2#♯" ≜ "S1#♯" !♯ "S2#♯" "if (B) S1 else S2#♯" ≜ "B;S1#♯" ⊔♯+ "¬B;S2#♯"
"S1;S2#♯# ≜ "S1#♯# ⊔♯+ ("S1#♯" !♯ "S2#♯#) "if (B) S1 else S2#♯# ≜ "B;S1#♯# ⊔♯+ "¬B;S2#♯# (4)
"S1;S2#♯$ ≜ "S1#♯$ ⊔♯∞ ("S1#♯" !♯ "S2#♯$) "if (B) S1 else S2#♯$ ≜ "B;S1#♯$ ⊔♯∞ "¬B;S2#♯$
Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:6 P. Cousot and J. Wang

D. The sequential composition !♯ ∈ (L♯+×L♯+ → L♯+)∪(((L♯+×L♯∞)∪(L♯∞×L♯+)∪(L♯∞×L♯∞))→ L♯∞)
is associative and satisfies the following conditions (where ⟨L♯! , ⊑♯! , #♯! , ⊺♯! , ⊔♯! , ⊓♯! ⟩, 𝐿 ∈ {+,∞}
designates ⟨L♯+, ⊑♯+, #♯+, ⊺♯+, ⊔♯+, ⊓♯+⟩when 𝐿 = + and ⟨L♯∞, ⊑♯∞, #♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩when 𝐿 =∞).
a. ∀" ∈ L♯+ . " !♯ init♯ = init♯ !♯ " = " ;
b. ∀" ∈ L♯+ . " !♯ #♯+ = #♯+ and ∀" ∈ L♯! . #♯+ !♯ " = #♯+ (same for L♯∞ when #♯∞ exists);
c. ∀" ∈ L♯∞ . ∀" ′ ∈ L♯! . " !♯ " ′ = " ;
d. In its left, right, or both parameters, the sequential composition !♯ is either

i. increasing for ⊑♯+ and/or ⊑♯∞;
ii. finite join preserving for ⊔♯+ and/or ⊔♯∞;
iii. in addition to 3.2.D.d.ii, is lower continuous for ⊓♯+ and/or ⊓♯∞ and/or upper contin-

uous for ⊔♯+ and/or ⊔♯∞;
iv. existing arbitrary ⊔♯+-preserving and/or existing arbitrary ⊓♯∞-preserving.

RemaRK 3.3. In case L♯+ ∩L♯∞ = ∅, we can define L♯ ≜ L♯+ ∪L♯∞ with #+ ≜ # ∩L♯+, #∞ ≜ # ∩L♯∞,
and # ⊑♯ $ ≜ #+ ⊑♯+ $+ ∧ #∞ ⊑♯∞ $∞ which corresponds to the bi-inductive definitions [24]
mentioned in example 3.1. ∎

RemaRK 3.4. Hypotheses 3.2.B, 3.2.D.d.i and 3.2.D.d.ii determine the precision of the semantic
of basic commands, composition, choices, conditionals, and iteration in the algebraic semantics.
These hypotheses as well as 3.2.D.d.iii and 3.2.D.d.iv determine whether fixpoint iterations should
be infinite or transfinite (see proposition 2.4). ∎
3.4 Definition of the Algebraic Semantics
The algebraic semantics of statements S ∈ S is an abstract property of executions. The basic com-
mands S are assignment, random assignment, break out of the immediately enclosing loop, and
skip, with the following "S#♯" and break "S#♯# finite/ending/terminating semantics in L♯+ as well as
infinite/nonterminating "S#♯$ abstract semantics in L♯∞.
3.4.1 Basic Statements.
"x = A#♯" ≜ assign♯"x, A# "x = A#♯# ≜ #♯+ "x = A#♯$ ≜ #♯∞
"x = [𝑃, 𝑄]#♯" ≜ rassign♯"x,𝑃,𝑄# "x = [𝑃, 𝑄]#♯# ≜ #♯+ "x = [𝑃, 𝑄]#♯$ ≜ #♯∞
"break#♯" ≜ #♯+ "break#♯# ≜ break♯ "break#♯$ ≜ #♯∞ (3)
"skip#♯" ≜ skip♯ "skip#♯# ≜ #♯+ "skip#♯$ ≜ #♯∞
"B#♯" ≜ test♯"B# "B#♯# ≜ #♯+ "B#♯$ ≜ #♯∞
For the assignment x = A, the abstract semantics assign♯"x, A# is specified by the abstract domain,
and so, is well-defined by 3.2.B. "x = A#♯# = #♯+ because the assignment cannot break. "x = A#♯$ =#♯∞ since the assignment always terminates. The algebraic semantics of the other primitives is
similar, except for the break statement. "break#♯" = #♯+ since the break cannot continue in sequence.
The semantics "break#♯# of the break is given by the abstract domain primitive break♯which is finite
and well-defined. "break#♯$ = #♯∞ since a break always terminates.
3.4.2 Structural Statements. For the sequential composition and the conditional where "B;S#♯! ≜
test♯"B# !♯ "S#♯! , 𝐿 ∈ {𝑅,𝑄,#}, we define
"S1;S2#♯" ≜ "S1#♯" !♯ "S2#♯" "if (B) S1 else S2#♯" ≜ "B;S1#♯" ⊔♯+ "¬B;S2#♯"
"S1;S2#♯# ≜ "S1#♯# ⊔♯+ ("S1#♯" !♯ "S2#♯#) "if (B) S1 else S2#♯# ≜ "B;S1#♯# ⊔♯+ "¬B;S2#♯# (4)
"S1;S2#♯$ ≜ "S1#♯$ ⊔♯∞ ("S1#♯" !♯ "S2#♯$) "if (B) S1 else S2#♯$ ≜ "B;S1#♯$ ⊔♯∞ "¬B;S2#♯$
Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:6 P. Cousot and J. Wang

D. The sequential composition !♯ ∈ (L♯+×L♯+ → L♯+)∪(((L♯+×L♯∞)∪(L♯∞×L♯+)∪(L♯∞×L♯∞))→ L♯∞)
is associative and satisfies the following conditions (where ⟨L♯! , ⊑♯! , #♯! , ⊺♯! , ⊔♯! , ⊓♯! ⟩, 𝐿 ∈ {+,∞}
designates ⟨L♯+, ⊑♯+, #♯+, ⊺♯+, ⊔♯+, ⊓♯+⟩when 𝐿 = + and ⟨L♯∞, ⊑♯∞, #♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩when 𝐿 =∞).
a. ∀" ∈ L♯+ . " !♯ init♯ = init♯ !♯ " = " ;
b. ∀" ∈ L♯+ . " !♯ #♯+ = #♯+ and ∀" ∈ L♯! . #♯+ !♯ " = #♯+ (same for L♯∞ when #♯∞ exists);
c. ∀" ∈ L♯∞ . ∀" ′ ∈ L♯! . " !♯ " ′ = " ;
d. In its left, right, or both parameters, the sequential composition !♯ is either

i. increasing for ⊑♯+ and/or ⊑♯∞;
ii. finite join preserving for ⊔♯+ and/or ⊔♯∞;
iii. in addition to 3.2.D.d.ii, is lower continuous for ⊓♯+ and/or ⊓♯∞ and/or upper contin-

uous for ⊔♯+ and/or ⊔♯∞;
iv. existing arbitrary ⊔♯+-preserving and/or existing arbitrary ⊓♯∞-preserving.

RemaRK 3.3. In case L♯+ ∩L♯∞ = ∅, we can define L♯ ≜ L♯+ ∪L♯∞ with #+ ≜ # ∩L♯+, #∞ ≜ # ∩L♯∞,
and # ⊑♯ $ ≜ #+ ⊑♯+ $+ ∧ #∞ ⊑♯∞ $∞ which corresponds to the bi-inductive definitions [24]
mentioned in example 3.1. ∎

RemaRK 3.4. Hypotheses 3.2.B, 3.2.D.d.i and 3.2.D.d.ii determine the precision of the semantic
of basic commands, composition, choices, conditionals, and iteration in the algebraic semantics.
These hypotheses as well as 3.2.D.d.iii and 3.2.D.d.iv determine whether fixpoint iterations should
be infinite or transfinite (see proposition 2.4). ∎
3.4 Definition of the Algebraic Semantics
The algebraic semantics of statements S ∈ S is an abstract property of executions. The basic com-
mands S are assignment, random assignment, break out of the immediately enclosing loop, and
skip, with the following "S#♯" and break "S#♯# finite/ending/terminating semantics in L♯+ as well as
infinite/nonterminating "S#♯$ abstract semantics in L♯∞.
3.4.1 Basic Statements.
"x = A#♯" ≜ assign♯"x, A# "x = A#♯# ≜ #♯+ "x = A#♯$ ≜ #♯∞
"x = [𝑃, 𝑄]#♯" ≜ rassign♯"x,𝑃,𝑄# "x = [𝑃, 𝑄]#♯# ≜ #♯+ "x = [𝑃, 𝑄]#♯$ ≜ #♯∞
"break#♯" ≜ #♯+ "break#♯# ≜ break♯ "break#♯$ ≜ #♯∞ (3)
"skip#♯" ≜ skip♯ "skip#♯# ≜ #♯+ "skip#♯$ ≜ #♯∞
"B#♯" ≜ test♯"B# "B#♯# ≜ #♯+ "B#♯$ ≜ #♯∞
For the assignment x = A, the abstract semantics assign♯"x, A# is specified by the abstract domain,
and so, is well-defined by 3.2.B. "x = A#♯# = #♯+ because the assignment cannot break. "x = A#♯$ =#♯∞ since the assignment always terminates. The algebraic semantics of the other primitives is
similar, except for the break statement. "break#♯" = #♯+ since the break cannot continue in sequence.
The semantics "break#♯# of the break is given by the abstract domain primitive break♯which is finite
and well-defined. "break#♯$ = #♯∞ since a break always terminates.
3.4.2 Structural Statements. For the sequential composition and the conditional where "B;S#♯! ≜
test♯"B# !♯ "S#♯! , 𝐿 ∈ {𝑅,𝑄,#}, we define
"S1;S2#♯" ≜ "S1#♯" !♯ "S2#♯" "if (B) S1 else S2#♯" ≜ "B;S1#♯" ⊔♯+ "¬B;S2#♯"
"S1;S2#♯# ≜ "S1#♯# ⊔♯+ ("S1#♯" !♯ "S2#♯#) "if (B) S1 else S2#♯# ≜ "B;S1#♯# ⊔♯+ "¬B;S2#♯# (4)
"S1;S2#♯$ ≜ "S1#♯$ ⊔♯∞ ("S1#♯" !♯ "S2#♯$) "if (B) S1 else S2#♯$ ≜ "B;S1#♯$ ⊔♯∞ "¬B;S2#♯$
Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:6 P. Cousot and J. Wang

D. The sequential composition !♯ ∈ (L♯+×L♯+ → L♯+)∪(((L♯+×L♯∞)∪(L♯∞×L♯+)∪(L♯∞×L♯∞))→ L♯∞)
is associative and satisfies the following conditions (where ⟨L♯! , ⊑♯! , #♯! , ⊺♯! , ⊔♯! , ⊓♯! ⟩, 𝐿 ∈ {+,∞}
designates ⟨L♯+, ⊑♯+, #♯+, ⊺♯+, ⊔♯+, ⊓♯+⟩when 𝐿 = + and ⟨L♯∞, ⊑♯∞, #♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩when 𝐿 =∞).
a. ∀" ∈ L♯+ . " !♯ init♯ = init♯ !♯ " = " ;
b. ∀" ∈ L♯+ . " !♯ #♯+ = #♯+ and ∀" ∈ L♯! . #♯+ !♯ " = #♯+ (same for L♯∞ when #♯∞ exists);
c. ∀" ∈ L♯∞ . ∀" ′ ∈ L♯! . " !♯ " ′ = " ;
d. In its left, right, or both parameters, the sequential composition !♯ is either

i. increasing for ⊑♯+ and/or ⊑♯∞;
ii. finite join preserving for ⊔♯+ and/or ⊔♯∞;
iii. in addition to 3.2.D.d.ii, is lower continuous for ⊓♯+ and/or ⊓♯∞ and/or upper contin-

uous for ⊔♯+ and/or ⊔♯∞;
iv. existing arbitrary ⊔♯+-preserving and/or existing arbitrary ⊓♯∞-preserving.

RemaRK 3.3. In case L♯+ ∩L♯∞ = ∅, we can define L♯ ≜ L♯+ ∪L♯∞ with #+ ≜ # ∩L♯+, #∞ ≜ # ∩L♯∞,
and # ⊑♯ $ ≜ #+ ⊑♯+ $+ ∧ #∞ ⊑♯∞ $∞ which corresponds to the bi-inductive definitions [24]
mentioned in example 3.1. ∎

RemaRK 3.4. Hypotheses 3.2.B, 3.2.D.d.i and 3.2.D.d.ii determine the precision of the semantic
of basic commands, composition, choices, conditionals, and iteration in the algebraic semantics.
These hypotheses as well as 3.2.D.d.iii and 3.2.D.d.iv determine whether fixpoint iterations should
be infinite or transfinite (see proposition 2.4). ∎
3.4 Definition of the Algebraic Semantics
The algebraic semantics of statements S ∈ S is an abstract property of executions. The basic com-
mands S are assignment, random assignment, break out of the immediately enclosing loop, and
skip, with the following "S#♯" and break "S#♯# finite/ending/terminating semantics in L♯+ as well as
infinite/nonterminating "S#♯$ abstract semantics in L♯∞.
3.4.1 Basic Statements.
"x = A#♯" ≜ assign♯"x, A# "x = A#♯# ≜ #♯+ "x = A#♯$ ≜ #♯∞
"x = [𝑃, 𝑄]#♯" ≜ rassign♯"x,𝑃,𝑄# "x = [𝑃, 𝑄]#♯# ≜ #♯+ "x = [𝑃, 𝑄]#♯$ ≜ #♯∞
"break#♯" ≜ #♯+ "break#♯# ≜ break♯ "break#♯$ ≜ #♯∞ (3)
"skip#♯" ≜ skip♯ "skip#♯# ≜ #♯+ "skip#♯$ ≜ #♯∞
"B#♯" ≜ test♯"B# "B#♯# ≜ #♯+ "B#♯$ ≜ #♯∞
For the assignment x = A, the abstract semantics assign♯"x, A# is specified by the abstract domain,
and so, is well-defined by 3.2.B. "x = A#♯# = #♯+ because the assignment cannot break. "x = A#♯$ =#♯∞ since the assignment always terminates. The algebraic semantics of the other primitives is
similar, except for the break statement. "break#♯" = #♯+ since the break cannot continue in sequence.
The semantics "break#♯# of the break is given by the abstract domain primitive break♯which is finite
and well-defined. "break#♯$ = #♯∞ since a break always terminates.
3.4.2 Structural Statements. For the sequential composition and the conditional where "B;S#♯! ≜
test♯"B# !♯ "S#♯! , 𝐿 ∈ {𝑅,𝑄,#}, we define
"S1;S2#♯" ≜ "S1#♯" !♯ "S2#♯" "if (B) S1 else S2#♯" ≜ "B;S1#♯" ⊔♯+ "¬B;S2#♯"
"S1;S2#♯# ≜ "S1#♯# ⊔♯+ ("S1#♯" !♯ "S2#♯#) "if (B) S1 else S2#♯# ≜ "B;S1#♯# ⊔♯+ "¬B;S2#♯# (4)
"S1;S2#♯$ ≜ "S1#♯$ ⊔♯∞ ("S1#♯" !♯ "S2#♯$) "if (B) S1 else S2#♯$ ≜ "B;S1#♯$ ⊔♯∞ "¬B;S2#♯$
Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:6 P. Cousot and J. Wang

D. The sequential composition !♯ ∈ (L♯+×L♯+ → L♯+)∪(((L♯+×L♯∞)∪(L♯∞×L♯+)∪(L♯∞×L♯∞))→ L♯∞)
is associative and satisfies the following conditions (where ⟨L♯! , ⊑♯! , #♯! , ⊺♯! , ⊔♯! , ⊓♯! ⟩, 𝐿 ∈ {+,∞}
designates ⟨L♯+, ⊑♯+, #♯+, ⊺♯+, ⊔♯+, ⊓♯+⟩when 𝐿 = + and ⟨L♯∞, ⊑♯∞, #♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩when 𝐿 =∞).
a. ∀" ∈ L♯+ . " !♯ init♯ = init♯ !♯ " = " ;
b. ∀" ∈ L♯+ . " !♯ #♯+ = #♯+ and ∀" ∈ L♯! . #♯+ !♯ " = #♯+ (same for L♯∞ when #♯∞ exists);
c. ∀" ∈ L♯∞ . ∀" ′ ∈ L♯! . " !♯ " ′ = " ;
d. In its left, right, or both parameters, the sequential composition !♯ is either

i. increasing for ⊑♯+ and/or ⊑♯∞;
ii. finite join preserving for ⊔♯+ and/or ⊔♯∞;
iii. in addition to 3.2.D.d.ii, is lower continuous for ⊓♯+ and/or ⊓♯∞ and/or upper contin-

uous for ⊔♯+ and/or ⊔♯∞;
iv. existing arbitrary ⊔♯+-preserving and/or existing arbitrary ⊓♯∞-preserving.

RemaRK 3.3. In case L♯+ ∩L♯∞ = ∅, we can define L♯ ≜ L♯+ ∪L♯∞ with #+ ≜ # ∩L♯+, #∞ ≜ # ∩L♯∞,
and # ⊑♯ $ ≜ #+ ⊑♯+ $+ ∧ #∞ ⊑♯∞ $∞ which corresponds to the bi-inductive definitions [24]
mentioned in example 3.1. ∎

RemaRK 3.4. Hypotheses 3.2.B, 3.2.D.d.i and 3.2.D.d.ii determine the precision of the semantic
of basic commands, composition, choices, conditionals, and iteration in the algebraic semantics.
These hypotheses as well as 3.2.D.d.iii and 3.2.D.d.iv determine whether fixpoint iterations should
be infinite or transfinite (see proposition 2.4). ∎
3.4 Definition of the Algebraic Semantics
The algebraic semantics of statements S ∈ S is an abstract property of executions. The basic com-
mands S are assignment, random assignment, break out of the immediately enclosing loop, and
skip, with the following "S#♯" and break "S#♯# finite/ending/terminating semantics in L♯+ as well as
infinite/nonterminating "S#♯$ abstract semantics in L♯∞.
3.4.1 Basic Statements.
"x = A#♯" ≜ assign♯"x, A# "x = A#♯# ≜ #♯+ "x = A#♯$ ≜ #♯∞
"x = [𝑃, 𝑄]#♯" ≜ rassign♯"x,𝑃,𝑄# "x = [𝑃, 𝑄]#♯# ≜ #♯+ "x = [𝑃, 𝑄]#♯$ ≜ #♯∞
"break#♯" ≜ #♯+ "break#♯# ≜ break♯ "break#♯$ ≜ #♯∞ (3)
"skip#♯" ≜ skip♯ "skip#♯# ≜ #♯+ "skip#♯$ ≜ #♯∞
"B#♯" ≜ test♯"B# "B#♯# ≜ #♯+ "B#♯$ ≜ #♯∞
For the assignment x = A, the abstract semantics assign♯"x, A# is specified by the abstract domain,
and so, is well-defined by 3.2.B. "x = A#♯# = #♯+ because the assignment cannot break. "x = A#♯$ =#♯∞ since the assignment always terminates. The algebraic semantics of the other primitives is
similar, except for the break statement. "break#♯" = #♯+ since the break cannot continue in sequence.
The semantics "break#♯# of the break is given by the abstract domain primitive break♯which is finite
and well-defined. "break#♯$ = #♯∞ since a break always terminates.
3.4.2 Structural Statements. For the sequential composition and the conditional where "B;S#♯! ≜
test♯"B# !♯ "S#♯! , 𝐿 ∈ {𝑅,𝑄,#}, we define
"S1;S2#♯" ≜ "S1#♯" !♯ "S2#♯" "if (B) S1 else S2#♯" ≜ "B;S1#♯" ⊔♯+ "¬B;S2#♯"
"S1;S2#♯# ≜ "S1#♯# ⊔♯+ ("S1#♯" !♯ "S2#♯#) "if (B) S1 else S2#♯# ≜ "B;S1#♯# ⊔♯+ "¬B;S2#♯# (4)
"S1;S2#♯$ ≜ "S1#♯$ ⊔♯∞ ("S1#♯" !♯ "S2#♯$) "if (B) S1 else S2#♯$ ≜ "B;S1#♯$ ⊔♯∞ "¬B;S2#♯$
Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:6 P. Cousot and J. Wang

D. The sequential composition !♯ ∈ (L♯+×L♯+ → L♯+)∪(((L♯+×L♯∞)∪(L♯∞×L♯+)∪(L♯∞×L♯∞))→ L♯∞)
is associative and satisfies the following conditions (where ⟨L♯! , ⊑♯! , #♯! , ⊺♯! , ⊔♯! , ⊓♯! ⟩, 𝐿 ∈ {+,∞}
designates ⟨L♯+, ⊑♯+, #♯+, ⊺♯+, ⊔♯+, ⊓♯+⟩when 𝐿 = + and ⟨L♯∞, ⊑♯∞, #♯∞, ⊺♯∞, ⊔♯∞, ⊓♯∞⟩when 𝐿 =∞).
a. ∀" ∈ L♯+ . " !♯ init♯ = init♯ !♯ " = " ;
b. ∀" ∈ L♯+ . " !♯ #♯+ = #♯+ and ∀" ∈ L♯! . #♯+ !♯ " = #♯+ (same for L♯∞ when #♯∞ exists);
c. ∀" ∈ L♯∞ . ∀" ′ ∈ L♯! . " !♯ " ′ = " ;
d. In its left, right, or both parameters, the sequential composition !♯ is either

i. increasing for ⊑♯+ and/or ⊑♯∞;
ii. finite join preserving for ⊔♯+ and/or ⊔♯∞;
iii. in addition to 3.2.D.d.ii, is lower continuous for ⊓♯+ and/or ⊓♯∞ and/or upper contin-

uous for ⊔♯+ and/or ⊔♯∞;
iv. existing arbitrary ⊔♯+-preserving and/or existing arbitrary ⊓♯∞-preserving.

RemaRK 3.3. In case L♯+ ∩L♯∞ = ∅, we can define L♯ ≜ L♯+ ∪L♯∞ with #+ ≜ # ∩L♯+, #∞ ≜ # ∩L♯∞,
and # ⊑♯ $ ≜ #+ ⊑♯+ $+ ∧ #∞ ⊑♯∞ $∞ which corresponds to the bi-inductive definitions [24]
mentioned in example 3.1. ∎

RemaRK 3.4. Hypotheses 3.2.B, 3.2.D.d.i and 3.2.D.d.ii determine the precision of the semantic
of basic commands, composition, choices, conditionals, and iteration in the algebraic semantics.
These hypotheses as well as 3.2.D.d.iii and 3.2.D.d.iv determine whether fixpoint iterations should
be infinite or transfinite (see proposition 2.4). ∎
3.4 Definition of the Algebraic Semantics
The algebraic semantics of statements S ∈ S is an abstract property of executions. The basic com-
mands S are assignment, random assignment, break out of the immediately enclosing loop, and
skip, with the following "S#♯" and break "S#♯# finite/ending/terminating semantics in L♯+ as well as
infinite/nonterminating "S#♯$ abstract semantics in L♯∞.
3.4.1 Basic Statements.
"x = A#♯" ≜ assign♯"x, A# "x = A#♯# ≜ #♯+ "x = A#♯$ ≜ #♯∞
"x = [𝑃, 𝑄]#♯" ≜ rassign♯"x,𝑃,𝑄# "x = [𝑃, 𝑄]#♯# ≜ #♯+ "x = [𝑃, 𝑄]#♯$ ≜ #♯∞
"break#♯" ≜ #♯+ "break#♯# ≜ break♯ "break#♯$ ≜ #♯∞ (3)
"skip#♯" ≜ skip♯ "skip#♯# ≜ #♯+ "skip#♯$ ≜ #♯∞
"B#♯" ≜ test♯"B# "B#♯# ≜ #♯+ "B#♯$ ≜ #♯∞
For the assignment x = A, the abstract semantics assign♯"x, A# is specified by the abstract domain,
and so, is well-defined by 3.2.B. "x = A#♯# = #♯+ because the assignment cannot break. "x = A#♯$ =#♯∞ since the assignment always terminates. The algebraic semantics of the other primitives is
similar, except for the break statement. "break#♯" = #♯+ since the break cannot continue in sequence.
The semantics "break#♯# of the break is given by the abstract domain primitive break♯which is finite
and well-defined. "break#♯$ = #♯∞ since a break always terminates.
3.4.2 Structural Statements. For the sequential composition and the conditional where "B;S#♯! ≜
test♯"B# !♯ "S#♯! , 𝐿 ∈ {𝑅,𝑄,#}, we define
"S1;S2#♯" ≜ "S1#♯" !♯ "S2#♯" "if (B) S1 else S2#♯" ≜ "B;S1#♯" ⊔♯+ "¬B;S2#♯"
"S1;S2#♯# ≜ "S1#♯# ⊔♯+ ("S1#♯" !♯ "S2#♯#) "if (B) S1 else S2#♯# ≜ "B;S1#♯# ⊔♯+ "¬B;S2#♯# (4)
"S1;S2#♯$ ≜ "S1#♯$ ⊔♯∞ ("S1#♯" !♯ "S2#♯$) "if (B) S1 else S2#♯$ ≜ "B;S1#♯$ ⊔♯∞ "¬B;S2#♯$
Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Algebraic semantics (cont’d)

Google, 2025/09/17 © P. Cousot

• E.g. iteration while (B) S

￼72

Algebraic semantics (cont’d)

16:8 P. Cousot and J. Wang

lfp⊑♯+ 𝐿 ♯! = init♯ meaning that the loop is never entered. The semantics of the loop after 0 or more
iterations is therefore that after 0 iterations. ∎

Lemma 3.11 (Infinite fixpoint well-definedness). A◯ If D♯∞ is a well-defined decreasing
chain complete poset and !♯ right satisfies any one of the 3.2.D.d.i, 3.2.D.d.ii, 3.2.D.d.iii, or 3.2.D.d.iv
properties for D♯∞ then 𝐿 ♯# satisfies the same property and gfp⊑♯∞ 𝐿 ♯# does exist.

We now show that gfp⊑♯∞ 𝐿 ♯# coinductively characterizes the infinite executions of the iteration
while (B) S after infinitely many terminating iterations of the body S with condition B always
true.

Lemma 3.12 (Infinite body iteRations). A◯ If D♯ is a well-defined decreasing chain-complete
poset and !♯ is right increasing for ⊑♯∞ in 3.2.D.d.i then gfp⊑♯∞ 𝐿 ♯# = ⊓♯∞"∈O(("B;S#♯!)" !♯ ⊺♯∞).

