Abstract Interpretation and
(Hyper)-Logics

Patrick Cousot

Courant Institute, New York University

Abstract Interpretation

» Abstract interpretation is a theory formalizing the
abstraction of discrete systems properties (such as the
semantics of programming languages)

Abstract Interpretation

» Abstract interpretation has been used to

» formalize the hierarchy of program semantics (e.g.
operational, denotational, axiomatic, ...)

» formalize program refinement techniques
» design sound program analysis methods (including model-
checking, runtime and static analysis, typing, ...)

» We show that it can also be used to design program logics

Program logics

» Program logics formally define what must be proved to
ensure that the semantics of programs of a language has a
specified property

e.g. Hoare logic {P} C {Q}

» Program logics must be sound (and complete)

» So program logics define the soundness of static analyzes

Content

 Part |: logics to prove properties of any execution (e.qg.
safety, termination)

» Part II: logics to prove properties of any set of executions
(e.g. security, privacy)

Part |:

Calculational Design of [In]Correctness
Program Logics by Abstract Interpretation

Patrick Cousot:
Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation.
Proc. ACM Program. Lang. 8(POPL): 175-208 (2024)

6

https://dblp.org/db/journals/pacmpl/pacmpl8.html#Cousot24

Objective

Method to design program transformational logics

Transformational logic = Hoare style logics {P} S {Q}

v

Method to design a program transformational logics

|. Define the natural relational semantics [S] | of the programming language (in

structural fixpoint form)

Method to design a program transformational logics

|. Define the natural relational semantics [S] | of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction a({[S] | }) of the collecting

semantics {[S] | } (strongest (hyper) property)

Theory of a logic = the subset of all true formulas
38

Method to design a program transformational logics

|. Define the natural relational semantics [S] | of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction a({[S] | }) of the collecting

semantics {[S] | } (strongest (hyper) property)

3. Calculate the theory a({[S] | }) in structural fixpoint form by fixpoint abstraction

Theory of a logic = the subset of all true formulas
8

Method to design a program transformational logics

|. Define the natural relational semantics [S] | of the programming language (in

structural fixpoint form)

2. Define the theory of the logics as an abstraction a({[S] | }) of the collecting

semantics {[S] | } (strongest (hyper) property)

3. Calculate the theory a({[S] | }) in structural fixpoint form by fixpoint abstraction

4. Calculate the proof system by fixpoint induction and Aczel correspondence
between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas
8

Two simple examples™
() Hoare (HL)

(2) incorrectness logic (IL. aka
reverse Hoare logic)

*in " On the Design of Program Logics” to appear in Proc. Festschrift Podelski 65th
Birthday. Springer (2024).

Google, 2025/09/1 7 9 © P. Cousot

https://cs.nyu.edu/~pmc309/COUSOTpapers/Podelski24.shtml

General Idea

HL = strongest postcondition abstraction of the collecting semantics } "
eory
+ over approximating consequence abstraction

+ over approximating fixpoint induction

} proof system
+ Aczel correspondence fixpoint « proof system

10

General Idea

HL = strongest postcondition abstraction of the collecting semantics
+ over approximating consequence abstraction
+ over approximating fixpoint induction

+ Aczel correspondence fixpoint « proof system

IL = strongest postcondition abstraction of the collecting semantics
+ under approximating consequence abstraction
+ under approximating fixpoint induction

+ Aczel correspondence fixpoint # proof system

10

|. Angelic relational semantics [S]e

® Syntax™:
SeSu=x = Alskip|S;S|if (B) S else S|while (B) S|x = [a,b] |break

e States:), ends

S e/€p(2 x)

® Angelic relational semantics:

* plus unbounded nondeterminism, breaks, and nontermination L in the POPL24 paper.