The abstract semantics of iteration is defined as
"while (B) S#♯! ≜ (lfp⊑♯+ ⃗𝐿 ♯!) !♯ ("¬B#♯! ⊔♯! "B;S#♯#) "while (B) S#♯# ≜ %♯+ (9)
"while (B) S#♯#$ ≜ (lfp⊑♯+ ⃗𝐿 ♯!) !♯ "B;S#♯# "while (B) S#♯𝑃$ ≜ gfp⊑♯∞ 𝐿 ♯# (10)
"while (B) S#♯# ≜ "while (B) S#♯#$ ⊔♯∞ "while (B) S#♯𝑃$ (11)

The least fixpoint lfp⊑♯+ ⃗𝐿 ♯! defines executions reaching the loop entry point after zero or finitely
many iterations. Then (9) defines the finite executions of the loop when, after 0 or more iterations,
the iteration condition B is false, or a break is executed in the body which exists the loop. By (9)
the break is from the closest enclosing loop (which existence must be checked syntactically). The
loop nontermination in (11) can happen either because, after zero or finitely many iterations, the
next execution of the iteration body never terminates (10), or results in (10) from infinitely many
finite iterations, as defined by the greatest fixpoint gfp⊑♯∞ 𝐿 ♯#, and obtained as the limit of iterations
of 𝐿 ♯# from ⊺♯∞. These fixpoints in (9) and (10) do exist by lemmas 3.6 and 3.11.

TheoRem 3.13. A◯ If D♯ is well-defined then for all S ∈ S, "S#♯! , "S#♯# , and "S#♯# are well-defined.
3.5 Algebraic Abstract Semantic Domain and Abstract Semantics
The components of the abstract semantics can be recorded in a triple with named components,
ordered componentwise by ⊑♯, as follows

L♯ ≜ (" ∶ L♯+ × % ∶ L♯∞ ×#$ ∶ L♯+) (12)
"S#♯ ≜ ⟨" ∶ "S#♯! , % ∶ "S#♯#, #$ ∶ "S#♯#⟩

If 𝑃 = ⟨" ∶ 𝐿 , % ∶ 𝑄 , #$ ∶ 𝑅⟩ ∈ L♯, then we select the individual components of the Cartesian product
𝑃 using the field selectors " , #$, and %, as follows

𝑃+ = 𝐿 , 𝑃∞ = 𝑄 , and 𝑃#𝑄 = 𝑅. (13)
By convention,

The shorthand 𝐿 denotes ⟨" ∶ 𝐿 , % ∶ %♯∞, #$ ∶ %♯+⟩ and similarly for other unique nonempty
components.

(14)

The abstract semantics "S#♯ ∈ L♯ records three components "S#♯! , "S#♯#, and "S#♯# of the definition of
the algebraic semantics of statements S in sect. 3.4.

Lemma 3.14. A◯ If D♯ is a well-defined chain-complete join semilattice (respectively complete
lattice) with sequential composition !♯ satisfying any one of the hypotheses 3.2.D.d then ⟨L♯, ⊑♯⟩ has
the same structure, componentwise.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:8 P. Cousot and J. Wang

lfp⊑♯+ 𝐿 ♯! = init♯ meaning that the loop is never entered. The semantics of the loop after 0 or more
iterations is therefore that after 0 iterations. ∎

Lemma 3.11 (Infinite fixpoint well-definedness). A◯ If D♯∞ is a well-defined decreasing
chain complete poset and !♯ right satisfies any one of the 3.2.D.d.i, 3.2.D.d.ii, 3.2.D.d.iii, or 3.2.D.d.iv
properties for D♯∞ then 𝐿 ♯# satisfies the same property and gfp⊑♯∞ 𝐿 ♯# does exist.

We now show that gfp⊑♯∞ 𝐿 ♯# coinductively characterizes the infinite executions of the iteration
while (B) S after infinitely many terminating iterations of the body S with condition B always
true.

Lemma 3.12 (Infinite body iteRations). A◯ If D♯ is a well-defined decreasing chain-complete
poset and !♯ is right increasing for ⊑♯∞ in 3.2.D.d.i then gfp⊑♯∞ 𝐿 ♯# = ⊓♯∞"∈O(("B;S#♯!)" !♯ ⊺♯∞).

The abstract semantics of iteration is defined as
"while (B) S#♯! ≜ (lfp⊑♯+ ⃗𝐿 ♯!) !♯ ("¬B#♯! ⊔♯! "B;S#♯#) "while (B) S#♯# ≜ %♯+ (9)
"while (B) S#♯#$ ≜ (lfp⊑♯+ ⃗𝐿 ♯!) !♯ "B;S#♯# "while (B) S#♯𝑃$ ≜ gfp⊑♯∞ 𝐿 ♯# (10)
"while (B) S#♯# ≜ "while (B) S#♯#$ ⊔♯∞ "while (B) S#♯𝑃$ (11)

The least fixpoint lfp⊑♯+ ⃗𝐿 ♯! defines executions reaching the loop entry point after zero or finitely
many iterations. Then (9) defines the finite executions of the loop when, after 0 or more iterations,
the iteration condition B is false, or a break is executed in the body which exists the loop. By (9)
the break is from the closest enclosing loop (which existence must be checked syntactically). The
loop nontermination in (11) can happen either because, after zero or finitely many iterations, the
next execution of the iteration body never terminates (10), or results in (10) from infinitely many
finite iterations, as defined by the greatest fixpoint gfp⊑♯∞ 𝐿 ♯#, and obtained as the limit of iterations
of 𝐿 ♯# from ⊺♯∞. These fixpoints in (9) and (10) do exist by lemmas 3.6 and 3.11.

TheoRem 3.13. A◯ If D♯ is well-defined then for all S ∈ S, "S#♯! , "S#♯# , and "S#♯# are well-defined.
3.5 Algebraic Abstract Semantic Domain and Abstract Semantics
The components of the abstract semantics can be recorded in a triple with named components,
ordered componentwise by ⊑♯, as follows

L♯ ≜ (" ∶ L♯+ × % ∶ L♯∞ ×#$ ∶ L♯+) (12)
"S#♯ ≜ ⟨" ∶ "S#♯! , % ∶ "S#♯#, #$ ∶ "S#♯#⟩

If 𝑃 = ⟨" ∶ 𝐿 , % ∶ 𝑄 , #$ ∶ 𝑅⟩ ∈ L♯, then we select the individual components of the Cartesian product
𝑃 using the field selectors " , #$, and %, as follows

𝑃+ = 𝐿 , 𝑃∞ = 𝑄 , and 𝑃#𝑄 = 𝑅. (13)
By convention,

The shorthand 𝐿 denotes ⟨" ∶ 𝐿 , % ∶ %♯∞, #$ ∶ %♯+⟩ and similarly for other unique nonempty
components.

(14)

The abstract semantics "S#♯ ∈ L♯ records three components "S#♯! , "S#♯#, and "S#♯# of the definition of
the algebraic semantics of statements S in sect. 3.4.

Lemma 3.14. A◯ If D♯ is a well-defined chain-complete join semilattice (respectively complete
lattice) with sequential composition !♯ satisfying any one of the hypotheses 3.2.D.d then ⟨L♯, ⊑♯⟩ has
the same structure, componentwise.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Calculational Design of Hyperlogics by Abstract Interpretation 16:7

The semantics of the composition and conditional are well-defined by 3.2.D for !♯ and 3.2.A and
3.2.C which ensure the existence of the finite and infinite joins.

S1;S2 terminates if S1 terminates and is followed by S2 that terminates. S1;S2 breaks (resp. non-
terminates) if either S1 breaks (resp. nonterminates) or S1 terminates and is followed by S2 that
breaks (resp. nonterminates).

For a given execution of the conditional if (B) S1 else S2 only one branch is taken, so the
semantics of the other one will be empty by definition (3) of "B#♯! that should return !♯+2 and
3.2.D.b.

Example 3.5. Assume that S1 never terminates in that "S1#♯" = ⊺♯∞ (sometimes named “chaos”
modelling all possible nonterminating behaviors).Then, by (4), "S1;S2#♯" ≜ "S1#♯" ⊔♯∞ ("S1#♯! !♯"S2#♯")
= ⊺♯∞ ⊔♯∞ ("S1#♯! !♯ "S2#♯") = ⊺♯∞ meaning that S1;S2 never terminates either in chaos.

For the conditional, assume B is always true and S1 never terminates in that "S1#♯" = ⊺♯∞. Then
the false branch is never taken so that "¬B;S2#♯" = !♯∞. It follows, by (4), that "if (B) S1 else S2#♯"≜ "B;S1#♯" ⊔♯∞ "¬B;S2#♯" = ⊺♯∞ ⊔♯∞ !♯∞ = ⊺♯∞ so that the conditional if (B) S1 else S2 never termi-
nates. ∎
3.4.3 Iteration. For iteration while (B) S, we define the transformers

backward ⃗𝐿 ♯! ≜ !" ∈ L♯+ . init♯ ⊔♯+ ("B;S#♯! !♯ ") (5)
forward 𝐿 ♯! ≜ !" ∈ L♯+ . init♯ ⊔♯+ (" !♯ "B;S#♯!) (6)
infinite 𝐿 ♯" ≜ !" ∈ L♯∞ . "B;S#♯! !♯ " (7)

Lemma 3.6 (Finite fixpoints well-definedness). A◯ If D♯+ is a well-defined increasing chain
complete join semilattice and !♯ left satisfies any one of the 3.2.D.d.i, 3.2.D.d.ii, 3.2.D.d.iii, or 3.2.D.d.iv
properties for D♯+ then ⃗𝐿 ♯! satisfy the same property and its least fixpoint deso exist (and similarly for
𝐿 ♯! when !♯ right satisfies any one of the properties listed in 3.2.D.d).

Let us show that lfp⊑♯+ ⃗𝐿 ♯! = lfp⊑♯+ 𝐿 ♯! inductively defines the set of finite executions reaching the
entry of the iteration while(B) S after zero or more terminating body iterations. To see that, we
define

the powers ⟨"" , # ∈ O⟩ of" ∈ L♯+ are" 0 ≜ init♯,""+1 ≜" !♯"" for successor ordinals,
and "# ≜ ⊔♯+$<# " $ for limit ordinals.

(8)

We now characterize the executions of iterations in terms of the fixpoints of the execution trans-
formers 5—6. We show that lfp⊑♯+ ⃗𝐿 ♯! = lfp⊑♯+ 𝐿 ♯! inductively characterize 0 or more finite iterations
of the loop body for which the loop condition holds and the loop body terminates.

Lemma 3.7 (Commutativity). A◯ If D♯+ is a well-defined complete lattice (resp. increasing chain-
complete poset) with right existing ⊔♯+-preserving (resp. right upper continuous) composition !♯ and
" ∈ L♯+ then ∀# ∈ O . " !♯ "" = "" !♯ " (resp. if ⟨"" , # ∈ O⟩ is an increasing chain).

Lemma 3.8 (Finite body iteRations). A◯ If D♯+ is a well-defined increasing chain-complete
join semilattice with right upper continuous composition !♯ then lfp⊑♯+ ⃗𝐿 ♯! = ⊔♯+

"∈O("B;S#♯!)" .
Lemma 3.9 (FoRwaRd veRsus bacKwaRd). A◯ If D♯ is a well-defined increasing chain-complete

join semilattice with right upper continuous sequential composition !♯ then lfp⊑♯+ ⃗𝐿 ♯! = lfp⊑♯+ 𝐿 ♯! .
Example 3.10. Assume that the test B of the iteration while (B) S is always false, that is test♯"B# =!♯∞. Then, by (5), (6), (3.2.D.b), and def. lub, ⃗𝐿 ♯! = 𝐿 ♯! = !" ∈ L♯+ . init♯. It follows that lfp⊑♯+ ⃗𝐿 ♯! =

2unless the semantics of Boolean expressions is to be very exotic.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Calculational Design of Hyperlogics by Abstract Interpretation 16:7

The semantics of the composition and conditional are well-defined by 3.2.D for !♯ and 3.2.A and
3.2.C which ensure the existence of the finite and infinite joins.

S1;S2 terminates if S1 terminates and is followed by S2 that terminates. S1;S2 breaks (resp. non-
terminates) if either S1 breaks (resp. nonterminates) or S1 terminates and is followed by S2 that
breaks (resp. nonterminates).

For a given execution of the conditional if (B) S1 else S2 only one branch is taken, so the
semantics of the other one will be empty by definition (3) of "B#♯! that should return !♯+2 and
3.2.D.b.

Example 3.5. Assume that S1 never terminates in that "S1#♯" = ⊺♯∞ (sometimes named “chaos”
modelling all possible nonterminating behaviors).Then, by (4), "S1;S2#♯" ≜ "S1#♯" ⊔♯∞ ("S1#♯! !♯"S2#♯")
= ⊺♯∞ ⊔♯∞ ("S1#♯! !♯ "S2#♯") = ⊺♯∞ meaning that S1;S2 never terminates either in chaos.

For the conditional, assume B is always true and S1 never terminates in that "S1#♯" = ⊺♯∞. Then
the false branch is never taken so that "¬B;S2#♯" = !♯∞. It follows, by (4), that "if (B) S1 else S2#♯"≜ "B;S1#♯" ⊔♯∞ "¬B;S2#♯" = ⊺♯∞ ⊔♯∞ !♯∞ = ⊺♯∞ so that the conditional if (B) S1 else S2 never termi-
nates. ∎
3.4.3 Iteration. For iteration while (B) S, we define the transformers

backward ⃗𝐿 ♯! ≜ !" ∈ L♯+ . init♯ ⊔♯+ ("B;S#♯! !♯ ") (5)
forward 𝐿 ♯! ≜ !" ∈ L♯+ . init♯ ⊔♯+ (" !♯ "B;S#♯!) (6)
infinite 𝐿 ♯" ≜ !" ∈ L♯∞ . "B;S#♯! !♯ " (7)

Lemma 3.6 (Finite fixpoints well-definedness). A◯ If D♯+ is a well-defined increasing chain
complete join semilattice and !♯ left satisfies any one of the 3.2.D.d.i, 3.2.D.d.ii, 3.2.D.d.iii, or 3.2.D.d.iv
properties for D♯+ then ⃗𝐿 ♯! satisfy the same property and its least fixpoint deso exist (and similarly for
𝐿 ♯! when !♯ right satisfies any one of the properties listed in 3.2.D.d).

Let us show that lfp⊑♯+ ⃗𝐿 ♯! = lfp⊑♯+ 𝐿 ♯! inductively defines the set of finite executions reaching the
entry of the iteration while(B) S after zero or more terminating body iterations. To see that, we
define

the powers ⟨"" , # ∈ O⟩ of" ∈ L♯+ are" 0 ≜ init♯,""+1 ≜" !♯"" for successor ordinals,
and "# ≜ ⊔♯+$<# " $ for limit ordinals.

(8)

We now characterize the executions of iterations in terms of the fixpoints of the execution trans-
formers 5—6. We show that lfp⊑♯+ ⃗𝐿 ♯! = lfp⊑♯+ 𝐿 ♯! inductively characterize 0 or more finite iterations
of the loop body for which the loop condition holds and the loop body terminates.

Lemma 3.7 (Commutativity). A◯ If D♯+ is a well-defined complete lattice (resp. increasing chain-
complete poset) with right existing ⊔♯+-preserving (resp. right upper continuous) composition !♯ and
" ∈ L♯+ then ∀# ∈ O . " !♯ "" = "" !♯ " (resp. if ⟨"" , # ∈ O⟩ is an increasing chain).

Lemma 3.8 (Finite body iteRations). A◯ If D♯+ is a well-defined increasing chain-complete
join semilattice with right upper continuous composition !♯ then lfp⊑♯+ ⃗𝐿 ♯! = ⊔♯+

"∈O("B;S#♯!)" .
Lemma 3.9 (FoRwaRd veRsus bacKwaRd). A◯ If D♯ is a well-defined increasing chain-complete

join semilattice with right upper continuous sequential composition !♯ then lfp⊑♯+ ⃗𝐿 ♯! = lfp⊑♯+ 𝐿 ♯! .
Example 3.10. Assume that the test B of the iteration while (B) S is always false, that is test♯"B# =!♯∞. Then, by (5), (6), (3.2.D.b), and def. lub, ⃗𝐿 ♯! = 𝐿 ♯! = !" ∈ L♯+ . init♯. It follows that lfp⊑♯+ ⃗𝐿 ♯! =

2unless the semantics of Boolean expressions is to be very exotic.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:8 P. Cousot and J. Wang

lfp⊑♯+ 𝐿 ♯! = init♯ meaning that the loop is never entered. The semantics of the loop after 0 or more
iterations is therefore that after 0 iterations. ∎

Lemma 3.11 (Infinite fixpoint well-definedness). A◯ If D♯∞ is a well-defined decreasing
chain complete poset and !♯ right satisfies any one of the 3.2.D.d.i, 3.2.D.d.ii, 3.2.D.d.iii, or 3.2.D.d.iv
properties for D♯∞ then 𝐿 ♯# satisfies the same property and gfp⊑♯∞ 𝐿 ♯# does exist.

We now show that gfp⊑♯∞ 𝐿 ♯# coinductively characterizes the infinite executions of the iteration
while (B) S after infinitely many terminating iterations of the body S with condition B always
true.

Lemma 3.12 (Infinite body iteRations). A◯ If D♯ is a well-defined decreasing chain-complete
poset and !♯ is right increasing for ⊑♯∞ in 3.2.D.d.i then gfp⊑♯∞ 𝐿 ♯# = ⊓♯∞"∈O(("B;S#♯!)" !♯ ⊺♯∞).

The abstract semantics of iteration is defined as
"while (B) S#♯! ≜ (lfp⊑♯+ ⃗𝐿 ♯!) !♯ ("¬B#♯! ⊔♯! "B;S#♯#) "while (B) S#♯# ≜ %♯+ (9)
"while (B) S#♯#$ ≜ (lfp⊑♯+ ⃗𝐿 ♯!) !♯ "B;S#♯# "while (B) S#♯𝑃$ ≜ gfp⊑♯∞ 𝐿 ♯# (10)
"while (B) S#♯# ≜ "while (B) S#♯#$ ⊔♯∞ "while (B) S#♯𝑃$ (11)

The least fixpoint lfp⊑♯+ ⃗𝐿 ♯! defines executions reaching the loop entry point after zero or finitely
many iterations. Then (9) defines the finite executions of the loop when, after 0 or more iterations,
the iteration condition B is false, or a break is executed in the body which exists the loop. By (9)
the break is from the closest enclosing loop (which existence must be checked syntactically). The
loop nontermination in (11) can happen either because, after zero or finitely many iterations, the
next execution of the iteration body never terminates (10), or results in (10) from infinitely many
finite iterations, as defined by the greatest fixpoint gfp⊑♯∞ 𝐿 ♯#, and obtained as the limit of iterations
of 𝐿 ♯# from ⊺♯∞. These fixpoints in (9) and (10) do exist by lemmas 3.6 and 3.11.

TheoRem 3.13. A◯ If D♯ is well-defined then for all S ∈ S, "S#♯! , "S#♯# , and "S#♯# are well-defined.
3.5 Algebraic Abstract Semantic Domain and Abstract Semantics
The components of the abstract semantics can be recorded in a triple with named components,
ordered componentwise by ⊑♯, as follows

L♯ ≜ (" ∶ L♯+ × % ∶ L♯∞ ×#$ ∶ L♯+) (12)
"S#♯ ≜ ⟨" ∶ "S#♯! , % ∶ "S#♯#, #$ ∶ "S#♯#⟩

If 𝑃 = ⟨" ∶ 𝐿 , % ∶ 𝑄 , #$ ∶ 𝑅⟩ ∈ L♯, then we select the individual components of the Cartesian product
𝑃 using the field selectors " , #$, and %, as follows

𝑃+ = 𝐿 , 𝑃∞ = 𝑄 , and 𝑃#𝑄 = 𝑅. (13)
By convention,

The shorthand 𝐿 denotes ⟨" ∶ 𝐿 , % ∶ %♯∞, #$ ∶ %♯+⟩ and similarly for other unique nonempty
components.

(14)

The abstract semantics "S#♯ ∈ L♯ records three components "S#♯! , "S#♯#, and "S#♯# of the definition of
the algebraic semantics of statements S in sect. 3.4.

Lemma 3.14. A◯ If D♯ is a well-defined chain-complete join semilattice (respectively complete
lattice) with sequential composition !♯ satisfying any one of the hypotheses 3.2.D.d then ⟨L♯, ⊑♯⟩ has
the same structure, componentwise.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:8 P. Cousot and J. Wang

lfp⊑♯+ 𝐿 ♯! = init♯ meaning that the loop is never entered. The semantics of the loop after 0 or more
iterations is therefore that after 0 iterations. ∎

Lemma 3.11 (Infinite fixpoint well-definedness). A◯ If D♯∞ is a well-defined decreasing
chain complete poset and !♯ right satisfies any one of the 3.2.D.d.i, 3.2.D.d.ii, 3.2.D.d.iii, or 3.2.D.d.iv
properties for D♯∞ then 𝐿 ♯# satisfies the same property and gfp⊑♯∞ 𝐿 ♯# does exist.

We now show that gfp⊑♯∞ 𝐿 ♯# coinductively characterizes the infinite executions of the iteration
while (B) S after infinitely many terminating iterations of the body S with condition B always
true.

Lemma 3.12 (Infinite body iteRations). A◯ If D♯ is a well-defined decreasing chain-complete
poset and !♯ is right increasing for ⊑♯∞ in 3.2.D.d.i then gfp⊑♯∞ 𝐿 ♯# = ⊓♯∞"∈O(("B;S#♯!)" !♯ ⊺♯∞).

The abstract semantics of iteration is defined as
"while (B) S#♯! ≜ (lfp⊑♯+ ⃗𝐿 ♯!) !♯ ("¬B#♯! ⊔♯! "B;S#♯#) "while (B) S#♯# ≜ %♯+ (9)
"while (B) S#♯#$ ≜ (lfp⊑♯+ ⃗𝐿 ♯!) !♯ "B;S#♯# "while (B) S#♯𝑃$ ≜ gfp⊑♯∞ 𝐿 ♯# (10)
"while (B) S#♯# ≜ "while (B) S#♯#$ ⊔♯∞ "while (B) S#♯𝑃$ (11)

The least fixpoint lfp⊑♯+ ⃗𝐿 ♯! defines executions reaching the loop entry point after zero or finitely
many iterations. Then (9) defines the finite executions of the loop when, after 0 or more iterations,
the iteration condition B is false, or a break is executed in the body which exists the loop. By (9)
the break is from the closest enclosing loop (which existence must be checked syntactically). The
loop nontermination in (11) can happen either because, after zero or finitely many iterations, the
next execution of the iteration body never terminates (10), or results in (10) from infinitely many
finite iterations, as defined by the greatest fixpoint gfp⊑♯∞ 𝐿 ♯#, and obtained as the limit of iterations
of 𝐿 ♯# from ⊺♯∞. These fixpoints in (9) and (10) do exist by lemmas 3.6 and 3.11.

TheoRem 3.13. A◯ If D♯ is well-defined then for all S ∈ S, "S#♯! , "S#♯# , and "S#♯# are well-defined.
3.5 Algebraic Abstract Semantic Domain and Abstract Semantics
The components of the abstract semantics can be recorded in a triple with named components,
ordered componentwise by ⊑♯, as follows

L♯ ≜ (" ∶ L♯+ × % ∶ L♯∞ ×#$ ∶ L♯+) (12)
"S#♯ ≜ ⟨" ∶ "S#♯! , % ∶ "S#♯#, #$ ∶ "S#♯#⟩

If 𝑃 = ⟨" ∶ 𝐿 , % ∶ 𝑄 , #$ ∶ 𝑅⟩ ∈ L♯, then we select the individual components of the Cartesian product
𝑃 using the field selectors " , #$, and %, as follows

𝑃+ = 𝐿 , 𝑃∞ = 𝑄 , and 𝑃#𝑄 = 𝑅. (13)
By convention,

The shorthand 𝐿 denotes ⟨" ∶ 𝐿 , % ∶ %♯∞, #$ ∶ %♯+⟩ and similarly for other unique nonempty
components.

(14)

The abstract semantics "S#♯ ∈ L♯ records three components "S#♯! , "S#♯#, and "S#♯# of the definition of
the algebraic semantics of statements S in sect. 3.4.

Lemma 3.14. A◯ If D♯ is a well-defined chain-complete join semilattice (respectively complete
lattice) with sequential composition !♯ satisfying any one of the hypotheses 3.2.D.d then ⟨L♯, ⊑♯⟩ has
the same structure, componentwise.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:8 P. Cousot and J. Wang

lfp⊑♯+ 𝐿 ♯! = init♯ meaning that the loop is never entered. The semantics of the loop after 0 or more
iterations is therefore that after 0 iterations. ∎

Lemma 3.11 (Infinite fixpoint well-definedness). A◯ If D♯∞ is a well-defined decreasing
chain complete poset and !♯ right satisfies any one of the 3.2.D.d.i, 3.2.D.d.ii, 3.2.D.d.iii, or 3.2.D.d.iv
properties for D♯∞ then 𝐿 ♯# satisfies the same property and gfp⊑♯∞ 𝐿 ♯# does exist.

We now show that gfp⊑♯∞ 𝐿 ♯# coinductively characterizes the infinite executions of the iteration
while (B) S after infinitely many terminating iterations of the body S with condition B always
true.

Lemma 3.12 (Infinite body iteRations). A◯ If D♯ is a well-defined decreasing chain-complete
poset and !♯ is right increasing for ⊑♯∞ in 3.2.D.d.i then gfp⊑♯∞ 𝐿 ♯# = ⊓♯∞"∈O(("B;S#♯!)" !♯ ⊺♯∞).

The abstract semantics of iteration is defined as
"while (B) S#♯! ≜ (lfp⊑♯+ ⃗𝐿 ♯!) !♯ ("¬B#♯! ⊔♯! "B;S#♯#) "while (B) S#♯# ≜ %♯+ (9)
"while (B) S#♯#$ ≜ (lfp⊑♯+ ⃗𝐿 ♯!) !♯ "B;S#♯# "while (B) S#♯𝑃$ ≜ gfp⊑♯∞ 𝐿 ♯# (10)
"while (B) S#♯# ≜ "while (B) S#♯#$ ⊔♯∞ "while (B) S#♯𝑃$ (11)

The least fixpoint lfp⊑♯+ ⃗𝐿 ♯! defines executions reaching the loop entry point after zero or finitely
many iterations. Then (9) defines the finite executions of the loop when, after 0 or more iterations,
the iteration condition B is false, or a break is executed in the body which exists the loop. By (9)
the break is from the closest enclosing loop (which existence must be checked syntactically). The
loop nontermination in (11) can happen either because, after zero or finitely many iterations, the
next execution of the iteration body never terminates (10), or results in (10) from infinitely many
finite iterations, as defined by the greatest fixpoint gfp⊑♯∞ 𝐿 ♯#, and obtained as the limit of iterations
of 𝐿 ♯# from ⊺♯∞. These fixpoints in (9) and (10) do exist by lemmas 3.6 and 3.11.