Google, 2025/09/17 11 © P. Cousot

|. Angelic relational semantics [S] (in deductive form)

e Notations using judgements:
e o+5S= ¢ for (0.0)¢€][s]°

i
e 0+ while(B) S= o' for oleads to o’ after 0 or more iterations

12

|. Angelic relational semantics [S] (in deductive form)

e Notations using judgements:
e /
e oS = ¢ for (0.0)€[s|
i
e 0+ while(B) S= ¢ for oleads to ¢’ after 0 or more iterations

e Semantics of the conditional iteration™ W = while(B) S:

' BlBlo, oS =o' o W= o
@) o-W=o (b) 1o}

(2)

i
| o-W= o
l
c-W=o0', B[|-B]o

()

(3)

¢ /
oH—W= 0o

“ plus breaks, and co-induction for nontermination L in the paper.

13

|. Angelic relational semantics [S] (in fixpoint form)

¢ Semantics of the conditional iteration™ W = while(B) S:

>

F*(X) idu ([B] 5 [s]"$X), Xep(ExZ) (49)
[while (B) S| = |Ifp= F°§|-B] (no break) (51)

® Derived using Aczel correspondence between deductive systems and set-
theoretic fixpoints

Google, 2025/09/17 14 © P. Cousot

Aczel correspondence between deductive systems and fixpoints

e Rules: £ (U universe, P € goﬁn(Z/{) premiss, ¢ € {/ conclusion, Q9 axiom)
C C

15

Aczel correspondence between deductive systems and fixpoints

e Rules: £ (U universe, P € g, (U) premiss, ¢ € U conclusion, £ axiom)
C C

® Deductive system: R = {% [€ A}, Rep(prin(U) xU)

15

Aczel correspondence between deductive systems and fixpoints

e Rules: £ (U universe, P € goﬁn(Z/{) premiss, ¢ € {/ conclusion, Q9 axiom)
C C

® Deductive system: R = {% [€ A}, Rep(prin(U) xU)

e Subset of the universe { defined by R .
p proof theoretic |

{theU | Ity,.. ,tho1 €U . Vke|l,n].I3—€eR.PC{ty,...,tx_1} ANt =}
C
Ifp= F(R)

< model theoretic (gfp for coinduction)

A P
F(R)X = {c J— eR.PC X} — consequence operator
c

16

Aczel correspondence between deductive systems and fixpoints

e Rules: £ (U universe, P € goﬁn(Z/{) premiss, ¢ € {/ conclusion, Q9 axiom)
C C

® Deductive system: R = {% [€ A}, Rep(prin(U) xU)

e Subset of the universe { defined by R

proof theoretic |

P
{theU | Ity,.. ,tho1 €U . Vke|l,n].I3—€eR.PC{ty,...,tx_1} ANt =}
= C
Ifp= F(R) < model theoretic (gfp for coinduction)
P
F(R)X = {c 1—eR.PC X} — consequence operator
C

® Deductive system defining Ifp=F : Rr 2 {g PEZ/{/\ceF(P)}

16

2. Abstraction (much simplified)

® The composition of these abstractions is

post(2.C

post Hoare partial
correctness
j ° " t(c,2
collecting relational postcondition tecedent/ post(
semantics semantics transformer ~ @-CtCUCl
LIs]} [S] consequent
pats reverse Hoare aka

incorrectness logic

® This is an oversimplification of Fig. | of the POPL24 paper, forgetting
about nontermination including total correctness and relational
predicates

17

2. Abstraction (much simplified)

® Hyper properties to properties abstraction:

(P(p(Zx3)), ©) =5 (p(=x %), <) ac(P) = |JP

oacC

18

2. Abstraction (much simplified)

® Hyper properties to properties abstraction:

(P(p(Zx3)), ©) =5 (p(=x %), <) ac(P) = |JP

oacC

® Post-image isomorphism:

(p(ZxX), c) = 5 (p(2) > (), €} post(R)2AP+{c' |Joc € PA {0, o) €R}

post

18

2. Abstraction (much simplified)

® Hyper properties to properties abstraction:

(P(p(Zx3)), ©) =5 (p(=x %), <) ac(P) = |JP

oacC

® Post-image isomorphism:

(p(ZxX), c) = 5 (p(2) > (), €} post(R)2AP+{c' |Joc € PA {0, o) €R}

post

® Graph isomorphism (a function is isomorphic to its graph, which is a
function relation):.../...