TheoRem 3.13. A◯ If D♯ is well-defined then for all S ∈ S, "S#♯! , "S#♯# , and "S#♯# are well-defined.
3.5 Algebraic Abstract Semantic Domain and Abstract Semantics
The components of the abstract semantics can be recorded in a triple with named components,
ordered componentwise by ⊑♯, as follows

L♯ ≜ (" ∶ L♯+ × % ∶ L♯∞ ×#$ ∶ L♯+) (12)
"S#♯ ≜ ⟨" ∶ "S#♯! , % ∶ "S#♯#, #$ ∶ "S#♯#⟩

If 𝑃 = ⟨" ∶ 𝐿 , % ∶ 𝑄 , #$ ∶ 𝑅⟩ ∈ L♯, then we select the individual components of the Cartesian product
𝑃 using the field selectors " , #$, and %, as follows

𝑃+ = 𝐿 , 𝑃∞ = 𝑄 , and 𝑃#𝑄 = 𝑅. (13)
By convention,

The shorthand 𝐿 denotes ⟨" ∶ 𝐿 , % ∶ %♯∞, #$ ∶ %♯+⟩ and similarly for other unique nonempty
components.

(14)

The abstract semantics "S#♯ ∈ L♯ records three components "S#♯! , "S#♯#, and "S#♯# of the definition of
the algebraic semantics of statements S in sect. 3.4.

Lemma 3.14. A◯ If D♯ is a well-defined chain-complete join semilattice (respectively complete
lattice) with sequential composition !♯ satisfying any one of the hypotheses 3.2.D.d then ⟨L♯, ⊑♯⟩ has
the same structure, componentwise.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Google, 2025/09/17 © P. Cousot53

Algebraic semantics (cont’d)

• The classic postulated presentation by equational
axioms (*) can be calculated by

• structural induction

• Aczel correspondence between fixpoints and

deductive systems (see Part I on POPL 2024)

16:32 P. Cousot and J. Wang

[49] Joseph A. Goguen, James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. 1977. Initial Algebra Semantics and
Continuous Algebras. J. ACM 24, 1 (1977), 68–95. https://doi.org/10.1145/321992.321997

[50] Irène Guessarian. 1978. Some Applications of Algebraic Semantics. InMathematical Foundations of Computer Science
1978, Proceedings, 7th Symposium, Zakopane, Poland, September 4-8, 1978 (Lecture Notes in Computer Science, Vol. 64),
Józef Winkowski (Ed.). Springer, 257–266. https://doi.org/10.1007/3-540-08921-7_73

[51] Reinhold Heckmann. 1993. Power Domains and Second-Order Predicates. Theor. Comput. Sci. 111, 1&2 (1993), 59–88.
https://doi.org/10.1016/0304-3975(93)90182-S

[52] Eric C. R. Hehner. 1990. A Practical Theory of Programming. Sci. Comput. Program. 14, 2-3 (1990), 133–158. https:
//doi.org/10.1016/0167-6423(90)90018-9

[53] Eric C. R. Hehner. 1993. A Practical Theory of Programming. Springer. https://doi.org/10.1007/978-1-4419-8596-5
[54] Eric C. R. Hehner. 1999. Specifications, Programs, and Total Correctness. Sci. Comput. Program. 34, 3 (1999), 191–205.

https://doi.org/10.1016/S0167-6423(98)00027-6
[55] Charles Antony Richard Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969),

576–580. https://doi.org/10.1145/363235.363259
[56] C. A. R. Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W. Roscoe, Jeff W. Sanders, Ib Holm Sørensen, J. Michael

Spivey, and Bernard Sufrin. 1987. Laws of Programming. Commun. ACM 30, 8 (1987), 672–686. https://doi.org/10.
1145/27651.27653

[57] Tony Hoare. 2013. Generic Models of the Laws of Programming. In Theories of Programming and Formal Methods
(Lecture Notes in Computer Science, Vol. 8051). Springer, 213–226. https://doi.org/10.1007/978-3-642-39698-4_13

[58] Tony Hoare. 2014. Laws of Programming:The Algebraic Unification ofTheories of Concurrency. In CONCUR (Lecture
Notes in Computer Science, Vol. 8704). Springer, 1–6. https://doi.org/10.1007/978-3-662-44584-6_1

[59] Tony Hoare and Stephan van Staden. 2014. The laws of programming unify process calculi. Sci. Comput. Program. 85
(2014), 102–114. https://doi.org/10.1016/J.SCICO.2013.08.012

[60] Iu. I. Ianov and M. D. Friedman. 1958. On The Equivalence and Transformation of Program Schemes. Commun. ACM
1, 10 (1958), 8–12. https://doi.org/10.1145/368924.368930

[61] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (1976), 385–394. https://doi.org/
10.1145/360248.360252

[62] Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19, 3 (1997), 427–443. https:
//doi.org/10.1145/256167.256195

[63] Dexter Kozen. 2000. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log. 1, 1 (2000), 60–76.
https://doi.org/10.1145/343369.343378

[64] Xavier Leroy and Hervé Grall. 2009. Coinductive big-step operational semantics. Inf. Comput. 207, 2 (2009), 284–304.
https://doi.org/10.1016/J.IC.2007.12.004

[65] Zohar Manna and Amir Pnueli. 1974. Axiomatic Approach to Total Correctness of Programs. Acta Inf. 3 (1974),
243–263. https://doi.org/10.1007/BF00288637

[66] Isabella Mastroeni and Michele Pasqua. 2017. Hyperhierarchy of Semantics - A Formal Framework for Hyperproper-
ties Verification. In SAS (Lecture Notes in Computer Science, Vol. 10422). Springer, 232–252. https://doi.org/10.1007/978-
3-319-66706-5_12

[67] Isabella Mastroeni and Michele Pasqua. 2018. Verifying Bounded Subset-Closed Hyperproperties. In SAS (Lecture
Notes in Computer Science, Vol. 11002). Springer, 263–283. https://doi.org/10.1007/978-3-319-99725-4_17

[68] Isabella Mastroeni and Michele Pasqua. 2023. Domain Precision in Galois Connection-Less Abstract Interpretation.
In Static Analysis - 30th International Symposium, SAS 2023, Cascais, Portugal, October 22-24, 2023, Proceedings (Lecture
Notes in Computer Science, Vol. 14284), Manuel V. Hermenegildo and José F. Morales (Eds.). Springer, 434–459. https:
//doi.org/10.1007/978-3-031-44245-2_19

[69] Daryl McCullough. 1987. Specifications for Multi-Level Security and a Hook-Up Property. In S&P. IEEE Computer
Society, 161–166. https://doi.org/10.1109/SP.1987.10009

[70] John McLean. 1996. A General Theory of Composition for a Class of ”Possibilistic” Properties. IEEE Trans. Software
Eng. 22, 1 (1996), 53–67. https://doi.org/10.1109/32.481534

[71] Bernhard Möller, Peter W. O’Hearn, and Tony Hoare. 2021. On Algebra of Program Correctness and Incorrectness. In
RAMiCS (Lecture Notes in Computer Science, Vol. 13027). Springer, 325–343. https://doi.org/10.1007/978-3-030-88701-
8_20

[72] James Donald Monk. 1969. Introduction to Set Theory. McGraw–Hill. http://euclid.colorado.edu/~monkd/monk11.pdf
[73] AlanMycroft. 1982. Abstract interpretation and optimising transformations for applicative programs. Ph. D. Dissertation.

University of Edinburgh, UK. https://hdl.handle.net/1842/6602
[74] Maurice Nivat. 1980. Non Deterministic Programs: An Algebraic Overview. In IFIP Congress. North-Holland/IFIP,

17–28.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

(*)

Google, 2025/09/17 © P. Cousot

How to express
program properties?

54

Google, 2025/09/17 © P. Cousot55

“Programs are predicates”
• We are only interested in properties of programs (not

in arbitrary properties)

• A program encodes a program execution property

defined by its semantics

• So defining properties as programs, we don’t need a

language for programs + another language for
predicates!

• Other encodings of properties are mere abstractions.

16:32 P. Cousot and J. Wang

[49] Joseph A. Goguen, James W. Thatcher, Eric G. Wagner, and Jesse B. Wright. 1977. Initial Algebra Semantics and
Continuous Algebras. J. ACM 24, 1 (1977), 68–95. https://doi.org/10.1145/321992.321997

[50] Irène Guessarian. 1978. Some Applications of Algebraic Semantics. InMathematical Foundations of Computer Science
1978, Proceedings, 7th Symposium, Zakopane, Poland, September 4-8, 1978 (Lecture Notes in Computer Science, Vol. 64),
Józef Winkowski (Ed.). Springer, 257–266. https://doi.org/10.1007/3-540-08921-7_73

[51] Reinhold Heckmann. 1993. Power Domains and Second-Order Predicates. Theor. Comput. Sci. 111, 1&2 (1993), 59–88.
https://doi.org/10.1016/0304-3975(93)90182-S

[52] Eric C. R. Hehner. 1990. A Practical Theory of Programming. Sci. Comput. Program. 14, 2-3 (1990), 133–158. https:
//doi.org/10.1016/0167-6423(90)90018-9

[53] Eric C. R. Hehner. 1993. A Practical Theory of Programming. Springer. https://doi.org/10.1007/978-1-4419-8596-5
[54] Eric C. R. Hehner. 1999. Specifications, Programs, and Total Correctness. Sci. Comput. Program. 34, 3 (1999), 191–205.

https://doi.org/10.1016/S0167-6423(98)00027-6
[55] Charles Antony Richard Hoare. 1969. An Axiomatic Basis for Computer Programming. Commun. ACM 12, 10 (1969),

576–580. https://doi.org/10.1145/363235.363259
[56] C. A. R. Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W. Roscoe, Jeff W. Sanders, Ib Holm Sørensen, J. Michael

Spivey, and Bernard Sufrin. 1987. Laws of Programming. Commun. ACM 30, 8 (1987), 672–686. https://doi.org/10.
1145/27651.27653

[57] Tony Hoare. 2013. Generic Models of the Laws of Programming. In Theories of Programming and Formal Methods
(Lecture Notes in Computer Science, Vol. 8051). Springer, 213–226. https://doi.org/10.1007/978-3-642-39698-4_13

[58] Tony Hoare. 2014. Laws of Programming:The Algebraic Unification ofTheories of Concurrency. In CONCUR (Lecture
Notes in Computer Science, Vol. 8704). Springer, 1–6. https://doi.org/10.1007/978-3-662-44584-6_1

[59] Tony Hoare and Stephan van Staden. 2014. The laws of programming unify process calculi. Sci. Comput. Program. 85
(2014), 102–114. https://doi.org/10.1016/J.SCICO.2013.08.012

[60] Iu. I. Ianov and M. D. Friedman. 1958. On The Equivalence and Transformation of Program Schemes. Commun. ACM
1, 10 (1958), 8–12. https://doi.org/10.1145/368924.368930

[61] James C. King. 1976. Symbolic Execution and Program Testing. Commun. ACM 19, 7 (1976), 385–394. https://doi.org/
10.1145/360248.360252

[62] Dexter Kozen. 1997. Kleene Algebra with Tests. ACM Trans. Program. Lang. Syst. 19, 3 (1997), 427–443. https:
//doi.org/10.1145/256167.256195

[63] Dexter Kozen. 2000. On Hoare logic and Kleene algebra with tests. ACM Trans. Comput. Log. 1, 1 (2000), 60–76.
https://doi.org/10.1145/343369.343378

[64] Xavier Leroy and Hervé Grall. 2009. Coinductive big-step operational semantics. Inf. Comput. 207, 2 (2009), 284–304.
https://doi.org/10.1016/J.IC.2007.12.004

[65] Zohar Manna and Amir Pnueli. 1974. Axiomatic Approach to Total Correctness of Programs. Acta Inf. 3 (1974),
243–263. https://doi.org/10.1007/BF00288637

[66] Isabella Mastroeni and Michele Pasqua. 2017. Hyperhierarchy of Semantics - A Formal Framework for Hyperproper-
ties Verification. In SAS (Lecture Notes in Computer Science, Vol. 10422). Springer, 232–252. https://doi.org/10.1007/978-
3-319-66706-5_12

[67] Isabella Mastroeni and Michele Pasqua. 2018. Verifying Bounded Subset-Closed Hyperproperties. In SAS (Lecture
Notes in Computer Science, Vol. 11002). Springer, 263–283. https://doi.org/10.1007/978-3-319-99725-4_17

[68] Isabella Mastroeni and Michele Pasqua. 2023. Domain Precision in Galois Connection-Less Abstract Interpretation.
In Static Analysis - 30th International Symposium, SAS 2023, Cascais, Portugal, October 22-24, 2023, Proceedings (Lecture
Notes in Computer Science, Vol. 14284), Manuel V. Hermenegildo and José F. Morales (Eds.). Springer, 434–459. https:
//doi.org/10.1007/978-3-031-44245-2_19

[69] Daryl McCullough. 1987. Specifications for Multi-Level Security and a Hook-Up Property. In S&P. IEEE Computer
Society, 161–166. https://doi.org/10.1109/SP.1987.10009

[70] John McLean. 1996. A General Theory of Composition for a Class of ”Possibilistic” Properties. IEEE Trans. Software
Eng. 22, 1 (1996), 53–67. https://doi.org/10.1109/32.481534

[71] Bernhard Möller, Peter W. O’Hearn, and Tony Hoare. 2021. On Algebra of Program Correctness and Incorrectness. In
RAMiCS (Lecture Notes in Computer Science, Vol. 13027). Springer, 325–343. https://doi.org/10.1007/978-3-030-88701-
8_20

[72] James Donald Monk. 1969. Introduction to Set Theory. McGraw–Hill. http://euclid.colorado.edu/~monkd/monk11.pdf
[73] AlanMycroft. 1982. Abstract interpretation and optimising transformations for applicative programs. Ph. D. Dissertation.

University of Edinburgh, UK. https://hdl.handle.net/1842/6602
[74] Maurice Nivat. 1980. Non Deterministic Programs: An Algebraic Overview. In IFIP Congress. North-Holland/IFIP,

17–28.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

(*)

(*)

Google, 2025/09/17 © P. Cousot

Property transformer

56

Google, 2025/09/17 © P. Cousot57

Algebraic property transformer

• Forward property transformer:

16:10 P. Cousot and J. Wang

Example 4.1. Define S1 ≜ while (y!=0) y=y-1; with relational semantics
!S1"! = ⟨𝐿 ∶ {⟨", "[y← 0]⟩ ∣ "(y) ⩾ 0}, " ∶ {⟨", "⟩ ∣ "(y) < 0}, #$ ∶ ∅⟩

meaning that S1 terminates with y = 0when y is initially positive and otherwise does not terminate.
Define S2 ≜ y=[-oo,oo]; S1 with relational semantics

!S2"! = ⟨𝐿 ∶ {⟨", "[y← 0]⟩ ∣ " ∈ Σ}, " ∶ {⟨", "⟩ ∣ " ∈ Σ}, #$ ∶ ∅⟩
meaning that either S2 terminates with y=0 or does not terminate A◯. ∎

Example 4.2. Define S3 ≜ while (x!=0) { S2 x=x-1; } with relational semantics
!S3"♯ = ⟨𝐿 ∶ {⟨", "⟩ ∣ "(x) = 0} ∪ {⟨", "[y← 0][x← 0]⟩ ∣ "(x) > 0}, " ∶ {⟨", "⟩ ∣ "(x) ≠ 0}, #$ ∶ ∅⟩
meaning that S3 terminates because either the loop is not entered or it is entered with x > 0 and
S2 terminates at each iteration setting y to 0. S3 does not terminate when the loop is entered and
either its body does not terminate or x < 0.

Define S4 ≜ x=[-oo,oo]; S3 with relational semantics
!S4"♯ = ⟨𝐿 ∶ {⟨", "[x← 0]⟩ ∣ " ∈ Σ} ∪ {⟨", "[y← 0][x← 0]⟩ ∣ " ∈ Σ}, " ∶ {⟨", "⟩ ∣ " ∈ Σ}, #$ ∶ ∅⟩
meaning either termination with x=0 (when x is randomly assigned 0) or with x=0 and y=0 (when
x is randomly assigned a positive number while x is randomly assigned a positive number or zero)
or nontermination (when x is randomly assigned a negative number or x is randomly assigned
a positive number and y are randomly assigned a negative number). A◯. In this example, the
fixpoint iterations are infinite but would be transfinite for a transition semantics (corresponding
to the lexicographic ordering for the nested loops) [18]. ∎
5 Algebraic Program Execution Properties
5.1 Algebraic Execution Properties
Traditionally, logics involve two formal languages, one to express programs and another one to
express properties of the program executions. The syntax and semantics of these programming
and logic languages are considered to be different. Therefore, in addition to the program syntax
and semantics, this traditional approach requires to define the syntax and semantics of the logic
expressing program properties.

A semantics !S"♯ ∈ L♯ in (12) is an abstraction of a property of the executions of the statement
S. Therefore L♯ will be the domain of execution properties whether used to describe the semantics
or logic properties of programs executions. This will avoid us the necessary traditional distinction
between programs semantics and program properties.

This idea follows [52–54]’s slogan that “Programs are predicates” and define properties of pro-
gram executions as programs (which semantics is already defined). It is also found in Dexter
Kozen’s Kleene algebra with tests [62, 63, 82]. Therefore, from an abstract point of view, program
execution specification and verification need nothing more than programs and an associated cal-
culus post♯ on programs.

5.2 The Algebraic Program Execution Property Transformer
Let us define the transformer post♯ ∈ L♯ ↗"→L♯ ↗"→L♯ such that

post♯(𝑃)𝑄 ≜ 𝑄 #♯ 𝑃 (18)
where 𝑃 is a semantics in L♯ as defined by (12) and #♯ is defined by (15). If 𝑄 is a precondition when
at S then post♯!S"♯𝑄 is the postcondition after S (including when breaking out of S).

For example, using the shorthand (14), post♯(𝑃)init♯ = 𝑃 by 3.2.D.a and post♯(𝑃)𝑄 = 𝑄 for all
𝑄 ∈ L♯∞ by 3.2.D.c.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:10 P. Cousot and J. Wang

Example 4.1. Define S1 ≜ while (y!=0) y=y-1; with relational semantics
!S1"! = ⟨𝐿 ∶ {⟨", "[y← 0]⟩ ∣ "(y) ⩾ 0}, " ∶ {⟨", "⟩ ∣ "(y) < 0}, #$ ∶ ∅⟩

meaning that S1 terminates with y = 0when y is initially positive and otherwise does not terminate.
Define S2 ≜ y=[-oo,oo]; S1 with relational semantics

!S2"! = ⟨𝐿 ∶ {⟨", "[y← 0]⟩ ∣ " ∈ Σ}, " ∶ {⟨", "⟩ ∣ " ∈ Σ}, #$ ∶ ∅⟩
meaning that either S2 terminates with y=0 or does not terminate A◯. ∎

Example 4.2. Define S3 ≜ while (x!=0) { S2 x=x-1; } with relational semantics
!S3"♯ = ⟨𝐿 ∶ {⟨", "⟩ ∣ "(x) = 0} ∪ {⟨", "[y← 0][x← 0]⟩ ∣ "(x) > 0}, " ∶ {⟨", "⟩ ∣ "(x) ≠ 0}, #$ ∶ ∅⟩
meaning that S3 terminates because either the loop is not entered or it is entered with x > 0 and
S2 terminates at each iteration setting y to 0. S3 does not terminate when the loop is entered and
either its body does not terminate or x < 0.

Define S4 ≜ x=[-oo,oo]; S3 with relational semantics
!S4"♯ = ⟨𝐿 ∶ {⟨", "[x← 0]⟩ ∣ " ∈ Σ} ∪ {⟨", "[y← 0][x← 0]⟩ ∣ " ∈ Σ}, " ∶ {⟨", "⟩ ∣ " ∈ Σ}, #$ ∶ ∅⟩
meaning either termination with x=0 (when x is randomly assigned 0) or with x=0 and y=0 (when
x is randomly assigned a positive number while x is randomly assigned a positive number or zero)
or nontermination (when x is randomly assigned a negative number or x is randomly assigned
a positive number and y are randomly assigned a negative number). A◯. In this example, the
fixpoint iterations are infinite but would be transfinite for a transition semantics (corresponding
to the lexicographic ordering for the nested loops) [18]. ∎
5 Algebraic Program Execution Properties
5.1 Algebraic Execution Properties
Traditionally, logics involve two formal languages, one to express programs and another one to
express properties of the program executions. The syntax and semantics of these programming
and logic languages are considered to be different. Therefore, in addition to the program syntax
and semantics, this traditional approach requires to define the syntax and semantics of the logic
expressing program properties.

A semantics !S"♯ ∈ L♯ in (12) is an abstraction of a property of the executions of the statement
S. Therefore L♯ will be the domain of execution properties whether used to describe the semantics
or logic properties of programs executions. This will avoid us the necessary traditional distinction
between programs semantics and program properties.

This idea follows [52–54]’s slogan that “Programs are predicates” and define properties of pro-
gram executions as programs (which semantics is already defined). It is also found in Dexter
Kozen’s Kleene algebra with tests [62, 63, 82]. Therefore, from an abstract point of view, program
execution specification and verification need nothing more than programs and an associated cal-
culus post♯ on programs.

5.2 The Algebraic Program Execution Property Transformer
Let us define the transformer post♯ ∈ L♯ ↗"→L♯ ↗"→L♯ such that

post♯(𝑃)𝑄 ≜ 𝑄 #♯ 𝑃 (18)
where 𝑃 is a semantics in L♯ as defined by (12) and #♯ is defined by (15). If 𝑄 is a precondition when
at S then post♯!S"♯𝑄 is the postcondition after S (including when breaking out of S).

For example, using the shorthand (14), post♯(𝑃)init♯ = 𝑃 by 3.2.D.a and post♯(𝑃)𝑄 = 𝑄 for all
𝑄 ∈ L♯∞ by 3.2.D.c.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Google, 2025/09/17 © P. Cousot

A structural fixpoint
characterization of the property

transformer

58

Google, 2025/09/17 © P. Cousot59

(is a poset)

Calculational Design of Hyperlogics by Abstract Interpretation 16:11

In definition (18) of “predicate transformers” the meaning of “predicates” about programs exe-
cutions is abstracted away as programs specifying executions. Further abstractions will yield the
classic understanding of “predicates”, “abstract property”, etc.The classic Galois connections post–
p̃re [20, (12.22)] and post–post−1 [20, (12.6)] are still valid with this different definition of post.

The following lemmas show that the post transformer inherits the properties of sequential com-
position. It applies e.g. to ⟨L♯+, ⊑♯+⟩ in 3.2.A, ⟨L♯∞, ⊑♯∞⟩ in 3.2.C, or ⟨L♯, ⊑♯⟩ in (12).

Lemma 5.1. A◯ Let ⟨𝐿, ⊑, ⊔⟩ be a poset with partially defined join ⊔. Let ! be the sequential
composition on 𝐿. If ! left-satisfies any one of the properties of definition 2.2 or their dual then for all
" ∈ L, post(") satisfies the same property.

The following Galois connection shows the equivalence of forward/deductive and backward/ab-
ductive reasonings on the program semantics.

Lemma 5.2. A◯ If ⟨𝐿, ⊑, ⊔⟩ is a poset and the sequential composition ! is existing ⊔ left preserving
then we have the Galois connection

∀" ∈ L . ⟨L, ⊑⟩ −−−−−−−−→←−−−−−−−−
post(!)
p̃re(!) ⟨L, ⊑⟩ where p̃re(")# ≜ ⊔{$ ∈ L ∣ post(")$ ⊑ #}). (19)

Lemma 5.3. A◯ Let ⟨𝐿, ⊑, ⊔⟩ be a poset with partially defined join ⊔. Let ! be the sequential
composition on 𝐿. If ! right-satisfies any one of the properties of definition 2.2 or their dual then post
satisfies the same property.

The following Galois connection formalizes Dijkstra’s program inversion [36].

Lemma 5.4. A◯ If ⟨𝐿, ⊑, ⊔⟩ is a poset and the sequential composition ! is existing ⊔ right
preserving then we have the following Galois connection (L ⊔#→ L is the set of existing join preserving
operators on L and ⊑ is the pointwise extension of ⊑)

⟨L, ⊑⟩ −−−−−−−→←−−−−−−−
post

post−1 ⟨L ⊔#→ L, ⊑⟩ where post−1(𝑃) = ⊔{" ∈ L ∣ post(") ⊑ 𝑃}. (20)

5.3 A Calculus of Algebraic Program Execution Properties
We derive the sound and complete post♯ calculus by calculational design, as follows.

TheoRem 5.5 (PRogRam execution pRopeRty calculus). A◯ If D♯ is a well-defined increasing
and decreasing chain-complete join semilattice with right upper continuous sequential composition !♯
then

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

A calculus of algebraic execution properties
• Galois connection 

• Using the abstraction methodology of POPL 2024, we
generalize POPL 2024 to

• a structural fixpoint algebraic calculus of execution

properties

• (and the lattice of algebraic transformational logics)

Calculational Design of Hyperlogics by Abstract Interpretation 16:11

In definition (18) of “predicate transformers” the meaning of “predicates” about programs exe-
cutions is abstracted away as programs specifying executions. Further abstractions will yield the
classic understanding of “predicates”, “abstract property”, etc.The classic Galois connections post–
p̃re [20, (12.22)] and post–post−1 [20, (12.6)] are still valid with this different definition of post.

The following lemmas show that the post transformer inherits the properties of sequential com-
position. It applies e.g. to ⟨L♯+, ⊑♯+⟩ in 3.2.A, ⟨L♯∞, ⊑♯∞⟩ in 3.2.C, or ⟨L♯, ⊑♯⟩ in (12).

Lemma 5.1. A◯ Let ⟨𝐿, ⊑, ⊔⟩ be a poset with partially defined join ⊔. Let ! be the sequential
composition on 𝐿. If ! left-satisfies any one of the properties of definition 2.2 or their dual then for all
" ∈ L, post(") satisfies the same property.

The following Galois connection shows the equivalence of forward/deductive and backward/ab-
ductive reasonings on the program semantics.

Lemma 5.2. A◯ If ⟨𝐿, ⊑, ⊔⟩ is a poset and the sequential composition ! is existing ⊔ left preserving
then we have the Galois connection

∀" ∈ L . ⟨L, ⊑⟩ −−−−−−−−→←−−−−−−−−
post(!)
p̃re(!) ⟨L, ⊑⟩ where p̃re(")# ≜ ⊔{$ ∈ L ∣ post(")$ ⊑ #}). (19)

Lemma 5.3. A◯ Let ⟨𝐿, ⊑, ⊔⟩ be a poset with partially defined join ⊔. Let ! be the sequential
composition on 𝐿. If ! right-satisfies any one of the properties of definition 2.2 or their dual then post
satisfies the same property.

The following Galois connection formalizes Dijkstra’s program inversion [36].

Lemma 5.4. A◯ If ⟨𝐿, ⊑, ⊔⟩ is a poset and the sequential composition ! is existing ⊔ right
preserving then we have the following Galois connection (L ⊔#→ L is the set of existing join preserving
operators on L and ⊑ is the pointwise extension of ⊑)

⟨L, ⊑⟩ −−−−−−−→←−−−−−−−
post

post−1 ⟨L ⊔#→ L, ⊑⟩ where post−1(𝑃) = ⊔{" ∈ L ∣ post(") ⊑ 𝑃}. (20)

5.3 A Calculus of Algebraic Program Execution Properties
We derive the sound and complete post♯ calculus by calculational design, as follows.

TheoRem 5.5 (PRogRam execution pRopeRty calculus). A◯ If D♯ is a well-defined increasing
and decreasing chain-complete join semilattice with right upper continuous sequential composition !♯
then

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

L,

Google, 2025/09/17 © P. Cousot

Hyperproperties

60

Google, 2025/09/17 © P. Cousot61

Algebraic hyperproperties

• L is the semantic domain (e.g. set of finite and
infinite traces, input-output relation)

• ℘(L) is the set of hyperproperties (defined in
extension)

• ⊆ is logical implication

Google, 2025/09/17 © P. Cousot

Hyperproperty transformer

62

Google, 2025/09/17 © P. Cousot63

Algebraic hyperproperty transformer

• Transformer  
 
 

• Galois connection

Calculational Design of Hyperlogics by Abstract Interpretation 16:13

6 A Calculus of Algebraic Program Semantic (Hyper) Properties
We now study proof methods for semantic properties, that is properties of the semantics, that we
define in extension. This is called hyperproperties when the semantics is a set of traces [13, 14],
and by extension, for their abstractions, in particular to relational semantics.

6.1 Algebraic Semantic (Hyper) Properties
Defined in extension, program semantic properties are in ℘(L♯).

Example 6.1 (Algebraic noninterference). Noninterference [46], can be generalized to semantic
(hyper) properties of algebraic semantics, as follows.The precondition 𝐿! ∈ ℘(L♯+×L♯+) is a relation
between prelude executions extended to L♯ by (14). The postcondition 𝐿" ∈ ℘(L♯×L♯) is a relation
between terminated or infinite executions. Then algebraic noninterference is ANI ≜ {P ∈ ℘(L♯) ∣∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . ⟨#1, #2⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#1, post♯("2)#2⟩ ∈ 𝐿" }. An instance
is algebraic abstract noninterference AANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . $1(#1) =
$1(#2) !⇒ $2(post♯("1)#1) = $2(post♯("2)#2)} for abstractions $1 ∈ L♯ → 𝑃1 and $2 ∈ L♯ → 𝑃2
with special case $1 = $2 to characterize abstract domain completeness in abstract interpretation
[42, 43, 68]. After [14], the generalized algebraic noninterference is GANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈P . ∃"̄ ∈ P . ∀#1,#2 ∈ L♯+ . ∀#̄ ∈ "̄ . ⟨#̄, #1⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#̄, post♯("2)#2⟩ ∈ 𝐿" }. ∎
6.2 The Algebraic Program Semantic (Hyper) Properties Transformer
When considering semantic properties in extension, the traditional view of transformers is that
they now belong to ℘(L♯)→ ℘(L♯) with

Post♯ ∈ L♯ → ℘(L♯) ↗$→℘(L♯)
Post♯(")P ≜ {post♯(")# ∣ # ∈ P} (31)

[5, 29, 30, 67] are all instances of this definition. The advantage is that logical implication is the
traditional ⊆. But the classic structural definition (see sect. 3.2) of the transformer Post♯ fails (unless
restrictions are placed on the considered hyperproperties). For the conditional

Post♯!if (B) S1 else S2"♯P
= {post♯!if (B) S1 else S2"♯# ∣ # ∈ P} #def. (31) of Post♯(")$
= {post♯!B;S1"♯# ⊔♯ post♯!¬B;S2"♯# ∣ # ∈ P} #(27)$ (32)
⊆ {post♯!B;S1"♯#1 ⊔♯ post♯!¬B;S2"♯#2 ∣ #1 ∈ P ∧ #2 ∈ P} #def. ⊆$ (33)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈{post♯!B;S1"♯#1 ∣ #1 ∈P} ∧𝑄2 ∈{post♯!¬B;S2"♯#2 ∣ #2 ∈P}} #def. ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈Post♯!B;S1"♯P ∧𝑄2 ∈Post♯!¬B;S2"♯P} #def. (31) of Post♯(")$
The problem is that in (32) the two possible executions of the conditional are tight together,
whereas, by necessity of traditional independent structural induction on both branches of the
conditional, this link is lost in (33). So the hypercollecting semantics of [5, p. 877] is incomplete
(the inclusion (33) may be strict). A solution to preserve structurality is to observe that

{post♯(")#} = Post♯("){#} (34)
so that the calculation goes on at (32)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ {post♯!B;S1"♯#} ∧𝑄2 ∈ {post♯!¬B;S2"♯#} ∧ # ∈ P} #def. singleton and ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯!B;S1"♯{#} ∧𝑄2 ∈ Post♯!¬B;S2"♯{#} ∧ # ∈ P} #def. (31) of Post♯(")$
so that Post♯!if (B) S1 else S2"♯ is exactly defined structurally as a function of the components
Post♯!B;S1"♯ and Post♯!¬B;S2"♯.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:14 P. Cousot and J. Wang

Of course, this element wise reasoning may be considered inelegant. Its necessity becomes more
clear when considering the trace semantics of sect. B. When reasoning on paths e.g. in an iteration
statement, the same paths must be considered consistently at each iteration.This requirement may
be lifted after abstraction, for example with invariants which forget about computation history. For
backward reasonings, we define Pre such that for all 𝐿 ∈ L♯, we have A◯

Pre(𝐿)Q ≜ {" ∣ post♯(𝐿)" ∈ Q} (35) ⟨℘(L♯), ⊆⟩ −−−−−−−−−→←−−−−−−−−−
Post♯(!)
Pre(!) ⟨℘(L♯), ⊆⟩ (36)

If D♯ is a well-defined chain-complete lattice with right finite "⊔ preservation composition !♯
then we have ("⊔, # ∈ {+,∞}, stands for ⊔♯+ in definition 3.2.A when # = + and for ⊔♯∞ in definition
3.2.C when # =∞) A◯

Post♯(𝐿1 "⊔ 𝐿2)P = (Post♯(𝐿1) "⊔ Post♯(𝐿2))P (37)
where (𝐿1 "⊔ 𝐿2)P ≜ {$1 "⊔$2 ∣ $1 ∈ 𝐿1{"} ∧$2 ∈ 𝐿2{"} ∧ " ∈ P}

RemaRK 6.2. Contrary to join preservation lemma 5.1 for post, Post may not preserve existing
joins and meets so that, in general, ⊔

#∈ΔPost
♯(𝐿#) ≠ Post♯(⊔

#∈Δ𝐿#) and dually. For example, let P be

a semantic property. By (31), ⊔♯+
$∈N Post

♯(("B ! S#♯)$)P = ⊔♯+
$∈N{post♯(("B ! S#♯)$)" ∣ " ∈ P} is the set

of finite executions, for every precondition " ∈ P , reaching the entry of the iteration while(B) S
after exactly 𝑃 terminating body iterations, for all 𝑃 ∈ N. On the contrary Post♯(⊔♯+

$∈N("B ! S#♯)$)P =

{post♯(⊔♯+
$∈N("B ! S#♯)$)" ∣ " ∈ P} = {⊔♯+

$∈N post
♯(("B ! S#♯)$)" ∣ " ∈ P} is the set of finite executions,

for every precondition " ∈ P , reaching the entry of the iteration while(B) S after any number of
terminating body iterations. ∎

6.3 A Calculus of Algebraic Semantic (Hyper) Properties
In the calculational design of the Post♯, we will need the following trivial proposition.

PRoposition 6.3 (Singleton fixpoint). There is an obvious isomorphism between a poset ⟨𝑄, ⊑, (,⊔⟩ and its singletons ⟨𝑄̆, ⊑̆, (̆, ⊔̆⟩with 𝑄̆ ≜ {{#} ∣ # ∈ 𝑄}, {#}⊑̆{𝑅} ≜ # ⊑ 𝑅, (̆ ≜ {(}, {#}⊔̆{𝑅} ≜ {#⊔𝑅},
so that, for a increasing chain complete poset we have {lfp⊑ 𝑆} = {⊔𝑃∈O 𝑆𝑃} = ⊔̆𝑃∈O{𝑆𝑃} = lfp ⊑̆ 𝑆
where ⟨𝑆𝑃 , 𝑇 ∈ O⟩ are the transfinite iterates of 𝑆 from (and 𝑆({#}) ≜ {𝑆(#)}. Dually for greatest
fixpoints.

We derive the sound and complete Post♯ calculus by calculational design, as follows.

TheoRem 6.4 (PRogRam semantic (hypeR) pRopeRty calculus). A◯ If D♯ is a well-defined in-
creasing and decreasing chain-complete join semilattice with right upper continuous sequential com-
position !♯ then

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Google, 2025/09/17 © P. Cousot

Structural fixpoint characterization
of the hyperproperty transformer

64

Google, 2025/09/17 © P. Cousot65

Incomplete structural characterization of Post#(S)

• Counter-example 
 
 
 
 

 
• This structural collecting semantics (*) is incomplete

Calculational Design of Hyperlogics by Abstract Interpretation 16:13

6 A Calculus of Algebraic Program Semantic (Hyper) Properties
We now study proof methods for semantic properties, that is properties of the semantics, that we
define in extension. This is called hyperproperties when the semantics is a set of traces [13, 14],
and by extension, for their abstractions, in particular to relational semantics.

6.1 Algebraic Semantic (Hyper) Properties
Defined in extension, program semantic properties are in ℘(L♯).

Example 6.1 (Algebraic noninterference). Noninterference [46], can be generalized to semantic
(hyper) properties of algebraic semantics, as follows.The precondition 𝐿! ∈ ℘(L♯+×L♯+) is a relation
between prelude executions extended to L♯ by (14). The postcondition 𝐿" ∈ ℘(L♯×L♯) is a relation
between terminated or infinite executions. Then algebraic noninterference is ANI ≜ {P ∈ ℘(L♯) ∣∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . ⟨#1, #2⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#1, post♯("2)#2⟩ ∈ 𝐿" }. An instance
is algebraic abstract noninterference AANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . $1(#1) =
$1(#2) !⇒ $2(post♯("1)#1) = $2(post♯("2)#2)} for abstractions $1 ∈ L♯ → 𝑃1 and $2 ∈ L♯ → 𝑃2
with special case $1 = $2 to characterize abstract domain completeness in abstract interpretation
[42, 43, 68]. After [14], the generalized algebraic noninterference is GANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈P . ∃"̄ ∈ P . ∀#1,#2 ∈ L♯+ . ∀#̄ ∈ "̄ . ⟨#̄, #1⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#̄, post♯("2)#2⟩ ∈ 𝐿" }. ∎
6.2 The Algebraic Program Semantic (Hyper) Properties Transformer
When considering semantic properties in extension, the traditional view of transformers is that
they now belong to ℘(L♯)→ ℘(L♯) with

Post♯ ∈ L♯ → ℘(L♯) ↗$→℘(L♯)
Post♯(")P ≜ {post♯(")# ∣ # ∈ P} (31)

[5, 29, 30, 67] are all instances of this definition. The advantage is that logical implication is the
traditional ⊆. But the classic structural definition (see sect. 3.2) of the transformer Post♯ fails (unless
restrictions are placed on the considered hyperproperties). For the conditional

Post♯!if (B) S1 else S2"♯P
= {post♯!if (B) S1 else S2"♯# ∣ # ∈ P} #def. (31) of Post♯(")$
= {post♯!B;S1"♯# ⊔♯ post♯!¬B;S2"♯# ∣ # ∈ P} #(27)$ (32)
⊆ {post♯!B;S1"♯#1 ⊔♯ post♯!¬B;S2"♯#2 ∣ #1 ∈ P ∧ #2 ∈ P} #def. ⊆$ (33)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈{post♯!B;S1"♯#1 ∣ #1 ∈P} ∧𝑄2 ∈{post♯!¬B;S2"♯#2 ∣ #2 ∈P}} #def. ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈Post♯!B;S1"♯P ∧𝑄2 ∈Post♯!¬B;S2"♯P} #def. (31) of Post♯(")$
The problem is that in (32) the two possible executions of the conditional are tight together,
whereas, by necessity of traditional independent structural induction on both branches of the
conditional, this link is lost in (33). So the hypercollecting semantics of [5, p. 877] is incomplete
(the inclusion (33) may be strict). A solution to preserve structurality is to observe that

{post♯(")#} = Post♯("){#} (34)
so that the calculation goes on at (32)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ {post♯!B;S1"♯#} ∧𝑄2 ∈ {post♯!¬B;S2"♯#} ∧ # ∈ P} #def. singleton and ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯!B;S1"♯{#} ∧𝑄2 ∈ Post♯!¬B;S2"♯{#} ∧ # ∈ P} #def. (31) of Post♯(")$
so that Post♯!if (B) S1 else S2"♯ is exactly defined structurally as a function of the components
Post♯!B;S1"♯ and Post♯!¬B;S2"♯.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Calculational Design of Hyperlogics by Abstract Interpretation 16:13

6 A Calculus of Algebraic Program Semantic (Hyper) Properties
We now study proof methods for semantic properties, that is properties of the semantics, that we
define in extension. This is called hyperproperties when the semantics is a set of traces [13, 14],
and by extension, for their abstractions, in particular to relational semantics.

6.1 Algebraic Semantic (Hyper) Properties
Defined in extension, program semantic properties are in ℘(L♯).

Example 6.1 (Algebraic noninterference). Noninterference [46], can be generalized to semantic
(hyper) properties of algebraic semantics, as follows.The precondition 𝐿! ∈ ℘(L♯+×L♯+) is a relation
between prelude executions extended to L♯ by (14). The postcondition 𝐿" ∈ ℘(L♯×L♯) is a relation
between terminated or infinite executions. Then algebraic noninterference is ANI ≜ {P ∈ ℘(L♯) ∣∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . ⟨#1, #2⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#1, post♯("2)#2⟩ ∈ 𝐿" }. An instance
is algebraic abstract noninterference AANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . $1(#1) =
$1(#2) !⇒ $2(post♯("1)#1) = $2(post♯("2)#2)} for abstractions $1 ∈ L♯ → 𝑃1 and $2 ∈ L♯ → 𝑃2
with special case $1 = $2 to characterize abstract domain completeness in abstract interpretation
[42, 43, 68]. After [14], the generalized algebraic noninterference is GANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈P . ∃"̄ ∈ P . ∀#1,#2 ∈ L♯+ . ∀#̄ ∈ "̄ . ⟨#̄, #1⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#̄, post♯("2)#2⟩ ∈ 𝐿" }. ∎
6.2 The Algebraic Program Semantic (Hyper) Properties Transformer
When considering semantic properties in extension, the traditional view of transformers is that
they now belong to ℘(L♯)→ ℘(L♯) with

Post♯ ∈ L♯ → ℘(L♯) ↗$→℘(L♯)
Post♯(")P ≜ {post♯(")# ∣ # ∈ P} (31)

[5, 29, 30, 67] are all instances of this definition. The advantage is that logical implication is the
traditional ⊆. But the classic structural definition (see sect. 3.2) of the transformer Post♯ fails (unless
restrictions are placed on the considered hyperproperties). For the conditional

Post♯!if (B) S1 else S2"♯P
= {post♯!if (B) S1 else S2"♯# ∣ # ∈ P} #def. (31) of Post♯(")$
= {post♯!B;S1"♯# ⊔♯ post♯!¬B;S2"♯# ∣ # ∈ P} #(27)$ (32)
⊆ {post♯!B;S1"♯#1 ⊔♯ post♯!¬B;S2"♯#2 ∣ #1 ∈ P ∧ #2 ∈ P} #def. ⊆$ (33)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈{post♯!B;S1"♯#1 ∣ #1 ∈P} ∧𝑄2 ∈{post♯!¬B;S2"♯#2 ∣ #2 ∈P}} #def. ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈Post♯!B;S1"♯P ∧𝑄2 ∈Post♯!¬B;S2"♯P} #def. (31) of Post♯(")$
The problem is that in (32) the two possible executions of the conditional are tight together,
whereas, by necessity of traditional independent structural induction on both branches of the
conditional, this link is lost in (33). So the hypercollecting semantics of [5, p. 877] is incomplete
(the inclusion (33) may be strict). A solution to preserve structurality is to observe that

{post♯(")#} = Post♯("){#} (34)
so that the calculation goes on at (32)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ {post♯!B;S1"♯#} ∧𝑄2 ∈ {post♯!¬B;S2"♯#} ∧ # ∈ P} #def. singleton and ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯!B;S1"♯{#} ∧𝑄2 ∈ Post♯!¬B;S2"♯{#} ∧ # ∈ P} #def. (31) of Post♯(")$
so that Post♯!if (B) S1 else S2"♯ is exactly defined structurally as a function of the components
Post♯!B;S1"♯ and Post♯!¬B;S2"♯.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Calculational Design of Hyperlogics by Abstract Interpretation 16:13

6 A Calculus of Algebraic Program Semantic (Hyper) Properties
We now study proof methods for semantic properties, that is properties of the semantics, that we
define in extension. This is called hyperproperties when the semantics is a set of traces [13, 14],
and by extension, for their abstractions, in particular to relational semantics.

6.1 Algebraic Semantic (Hyper) Properties
Defined in extension, program semantic properties are in ℘(L♯).

Example 6.1 (Algebraic noninterference). Noninterference [46], can be generalized to semantic
(hyper) properties of algebraic semantics, as follows.The precondition 𝐿! ∈ ℘(L♯+×L♯+) is a relation
between prelude executions extended to L♯ by (14). The postcondition 𝐿" ∈ ℘(L♯×L♯) is a relation
between terminated or infinite executions. Then algebraic noninterference is ANI ≜ {P ∈ ℘(L♯) ∣∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . ⟨#1, #2⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#1, post♯("2)#2⟩ ∈ 𝐿" }. An instance
is algebraic abstract noninterference AANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . $1(#1) =
$1(#2) !⇒ $2(post♯("1)#1) = $2(post♯("2)#2)} for abstractions $1 ∈ L♯ → 𝑃1 and $2 ∈ L♯ → 𝑃2
with special case $1 = $2 to characterize abstract domain completeness in abstract interpretation
[42, 43, 68]. After [14], the generalized algebraic noninterference is GANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈P . ∃"̄ ∈ P . ∀#1,#2 ∈ L♯+ . ∀#̄ ∈ "̄ . ⟨#̄, #1⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#̄, post♯("2)#2⟩ ∈ 𝐿" }. ∎
6.2 The Algebraic Program Semantic (Hyper) Properties Transformer
When considering semantic properties in extension, the traditional view of transformers is that
they now belong to ℘(L♯)→ ℘(L♯) with

Post♯ ∈ L♯ → ℘(L♯) ↗$→℘(L♯)
Post♯(")P ≜ {post♯(")# ∣ # ∈ P} (31)

[5, 29, 30, 67] are all instances of this definition. The advantage is that logical implication is the
traditional ⊆. But the classic structural definition (see sect. 3.2) of the transformer Post♯ fails (unless
restrictions are placed on the considered hyperproperties). For the conditional

Post♯!if (B) S1 else S2"♯P
= {post♯!if (B) S1 else S2"♯# ∣ # ∈ P} #def. (31) of Post♯(")$
= {post♯!B;S1"♯# ⊔♯ post♯!¬B;S2"♯# ∣ # ∈ P} #(27)$ (32)
⊆ {post♯!B;S1"♯#1 ⊔♯ post♯!¬B;S2"♯#2 ∣ #1 ∈ P ∧ #2 ∈ P} #def. ⊆$ (33)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈{post♯!B;S1"♯#1 ∣ #1 ∈P} ∧𝑄2 ∈{post♯!¬B;S2"♯#2 ∣ #2 ∈P}} #def. ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈Post♯!B;S1"♯P ∧𝑄2 ∈Post♯!¬B;S2"♯P} #def. (31) of Post♯(")$
The problem is that in (32) the two possible executions of the conditional are tight together,
whereas, by necessity of traditional independent structural induction on both branches of the
conditional, this link is lost in (33). So the hypercollecting semantics of [5, p. 877] is incomplete
(the inclusion (33) may be strict). A solution to preserve structurality is to observe that

{post♯(")#} = Post♯("){#} (34)
so that the calculation goes on at (32)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ {post♯!B;S1"♯#} ∧𝑄2 ∈ {post♯!¬B;S2"♯#} ∧ # ∈ P} #def. singleton and ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯!B;S1"♯{#} ∧𝑄2 ∈ Post♯!¬B;S2"♯{#} ∧ # ∈ P} #def. (31) of Post♯(")$
so that Post♯!if (B) S1 else S2"♯ is exactly defined structurally as a function of the components
Post♯!B;S1"♯ and Post♯!¬B;S2"♯.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

(*)

Calculational Design of Hyperlogics by Abstract Interpretation 16:13

6 A Calculus of Algebraic Program Semantic (Hyper) Properties
We now study proof methods for semantic properties, that is properties of the semantics, that we
define in extension. This is called hyperproperties when the semantics is a set of traces [13, 14],
and by extension, for their abstractions, in particular to relational semantics.

6.1 Algebraic Semantic (Hyper) Properties
Defined in extension, program semantic properties are in ℘(L♯).

Example 6.1 (Algebraic noninterference). Noninterference [46], can be generalized to semantic
(hyper) properties of algebraic semantics, as follows.The precondition 𝐿! ∈ ℘(L♯+×L♯+) is a relation
between prelude executions extended to L♯ by (14). The postcondition 𝐿" ∈ ℘(L♯×L♯) is a relation
between terminated or infinite executions. Then algebraic noninterference is ANI ≜ {P ∈ ℘(L♯) ∣∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . ⟨#1, #2⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#1, post♯("2)#2⟩ ∈ 𝐿" }. An instance
is algebraic abstract noninterference AANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . $1(#1) =
$1(#2) !⇒ $2(post♯("1)#1) = $2(post♯("2)#2)} for abstractions $1 ∈ L♯ → 𝑃1 and $2 ∈ L♯ → 𝑃2
with special case $1 = $2 to characterize abstract domain completeness in abstract interpretation
[42, 43, 68]. After [14], the generalized algebraic noninterference is GANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈P . ∃"̄ ∈ P . ∀#1,#2 ∈ L♯+ . ∀#̄ ∈ "̄ . ⟨#̄, #1⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#̄, post♯("2)#2⟩ ∈ 𝐿" }. ∎
6.2 The Algebraic Program Semantic (Hyper) Properties Transformer
When considering semantic properties in extension, the traditional view of transformers is that
they now belong to ℘(L♯)→ ℘(L♯) with

Post♯ ∈ L♯ → ℘(L♯) ↗$→℘(L♯)
Post♯(")P ≜ {post♯(")# ∣ # ∈ P} (31)

[5, 29, 30, 67] are all instances of this definition. The advantage is that logical implication is the
traditional ⊆. But the classic structural definition (see sect. 3.2) of the transformer Post♯ fails (unless
restrictions are placed on the considered hyperproperties). For the conditional

Post♯!if (B) S1 else S2"♯P
= {post♯!if (B) S1 else S2"♯# ∣ # ∈ P} #def. (31) of Post♯(")$
= {post♯!B;S1"♯# ⊔♯ post♯!¬B;S2"♯# ∣ # ∈ P} #(27)$ (32)
⊆ {post♯!B;S1"♯#1 ⊔♯ post♯!¬B;S2"♯#2 ∣ #1 ∈ P ∧ #2 ∈ P} #def. ⊆$ (33)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈{post♯!B;S1"♯#1 ∣ #1 ∈P} ∧𝑄2 ∈{post♯!¬B;S2"♯#2 ∣ #2 ∈P}} #def. ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈Post♯!B;S1"♯P ∧𝑄2 ∈Post♯!¬B;S2"♯P} #def. (31) of Post♯(")$
The problem is that in (32) the two possible executions of the conditional are tight together,
whereas, by necessity of traditional independent structural induction on both branches of the
conditional, this link is lost in (33). So the hypercollecting semantics of [5, p. 877] is incomplete
(the inclusion (33) may be strict). A solution to preserve structurality is to observe that

{post♯(")#} = Post♯("){#} (34)
so that the calculation goes on at (32)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ {post♯!B;S1"♯#} ∧𝑄2 ∈ {post♯!¬B;S2"♯#} ∧ # ∈ P} #def. singleton and ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯!B;S1"♯{#} ∧𝑄2 ∈ Post♯!¬B;S2"♯{#} ∧ # ∈ P} #def. (31) of Post♯(")$
so that Post♯!if (B) S1 else S2"♯ is exactly defined structurally as a function of the components
Post♯!B;S1"♯ and Post♯!¬B;S2"♯.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Calculational Design of Hyperlogics by Abstract Interpretation 16:31

[23] Patrick Cousot and Radhia Cousot. 1979. Constructive Versions of Tarski’s Fixed Point Theorems. Pacific J. of Math.
82, 1 (1979), 43–57. https://doi.org/10.2140/pjm.1979.82.43

[24] Patrick Cousot and Radhia Cousot. 1992. Inductive Definitions, Semantics and Abstract Interpretation. In POPL. ACM
Press, 83–94. https://doi.org/10.1145/143165.143184

[25] Patrick Cousot and Radhia Cousot. 1995. Compositional and Inductive Semantic Definitions in Fixpoint, Equational,
Constraint, Closure-condition, Rule-based and Game-Theoretic Form. In CAV (Lecture Notes in Computer Science,
Vol. 939). Springer, 293–308. https://doi.org/10.1007/3-540-60045-0_58

[26] Patrick Cousot and Radhia Cousot. 2009. Bi-inductive structural semantics. Inf. Comput. 207, 2 (2009), 258–283.
https://doi.org/10.1016/J.IC.2008.03.025

[27] Patrick Cousot and Radhia Cousot. 2012. An abstract interpretation framework for termination. In POPL. ACM, 245–
258. https://doi.org/10.1145/2103656.2103687

[28] Patrick Cousot, Radhia Cousot, Francesco Logozzo, and Michael Barnett. 2012. An abstract interpretation framework
for refactoring with application to extract methods with contracts. In OOPSLA. ACM, 213–232. https://doi.org/10.
1145/2384616.2384633

[29] Thibault Dardinier. 2024. Formalization of Hyper Hoare Logic: A Logic to (Dis-)Prove ProgramHyperproperties. Arch.
Formal Proofs, 2023. https://www.isa-afp.org/entries/HyperHoareLogic.html

[30] Thibault Dardinier and Peter Müller. 2024. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties. Proceedings
of the ACM on Programming Languages (PACMPL) 8, Issue PLDI, Article No.: 207 (June 2024), 1485–1509. https:
//doi.org/10.1145/3656437

[31] Brian A. Davey and Hilary A. Priestley. 2002. Introduction to Lattices and Order, Second Edition. Cambridge University
Press. https://doi.org/10.1017/CBO9780511809088

[32] Edsko de Vries and Vasileios Koutavas. 2011. Reverse Hoare Logic. In SEFM (Lecture Notes in Computer Science,
Vol. 7041). Springer, 155–171. https://doi.org/10.1007/978-3-642-24690-6_12

[33] Jerry den Hartog and Erik P. de Vink. 2002. Verifying Probabilistic Programs Using a Hoare Like Logic. Int. J. Found.
Comput. Sci. 13, 3 (2002), 315–340. https://doi.org/10.1142/S012905410200114X

[34] Klaus Denecke, Marcel Erné, and Shelly L. Wismath. 2003. Galois Connections and Applications. Kluwer Academic
Publishers. https://doi.org/10.1007/978-1-4020-1898-5

[35] Robert Dickerson, Qianchuan Ye, Michael K. Zhang, and Benjamin Delaware. 2022. RHLE: Modular Deductive Ver-
ification of Relational ∀ ∃ Properties. In APLAS (Lecture Notes in Computer Science, Vol. 13658). Springer, 67–87.
https://doi.org/10.1007/978-3-031-21037-2_4

[36] Edsger W. Dijkstra. 1978. Program Inversion. In Program Construction, International Summer School, July 26 - August
6, 1978, Marktoberdorf, Germany (Lecture Notes in Computer Science, Vol. 69), Friedrich L. Bauer and Manfred Broy
(Eds.). Springer, 54–57. https://doi.org/10.1007/BFB0014657

[37] Andrei P. Ershov. 1979. Abstract computability on algebraic structures. In Algorithms in Modern Mathematics and
Computer Science (Lecture Notes in Computer Science, Vol. 122). Springer, 397–420. https://doi.org/10.1007/3-540-
11157-3_38

[38] M. Escardó. 2003. Joins in the frame of nuclei. Applied Categorical Structures 11, 2 (April 2003), 117–124.
[39] Yuan Feng and Sanjiang Li. 2023. Abstract interpretation, Hoare logic, and incorrectness logic for quantum programs.