(0(2) = p(2), =) —— {prun(p(2) xp(2)), =) fepE) - p(X)
aG(f) = (P, f(P)) | Pep(2);

18

2. Abstraction (much simplified)

® Strongest postcondition logic theory (common to HL and IL with no
consequence rule):

>

T(s) aG © post o ac(1[S]})

P, post[S|P) | Pep(2);

Google, 2025/09/17 19 © P.Cousot

2. Abstraction (much simplified)

® Strongest postcondition logic theory (common to HL and IL with no
consequence rule):

T(s)

>

ag © post o ac({[s]})
{(P, post[S|P) | P € p(=)}

e Notation: { P} S{Q} = (P, Q)eT(s)

® The next step is to express this theory in fixpoint form

20

2. Abstraction

® The abstraction of a fixpoint is a fixpoint (POPL 79)

Tueorem I1.2.1 (FIXPOINT ABSTRACTION). If (C, C) % (A, <) is a Galois connection between
complete lattices (C, €) and (A, <), f € C —> C and f € A —> A are increasing and commuting,

that is, @ © f = f o a, then a(lfp= f) = Ifp= f (while semi-commutation a o f < f o « implies

a(Ifp™ f) < Ifp= f).

21

2. Abstraction (much simplified)

® The abstraction of a fixpoint is a fixpoint (POPL 79)

Tueorem I1.2.1 (FIXPOINT ABSTRACTION) If(C, c) = (A, <) is a Galois connection between

0(
l

complete lattices (C, E) and (A, <), f € C — C and f € A — A are increasing and commuting,
that is, @ © f = f o a, then a(lfp= f) = Ifp= f (while semi-commutation a o f < f o « implies

a(Ifp™ f) < Ifp= f).

® We get a fixpoint definition of the theory of strongest postconditions
logics (common to HL and IL with no consequences at all)

® For the iteration W=while (B) S :

T(W) = (P, post[-B](Ifp~ AX - PUpost([B] 5 [S]")X)) | P ep(2)}

22

1

PROPERTIES OF STRONGEST POSTCONDITIONS
LEMMA 1.1 (COMPOSITION). post(X 3Y) = post(Y) o post(X).

Proor or LEm. 1.1.

post(X $Y)
AP-{c"|3oceP.{0,0")eX3Y} (def. post§
AP+{c" |3oeP .30’ . (0,0) e XA (c', o")eY} (def. 5§

AP-{c" |30’ .c'e{c"|FoeP.{(0,0"YeX} n{c', o) eY} (def. 3 and €§

AP« {c" | 30’ € post(X)P . (c', 6") e Y} (def. post§
AP« post(Y)(post(X)P) (def. post§
post(Y) o post(X) (def. function composition o § O
LEMMA 1.2 (TEST). post[B]P = P n B[8].

Proor oF LEM. 1.2.

post[B]P

{6’ | 3o €eP . {0, o) e [B]} (def. post§
{oc|ocePAnoeB[B]} (def. [B] = {{o, o) | o € B[B]}§
PnB[8] (def. intersection U § O

LEMMA 1.3 (STRONGEST POSTCONDITION). 7 (S) = ag ° post[[S] = {(P, post[S|P) | P € p(Z)}.

Proor or LEMm. 1.3.

T(s)

ag o post o ay o ac({[S].}) (def. T'§
ag o post o ay ([S] L) (def. ac
ag o post([S]. N (T x X)) (def. a;§
ag o post[[S] (def. (1) of the angelic semantics [S] §
{(P, post[S]P) |Pep(Z)} {def. aG O

LEMMA 1.4 (STRONGEST POSTCONDITION OVER APPROXIMATION).