Inf. Comput. 294 (2023), 105077. https://doi.org/10.1016/J.IC.2023.105077
[40] Bernd Finkbeiner and Christopher Hahn. 2016. Deciding Hyperproperties. In CONCUR (LIPIcs, Vol. 59). Schloss

Dagstuhl - Leibniz-Zentrum für Informatik, 13:1–13:14. https://doi.org/10.4230/LIPICS.CONCUR.2016.13
[41] Roberto Giacobazzi and Isabella Mastroeni. 2005. Transforming semantics by abstract interpretation. Theor. Comput.

Sci. 337, 1-3 (2005), 1–50. https://doi.org/10.1016/J.TCS.2004.12.021
[42] Roberto Giacobazzi and Isabella Mastroeni. 2018. Abstract Non-Interference: A Unifying Framework for Weakening

Information-flow. ACM Trans. Priv. Secur. 21, 2 (2018), 9:1–9:31. https://doi.org/10.1145/3175660
[43] Roberto Giacobazzi, Isabella Mastroeni, and Elia Perantoni. 2024. Adversities in Abstract Interpretation - Accommo-

dating Robustness by Abstract Interpretation. ACM Trans. Program. Lang. Syst. 46, 2 (2024), 5. https://doi.org/10.1145/
3649309

[44] Joseph A. Goguen. 1974. On Homomorphisms, Correctness, Termination, Unfoldments, and Equivalence of Flow
Diagram Programs. J. Comput. Syst. Sci. 8, 3 (1974), 333–365. https://doi.org/10.1016/S0022-0000(74)80028-0

[45] Joseph A. Goguen and Grant Malcolm. 1996. Algebraic semantics of imperative programs. MIT Press.
[46] Joseph A. Goguen and José Meseguer. 1977. Correctness of Recursive Flow Diagram Programs. InMFCS (Lecture Notes

in Computer Science, Vol. 53). Springer, 580–595. https://doi.org/10.1007/3-540-08353-7_183
[47] Joseph A. Goguen and José Meseguer. 1982. Security Policies and Security Models. In S&P. IEEE Computer Society,

11–20. https://doi.org/10.1109/SP.1982.10014
[48] Joseph A. Goguen and José Meseguer. 1984. Unwinding and Inference Control. In S&P. IEEE Computer Society, 75–87.

https://doi.org/10.1109/SP.1984.10019

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Google, 2025/09/17 © P. Cousot66

Complete structural characterization of Post#(S)

• Example: 
 
 
 
 

•

Calculational Design of Hyperlogics by Abstract Interpretation 16:13

6 A Calculus of Algebraic Program Semantic (Hyper) Properties
We now study proof methods for semantic properties, that is properties of the semantics, that we
define in extension. This is called hyperproperties when the semantics is a set of traces [13, 14],
and by extension, for their abstractions, in particular to relational semantics.

6.1 Algebraic Semantic (Hyper) Properties
Defined in extension, program semantic properties are in ℘(L♯).

Example 6.1 (Algebraic noninterference). Noninterference [46], can be generalized to semantic
(hyper) properties of algebraic semantics, as follows.The precondition 𝐿! ∈ ℘(L♯+×L♯+) is a relation
between prelude executions extended to L♯ by (14). The postcondition 𝐿" ∈ ℘(L♯×L♯) is a relation
between terminated or infinite executions. Then algebraic noninterference is ANI ≜ {P ∈ ℘(L♯) ∣∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . ⟨#1, #2⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#1, post♯("2)#2⟩ ∈ 𝐿" }. An instance
is algebraic abstract noninterference AANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . $1(#1) =
$1(#2) !⇒ $2(post♯("1)#1) = $2(post♯("2)#2)} for abstractions $1 ∈ L♯ → 𝑃1 and $2 ∈ L♯ → 𝑃2
with special case $1 = $2 to characterize abstract domain completeness in abstract interpretation
[42, 43, 68]. After [14], the generalized algebraic noninterference is GANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈P . ∃"̄ ∈ P . ∀#1,#2 ∈ L♯+ . ∀#̄ ∈ "̄ . ⟨#̄, #1⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#̄, post♯("2)#2⟩ ∈ 𝐿" }. ∎
6.2 The Algebraic Program Semantic (Hyper) Properties Transformer
When considering semantic properties in extension, the traditional view of transformers is that
they now belong to ℘(L♯)→ ℘(L♯) with

Post♯ ∈ L♯ → ℘(L♯) ↗$→℘(L♯)
Post♯(")P ≜ {post♯(")# ∣ # ∈ P} (31)

[5, 29, 30, 67] are all instances of this definition. The advantage is that logical implication is the
traditional ⊆. But the classic structural definition (see sect. 3.2) of the transformer Post♯ fails (unless
restrictions are placed on the considered hyperproperties). For the conditional

Post♯!if (B) S1 else S2"♯P
= {post♯!if (B) S1 else S2"♯# ∣ # ∈ P} #def. (31) of Post♯(")$
= {post♯!B;S1"♯# ⊔♯ post♯!¬B;S2"♯# ∣ # ∈ P} #(27)$ (32)
⊆ {post♯!B;S1"♯#1 ⊔♯ post♯!¬B;S2"♯#2 ∣ #1 ∈ P ∧ #2 ∈ P} #def. ⊆$ (33)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈{post♯!B;S1"♯#1 ∣ #1 ∈P} ∧𝑄2 ∈{post♯!¬B;S2"♯#2 ∣ #2 ∈P}} #def. ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈Post♯!B;S1"♯P ∧𝑄2 ∈Post♯!¬B;S2"♯P} #def. (31) of Post♯(")$
The problem is that in (32) the two possible executions of the conditional are tight together,
whereas, by necessity of traditional independent structural induction on both branches of the
conditional, this link is lost in (33). So the hypercollecting semantics of [5, p. 877] is incomplete
(the inclusion (33) may be strict). A solution to preserve structurality is to observe that

{post♯(")#} = Post♯("){#} (34)
so that the calculation goes on at (32)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ {post♯!B;S1"♯#} ∧𝑄2 ∈ {post♯!¬B;S2"♯#} ∧ # ∈ P} #def. singleton and ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯!B;S1"♯{#} ∧𝑄2 ∈ Post♯!¬B;S2"♯{#} ∧ # ∈ P} #def. (31) of Post♯(")$
so that Post♯!if (B) S1 else S2"♯ is exactly defined structurally as a function of the components
Post♯!B;S1"♯ and Post♯!¬B;S2"♯.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Calculational Design of Hyperlogics by Abstract Interpretation 16:13

6 A Calculus of Algebraic Program Semantic (Hyper) Properties
We now study proof methods for semantic properties, that is properties of the semantics, that we
define in extension. This is called hyperproperties when the semantics is a set of traces [13, 14],
and by extension, for their abstractions, in particular to relational semantics.

6.1 Algebraic Semantic (Hyper) Properties
Defined in extension, program semantic properties are in ℘(L♯).

Example 6.1 (Algebraic noninterference). Noninterference [46], can be generalized to semantic
(hyper) properties of algebraic semantics, as follows.The precondition 𝐿! ∈ ℘(L♯+×L♯+) is a relation
between prelude executions extended to L♯ by (14). The postcondition 𝐿" ∈ ℘(L♯×L♯) is a relation
between terminated or infinite executions. Then algebraic noninterference is ANI ≜ {P ∈ ℘(L♯) ∣∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . ⟨#1, #2⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#1, post♯("2)#2⟩ ∈ 𝐿" }. An instance
is algebraic abstract noninterference AANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . $1(#1) =
$1(#2) !⇒ $2(post♯("1)#1) = $2(post♯("2)#2)} for abstractions $1 ∈ L♯ → 𝑃1 and $2 ∈ L♯ → 𝑃2
with special case $1 = $2 to characterize abstract domain completeness in abstract interpretation
[42, 43, 68]. After [14], the generalized algebraic noninterference is GANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈P . ∃"̄ ∈ P . ∀#1,#2 ∈ L♯+ . ∀#̄ ∈ "̄ . ⟨#̄, #1⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#̄, post♯("2)#2⟩ ∈ 𝐿" }. ∎
6.2 The Algebraic Program Semantic (Hyper) Properties Transformer
When considering semantic properties in extension, the traditional view of transformers is that
they now belong to ℘(L♯)→ ℘(L♯) with

Post♯ ∈ L♯ → ℘(L♯) ↗$→℘(L♯)
Post♯(")P ≜ {post♯(")# ∣ # ∈ P} (31)

[5, 29, 30, 67] are all instances of this definition. The advantage is that logical implication is the
traditional ⊆. But the classic structural definition (see sect. 3.2) of the transformer Post♯ fails (unless
restrictions are placed on the considered hyperproperties). For the conditional

Post♯!if (B) S1 else S2"♯P
= {post♯!if (B) S1 else S2"♯# ∣ # ∈ P} #def. (31) of Post♯(")$
= {post♯!B;S1"♯# ⊔♯ post♯!¬B;S2"♯# ∣ # ∈ P} #(27)$ (32)
⊆ {post♯!B;S1"♯#1 ⊔♯ post♯!¬B;S2"♯#2 ∣ #1 ∈ P ∧ #2 ∈ P} #def. ⊆$ (33)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈{post♯!B;S1"♯#1 ∣ #1 ∈P} ∧𝑄2 ∈{post♯!¬B;S2"♯#2 ∣ #2 ∈P}} #def. ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈Post♯!B;S1"♯P ∧𝑄2 ∈Post♯!¬B;S2"♯P} #def. (31) of Post♯(")$
The problem is that in (32) the two possible executions of the conditional are tight together,
whereas, by necessity of traditional independent structural induction on both branches of the
conditional, this link is lost in (33). So the hypercollecting semantics of [5, p. 877] is incomplete
(the inclusion (33) may be strict). A solution to preserve structurality is to observe that

{post♯(")#} = Post♯("){#} (34)
so that the calculation goes on at (32)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ {post♯!B;S1"♯#} ∧𝑄2 ∈ {post♯!¬B;S2"♯#} ∧ # ∈ P} #def. singleton and ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯!B;S1"♯{#} ∧𝑄2 ∈ Post♯!¬B;S2"♯{#} ∧ # ∈ P} #def. (31) of Post♯(")$
so that Post♯!if (B) S1 else S2"♯ is exactly defined structurally as a function of the components
Post♯!B;S1"♯ and Post♯!¬B;S2"♯.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Calculational Design of Hyperlogics by Abstract Interpretation 16:13

6 A Calculus of Algebraic Program Semantic (Hyper) Properties
We now study proof methods for semantic properties, that is properties of the semantics, that we
define in extension. This is called hyperproperties when the semantics is a set of traces [13, 14],
and by extension, for their abstractions, in particular to relational semantics.

6.1 Algebraic Semantic (Hyper) Properties
Defined in extension, program semantic properties are in ℘(L♯).

Example 6.1 (Algebraic noninterference). Noninterference [46], can be generalized to semantic
(hyper) properties of algebraic semantics, as follows.The precondition 𝐿! ∈ ℘(L♯+×L♯+) is a relation
between prelude executions extended to L♯ by (14). The postcondition 𝐿" ∈ ℘(L♯×L♯) is a relation
between terminated or infinite executions. Then algebraic noninterference is ANI ≜ {P ∈ ℘(L♯) ∣∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . ⟨#1, #2⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#1, post♯("2)#2⟩ ∈ 𝐿" }. An instance
is algebraic abstract noninterference AANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . $1(#1) =
$1(#2) !⇒ $2(post♯("1)#1) = $2(post♯("2)#2)} for abstractions $1 ∈ L♯ → 𝑃1 and $2 ∈ L♯ → 𝑃2
with special case $1 = $2 to characterize abstract domain completeness in abstract interpretation
[42, 43, 68]. After [14], the generalized algebraic noninterference is GANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈P . ∃"̄ ∈ P . ∀#1,#2 ∈ L♯+ . ∀#̄ ∈ "̄ . ⟨#̄, #1⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#̄, post♯("2)#2⟩ ∈ 𝐿" }. ∎
6.2 The Algebraic Program Semantic (Hyper) Properties Transformer
When considering semantic properties in extension, the traditional view of transformers is that
they now belong to ℘(L♯)→ ℘(L♯) with

Post♯ ∈ L♯ → ℘(L♯) ↗$→℘(L♯)
Post♯(")P ≜ {post♯(")# ∣ # ∈ P} (31)

[5, 29, 30, 67] are all instances of this definition. The advantage is that logical implication is the
traditional ⊆. But the classic structural definition (see sect. 3.2) of the transformer Post♯ fails (unless
restrictions are placed on the considered hyperproperties). For the conditional

Post♯!if (B) S1 else S2"♯P
= {post♯!if (B) S1 else S2"♯# ∣ # ∈ P} #def. (31) of Post♯(")$
= {post♯!B;S1"♯# ⊔♯ post♯!¬B;S2"♯# ∣ # ∈ P} #(27)$ (32)
⊆ {post♯!B;S1"♯#1 ⊔♯ post♯!¬B;S2"♯#2 ∣ #1 ∈ P ∧ #2 ∈ P} #def. ⊆$ (33)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈{post♯!B;S1"♯#1 ∣ #1 ∈P} ∧𝑄2 ∈{post♯!¬B;S2"♯#2 ∣ #2 ∈P}} #def. ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈Post♯!B;S1"♯P ∧𝑄2 ∈Post♯!¬B;S2"♯P} #def. (31) of Post♯(")$
The problem is that in (32) the two possible executions of the conditional are tight together,
whereas, by necessity of traditional independent structural induction on both branches of the
conditional, this link is lost in (33). So the hypercollecting semantics of [5, p. 877] is incomplete
(the inclusion (33) may be strict). A solution to preserve structurality is to observe that

{post♯(")#} = Post♯("){#} (34)
so that the calculation goes on at (32)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ {post♯!B;S1"♯#} ∧𝑄2 ∈ {post♯!¬B;S2"♯#} ∧ # ∈ P} #def. singleton and ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯!B;S1"♯{#} ∧𝑄2 ∈ Post♯!¬B;S2"♯{#} ∧ # ∈ P} #def. (31) of Post♯(")$
so that Post♯!if (B) S1 else S2"♯ is exactly defined structurally as a function of the components
Post♯!B;S1"♯ and Post♯!¬B;S2"♯.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Calculational Design of Hyperlogics by Abstract Interpretation 16:13

6 A Calculus of Algebraic Program Semantic (Hyper) Properties
We now study proof methods for semantic properties, that is properties of the semantics, that we
define in extension. This is called hyperproperties when the semantics is a set of traces [13, 14],
and by extension, for their abstractions, in particular to relational semantics.

6.1 Algebraic Semantic (Hyper) Properties
Defined in extension, program semantic properties are in ℘(L♯).

Example 6.1 (Algebraic noninterference). Noninterference [46], can be generalized to semantic
(hyper) properties of algebraic semantics, as follows.The precondition 𝐿! ∈ ℘(L♯+×L♯+) is a relation
between prelude executions extended to L♯ by (14). The postcondition 𝐿" ∈ ℘(L♯×L♯) is a relation
between terminated or infinite executions. Then algebraic noninterference is ANI ≜ {P ∈ ℘(L♯) ∣∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . ⟨#1, #2⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#1, post♯("2)#2⟩ ∈ 𝐿" }. An instance
is algebraic abstract noninterference AANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈ P . ∀#1,#2 ∈ L♯+ . $1(#1) =
$1(#2) !⇒ $2(post♯("1)#1) = $2(post♯("2)#2)} for abstractions $1 ∈ L♯ → 𝑃1 and $2 ∈ L♯ → 𝑃2
with special case $1 = $2 to characterize abstract domain completeness in abstract interpretation
[42, 43, 68]. After [14], the generalized algebraic noninterference is GANI ≜ {P ∈ ℘(L♯) ∣ ∀"1,"2 ∈P . ∃"̄ ∈ P . ∀#1,#2 ∈ L♯+ . ∀#̄ ∈ "̄ . ⟨#̄, #1⟩ ∈ 𝐿! !⇒ ⟨post♯("1)#̄, post♯("2)#2⟩ ∈ 𝐿" }. ∎
6.2 The Algebraic Program Semantic (Hyper) Properties Transformer
When considering semantic properties in extension, the traditional view of transformers is that
they now belong to ℘(L♯)→ ℘(L♯) with

Post♯ ∈ L♯ → ℘(L♯) ↗$→℘(L♯)
Post♯(")P ≜ {post♯(")# ∣ # ∈ P} (31)

[5, 29, 30, 67] are all instances of this definition. The advantage is that logical implication is the
traditional ⊆. But the classic structural definition (see sect. 3.2) of the transformer Post♯ fails (unless
restrictions are placed on the considered hyperproperties). For the conditional

Post♯!if (B) S1 else S2"♯P
= {post♯!if (B) S1 else S2"♯# ∣ # ∈ P} #def. (31) of Post♯(")$
= {post♯!B;S1"♯# ⊔♯ post♯!¬B;S2"♯# ∣ # ∈ P} #(27)$ (32)
⊆ {post♯!B;S1"♯#1 ⊔♯ post♯!¬B;S2"♯#2 ∣ #1 ∈ P ∧ #2 ∈ P} #def. ⊆$ (33)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈{post♯!B;S1"♯#1 ∣ #1 ∈P} ∧𝑄2 ∈{post♯!¬B;S2"♯#2 ∣ #2 ∈P}} #def. ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈Post♯!B;S1"♯P ∧𝑄2 ∈Post♯!¬B;S2"♯P} #def. (31) of Post♯(")$
The problem is that in (32) the two possible executions of the conditional are tight together,
whereas, by necessity of traditional independent structural induction on both branches of the
conditional, this link is lost in (33). So the hypercollecting semantics of [5, p. 877] is incomplete
(the inclusion (33) may be strict). A solution to preserve structurality is to observe that

{post♯(")#} = Post♯("){#} (34)
so that the calculation goes on at (32)
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ {post♯!B;S1"♯#} ∧𝑄2 ∈ {post♯!¬B;S2"♯#} ∧ # ∈ P} #def. singleton and ∈$
= {𝑄1 ⊔♯ 𝑄2 ∣ 𝑄1 ∈ Post♯!B;S1"♯{#} ∧𝑄2 ∈ Post♯!¬B;S2"♯{#} ∧ # ∈ P} #def. (31) of Post♯(")$
so that Post♯!if (B) S1 else S2"♯ is exactly defined structurally as a function of the components
Post♯!B;S1"♯ and Post♯!¬B;S2"♯.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.
• We get a complete elementwise characterization of Post#(S) 
 

Google, 2025/09/17 © P. Cousot

Calculational design of the
algebraic hyperlogic rules

67

Google, 2025/09/17 © P. Cousot68

Upper and lower algebraic hyperlogics

• Definition 
 
 
 

• The proof system is derived by calculational design
(as in POPL 2024)

16:16 P. Cousot and J. Wang

where L♯(𝐿) = ▴"(Post♯)𝐿 .
Defining the upper and lower logic triples

{∣P ∣} S{∣Q ∣} ≜ ⟨P, Q⟩ ∈ L♯!S"♯ = Post♯!S"♯P ⊆ Q = ∀# ∈ P . post♯!S"♯# ∈ Q (51)
{∣P ∣} S{∣Q ∣} ≜ ⟨P, Q⟩ ∈ L♯!S"♯ = Q ⊆ Post♯!S"♯P = ∀$ ∈ Q . ∃# ∈ P . post♯!S"♯# = $

(where for symmetry, we can write {∣P ∣} S{∣Q ∣} ≜ ∀# ∈ P . ∃$ ∈ Q . post♯(𝐿)# = $.) We get
generalizations of Hoare logic [55] and incorrectness logic [32, 75] from execution to semantic
properties.

Example 7.1 (Finitary powerset nondeterministic calculational domain). In [29, 30], the relational
semantics is identical to that of [5] in example 5.7 but for a nondeterministic language. Nonter-
mination is abstracted away. The extended semantics [29, 30, Definition 4] is post♯(𝐿)# = {⟨𝑃,
𝑃 ′′⟩ ∣ ∃𝑃 ′ ∈ Σ . ⟨𝑃, 𝑃 ′⟩ ∈ # ∧ ⟨𝑃 ′, 𝑃 ′′⟩ ∈ 𝐿}, the same as in example 5.7. Hyper-triples {∣P ∣} S{∣Q ∣}
are defined in [29, 30, Definition 5] to be the powerset instance of (51), the same instance used in
example 5.7. ∎

The upper and lower abstract logics can always be expressed in terms of singleton (although the
equivalent formula is not part of the logic).

Lemma 7.2. A◯ {∣P ∣} S{∣Q ∣} ⇔ ∀# ∈ P . ∃$ ∈ Q . {∣{#} ∣} S{∣{$} ∣} (a){∣P ∣} S{∣Q ∣} ⇔ ∀$ ∈ Q . ∃# ∈ P . {∣{#} ∣} S{∣{$} ∣} (b)

CoRollaRy 7.3. A◯ (∃# ∈ P . {∣{#} ∣} S{∣{$} ∣})⇔ {∣P ∣} S{∣{$} ∣}.
For singletons, the two logics are equivalent.

Lemma 7.4. A◯ For all #,$ ∈ L♯, {∣{#} ∣} S{∣{$} ∣} = {∣{#} ∣} S{∣{$} ∣}.
7.2 The Proof Systems of the Upper and Lower Abstract Logics
Since the definition (38)—(47) of Post♯!S"♯ by a Hilbert proof system is structural, it is the same for
the logics. Following [21], this is obtained by Aczel correspondance between set-based fixpoints
and proof rules [2]. For iteration fixpoint, over-approximation is provided by [21, th. II.3.4] gen-
eralizing Park fixpoint induction [77], whereas under-approximation can be handled by [21, th.
II.3.6] generalizing Scott’s induction or [21, th. II.3.8] generalizing Turing/Floyd variant functions.

Therefore the sound and complete Hilbert deductive system can be designed calculationally to
be the following (where P,Q ∈ ℘(L♯), ' and {∣P ∣} S{∣Q ∣} are respectively ⊆ and {∣P ∣} S{∣Q ∣} for
the Upper Abstract Logic and ⊇ and {∣P ∣} S{∣Q ∣} for the Lower Abstract Logic and the calculational
design proving theorem 7.5 follows in sect. 7.3).

TheoRem 7.5 (UppeR abstRact logic pRoof system). If D♯ is a well-defined increasing and
decreasing chain-complete join semilattice with right upper continuous sequential composition #♯ then

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:16 P. Cousot and J. Wang

where L♯(𝐿) = ▴"(Post♯)𝐿 .
Defining the upper and lower logic triples

{∣P ∣} S{∣Q ∣} ≜ ⟨P, Q⟩ ∈ L♯!S"♯ = Post♯!S"♯P ⊆ Q = ∀# ∈ P . post♯!S"♯# ∈ Q (51)
{∣P ∣} S{∣Q ∣} ≜ ⟨P, Q⟩ ∈ L♯!S"♯ = Q ⊆ Post♯!S"♯P = ∀$ ∈ Q . ∃# ∈ P . post♯!S"♯# = $

(where for symmetry, we can write {∣P ∣} S{∣Q ∣} ≜ ∀# ∈ P . ∃$ ∈ Q . post♯(𝐿)# = $.) We get
generalizations of Hoare logic [55] and incorrectness logic [32, 75] from execution to semantic
properties.

Example 7.1 (Finitary powerset nondeterministic calculational domain). In [29, 30], the relational
semantics is identical to that of [5] in example 5.7 but for a nondeterministic language. Nonter-
mination is abstracted away. The extended semantics [29, 30, Definition 4] is post♯(𝐿)# = {⟨𝑃,
𝑃 ′′⟩ ∣ ∃𝑃 ′ ∈ Σ . ⟨𝑃, 𝑃 ′⟩ ∈ # ∧ ⟨𝑃 ′, 𝑃 ′′⟩ ∈ 𝐿}, the same as in example 5.7. Hyper-triples {∣P ∣} S{∣Q ∣}
are defined in [29, 30, Definition 5] to be the powerset instance of (51), the same instance used in
example 5.7. ∎

The upper and lower abstract logics can always be expressed in terms of singleton (although the
equivalent formula is not part of the logic).

Lemma 7.2. A◯ {∣P ∣} S{∣Q ∣} ⇔ ∀# ∈ P . ∃$ ∈ Q . {∣{#} ∣} S{∣{$} ∣} (a){∣P ∣} S{∣Q ∣} ⇔ ∀$ ∈ Q . ∃# ∈ P . {∣{#} ∣} S{∣{$} ∣} (b)

CoRollaRy 7.3. A◯ (∃# ∈ P . {∣{#} ∣} S{∣{$} ∣})⇔ {∣P ∣} S{∣{$} ∣}.
For singletons, the two logics are equivalent.

Lemma 7.4. A◯ For all #,$ ∈ L♯, {∣{#} ∣} S{∣{$} ∣} = {∣{#} ∣} S{∣{$} ∣}.
7.2 The Proof Systems of the Upper and Lower Abstract Logics
Since the definition (38)—(47) of Post♯!S"♯ by a Hilbert proof system is structural, it is the same for
the logics. Following [21], this is obtained by Aczel correspondance between set-based fixpoints
and proof rules [2]. For iteration fixpoint, over-approximation is provided by [21, th. II.3.4] gen-
eralizing Park fixpoint induction [77], whereas under-approximation can be handled by [21, th.
II.3.6] generalizing Scott’s induction or [21, th. II.3.8] generalizing Turing/Floyd variant functions.

Therefore the sound and complete Hilbert deductive system can be designed calculationally to
be the following (where P,Q ∈ ℘(L♯), ' and {∣P ∣} S{∣Q ∣} are respectively ⊆ and {∣P ∣} S{∣Q ∣} for
the Upper Abstract Logic and ⊇ and {∣P ∣} S{∣Q ∣} for the Lower Abstract Logic and the calculational
design proving theorem 7.5 follows in sect. 7.3).

TheoRem 7.5 (UppeR abstRact logic pRoof system). If D♯ is a well-defined increasing and
decreasing chain-complete join semilattice with right upper continuous sequential composition #♯ then

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Google, 2025/09/17 © P. Cousot69

Upper algebraic hyperlogic for iteration

• Requires an EXACT characterization of the program
semantics

• Unmanageable in practice

Calculational Design of Hyperlogics by Abstract Interpretation 16:17

{⟨𝐿 ∶ "+ !♯ assign♯"x, A#, " ∶ "∞, #$ ∶ "!" ⟩ ∣ " ∈ P} #Q{∣P ∣} x = A{∣Q ∣} (52)

{⟨𝐿 ∶ "+ !♯ rassign♯"x,𝑃,##, " ∶ "∞, #$ ∶ "!" ⟩ ∣ " ∈ P} #Q{∣P ∣} x = [𝑃, #]{∣𝑄 ∣} (53)

{⟨𝐿 ∶ "+ !♯ skip♯, " ∶ "∞, #$ ∶ "!" ⟩ ∣ " ∈ P} #Q{∣P ∣} skip{∣Q ∣} (54)

{⟨𝐿 ∶ "+ !♯ test♯"B#, " ∶ "∞, #$ ∶ "!" ⟩ ∣ " ∈ P} #Q{∣P ∣} B{∣Q ∣} (55)

{⟨𝐿 ∶ "♯+, " ∶ "∞, #$ ∶ "!" ⊔♯+ ("# !♯ break♯)⟩ ∣ " ∈ P} #Q
{∣P ∣} break{∣Q ∣} (56)

{∣P ∣} S1 {∣Q ∣}, {∣Q ∣} S2 {∣R ∣}{∣P ∣} S1;S2 {∣R ∣} (57)

∀" ∈ P, ({∣{"} ∣} B;S1 {∣{𝑄1} ∣} ∧ {∣{"} ∣}¬B;S2 {∣{𝑄2} ∣})⇒ (𝑄1 ⊔♯ 𝑄2 ∈ Q)
{∣P ∣} if (B) S1 else S2 {∣Q ∣} (58)

("# = lfp⊑♯+ 𝑅 ♯$#(" ′) ∧ {∣{"#} ∣}¬B{∣{𝑄#} ∣} ∧ {∣{"#} ∣} B;S{∣{𝑄!} ∣} ∧{∣{"#} ∣} B;S{∣{𝑄$𝑃} ∣} ∧ 𝑄$! = gfp⊑♯∞ 𝑅 ♯$$ ∧ " ′ ∈ P) ⇒
(⟨𝐿 ∶ 𝑄# ⊔♯# 𝑄!, " ∶ 𝑄$𝑃 ⊔♯∞ 𝑄$!, #$ ∶ "!" ⟩ ∈ Q)

{∣I ∣} while (B) S{∣Q ∣} (59)

is sound and complete.

Remarkably in (58) and (59), we have to consider all possible over approximations, and in (59)
"# and𝑄$! must be exact fixpoints. This is because, for completeness and in full generality, hyper-
logics cannot make any approximation of the program semantics defined by post♯ in (31) hence
prohibiting approximations in (51).

Notice that no consequence rule is required for completeness, although they are sound A◯.
P ⊆ P ′, {∣P ′ ∣} S{∣Q′ ∣}, Q′ ⊆ Q

{∣P ∣} S{∣Q ∣}
P ′ ⊆ P, {∣P ′ ∣} S{∣Q′ ∣}, Q ⊆ Q′

{∣P ∣} S{∣Q ∣} (60)

Example 7.6 (Choice). Let us define the choice S1 + S2 ≜ c = [0,1]; if (c) S1 else S2 where
auxiliary variable c does not appear in S1 nor in S2. The proof rule can be derived as follows
{∣P ∣} S1 + S2 {∣Q ∣}

⇔ {∣P ∣} c = [0,1]; if (c) S1 else S2 {∣Q ∣} $def. choice +%
⇔ ∃R . {∣P ∣} c = [0,1]{∣R ∣} ∧ {∣R ∣} if (c) S1 else S2 {∣Q ∣} $sequential composition (57)%
⇔ ∃R . {" !♯ rassign♯"c,0,1# ∣ " ∈ P} ⊆R ∧ {∣R ∣} if (c) S1 else S2 {∣Q ∣} $(53)%
⇔ {∣{" !♯ rassign♯"c,0,1# ∣ " ∈ P} ∣} if (c) S1 else S2 {∣Q ∣}

$takingR = {" !♯ rassign♯"c,0,1# ∣ " ∈ P}%
⇔ ∀" ∈ {" ′ !♯ rassign♯"c,0,1# ∣ " ′ ∈ P},𝑄1,𝑄2 . ({∣{"} ∣} B;S1 {∣{𝑄1} ∣}∧{∣{"} ∣}¬B;S2 {∣{𝑄2} ∣})⇒(𝑄1 ⊔♯ 𝑄2 ∈ Q) $(58)%
⇔ ∀" ∈ P,𝑄1,𝑄2 . ({∣{"} ∣} S1 {∣{𝑄1} ∣} ∧ {∣{"} ∣} S2 {∣{𝑄2} ∣})⇒ (𝑄1 ⊔♯ 𝑄2 ∈ Q) (61)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Google, 2025/09/17 © P. Cousot

Abstractions

80

Google, 2025/09/17 © P. Cousot81

Abstractions

• Since proofs of general hyperproperties are
unmanageable, we consider abstractions of

• the algebraic semantics

• program properties

• program hyperproperties

• program logics

Google, 2025/09/17 © P. Cousot82

Algebraic semantics abstraction

• An abstraction of the algebraic semantics is another
instance of the algebraic semantics

• e.g. trace semantics → relational semantics

• This extends to logics and hyperlogics

• But still proofs require exact characterizations of the

(abstract) semantics

Google, 2025/09/17 © P. Cousot

Hyperproperty abstraction

83

Google, 2025/09/17 © P. Cousot84

Hyperproperty abstraction

• A dozen abstractions are considered in the paper

• This leads to a lattice of hyperlogics

Google, 2025/09/17 © P. Cousot

Hierarchy of hyperlogics
Calculational Design of Hyperlogics by Abstract Interpretation 16:29

Fig. 1. The hierarchy of hyperproperties by abstraction. The arrow is interpreted as “more general than”
where the double arrow represents Galois surjection. Dotted line indicated the hyperproperties subsumed
by our abstract in the related works. A◯
ordering [73]). It is not uncommon in abstract interpretation since then. The calculational method-
ology that we have used is based on [21]. Following the introduction of trace hyperproperties [14],
most semantics [5, 66] and verification methods for semantic (hyper) properties have been on sub-
classes of hyperproperties [6–10, 13, 15, 29, 30, 67], further reviewed in extreme great detail in [30,
section 6].

24 Conclusion and Future Work
Transformational (hyper) logics have traditionally been based on transformers themselves equiv-
alent to an operational semantics. When considering nontermination, other semantics like deno-
tational semantics are relevant, but the corresponding logics are in a separate world [1, 51].

In an attempt to design (hyper) logics valid for various (abstract) semantics, we have defined an
algebraic semantics (which can be instantiated to operational, denotational, or relational semantics,
and is also useful for deductive methods and static analysis).

We have designed, by calculus, a structural fixpoint collecting semantics post for execution
properties (e.g. sets of execution traces), its hypercollecting semantics Post for semantic properties
(e.g sets of sets of traces), and the various over or under approximation logics corresponding to
these transformers for correctness and incorrectness (part III is for over approximation only, but
the main reason to use the under approximation logic is to disprove over approximations which
is expressible as ¬{∣P ∣} S{∣Q ∣}⇔ ∃∅ ⊊ P ′ ⊆ P . {∣P ′ ∣} S{∣¬Q ∣} A◯).

Since, and contrary to classic logics, proofs of general semantic (hyper) properties relative to a
program semantics requires the exact characterization of this semantics in the proof, an extreme
complication, we have considered abstractions of the semantic properties for which this constraint
can be relaxed. This has yielded to new sound and complete simplified proof rules, including for
algebraic generalizations of forall-forall, forall-exists, and exists-forall semantic (hyper) properties.

The verification of semantic (hyper) properties is still in its infancy and far from reaching the
simplicity observed in the verification of execution properties. Several compromises will be needed
maybe by relaxing implication (e.g. using Egli-Milner order instead of inclusion), considering ab-
stract properties (for classes of properties of practical interest), and possibly by preserving sound-
ness but renouncing to completeness. However, in full generality, the sound and complete proof
methods introduced in this paper, will ultimately be, up to equivalence, the only one applicable.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

85

Google, 2025/09/17 © P. Cousot

Chain limit order ideal
abstraction

86

Google, 2025/09/17 © P. Cousot87

Chain limit order ideal abstraction (cont’d)
• The chain limit order ideal abstraction of algebraic

hyperproperties is an algebraic generalization of the
abstraction to ∀*∃* hyperproperties 

• ∀*∃* hyperproperties (for traces in ∏)  
 
 

16:26 P. Cousot and J. Wang

18 Chain Limit Abstraction
18.1 Chain Limit Abstraction Definition and Properties
Another possible representation of order ideal abstractions would be by limits of chains. Define

𝐿↓(P) ≜ {⊓
!∈N"! ∣ ⟨"! , # ∈ N⟩ ∈ P is a decreasing chain with existing glb} (82)

𝐿↓ is ⊆ increasing and extensive but not necessarily idempotent as shown by counter example 18.1
below. The iteration of 𝐿↓ (possibly transfinitely)

∗𝐿↓(P) ≜ lfp⊆ !$.P ∪ 𝐿↓($) (83)
yields an upper closure operator [20, lemma 29.1].

Counter example 18.1. Consider the complete lattice L on the right.
LetP = {$! " ∣ #, 𝑃 > 0}. We have 𝐿↓(P) = {$! " ∣ #, 𝑃 > 0}∪{𝑄 ! ∣ # > 0}.
We have ⊓{𝑄 ! ∣ # > 0} = " so 𝐿↓(𝐿↓(P)) = {$! " ∣ #, 𝑃 > 0} ∪ {𝑄 ! ∣ # >
0} ∪ {"} ≠ 𝐿↓(P).
Moreover ∗𝐿↓(Q!) ∈ ∗𝐿↓(℘(L)), # > 0 but ⋃!>0 ∗𝐿↓(Q!) /∈ ∗𝐿↓(℘(L)). ∎

2

d↓ � let 5↓ � ,% .{
l

�- 8 , 8 ∈ N� � �- 8 , 8 ∈ N� is descending chain in % }in lfp
.⊆ .
5↓ (7)

TJd↓K � ,P .∀�- 8 , 8 ∈ N�, (∀8 ∈ N . - 8
� - 8+1

)→

l

�- 8 , 8 ∈ N� ∈ P (8)

OJd↓K � �TJd↓K, ⊆, �, ℘(L), ∪↓, ∩� (9)

A hyperproperty P is a ↑-CPO hyperproperty when the upper-bounds for all �-ascending chain
in P is also in % .

L���� 1.3. d↓ is closure operator and TJd↓K is a well-de�ned complete lattice, where �↓8∈�-8 �

d↓(�8∈�-8). For �nite join �↓ = � holds.

Fig. 1. The La�ice of counterexamples for
Remark 1.4 and 1.5. The circles represent
the elements in the la�ice while the ↓ is the
partial order �, indicating the descending
chains. The do�ed line with P , 5↓(P), and
5 2↓ (P) are the counterexample for Remark
1.4. The red line with shadowedQ is the one
for Remark 1.5.

R����� 1.4. Intuitively one may think 5↓ is a closure by its
nature. However, it is increasing, extensive, but not idem-
potent. Consider the counterexample in �gure (1) where a
complete lattice is de�ned as L � {- 8 9

� 8, 9 > 0} ∪ {. 8
� 8 >

0}∪ {�,�} with � and � being top and bottom of the lattice.
For all other elements, �� {�- 8 9 ,- 8 9 ′

� � 8 > 0∧ 9 ≤ 9 ′}∪{�- 8 9 ,
. 8
� � 8, 9 > 0}∪{�. 8 ,. 8′

� � 8′ > 8}. Now let % � {- 8 9
� 8, 9 > 0}.

We have 5↓(%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 > 0}. We notice
that �.8 , 8 > 0� is also a descending chain with the glb

d
�.8 ,

8 > 0� = �. Thus, 5 2↓ (%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 >

0} ∪ {�} ≠ 5↓(%). As a result, it is necessary to de�ne d↓ to
be the �xpoint of 5↓.
R����� 1.5. Notice that TJd↓K may not be closed under
in�nite union. The counterexample uses the same lattice
as Remark 1.4 in �gure 1. We Let Q � {Q8 � 8 ∈ N} where
Q8 � {- 8 9

� 9 ∈ N} ∪ {. 8
} is CPO. However, �Q = {- 8 9

�

8, 9 ∈ N} ∪ {. 8
� 8 ∈ N} is not a CPO as the glb descending

chain �. 8 , 8 ∈ N� is � which is not in �Q. For this reason,
another application of d↓ would be necessary.

1.1.4 Frontiers abstraction and frontiers existent hyperproperties. We can construct a class hyper-
properties called lower-frontiers existent hyperproperties even weaker than ↓-CPO hyperproperties.
Let us �rst clarify what it means by frontiers. P is called frontiers when where distinct elements
are mutually incomparable.

UF � ,P .{% ∈ P � ∀% ′ ∈ P . % � % ′ → % = % ′}
TJUF K � ,P .∀%,% ′ ∈ P . % � % ′ → % = % ′ (10)

A hyperproperty P is lower-frontiers existent if for all element % in it, there exist some lower-
frontier � in UF(P) such that � � % .

TJU∃F K � ,P .∀% ∈ P . ∃� ∈ UF(P) . � � %
OJU∃F K � �TJUF K, ⊆, �, L, ∪, ∩� (11)

L���� 1.6. OJU∃F K is a well-de�ned semi-lattice that is closed under �nite union

, Vol. 1, No. 1, Article . Publication date: June 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

Lemma 18.2. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗#↓
1 ⟨∗𝐿↓(℘(L)), ⊆⟩ and ⟨∗𝐿↓(℘(L)), ⊆, ∅, L, !$. ∗𝐿↓(⋃$), ⋂⟩ is

a complete lattice.

Lemma 18.3. A◯ ∀P ∈ ℘(L) . 𝐿↓(∗𝐿↓(P)) = ∗𝐿↓(P).
Lemma 18.4. A◯ For all P ∈ ℘(L), 𝐿↓(P) = P implies ∗𝐿↓(P) = P .
𝐿↑ is defined ⊑ dually, and ∗𝐿↑(P) ≜ lfp⊆ !$.P ∪ 𝐿↑($) is an upper closure operator.

18.2 Forall Exists Hyperproperties
Assuming that ⟨L, ⊑⟩ = ⟨℘(Π), ⊆⟩ (where e.g. Π = Σ+∞ is a set of traces) ∀∃ hyperproperties have
the form AEH ≜ {{" ∈ ℘(Π) ∣ ∀𝑅1 ∈ " . ∃𝑅2 ∈ " . ⟨𝑅1, 𝑅2⟩ ∈ 𝑆} ∣ 𝑆 ∈ ℘(Π × Π)} (84)
(this easily generalizes to ∀𝑅1, . . . ,𝑅$ ∈ " . ∃𝑅 ′1, . . . ,𝑅 ′𝑃 ∈ " . ⟨𝑅1, . . . , 𝑅$, 𝑅 ′1, . . . , 𝑅 ′𝑃⟩ ∈ 𝑆 [40]).

Example 18.5 (Generalized non-interference). A typical forall exists hyperproperty is generalized
non interference [35, 69, 70] for the trace semantics of appendix B. Let L ∈ X be a low variable and
H ∈ X be a high variable, we have

GNI ≜ {" ∈ ℘(Σ+) ∣ ∀𝑇1𝑅1𝑇 ′1,𝑇2𝑅2𝑇 ′2 ∈ " . ∃𝑇3𝑅3𝑇 ′3 ∈ " . (𝑇1(L) = 𝑇2(L))⇒ (85)
(𝑇3(L) = 𝑇1(L) ∧ 𝑇3(H) = 𝑇2(H) ∧ 𝑇 ′3(L) = 𝑇 ′1(L))} ∎

Assuming chain-complete lattices in 3.2.A and 3.2.C, chain limit closed semantic properties in∗𝐿↑(℘(℘(Π))) subsume ∀∃ hyperproperties in AEH in that A◯
AEH ⊆ ∗𝐿↑(℘(℘(Π))) (86)

19 Chain Limit Order Ideal Abstraction
19.1 Chain Limit Order Ideal Abstraction Definition and Properties
Define

𝐿⊑↑ ≜ 𝐿⊑ ○ 𝐿↑ and ∗𝐿⊑↑(P) ≜ lfp⊆ !$.P ∪ 𝐿⊑↑($) (87)
to get an upper closure operator (since 𝐿⊑↑ is increasing and expansive although not idempotent).

Counter example 19.1. Define ⟨L, ⊑⟩ = ⟨℘(N), ⊆⟩ andN ≜ {N∖{*} ∣ * ∈ N} ∈ ℘(N) to be the set
of all sets Nwith one missing element. Since any two different elements ofN are ⊆- incomparable,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:26 P. Cousot and J. Wang

18 Chain Limit Abstraction
18.1 Chain Limit Abstraction Definition and Properties
Another possible representation of order ideal abstractions would be by limits of chains. Define

𝐿↓(P) ≜ {⊓
!∈N"! ∣ ⟨"! , # ∈ N⟩ ∈ P is a decreasing chain with existing glb} (82)

𝐿↓ is ⊆ increasing and extensive but not necessarily idempotent as shown by counter example 18.1
below. The iteration of 𝐿↓ (possibly transfinitely)

∗𝐿↓(P) ≜ lfp⊆ !$.P ∪ 𝐿↓($) (83)
yields an upper closure operator [20, lemma 29.1].

Counter example 18.1. Consider the complete lattice L on the right.
LetP = {$! " ∣ #, 𝑃 > 0}. We have 𝐿↓(P) = {$! " ∣ #, 𝑃 > 0}∪{𝑄 ! ∣ # > 0}.
We have ⊓{𝑄 ! ∣ # > 0} = " so 𝐿↓(𝐿↓(P)) = {$! " ∣ #, 𝑃 > 0} ∪ {𝑄 ! ∣ # >
0} ∪ {"} ≠ 𝐿↓(P).
Moreover ∗𝐿↓(Q!) ∈ ∗𝐿↓(℘(L)), # > 0 but ⋃!>0 ∗𝐿↓(Q!) /∈ ∗𝐿↓(℘(L)). ∎

2

d↓ � let 5↓ � ,% .{
l

�- 8 , 8 ∈ N� � �- 8 , 8 ∈ N� is descending chain in % }in lfp
.⊆ .
5↓ (7)

TJd↓K � ,P .∀�- 8 , 8 ∈ N�, (∀8 ∈ N . - 8
� - 8+1

)→

l

�- 8 , 8 ∈ N� ∈ P (8)

OJd↓K � �TJd↓K, ⊆, �, ℘(L), ∪↓, ∩� (9)

A hyperproperty P is a ↑-CPO hyperproperty when the upper-bounds for all �-ascending chain
in P is also in % .

L���� 1.3. d↓ is closure operator and TJd↓K is a well-de�ned complete lattice, where �↓8∈�-8 �

d↓(�8∈�-8). For �nite join �↓ = � holds.

Fig. 1. The La�ice of counterexamples for
Remark 1.4 and 1.5. The circles represent
the elements in the la�ice while the ↓ is the
partial order �, indicating the descending
chains. The do�ed line with P , 5↓(P), and
5 2↓ (P) are the counterexample for Remark
1.4. The red line with shadowedQ is the one
for Remark 1.5.

R����� 1.4. Intuitively one may think 5↓ is a closure by its
nature. However, it is increasing, extensive, but not idem-
potent. Consider the counterexample in �gure (1) where a
complete lattice is de�ned as L � {- 8 9

� 8, 9 > 0} ∪ {. 8
� 8 >

0}∪ {�,�} with � and � being top and bottom of the lattice.
For all other elements, �� {�- 8 9 ,- 8 9 ′

� � 8 > 0∧ 9 ≤ 9 ′}∪{�- 8 9 ,
. 8
� � 8, 9 > 0}∪{�. 8 ,. 8′

� � 8′ > 8}. Now let % � {- 8 9
� 8, 9 > 0}.

We have 5↓(%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 > 0}. We notice
that �.8 , 8 > 0� is also a descending chain with the glb

d
�.8 ,

8 > 0� = �. Thus, 5 2↓ (%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 >

0} ∪ {�} ≠ 5↓(%). As a result, it is necessary to de�ne d↓ to
be the �xpoint of 5↓.
R����� 1.5. Notice that TJd↓K may not be closed under
in�nite union. The counterexample uses the same lattice
as Remark 1.4 in �gure 1. We Let Q � {Q8 � 8 ∈ N} where
Q8 � {- 8 9

� 9 ∈ N} ∪ {. 8
} is CPO. However, �Q = {- 8 9

�

8, 9 ∈ N} ∪ {. 8
� 8 ∈ N} is not a CPO as the glb descending

chain �. 8 , 8 ∈ N� is � which is not in �Q. For this reason,
another application of d↓ would be necessary.

1.1.4 Frontiers abstraction and frontiers existent hyperproperties. We can construct a class hyper-
properties called lower-frontiers existent hyperproperties even weaker than ↓-CPO hyperproperties.
Let us �rst clarify what it means by frontiers. P is called frontiers when where distinct elements
are mutually incomparable.

UF � ,P .{% ∈ P � ∀% ′ ∈ P . % � % ′ → % = % ′}
TJUF K � ,P .∀%,% ′ ∈ P . % � % ′ → % = % ′ (10)

A hyperproperty P is lower-frontiers existent if for all element % in it, there exist some lower-
frontier � in UF(P) such that � � % .

TJU∃F K � ,P .∀% ∈ P . ∃� ∈ UF(P) . � � %
OJU∃F K � �TJUF K, ⊆, �, L, ∪, ∩� (11)

L���� 1.6. OJU∃F K is a well-de�ned semi-lattice that is closed under �nite union

, Vol. 1, No. 1, Article . Publication date: June 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

Lemma 18.2. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗#↓
1 ⟨∗𝐿↓(℘(L)), ⊆⟩ and ⟨∗𝐿↓(℘(L)), ⊆, ∅, L, !$. ∗𝐿↓(⋃$), ⋂⟩ is

a complete lattice.

Lemma 18.3. A◯ ∀P ∈ ℘(L) . 𝐿↓(∗𝐿↓(P)) = ∗𝐿↓(P).
Lemma 18.4. A◯ For all P ∈ ℘(L), 𝐿↓(P) = P implies ∗𝐿↓(P) = P .
𝐿↑ is defined ⊑ dually, and ∗𝐿↑(P) ≜ lfp⊆ !$.P ∪ 𝐿↑($) is an upper closure operator.

18.2 Forall Exists Hyperproperties
Assuming that ⟨L, ⊑⟩ = ⟨℘(Π), ⊆⟩ (where e.g. Π = Σ+∞ is a set of traces) ∀∃ hyperproperties have
the form AEH ≜ {{" ∈ ℘(Π) ∣ ∀𝑅1 ∈ " . ∃𝑅2 ∈ " . ⟨𝑅1, 𝑅2⟩ ∈ 𝑆} ∣ 𝑆 ∈ ℘(Π × Π)} (84)
(this easily generalizes to ∀𝑅1, . . . ,𝑅$ ∈ " . ∃𝑅 ′1, . . . ,𝑅 ′𝑃 ∈ " . ⟨𝑅1, . . . , 𝑅$, 𝑅 ′1, . . . , 𝑅 ′𝑃⟩ ∈ 𝑆 [40]).

Example 18.5 (Generalized non-interference). A typical forall exists hyperproperty is generalized
non interference [35, 69, 70] for the trace semantics of appendix B. Let L ∈ X be a low variable and
H ∈ X be a high variable, we have

GNI ≜ {" ∈ ℘(Σ+) ∣ ∀𝑇1𝑅1𝑇 ′1,𝑇2𝑅2𝑇 ′2 ∈ " . ∃𝑇3𝑅3𝑇 ′3 ∈ " . (𝑇1(L) = 𝑇2(L))⇒ (85)
(𝑇3(L) = 𝑇1(L) ∧ 𝑇3(H) = 𝑇2(H) ∧ 𝑇 ′3(L) = 𝑇 ′1(L))} ∎

Assuming chain-complete lattices in 3.2.A and 3.2.C, chain limit closed semantic properties in∗𝐿↑(℘(℘(Π))) subsume ∀∃ hyperproperties in AEH in that A◯
AEH ⊆ ∗𝐿↑(℘(℘(Π))) (86)

19 Chain Limit Order Ideal Abstraction
19.1 Chain Limit Order Ideal Abstraction Definition and Properties
Define

𝐿⊑↑ ≜ 𝐿⊑ ○ 𝐿↑ and ∗𝐿⊑↑(P) ≜ lfp⊆ !$.P ∪ 𝐿⊑↑($) (87)
to get an upper closure operator (since 𝐿⊑↑ is increasing and expansive although not idempotent).

Counter example 19.1. Define ⟨L, ⊑⟩ = ⟨℘(N), ⊆⟩ andN ≜ {N∖{*} ∣ * ∈ N} ∈ ℘(N) to be the set
of all sets Nwith one missing element. Since any two different elements ofN are ⊆- incomparable,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

Google, 2025/09/17 © P. Cousot88

Chain limit order ideal abstraction (cont’d)

16:26 P. Cousot and J. Wang

18 Chain Limit Abstraction
18.1 Chain Limit Abstraction Definition and Properties
Another possible representation of order ideal abstractions would be by limits of chains. Define

𝐿↓(P) ≜ {⊓
!∈N"! ∣ ⟨"! , # ∈ N⟩ ∈ P is a decreasing chain with existing glb} (82)

𝐿↓ is ⊆ increasing and extensive but not necessarily idempotent as shown by counter example 18.1
below. The iteration of 𝐿↓ (possibly transfinitely)

∗𝐿↓(P) ≜ lfp⊆ !$.P ∪ 𝐿↓($) (83)
yields an upper closure operator [20, lemma 29.1].