Tar(s) 2 post(2.€)oT(s) = {(P, Q)|post[S[PcQ} = post(=,S)oT(S)
Proor oF LEm. 1.4.
post(2.c) o T(S)
post(2.€)(7(s)) { def. function composition o
post(2.€) ({(P, post[S]P) | P ep(Z)}) (Lem. 1.3§
(P, Q') | 3(P, Q) € {(P, post[s]P) | P e o(5)} . ((P, Q), {P', Q')) 2.5} {def. (10) of posts$

{(P', Q'Y | 3P . {{P, post[S]P), (P', Q")) e 2.c} {def. €§
{(P, Q') | 3P . (P, post[s]P) 2.c (P, Q')} (def. €§
{{(P", Q") | 3P. P2 P Apost[s]Pc Q'} (def. 2.c§
{{(P", Q'Y | 3P . P' c P A post[s]P c Q'} (def. 2§

{{P’, Q) | post[s]P" c O}
{(S) by Galois connection (12), post is increasing so that P’ € P A post[S]|P € Q" implies
post[S]P’ € post[S]P A post[S]P c Q" hence post[S]|P’ c Q' by transitivity;
(2) take P = P'§

{(P", Q") | 3P . P" =P A post[s]P c Q'} (def. =§
{(P", Q") | 3P . (P, post[s]P) =, (P', Q')} (def. =, c§
{(P", Q") | 3P . ((P, post[s]P), (P, Q")) € =,c} (def. €§
{{P", Q") [AP, Q) € {(P, post[s]P) | P ep(2)} . ((P, Q), (P, Q)) e =, ¢} (def. €]
{{P", Q") [3(P, Q) € T(s) . {{P, Q). (P", Q) e =, ¢} (Lem. 1.3}
post(=,2)(7(S)) (def. (10) of post§
post(=,) o T(S) (def. function composition o § O

For simplicity, we consider conditional iteration W = while (B) S with no break.

LEMMA 1.5 (COMMUTATION). post o F'¢ = F€ o post where F¢(X) = id U (post([B] ¢ [S]¢) o X)

and F'* 2 AX «id U (X 5 [B] s [S]¢), X € (2 x 2) by (70).

PRroOOF OF LEM. 1.5.
post(F*(X))

post(id U (X 5 [8] 5 [s]°))
post(id) U post(X 3 [] 5 [$]°)

id U (post([8] 3 [s]°) ° post(X))
F¢(post(X))

{(where X € p(2)§
(def. F¢§
(join preservation in Galois connection (12)}§

(def. post and composition Lem. 1.1§
(def. F¢§ m

LEMMA 1.6 (POINTWISE COMMUTATION). VX € p(3) = p(2) . VP e p(2) . F¢(X)P = F5(X(P))

where F5(X) = P u post([B] 5 [s]¢)X.

ProOF OF LEM. 1.6.

Fé(X)P

(id U (post([8] 3 [S]°) » X))P
id(P) U (post([8] 3 [S]°) * X)(P)
P U post([8] 3 [s]°) (X(P))
Fe(X(P))

(def. F¢§

(pointwise def. U and function composition o§
(def. identity id and function application §
(def. F§(X) = P U post([B] 5 [s]°)X§ m

THEOREM 1.7 (ITERATION STRONGEST POSTCONDITION). post[W|P = post[-B](Ifp< F&) where

Fe(X) = P upost([8] 5 [S])X.

Proor or TH. 1.7.
post[W]

post(Ifp= F¢ § [-8])
post[-B] o post(lfp= F®)
post[-B] o post(Ifp= F')
post[-B] (Ifp= F®)

(def. (49) of [W] in absence of break§

{ composition Lem. 1.1§

{since Ifp= F¢ = Ifp= F'® in (70)§

{ commutation Lem. 1.5 and fixpoint abstraction Th. I1.2.2§

23

post[-B] o AP« Ifp*© 1::1?