Counter example 18.1. Consider the complete lattice L on the right.
LetP = {$! " ∣ #, 𝑃 > 0}. We have 𝐿↓(P) = {$! " ∣ #, 𝑃 > 0}∪{𝑄 ! ∣ # > 0}.
We have ⊓{𝑄 ! ∣ # > 0} = " so 𝐿↓(𝐿↓(P)) = {$! " ∣ #, 𝑃 > 0} ∪ {𝑄 ! ∣ # >
0} ∪ {"} ≠ 𝐿↓(P).
Moreover ∗𝐿↓(Q!) ∈ ∗𝐿↓(℘(L)), # > 0 but ⋃!>0 ∗𝐿↓(Q!) /∈ ∗𝐿↓(℘(L)). ∎

2

d↓ � let 5↓ � ,% .{
l

�- 8 , 8 ∈ N� � �- 8 , 8 ∈ N� is descending chain in % }in lfp
.⊆ .
5↓ (7)

TJd↓K � ,P .∀�- 8 , 8 ∈ N�, (∀8 ∈ N . - 8
� - 8+1

)→

l

�- 8 , 8 ∈ N� ∈ P (8)

OJd↓K � �TJd↓K, ⊆, �, ℘(L), ∪↓, ∩� (9)

A hyperproperty P is a ↑-CPO hyperproperty when the upper-bounds for all �-ascending chain
in P is also in % .

L���� 1.3. d↓ is closure operator and TJd↓K is a well-de�ned complete lattice, where �↓8∈�-8 �

d↓(�8∈�-8). For �nite join �↓ = � holds.

Fig. 1. The La�ice of counterexamples for
Remark 1.4 and 1.5. The circles represent
the elements in the la�ice while the ↓ is the
partial order �, indicating the descending
chains. The do�ed line with P , 5↓(P), and
5 2↓ (P) are the counterexample for Remark
1.4. The red line with shadowedQ is the one
for Remark 1.5.

R����� 1.4. Intuitively one may think 5↓ is a closure by its
nature. However, it is increasing, extensive, but not idem-
potent. Consider the counterexample in �gure (1) where a
complete lattice is de�ned as L � {- 8 9

� 8, 9 > 0} ∪ {. 8
� 8 >

0}∪ {�,�} with � and � being top and bottom of the lattice.
For all other elements, �� {�- 8 9 ,- 8 9 ′

� � 8 > 0∧ 9 ≤ 9 ′}∪{�- 8 9 ,
. 8
� � 8, 9 > 0}∪{�. 8 ,. 8′

� � 8′ > 8}. Now let % � {- 8 9
� 8, 9 > 0}.

We have 5↓(%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 > 0}. We notice
that �.8 , 8 > 0� is also a descending chain with the glb

d
�.8 ,

8 > 0� = �. Thus, 5 2↓ (%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 >

0} ∪ {�} ≠ 5↓(%). As a result, it is necessary to de�ne d↓ to
be the �xpoint of 5↓.
R����� 1.5. Notice that TJd↓K may not be closed under
in�nite union. The counterexample uses the same lattice
as Remark 1.4 in �gure 1. We Let Q � {Q8 � 8 ∈ N} where
Q8 � {- 8 9

� 9 ∈ N} ∪ {. 8
} is CPO. However, �Q = {- 8 9

�

8, 9 ∈ N} ∪ {. 8
� 8 ∈ N} is not a CPO as the glb descending

chain �. 8 , 8 ∈ N� is � which is not in �Q. For this reason,
another application of d↓ would be necessary.

1.1.4 Frontiers abstraction and frontiers existent hyperproperties. We can construct a class hyper-
properties called lower-frontiers existent hyperproperties even weaker than ↓-CPO hyperproperties.
Let us �rst clarify what it means by frontiers. P is called frontiers when where distinct elements
are mutually incomparable.

UF � ,P .{% ∈ P � ∀% ′ ∈ P . % � % ′ → % = % ′}
TJUF K � ,P .∀%,% ′ ∈ P . % � % ′ → % = % ′ (10)

A hyperproperty P is lower-frontiers existent if for all element % in it, there exist some lower-
frontier � in UF(P) such that � � % .

TJU∃F K � ,P .∀% ∈ P . ∃� ∈ UF(P) . � � %
OJU∃F K � �TJUF K, ⊆, �, L, ∪, ∩� (11)

L���� 1.6. OJU∃F K is a well-de�ned semi-lattice that is closed under �nite union

, Vol. 1, No. 1, Article . Publication date: June 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

Lemma 18.2. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗#↓
1 ⟨∗𝐿↓(℘(L)), ⊆⟩ and ⟨∗𝐿↓(℘(L)), ⊆, ∅, L, !$. ∗𝐿↓(⋃$), ⋂⟩ is

a complete lattice.

Lemma 18.3. A◯ ∀P ∈ ℘(L) . 𝐿↓(∗𝐿↓(P)) = ∗𝐿↓(P).
Lemma 18.4. A◯ For all P ∈ ℘(L), 𝐿↓(P) = P implies ∗𝐿↓(P) = P .
𝐿↑ is defined ⊑ dually, and ∗𝐿↑(P) ≜ lfp⊆ !$.P ∪ 𝐿↑($) is an upper closure operator.

18.2 Forall Exists Hyperproperties
Assuming that ⟨L, ⊑⟩ = ⟨℘(Π), ⊆⟩ (where e.g. Π = Σ+∞ is a set of traces) ∀∃ hyperproperties have
the form AEH ≜ {{" ∈ ℘(Π) ∣ ∀𝑅1 ∈ " . ∃𝑅2 ∈ " . ⟨𝑅1, 𝑅2⟩ ∈ 𝑆} ∣ 𝑆 ∈ ℘(Π × Π)} (84)
(this easily generalizes to ∀𝑅1, . . . ,𝑅$ ∈ " . ∃𝑅 ′1, . . . ,𝑅 ′𝑃 ∈ " . ⟨𝑅1, . . . , 𝑅$, 𝑅 ′1, . . . , 𝑅 ′𝑃⟩ ∈ 𝑆 [40]).

Example 18.5 (Generalized non-interference). A typical forall exists hyperproperty is generalized
non interference [35, 69, 70] for the trace semantics of appendix B. Let L ∈ X be a low variable and
H ∈ X be a high variable, we have

GNI ≜ {" ∈ ℘(Σ+) ∣ ∀𝑇1𝑅1𝑇 ′1,𝑇2𝑅2𝑇 ′2 ∈ " . ∃𝑇3𝑅3𝑇 ′3 ∈ " . (𝑇1(L) = 𝑇2(L))⇒ (85)
(𝑇3(L) = 𝑇1(L) ∧ 𝑇3(H) = 𝑇2(H) ∧ 𝑇 ′3(L) = 𝑇 ′1(L))} ∎

Assuming chain-complete lattices in 3.2.A and 3.2.C, chain limit closed semantic properties in∗𝐿↑(℘(℘(Π))) subsume ∀∃ hyperproperties in AEH in that A◯
AEH ⊆ ∗𝐿↑(℘(℘(Π))) (86)

19 Chain Limit Order Ideal Abstraction
19.1 Chain Limit Order Ideal Abstraction Definition and Properties
Define

𝐿⊑↑ ≜ 𝐿⊑ ○ 𝐿↑ and ∗𝐿⊑↑(P) ≜ lfp⊆ !$.P ∪ 𝐿⊑↑($) (87)
to get an upper closure operator (since 𝐿⊑↑ is increasing and expansive although not idempotent).

Counter example 19.1. Define ⟨L, ⊑⟩ = ⟨℘(N), ⊆⟩ andN ≜ {N∖{*} ∣ * ∈ N} ∈ ℘(N) to be the set
of all sets Nwith one missing element. Since any two different elements ofN are ⊆- incomparable,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:26 P. Cousot and J. Wang

18 Chain Limit Abstraction
18.1 Chain Limit Abstraction Definition and Properties
Another possible representation of order ideal abstractions would be by limits of chains. Define

𝐿↓(P) ≜ {⊓
!∈N"! ∣ ⟨"! , # ∈ N⟩ ∈ P is a decreasing chain with existing glb} (82)

𝐿↓ is ⊆ increasing and extensive but not necessarily idempotent as shown by counter example 18.1
below. The iteration of 𝐿↓ (possibly transfinitely)

∗𝐿↓(P) ≜ lfp⊆ !$.P ∪ 𝐿↓($) (83)
yields an upper closure operator [20, lemma 29.1].

Counter example 18.1. Consider the complete lattice L on the right.
LetP = {$! " ∣ #, 𝑃 > 0}. We have 𝐿↓(P) = {$! " ∣ #, 𝑃 > 0}∪{𝑄 ! ∣ # > 0}.
We have ⊓{𝑄 ! ∣ # > 0} = " so 𝐿↓(𝐿↓(P)) = {$! " ∣ #, 𝑃 > 0} ∪ {𝑄 ! ∣ # >
0} ∪ {"} ≠ 𝐿↓(P).
Moreover ∗𝐿↓(Q!) ∈ ∗𝐿↓(℘(L)), # > 0 but ⋃!>0 ∗𝐿↓(Q!) /∈ ∗𝐿↓(℘(L)). ∎

2

d↓ � let 5↓ � ,% .{
l

�- 8 , 8 ∈ N� � �- 8 , 8 ∈ N� is descending chain in % }in lfp
.⊆ .
5↓ (7)

TJd↓K � ,P .∀�- 8 , 8 ∈ N�, (∀8 ∈ N . - 8
� - 8+1

)→

l

�- 8 , 8 ∈ N� ∈ P (8)

OJd↓K � �TJd↓K, ⊆, �, ℘(L), ∪↓, ∩� (9)

A hyperproperty P is a ↑-CPO hyperproperty when the upper-bounds for all �-ascending chain
in P is also in % .

L���� 1.3. d↓ is closure operator and TJd↓K is a well-de�ned complete lattice, where �↓8∈�-8 �

d↓(�8∈�-8). For �nite join �↓ = � holds.

Fig. 1. The La�ice of counterexamples for
Remark 1.4 and 1.5. The circles represent
the elements in the la�ice while the ↓ is the
partial order �, indicating the descending
chains. The do�ed line with P , 5↓(P), and
5 2↓ (P) are the counterexample for Remark
1.4. The red line with shadowedQ is the one
for Remark 1.5.

R����� 1.4. Intuitively one may think 5↓ is a closure by its
nature. However, it is increasing, extensive, but not idem-
potent. Consider the counterexample in �gure (1) where a
complete lattice is de�ned as L � {- 8 9

� 8, 9 > 0} ∪ {. 8
� 8 >

0}∪ {�,�} with � and � being top and bottom of the lattice.
For all other elements, �� {�- 8 9 ,- 8 9 ′

� � 8 > 0∧ 9 ≤ 9 ′}∪{�- 8 9 ,
. 8
� � 8, 9 > 0}∪{�. 8 ,. 8′

� � 8′ > 8}. Now let % � {- 8 9
� 8, 9 > 0}.

We have 5↓(%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 > 0}. We notice
that �.8 , 8 > 0� is also a descending chain with the glb

d
�.8 ,

8 > 0� = �. Thus, 5 2↓ (%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 >

0} ∪ {�} ≠ 5↓(%). As a result, it is necessary to de�ne d↓ to
be the �xpoint of 5↓.
R����� 1.5. Notice that TJd↓K may not be closed under
in�nite union. The counterexample uses the same lattice
as Remark 1.4 in �gure 1. We Let Q � {Q8 � 8 ∈ N} where
Q8 � {- 8 9

� 9 ∈ N} ∪ {. 8
} is CPO. However, �Q = {- 8 9

�

8, 9 ∈ N} ∪ {. 8
� 8 ∈ N} is not a CPO as the glb descending

chain �. 8 , 8 ∈ N� is � which is not in �Q. For this reason,
another application of d↓ would be necessary.

1.1.4 Frontiers abstraction and frontiers existent hyperproperties. We can construct a class hyper-
properties called lower-frontiers existent hyperproperties even weaker than ↓-CPO hyperproperties.
Let us �rst clarify what it means by frontiers. P is called frontiers when where distinct elements
are mutually incomparable.

UF � ,P .{% ∈ P � ∀% ′ ∈ P . % � % ′ → % = % ′}
TJUF K � ,P .∀%,% ′ ∈ P . % � % ′ → % = % ′ (10)

A hyperproperty P is lower-frontiers existent if for all element % in it, there exist some lower-
frontier � in UF(P) such that � � % .

TJU∃F K � ,P .∀% ∈ P . ∃� ∈ UF(P) . � � %
OJU∃F K � �TJUF K, ⊆, �, L, ∪, ∩� (11)

L���� 1.6. OJU∃F K is a well-de�ned semi-lattice that is closed under �nite union

, Vol. 1, No. 1, Article . Publication date: June 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

Lemma 18.2. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗#↓
1 ⟨∗𝐿↓(℘(L)), ⊆⟩ and ⟨∗𝐿↓(℘(L)), ⊆, ∅, L, !$. ∗𝐿↓(⋃$), ⋂⟩ is

a complete lattice.

Lemma 18.3. A◯ ∀P ∈ ℘(L) . 𝐿↓(∗𝐿↓(P)) = ∗𝐿↓(P).
Lemma 18.4. A◯ For all P ∈ ℘(L), 𝐿↓(P) = P implies ∗𝐿↓(P) = P .
𝐿↑ is defined ⊑ dually, and ∗𝐿↑(P) ≜ lfp⊆ !$.P ∪ 𝐿↑($) is an upper closure operator.

18.2 Forall Exists Hyperproperties
Assuming that ⟨L, ⊑⟩ = ⟨℘(Π), ⊆⟩ (where e.g. Π = Σ+∞ is a set of traces) ∀∃ hyperproperties have
the form AEH ≜ {{" ∈ ℘(Π) ∣ ∀𝑅1 ∈ " . ∃𝑅2 ∈ " . ⟨𝑅1, 𝑅2⟩ ∈ 𝑆} ∣ 𝑆 ∈ ℘(Π × Π)} (84)
(this easily generalizes to ∀𝑅1, . . . ,𝑅$ ∈ " . ∃𝑅 ′1, . . . ,𝑅 ′𝑃 ∈ " . ⟨𝑅1, . . . , 𝑅$, 𝑅 ′1, . . . , 𝑅 ′𝑃⟩ ∈ 𝑆 [40]).

Example 18.5 (Generalized non-interference). A typical forall exists hyperproperty is generalized
non interference [35, 69, 70] for the trace semantics of appendix B. Let L ∈ X be a low variable and
H ∈ X be a high variable, we have

GNI ≜ {" ∈ ℘(Σ+) ∣ ∀𝑇1𝑅1𝑇 ′1,𝑇2𝑅2𝑇 ′2 ∈ " . ∃𝑇3𝑅3𝑇 ′3 ∈ " . (𝑇1(L) = 𝑇2(L))⇒ (85)
(𝑇3(L) = 𝑇1(L) ∧ 𝑇3(H) = 𝑇2(H) ∧ 𝑇 ′3(L) = 𝑇 ′1(L))} ∎

Assuming chain-complete lattices in 3.2.A and 3.2.C, chain limit closed semantic properties in∗𝐿↑(℘(℘(Π))) subsume ∀∃ hyperproperties in AEH in that A◯
AEH ⊆ ∗𝐿↑(℘(℘(Π))) (86)

19 Chain Limit Order Ideal Abstraction
19.1 Chain Limit Order Ideal Abstraction Definition and Properties
Define

𝐿⊑↑ ≜ 𝐿⊑ ○ 𝐿↑ and ∗𝐿⊑↑(P) ≜ lfp⊆ !$.P ∪ 𝐿⊑↑($) (87)
to get an upper closure operator (since 𝐿⊑↑ is increasing and expansive although not idempotent).

Counter example 19.1. Define ⟨L, ⊑⟩ = ⟨℘(N), ⊆⟩ andN ≜ {N∖{*} ∣ * ∈ N} ∈ ℘(N) to be the set
of all sets Nwith one missing element. Since any two different elements ofN are ⊆- incomparable,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

16:26 P. Cousot and J. Wang

18 Chain Limit Abstraction
18.1 Chain Limit Abstraction Definition and Properties
Another possible representation of order ideal abstractions would be by limits of chains. Define

𝐿↓(P) ≜ {⊓
!∈N"! ∣ ⟨"! , # ∈ N⟩ ∈ P is a decreasing chain with existing glb} (82)

𝐿↓ is ⊆ increasing and extensive but not necessarily idempotent as shown by counter example 18.1
below. The iteration of 𝐿↓ (possibly transfinitely)

∗𝐿↓(P) ≜ lfp⊆ !$.P ∪ 𝐿↓($) (83)
yields an upper closure operator [20, lemma 29.1].

Counter example 18.1. Consider the complete lattice L on the right.
LetP = {$! " ∣ #, 𝑃 > 0}. We have 𝐿↓(P) = {$! " ∣ #, 𝑃 > 0}∪{𝑄 ! ∣ # > 0}.
We have ⊓{𝑄 ! ∣ # > 0} = " so 𝐿↓(𝐿↓(P)) = {$! " ∣ #, 𝑃 > 0} ∪ {𝑄 ! ∣ # >
0} ∪ {"} ≠ 𝐿↓(P).
Moreover ∗𝐿↓(Q!) ∈ ∗𝐿↓(℘(L)), # > 0 but ⋃!>0 ∗𝐿↓(Q!) /∈ ∗𝐿↓(℘(L)). ∎

2

d↓ � let 5↓ � ,% .{
l

�- 8 , 8 ∈ N� � �- 8 , 8 ∈ N� is descending chain in % }in lfp
.⊆ .
5↓ (7)

TJd↓K � ,P .∀�- 8 , 8 ∈ N�, (∀8 ∈ N . - 8
� - 8+1

)→

l

�- 8 , 8 ∈ N� ∈ P (8)

OJd↓K � �TJd↓K, ⊆, �, ℘(L), ∪↓, ∩� (9)

A hyperproperty P is a ↑-CPO hyperproperty when the upper-bounds for all �-ascending chain
in P is also in % .

L���� 1.3. d↓ is closure operator and TJd↓K is a well-de�ned complete lattice, where �↓8∈�-8 �

d↓(�8∈�-8). For �nite join �↓ = � holds.

Fig. 1. The La�ice of counterexamples for
Remark 1.4 and 1.5. The circles represent
the elements in the la�ice while the ↓ is the
partial order �, indicating the descending
chains. The do�ed line with P , 5↓(P), and
5 2↓ (P) are the counterexample for Remark
1.4. The red line with shadowedQ is the one
for Remark 1.5.

R����� 1.4. Intuitively one may think 5↓ is a closure by its
nature. However, it is increasing, extensive, but not idem-
potent. Consider the counterexample in �gure (1) where a
complete lattice is de�ned as L � {- 8 9

� 8, 9 > 0} ∪ {. 8
� 8 >

0}∪ {�,�} with � and � being top and bottom of the lattice.
For all other elements, �� {�- 8 9 ,- 8 9 ′

� � 8 > 0∧ 9 ≤ 9 ′}∪{�- 8 9 ,
. 8
� � 8, 9 > 0}∪{�. 8 ,. 8′

� � 8′ > 8}. Now let % � {- 8 9
� 8, 9 > 0}.

We have 5↓(%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 > 0}. We notice
that �.8 , 8 > 0� is also a descending chain with the glb

d
�.8 ,

8 > 0� = �. Thus, 5 2↓ (%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 >

0} ∪ {�} ≠ 5↓(%). As a result, it is necessary to de�ne d↓ to
be the �xpoint of 5↓.
R����� 1.5. Notice that TJd↓K may not be closed under
in�nite union. The counterexample uses the same lattice
as Remark 1.4 in �gure 1. We Let Q � {Q8 � 8 ∈ N} where
Q8 � {- 8 9

� 9 ∈ N} ∪ {. 8
} is CPO. However, �Q = {- 8 9

�

8, 9 ∈ N} ∪ {. 8
� 8 ∈ N} is not a CPO as the glb descending

chain �. 8 , 8 ∈ N� is � which is not in �Q. For this reason,
another application of d↓ would be necessary.

1.1.4 Frontiers abstraction and frontiers existent hyperproperties. We can construct a class hyper-
properties called lower-frontiers existent hyperproperties even weaker than ↓-CPO hyperproperties.
Let us �rst clarify what it means by frontiers. P is called frontiers when where distinct elements
are mutually incomparable.

UF � ,P .{% ∈ P � ∀% ′ ∈ P . % � % ′ → % = % ′}
TJUF K � ,P .∀%,% ′ ∈ P . % � % ′ → % = % ′ (10)

A hyperproperty P is lower-frontiers existent if for all element % in it, there exist some lower-
frontier � in UF(P) such that � � % .

TJU∃F K � ,P .∀% ∈ P . ∃� ∈ UF(P) . � � %
OJU∃F K � �TJUF K, ⊆, �, L, ∪, ∩� (11)

L���� 1.6. OJU∃F K is a well-de�ned semi-lattice that is closed under �nite union

, Vol. 1, No. 1, Article . Publication date: June 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

Lemma 18.2. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗#↓
1 ⟨∗𝐿↓(℘(L)), ⊆⟩ and ⟨∗𝐿↓(℘(L)), ⊆, ∅, L, !$. ∗𝐿↓(⋃$), ⋂⟩ is

a complete lattice.

Lemma 18.3. A◯ ∀P ∈ ℘(L) . 𝐿↓(∗𝐿↓(P)) = ∗𝐿↓(P).
Lemma 18.4. A◯ For all P ∈ ℘(L), 𝐿↓(P) = P implies ∗𝐿↓(P) = P .
𝐿↑ is defined ⊑ dually, and ∗𝐿↑(P) ≜ lfp⊆ !$.P ∪ 𝐿↑($) is an upper closure operator.

18.2 Forall Exists Hyperproperties
Assuming that ⟨L, ⊑⟩ = ⟨℘(Π), ⊆⟩ (where e.g. Π = Σ+∞ is a set of traces) ∀∃ hyperproperties have
the form AEH ≜ {{" ∈ ℘(Π) ∣ ∀𝑅1 ∈ " . ∃𝑅2 ∈ " . ⟨𝑅1, 𝑅2⟩ ∈ 𝑆} ∣ 𝑆 ∈ ℘(Π × Π)} (84)
(this easily generalizes to ∀𝑅1, . . . ,𝑅$ ∈ " . ∃𝑅 ′1, . . . ,𝑅 ′𝑃 ∈ " . ⟨𝑅1, . . . , 𝑅$, 𝑅 ′1, . . . , 𝑅 ′𝑃⟩ ∈ 𝑆 [40]).

Example 18.5 (Generalized non-interference). A typical forall exists hyperproperty is generalized
non interference [35, 69, 70] for the trace semantics of appendix B. Let L ∈ X be a low variable and
H ∈ X be a high variable, we have

GNI ≜ {" ∈ ℘(Σ+) ∣ ∀𝑇1𝑅1𝑇 ′1,𝑇2𝑅2𝑇 ′2 ∈ " . ∃𝑇3𝑅3𝑇 ′3 ∈ " . (𝑇1(L) = 𝑇2(L))⇒ (85)
(𝑇3(L) = 𝑇1(L) ∧ 𝑇3(H) = 𝑇2(H) ∧ 𝑇 ′3(L) = 𝑇 ′1(L))} ∎

Assuming chain-complete lattices in 3.2.A and 3.2.C, chain limit closed semantic properties in∗𝐿↑(℘(℘(Π))) subsume ∀∃ hyperproperties in AEH in that A◯
AEH ⊆ ∗𝐿↑(℘(℘(Π))) (86)

19 Chain Limit Order Ideal Abstraction
19.1 Chain Limit Order Ideal Abstraction Definition and Properties
Define

𝐿⊑↑ ≜ 𝐿⊑ ○ 𝐿↑ and ∗𝐿⊑↑(P) ≜ lfp⊆ !$.P ∪ 𝐿⊑↑($) (87)
to get an upper closure operator (since 𝐿⊑↑ is increasing and expansive although not idempotent).

Counter example 19.1. Define ⟨L, ⊑⟩ = ⟨℘(N), ⊆⟩ andN ≜ {N∖{*} ∣ * ∈ N} ∈ ℘(N) to be the set
of all sets Nwith one missing element. Since any two different elements ofN are ⊆- incomparable,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

↑ an in lub

Calculational Design of Hyperlogics by Abstract Interpretation 16:23

13 Homomorphic Semantic Abstraction
The homomorphic abstraction 𝐿(") ≜ {ℎ($) ∣ $ ∈ "} is also well known [21, exercise 11.6] and can
be used e.g. to define partial hypercorrectness, trace safety hyperproperties, etc. A◯.

14 Execution Property Elimination
Given a set I ∈ ℘(℘(L♯)) of semantic properties of interest, the Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−−−−−−→"→←−−−−−−−−−−−−
!P .P ∩ I

!Q .Q∪ I ⟨I, ⊆⟩
[20, exercise 11.5] eliminates the semantics of no interest. It can be used e.g. to handle 𝑃-semantic
properties A◯.

15 Principal Order Ideal Abstraction
15.1 Definition of the Principal Order Ideal Abstraction
Subject to the existence of the least upper bound, the principal ideal abstraction is

𝐿!(P) ≜ {𝑄 ∣ 𝑄 ⊑⊔P} (77)

Lemma 15.1. A◯ 𝐿! is an upper closure operator and ⟨𝐿!(℘(L)), ⊆, {$}, L, !𝑅 .𝐿!(∪𝑅), ∩⟩
is a complete lattice.

15.2 Proof Rule Simplification
If ⟨L, ⊑⟩ is a complete lattice and the composition preserves arbitrary existing limits in definition
3.2.D.d then proofs in the upper abstract semantic logic can be based on the classic upper abstract
execution property logic of section 5.4 for principal ideal closed properties and their dual A◯.