(pointwise commutation Lem. 1.6 and pointwise abstraction Cor. I1.2.2 §

Proor or Cor. 1.8.

T(wW)

ag o post([W])

ag o post[-B] o AP« IfpS F§

(P, postT-8](1fp" $)) | P < p(5))}

O

COROLLARY 1.8 (CONDITIONAL ITERATION STRONGEST POSTCONDITION GRAPH). T (W) = {(P,
post[-B](Ifp Fp)) | P € p(2)} where F5(X) = P u post([[B] ¢ [S]¢)X.

(Lem. 1.3§
(Th. 1.7§

(def. (7) of oG §

O

3. Approximation

® [he component wise approximation:

(x, y) 5,<{(x",y') = xcx Ay=<vy

24

3. Approximation

® [he component wise approximation:

(x, y) 5,<{(x",y') = xcx Ay=<vy

® The over approximation abstraction for HL:

post(S,2) = AR-{(P, Q)| 3P, Q"YeR.PcP' AQ cQ}
Tan(S) = post(2.€) o T(S)

24

3. Approximation

® [he component wise approximation:

(x, y) 5,<{(x",y') = xcx Ay=<vy

® The over approximation abstraction for HL:

post(,2) = AR-{(P, Q)| P, Q')eR.PcP' AQ cQ}
Tan(S) = post(2.€) o T(S)
® The (order dual) under approximation abstraction for IL:
post(2,€) = AR-{(P, Q)| 3P, Q")eR.P'cPAQCcQ'}
Tre(S) = post(S,2) o T(S)

® Shows what it shared by HL and IL: all but the consequence rule (?)

24

4. Fixpoint induction

® Deriving the proof system at this stage by Aczel correspondence would
be great!

® A common part and different consequence rules for HL and IL

25

4. Fixpoint induction

® Deriving the proof system at this stage by Aczel correspondence would
be great!

® A common part and different consequence rules for HL and IL
e But then the HL proof system for iteration would be

|. Prove strongest postconditions

2. Approximate with a consequence rule to get partial correctness

® [his is sound and complete

25

4. Fixpoint induction

® Deriving the proof system at this stage by Aczel correspondence would
be great!

® A common part and different consequence rules for HL and IL
e But then the HL proof system for iteration would be

|. Prove strongest postconditions

2. Approximate with a consequence rule to get partial correctness
® [his is sound and complete

® But too demanding = not so great!

® What we miss is fixpoint induction

25

4. Fixpoint induction

THEOREM II.3.1 (PARK FIXPOINT OVER APPROXIMATION)
. i . .
Let (L, c, 1, T, U,) be a complete lattice, f € L — L be increasing, and p € L. Then

Ifp=fEpifandonlyif dieL. f(i)SiAicCp.

20

4. Fixpoint induction

THEOREM I1.3.6 (FixpPOINT UNDER APPROXIMATION BY TRANSFINITE ITERATES)
Let f € L —> L be an increasing function on a Cpo (L, &, L, u). P clfp®f, if and
only if there exists an increasing transfinite sequence (X°, § € O) such that

(1) X' = 1,

(2) X°+1 € £(X?) for successor ordinals,

(3) Lls<1 X° exists for limit ordinals A such that X" c | |s<; X°, and
(4) 36O . Pc XO.

27

5. Calculational design of HL

® Theory of HL (for iteration):

Tar (W) post(2.S) o T (W)
(P, Q) |AI.PcIA{InB[B], I) € Ty(s) A (In-B[B]) c O}

TR |

5. Calculational design of HL

® Theory of HL (for iteration):

Tur(W) = post(2.€) o T (W)
= {(P,Q)|3AI.PCcIA{InB[B], I) e Ty (S)A(In=B[B])cO}

® HL proof system:

THEOREM 3 (HOARE RULES FOR CONDITIONAL ITERATION).