{⊔P} S{⊔Q}
{∣P ∣} S{∣Q ∣} , 𝐿!(Q) = Q ∀𝑄 ∈ P . {𝑄} S{⊓Q}

{∣P ∣} S{∣Q ∣} , 𝐿"(Q) = Q (78)

Example 15.2 (Proof reduction for principal ideal hyperproperties). Consider the instantiation for
the natural relational semantics in section 4 with no break. Define the assertional execution post-
condition 𝑆1 ≜ {𝑇 ∈ Σ ∣ 𝑇($) ≤ 10} with relational equivalent 𝑆2 ≜ Σ ×𝑆1 and hyperpropertyQ ≜
𝐿!(𝑆2) = 𝐿!(Σ×{𝑇 ∈ Σ ∣ 𝑇($) ≤ 10}) and similarlyP ≜ {(Σ×{𝑇 ∈ Σ ∣ 𝑇($) = *}) ∣ * ∈ N∧* > 10}.
To prove the following hyperlogic triple {∣P ∣} while(x>10) x=x-1{∣Q ∣}, it is equivalent to prove
the following.
{∣P ∣} while(x>10) x=x-1{∣Q ∣}

⇔ {⋃P } while(x>10) x=x-1{⋃Q } !By rule of (78)"
⇔ {Σ × {𝑇 ∈ Σ ∣ 𝑇($) > 10}} while(x>10) x=x-1{Σ × {𝑇 ∈ Σ ∣ 𝑇($) ≤ 10}}
Then one can use the over-approximation logic with termination proof in [22]. ∎
16 Order Ideal Abstraction
16.1 Definition of the Order Ideal Abstraction
The order ideal abstraction on ⟨℘(L), ⊆⟩ is

𝐿⊑(P) ≜ {𝑄 ′ ∈ L ∣ ∃𝑄 ∈ P . 𝑄 ′ ⊑ 𝑄} ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−
!⊑
1 ⟨𝐿⊑(℘(L)), ⊆⟩ (79)

𝐿⊑ is an upper closure operator and ⟨𝐿⊑(℘(L)), ⊆, ∅, L, !𝑅 .𝐿⊑(∪𝑅), ∩⟩ is a complete lattice [83,
theorem 4.1]. The order filter abstraction 𝐿⊒ is defined dually. Note that 𝐿!(P) = 𝐿⊑({⊔P}). As

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.• in particular for traces:

16:26 P. Cousot and J. Wang

18 Chain Limit Abstraction
18.1 Chain Limit Abstraction Definition and Properties
Another possible representation of order ideal abstractions would be by limits of chains. Define

𝐿↓(P) ≜ {⊓
!∈N"! ∣ ⟨"! , # ∈ N⟩ ∈ P is a decreasing chain with existing glb} (82)

𝐿↓ is ⊆ increasing and extensive but not necessarily idempotent as shown by counter example 18.1
below. The iteration of 𝐿↓ (possibly transfinitely)

∗𝐿↓(P) ≜ lfp⊆ !$.P ∪ 𝐿↓($) (83)
yields an upper closure operator [20, lemma 29.1].

Counter example 18.1. Consider the complete lattice L on the right.
LetP = {$! " ∣ #, 𝑃 > 0}. We have 𝐿↓(P) = {$! " ∣ #, 𝑃 > 0}∪{𝑄 ! ∣ # > 0}.
We have ⊓{𝑄 ! ∣ # > 0} = " so 𝐿↓(𝐿↓(P)) = {$! " ∣ #, 𝑃 > 0} ∪ {𝑄 ! ∣ # >
0} ∪ {"} ≠ 𝐿↓(P).
Moreover ∗𝐿↓(Q!) ∈ ∗𝐿↓(℘(L)), # > 0 but ⋃!>0 ∗𝐿↓(Q!) /∈ ∗𝐿↓(℘(L)). ∎

2

d↓ � let 5↓ � ,% .{
l

�- 8 , 8 ∈ N� � �- 8 , 8 ∈ N� is descending chain in % }in lfp
.⊆ .
5↓ (7)

TJd↓K � ,P .∀�- 8 , 8 ∈ N�, (∀8 ∈ N . - 8
� - 8+1

)→

l

�- 8 , 8 ∈ N� ∈ P (8)

OJd↓K � �TJd↓K, ⊆, �, ℘(L), ∪↓, ∩� (9)

A hyperproperty P is a ↑-CPO hyperproperty when the upper-bounds for all �-ascending chain
in P is also in % .

L���� 1.3. d↓ is closure operator and TJd↓K is a well-de�ned complete lattice, where �↓8∈�-8 �

d↓(�8∈�-8). For �nite join �↓ = � holds.

Fig. 1. The La�ice of counterexamples for
Remark 1.4 and 1.5. The circles represent
the elements in the la�ice while the ↓ is the
partial order �, indicating the descending
chains. The do�ed line with P , 5↓(P), and
5 2↓ (P) are the counterexample for Remark
1.4. The red line with shadowedQ is the one
for Remark 1.5.

R����� 1.4. Intuitively one may think 5↓ is a closure by its
nature. However, it is increasing, extensive, but not idem-
potent. Consider the counterexample in �gure (1) where a
complete lattice is de�ned as L � {- 8 9

� 8, 9 > 0} ∪ {. 8
� 8 >

0}∪ {�,�} with � and � being top and bottom of the lattice.
For all other elements, �� {�- 8 9 ,- 8 9 ′

� � 8 > 0∧ 9 ≤ 9 ′}∪{�- 8 9 ,
. 8
� � 8, 9 > 0}∪{�. 8 ,. 8′

� � 8′ > 8}. Now let % � {- 8 9
� 8, 9 > 0}.

We have 5↓(%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 > 0}. We notice
that �.8 , 8 > 0� is also a descending chain with the glb

d
�.8 ,

8 > 0� = �. Thus, 5 2↓ (%) = {- 8 9
� 8, 9 > 0} ∪ {. 8

� 8 >

0} ∪ {�} ≠ 5↓(%). As a result, it is necessary to de�ne d↓ to
be the �xpoint of 5↓.
R����� 1.5. Notice that TJd↓K may not be closed under
in�nite union. The counterexample uses the same lattice
as Remark 1.4 in �gure 1. We Let Q � {Q8 � 8 ∈ N} where
Q8 � {- 8 9

� 9 ∈ N} ∪ {. 8
} is CPO. However, �Q = {- 8 9

�

8, 9 ∈ N} ∪ {. 8
� 8 ∈ N} is not a CPO as the glb descending

chain �. 8 , 8 ∈ N� is � which is not in �Q. For this reason,
another application of d↓ would be necessary.

1.1.4 Frontiers abstraction and frontiers existent hyperproperties. We can construct a class hyper-
properties called lower-frontiers existent hyperproperties even weaker than ↓-CPO hyperproperties.
Let us �rst clarify what it means by frontiers. P is called frontiers when where distinct elements
are mutually incomparable.

UF � ,P .{% ∈ P � ∀% ′ ∈ P . % � % ′ → % = % ′}
TJUF K � ,P .∀%,% ′ ∈ P . % � % ′ → % = % ′ (10)

A hyperproperty P is lower-frontiers existent if for all element % in it, there exist some lower-
frontier � in UF(P) such that � � % .

TJU∃F K � ,P .∀% ∈ P . ∃� ∈ UF(P) . � � %
OJU∃F K � �TJUF K, ⊆, �, L, ∪, ∩� (11)

L���� 1.6. OJU∃F K is a well-de�ned semi-lattice that is closed under �nite union

, Vol. 1, No. 1, Article . Publication date: June 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127

Calculational Design of Hyperlogics by Abstract Interpretation 23

Observe that 𝛼⊒𝐹 idempotent but not necessarily increasing or extensive.
Counter example 13.9. Consider L = {⟨𝑎, 𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 𝑚⟩ ∣ 𝑚 ∈ N} with ⟨𝑥, 𝑛⟩ ⊑ ⟨𝑦,

𝑚⟩ ≜ 𝑥 = 𝑦 ∧𝑛 ⩾𝑚 be two incomparable infinite decreasing chains. L /⊆ 𝛼⊒𝐹 (L) = ∅. Take P = {⟨𝑎,
𝑛⟩ ∣ 𝑛 ∈ N} ∪ {⟨𝑏, 0⟩} to that P ⊆ L but 𝛼⊒𝐹 (P) = {⟨𝑏, 𝑚⟩ ∣𝑚 ∈ N} /⊆ 𝛼⊒𝐹 (L) = ∅. ∎

𝛼⊒𝐹 (℘(L)) is not closed by intersection.

Counter example 13.10. Consider the complete lattice on the
right. Let P1 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑋 𝑖 ∣ 𝑖 ∈ N∗} with frontierF1 = {𝑋 𝑖 ∣ 𝑖 ∈ N∗} and P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} ∪ {𝑌 𝑖 ∣ 𝑖 ∈ N∗} with
frontier F2 = {𝑌 𝑖 ∣ 𝑖 ∈ N∗}. P1 ∩P2 = {𝑍 𝑖 ∣ 𝑖 ∈ N∗} has frontier{𝑍 𝑖 ∣ 𝑖 ∈ N∗} whereas F1 ∩F2 is empty. ∎

3

P���� �� L���� (1.6). For P and Q in TJU∃F K. Let the frontier FP and FQ be the corre-
spendent existent lower-frontier. Let us de�ne F = UF(FP ∪FQ), and unfold its de�nition.

F = {% ∈ FP ∪FQ � ∀% ′ ∈ FP ∪FQ . % ′ � % → % ′ = %} (12)

F is a frontier hyperproperties. We claim that F is the existent lower-frontier for P ∪Q
For an arbitrary element - in P ∪Q, supposed it is in P without loss of generality, then there

exists �% in FP such that �% � - . Now consider two cases
(a) - not in Q: then that no �& in FQ such that �& � �% , which means that �% is in F
(b) - also in Q, then consider the non empty setM � FQ ∩ U�(-), which is the set of existent

frontiers in FQ that is smaller than -
i) ∀�& ∈M . �& �� �% : this is similar to the case (a)
ii) ∃�& ∈M . �& � �% . In this case, every distinct element in FQ is incomparable to �& . This

is no element in FP which is smaller than �& :(suppose for the sake of contradiction, some
element � ′ ∈ FP such that � ′ � �& , then we would have � ′ � �% which contradict that fact
that FP is a frontier.) Thus, �& would in F .

As a result, P ∪Q is also lower frontiers existent ⇤

R����� 1.7. We notice that OJU∃F K is not
closed under �nite intersection. Consider the
following example in �gure 2. Let P = {/ 8

�

8 ∈ N} ∪ {- 8
� 8 ∈ N} and Q = {/ 8

� 8 ∈
N} ∪ {. 8

� 8 ∈ N}. Both P and Q are frontier
existent as the lower-frontiers are {- 8

� 8 ∈ N}
and {. 8

� 8 ∈ N} respectively. However, the
intersection P ∩Q = {/ 8

� 8 ∈ N} is a non-
noetherian chain without frontier. Fig. 2. Counterexample for the remark 1.7.

L���� 1.8. All ↓-CPO hyperproperties are lower-frontier existent: TJU∃F K ⊆ TJd↓K
P���� �� L���� (1.8). This is directly implied by Zorn Lemma. ⇤

We realize that the lower-frontiers existent properties are all constructed sets, and it is not
a complete lattice as the join for arbitrary subset may not exist. UF is contractive, idempotent
but not increasing, meaning that it is not a closure operator. Therefore, it is impossible to have
a Galois connection from generic hyperproperties ℘(L), as the best approximation doesn’t exist.
However, it is possible to abstract any lower-frontiers existent hyproperperties to other stronger
hyperproperties, e.g. ↓-CPO closure and �-closure.

1.2 Dual of closures
Figure 3 shows a set of Galois connections of closure domains we have introduced. Now, let us
de�ne their dual closures. We de�ne dual closure in (1.1), the domain is de�ned respectively in
appendix �.1.

1.3 Refining Hyper-domains by merging
It turned out that some interesting hyperproperties can be seen as strengthening/weakening forms
of the combination of two or more dual properties.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Lemma 13.11. A◯ ⟨𝛼⊒𝐹 (℘(L)), ⊆, ∅, L, ∪⟩ is a join semilattice.

13.6.3 A Frontier Characterization of the Order Ideal Abstraction.

Lemma 13.12. A◯ There is a Galois isomorphism ⟨𝛼⊑𝐹 (℘(L)), ⊆⟩ −−−−→"→←←"−−−−
𝛼𝐹

𝛼⊑ ⟨𝛼𝐹 (℘(L)), ⪯𝐹 ⟩ and
⟨𝛼𝐹 (℘(L)), ⪯𝐹 , ⋎𝐹 ⟩ is a join semi lattice with 𝑃 ⪯𝐹 𝑄 ≜ (𝛼⊑(𝑃) ⊆ 𝛼⊑(𝑄)) and 𝑃 ⋎𝐹 𝑄 ≜ 𝛼𝐹 (𝛼⊑(𝑃)∪
𝛼⊑(𝑄)).

Define ↓⊑(𝑃) ≜ {𝑃 ′ ∈ L ∣ 𝑃 ′ ⊑ 𝑃}. The following lemma 13.13 is a characterization of 𝛼⊑𝐹 (℘(L))
that correctly generalizes [46, Proposition 1].

Lemma 13.13. A◯ If P ∈ 𝛼⊑𝐹 (℘(L)) then P = ⋃
𝑃 ∈𝛼𝐹 (P)

↓⊑(𝑃).
13.7 Chain Limit Abstraction
13.7.1 Chain Limit Abstraction Definition and Properties. Another possible representation of order
ideal abstractions would be by limits of chains. Define

𝛼↓(P) ≜ {⊓
𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with existing glb} (84)

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent.
Counter example 13.14. Consider the complete lattice on the
right. Let P be the set of elements of all decreasing chains{⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ∣ 𝑗 ∈ N∗}. 𝛼↓(P) includes P and their great-
est lower bounds ⟨𝑌 𝑖 , 𝑖 ∈ N∗⟩ but not the infimum *. The next
iteration includes P , the greatest lower bounds 𝛼↓(P) of its
decreasing chains, and the greatest lower bound * of all the de-
creasing chains {⟨𝑋 𝑖 𝑗 , 𝑖 ∈ N∗⟩ ⋅ ⟨𝑌𝑘 , 𝑘 ⩾ 𝑖⟩ ∣ 𝑗 ∈ N∗} of 𝛼↓(P).
This is the least fixpoint of 𝝀𝑋 .P ∪ 𝛼↓(𝑋). ∎

28 Anonymous 1 and Anonymous 2

It follows from theorem 12.1 that the logic proof system of theorem 8.5 is applicable to the upper
abstract logic L

♯(𝑆) (and dually theorem 8.8 for the lower abstract logic).
In conclusion of this part II, although the abstractions of the semantics, post, Post, and logics

have been show to be equally expressible for exact abstractions, they do not solve the problem
of the complexity of the resulting logic, which still has to handle exactly the (abstract) semantics
occuring in the (hyper) properties.

PaRt III: A HieRaRcHy of Semantic (HypeR) Logics
The problem with (hyper) logics studied in parts I and II is that for a program to satisfy a (hyper)

property, its semantics must exactly occur in the property. So (hyper) proofs cannot make over or
under approximations of the semantics, whereas this can and must be done in Hoare logic or its
dual to get simple proofs. In this part III, we study abstractions to derive simpler logics for less
general properties but still with sound and complete proof systems.

13 Execution Property Abstraction
In abstract domains D♯ of definition 3.2 which are complete lattices, or their abstractions by def-
inition 9.1, which are also complete latiices, the execution property abstraction 𝛼⊔♯(P) ≜ ⊔♯P
abstracts semantic properties in ℘(L♯) into executions in L♯. Defining the concretization 𝛾⊔♯(𝑄) ≜{𝑃 ∣ 𝑃 ⊑♯ 𝑄}, we get a Galois retraction

⟨℘(L♯), ⊆⟩ −−−−−→"→←−−−−−−−
𝛼⊔♯
𝛾⊔♯ ⟨L♯, ⊑♯⟩ (82)

With this abstraction, the logical ordering (implication) is also the computational ordering in
lemma 3.9 whereas, in general, for the generic algebraic abstract semantics the computational
ordering ⊑♯ and the logical ordering and ⊆ are not related.

PRoof of (82).
𝛼⊔♯(P) ⊑♯ 𝑄

⇔ ⊔♯P ⊑♯ 𝑄 !def. 𝛼⊔♯"
⇔ ∀𝑃 ∈ P . 𝑃 ⊑♯ 𝑄 !def. least upper bound"
⇔ P ⊆ {𝑃 ∣ 𝑃 ⊑♯ 𝑄} !def. ⊆"
⇔ P ⊆ 𝛾⊔♯(𝑄) !def. 𝛾⊔♯" !

Example 13.1. The hyper trace properties in ℘(℘(Σ+∞)) can be abstracted to trace properties
in ℘(Σ+∞) by ⟨℘(℘(Σ+∞), ⊆⟩ −−−−→"→←−−−−−−

𝛼∪
𝛾∪ ⟨℘(Σ+∞)), ⊆⟩with 𝛼∪(𝑃) = ⋃𝑃 and 𝛾∪(𝑄) = ℘(𝑄) as done

in [14, section 5, p. 246] which is the starting point of [9] to recover Hoare logic and its variants. ∎
14 Closure Abstractions
Let ⟨𝐿, ⊑⟩ be a poset. The ⊑-closure abstraction on ⟨℘(𝐿), ⊆⟩ is

𝛼⊑(P) ≜ {𝑃 ∈ 𝐿 ∣ ∃𝑃 ′ ∈ P , 𝑃 ′ ⊑ 𝑃} ⟨℘(𝐿), ⊆⟩ −−−−→"→←−−−−−−
𝛼⊑
1 ⟨℘(𝐿), ⊆⟩

where 1 is the identity function. 𝛼⊑ is an upper closure operator (increasing, extensif, and idem-
potent) and Morgan Ward’s [40, theorem 4.1], ⟨𝛼⊑(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼⊒
is defined dually.

Let ⟨𝐿, ⊑⟩ be a poset with partially defined greatest lower bound (glb) ⊓. Define
𝛼↓(P) ≜ {⊓

𝑖∈N𝑃𝑖 ∣ ⟨𝑃𝑖 , 𝑖 ∈ N⟩ ∈ P is a decreasing chain with well-defined glb}
, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Calculational Design of Hyperlogics by Abstract Interpretation 29

𝛼↓ in ⊆ increasing and extensive but not necessarily idempotent. By [8, lemma 29.1],
𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋)

is the smallest upper closure operator pointwise greater than or equal to 𝛼↓. By Morgan Ward’s
[40, theorem 4.1], ⟨𝛼↓(℘(𝐿)), ⊆, ∅, 𝐿, ∪, ∩⟩ is a complete lattice. 𝛼↑ and 𝛼↑ are defined dually.

TO DO
TO DO

𝛼↑(P) ≜ {Q ∣ P ⊆ Q} (83)
𝛼↓(P) ≜ {Q ∣ Q ⊆ P} (84)
𝛼↑(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑃 ⊑♯ 𝑄} (85)
𝛼↓(P) ≜ {𝑄 ∣ ∃𝑃 ∈ P . 𝑄 ⊑♯ 𝑃}

Post♯↑(𝑆)P ≜ 𝛼↑(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧ post♯(𝑆)𝑃 ⊑♯ 𝑄} = {𝑄 ∣ ∃𝑃 ∈ P ∧ {⃗𝑃 }⃗ S {⃗𝑄 }⃗}
Post♯↓(𝑆)P ≜ 𝛼↓(Post♯(𝑆)P) = {𝑄 ∣ ∃𝑃 ∈ P ∧𝑄 ⊑♯ post♯(𝑆)𝑃} = {𝑄 ∣ ∃𝑃 ∈ P ∧ ⃗{𝑃 ⃗} S ⃗{𝑄 ⃗}}

(86)
(36)

15 Related Work
The idea of handling logics algebraically goes back to [15, section 5] itself rooted in the idea of
program schemes [4, 22, 35]

This necessary distinction between computational and logical orderings first appeared in strict-
ness analysis (using Scott partial order for computational ordering and inclusion for logical order-
ing [34]) and is common in abstract interpretation since then.

16 Conclusion
Transformational (hyper) logics have traditionally be based on transformers themselves equivalent
to an operational semantics. When considering nontermination, other semantics like denotational
semantics are relevant, but the corresponding logics are a separate world [1]. In an attempt to
design (hyper) logics valid for various (abstract) semantics, we have defined an algebraic semantics
its collecting semantics, its hyper collecting semantics and the various corresponding logics

References
[1] Samson Abramsky. 1991. Domain Theory in Logical Form. Ann. Pure Appl. Log. 51, 1-2 (1991), 1–77. https://doi.org/

10.1016/0168-0072(91)90065-T
[2] Peter Aczel. 1977. An Introduction to Inductive Definitions. In Handbook of Mathematical Logic, John Barwise (Ed.).

North–Holland, Amsterdam, Chapter 7, 739–782.
[3] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel, and Frédéric Tronel. 2017. Hypercollecting semantics

and its application to static analysis of information flow. In POPL. ACM, 874–887. https://doi.org/10.1145/3009837.
3009889

[4] Manfred Broy, MartinWirsing, and Peter Pepper. 1987. On the Algebraic Definition of Programming Languages. ACM
Trans. Program. Lang. Syst. 9, 1 (1987), 54–99. https://doi.org/10.1145/9758.10501

[5] Michael R. Clarkson, Bernd Finkbeiner, Masoud Koleini, Kristopher K. Micinski, Markus N. Rabe, and César Sánchez.
2014. Temporal Logics for Hyperproperties. In POST (Lecture Notes in Computer Science, Vol. 8414). Springer, 265–284.
https://doi.org/10.1007/978-3-642-54792-8_15

[6] Michael R. Clarkson and Fred B. Schneider. 2010. Hyperproperties. J. Comput. Secur. 18, 6 (2010), 1157–1210. https:
//doi.org/10.3233/JCS-2009-0393

[7] Patrick Cousot. 2002. Constructive Design of a Hierarchy of Semantics of a Transition System by Abstract Interpre-
tation. Theor. Comput. Sci. 277, 1–2 (2002), 47–103. https://doi.org/10.1016/S0304-3975(00)00313-3

[8] Patrick Cousot. 2021. Principles of Abstract Interpretation (1 ed.). MIT Press.

, Vol. 1, No. 1, Article . Publication date: June 2024.

Iteration of 𝛼↓ (possibly transfinitely)
∗𝛼↓(P) ≜ lfp⊆ 𝝀𝑋 .P ∪ 𝛼↓(𝑋) (85)

yields an upper closure operator.
Lemma 13.15. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗𝛼↓

1 ⟨∗𝛼↓(℘(L)), ⊆⟩ and ⟨∗𝛼↓(℘(L)), ⊆, ∅, L, 𝝀𝑋 . ∗𝛼↓(⋃𝑋), ⋂⟩
is a complete lattice.

Lemma 13.16. A◯ ∀P ∈ ℘(L) . 𝛼↓(∗𝛼↓(P)) = ∗𝛼↓(P).
, Vol. 1, No. 1, Article . Publication date: July 2024.

Lemma 18.2. A◯ ⟨℘(L), ⊆⟩ −−−−→"→←−−−−−−∗#↓
1 ⟨∗𝐿↓(℘(L)), ⊆⟩ and ⟨∗𝐿↓(℘(L)), ⊆, ∅, L, !$. ∗𝐿↓(⋃$), ⋂⟩ is

a complete lattice.

Lemma 18.3. A◯ ∀P ∈ ℘(L) . 𝐿↓(∗𝐿↓(P)) = ∗𝐿↓(P).
Lemma 18.4. A◯ For all P ∈ ℘(L), 𝐿↓(P) = P implies ∗𝐿↓(P) = P .
𝐿↑ is defined ⊑ dually, and ∗𝐿↑(P) ≜ lfp⊆ !$.P ∪ 𝐿↑($) is an upper closure operator.

18.2 Forall Exists Hyperproperties
Assuming that ⟨L, ⊑⟩ = ⟨℘(Π), ⊆⟩ (where e.g. Π = Σ+∞ is a set of traces) ∀∃ hyperproperties have
the form AEH ≜ {{" ∈ ℘(Π) ∣ ∀𝑅1 ∈ " . ∃𝑅2 ∈ " . ⟨𝑅1, 𝑅2⟩ ∈ 𝑆} ∣ 𝑆 ∈ ℘(Π × Π)} (84)
(this easily generalizes to ∀𝑅1, . . . ,𝑅$ ∈ " . ∃𝑅 ′1, . . . ,𝑅 ′𝑃 ∈ " . ⟨𝑅1, . . . , 𝑅$, 𝑅 ′1, . . . , 𝑅 ′𝑃⟩ ∈ 𝑆 [40]).

Example 18.5 (Generalized non-interference). A typical forall exists hyperproperty is generalized
non interference [35, 69, 70] for the trace semantics of appendix B. Let L ∈ X be a low variable and
H ∈ X be a high variable, we have

GNI ≜ {" ∈ ℘(Σ+) ∣ ∀𝑇1𝑅1𝑇 ′1,𝑇2𝑅2𝑇 ′2 ∈ " . ∃𝑇3𝑅3𝑇 ′3 ∈ " . (𝑇1(L) = 𝑇2(L))⇒ (85)
(𝑇3(L) = 𝑇1(L) ∧ 𝑇3(H) = 𝑇2(H) ∧ 𝑇 ′3(L) = 𝑇 ′1(L))} ∎

Assuming chain-complete lattices in 3.2.A and 3.2.C, chain limit closed semantic properties in∗𝐿↑(℘(℘(Π))) subsume ∀∃ hyperproperties in AEH in that A◯
AEH ⊆ ∗𝐿↑(℘(℘(Π))) (86)

19 Chain Limit Order Ideal Abstraction
19.1 Chain Limit Order Ideal Abstraction Definition and Properties
Define

𝐿⊑↑ ≜ 𝐿⊑ ○ 𝐿↑ and ∗𝐿⊑↑(P) ≜ lfp⊆ !$.P ∪ 𝐿⊑↑($) (87)
to get an upper closure operator (since 𝐿⊑↑ is increasing and expansive although not idempotent).

Counter example 19.1. Define ⟨L, ⊑⟩ = ⟨℘(N), ⊆⟩ andN ≜ {N∖{*} ∣ * ∈ N} ∈ ℘(N) to be the set
of all sets Nwith one missing element. Since any two different elements ofN are ⊆- incomparable,

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 16. Publication date: January 2025.

(upper closure operator hence G.C.)

(extensive, increasing, not idempotent)

Google, 2025/09/17 © P. Cousot

Conclusion of Part II

￼99

Google, 2025/09/17 © P. Cousot89

Conclusion of Part II (cont’d)
• We have introduced a new algebraic semantics (instantiable

to any classic semantics)

• We have considered programs (i.e. their semantics) as

properties

• We have designed by calculus a general algebraic logic

(sound & complete and generalizing POPL 2024)

• We have designed by calculus a general algebraic hyperlogic

(sound & complete but unmanageable in practice)

• All this for terminating and nonterminating executions

Google, 2025/09/17 © P. Cousot90

Conclusion of Part II (cont’d)
• We have considered abstractions of algebraic

hyperproperties :

• less expressive than general hyperproperties

• but with sound and complete hyperlogics using only

approximations of the program semantics

• This was illustrated by an algebraic generalization of ∀*∃*

hyperproperties

Google, 2025/09/17 © P. Cousot91

More in the POPL25 paper

• Various instanciations of the algebraic semantics

• Abstractions of the algebraic semantics leading to complete

hyperlogics

• A dozen of other abstractions of hyperproperties

• Including algebraic generalizations of ∃*∀* as well as ∀*∀*

hyperproperties

• Correction of errors and generalizations of results in the literature

• etc

Google, 2025/09/17 © P. Cousot92

Conclusion of the conclusion

A transformational [hyper]logic

is

an abstract interpretation

of

an [hyper]transformer

of

an instantiation

of

an algebraic semantics.

Google, 2025/09/17 © P. Cousot93

(Conclusion of the conclusion)-1

A [hyper]logic is

another (complicated) way

of defining

an abstract interpretation

of

an instantiation

of

an algebraic semantics.

Google, 2025/09/17 © P. Cousot94

The End, Thank You