Pcl {InB[B]}s{I}, (In=B[B])<cO
{P}while (B) S{Q}

28

2 CALCULATIONAL DESIGN OF HOARE LOGIC HL
2.1

Calculational Design of Hoare Logic Theory
THEOREM 2.1 (THEORY OF HOARE LoGIC HL).

Tar(W) = post(2.€) o T (W)
= {(P,Q)|IT.PcIA{InB[B], I) € Ty (s) A (In-B[B]) €O}

Proor or TH. 2.1.

T (W)

post(2.€) o T (W)
post(=,S) o T (W)
{{P, Q") I[{ P, Q) e T(w) . (P, Q) =, (P, Q)}
VP, Q)YeT(W).P=P AQcQ'}

{
{

sl s s s sR s
SR IS RTRER
crLLLrLLrLR

{
{

P,
P, Q'Y | 3I. F&(I) < I A post[-B](I) € Q'}

/
’

Q')

Q')

(2) take Q = Q'S
{{P, Q) | 3Q . Ifp" F; ¢ Q A post[-B](Q) € Q'}]
((€) take Q = Ifp= F§; (2) post[-B] is increasing by (12)§
Q'Y[30.3I.F&(I) cIAICQApost[-B](Q) c Q') {Park fixpoint induction Th. I1.3.1§

30 (P, Q) ¢ T(W). 0= Q')
30 . post]-8](Ifp" F§) € 0 1 0 € 0'}

3Q . post[-B] (Ifp= F3) < Q"}
((€) 30 . post[-B](Ifp F§) € O A Q € Q' and transitivity;

(def. Te§

(Lem. 1.4}

(def. post

(component wise def. =, €
(def. =§

(Th. 1.7§

((S) I € Q implies post[-B](I) € post[-B](Q) since post[-B] is increasing by (12) hence
post[-B](I) € Q' by transitivity;
(2) take Q = I}

a1

a1

a1

a1

I .

ar.
ar.

.Pupost([B] ¢ [s]¢)(I) €I A post[-B](I) c O}
I .

PU post([8] 3 [s]) (1) < I A post[-8] (D) < O}

P c I A post[s]

B

B

B

.PcInpost([B]s[S])I<IApost[-B](I)cQ}
| (post[B]I) < I A post[-B](I) < Q}
.PcInpost[s](InB[B]) cIA(In-B[B])<cQ}
PcIn(InB]
PcIn(InB]
PCcIA(InB]

{renaming, def. F&S§

([S]¢ = [S] in absence of breaks

(def. € and U§

(composition Lem. 1.1§

(test Lem. 1.2§

I, I) € {(P, Q) | post[S|[Pc Q} A(In=-B[B]) €O (def. €§
, I) e post(=,C) e T(S)A(In-B[B]) cQ (Lem. 1.4}
, Y eTa(S)A(In=B[B]) cQ (Lem. 1.4§ m

2.2 Hoare logic rules

THEOREM 2.2 (HOARE RULES FOR CONDITIONAL ITERATION).

Pl {InB[E]}s{I}, (In-B[8])cO

{P}while (B) S{Q}

ProoF oF TH. 2.2. We write {P} S{Q} = (P, Q) € TaL(S);
By structural induction (S being a strict component of while (B) S), the rule for {P} S{Q} have

already been defined,;
By Aczel method, the (constant) fixpoint Ifp=AX S is defined by {2 | ¢ € S};

2 with side condition P € I, {I n

{P}while (B) S{Q}

(1)

So for while (B) S we have an axiom

B[]} s{I}, (In-B[8]) < ©;

Traditionally, the side condition is written as a premiss, to get (1).

29

Surprised to find a variant of HL proof system

We also have (post is increasing):

Tan(s) = post(=,S) o T(S)

yields the sound and complete proof system:
C comes from ——P € I, {InB[B[}s{I} {P}s{Q}, Qc(Q
otk [PYwhile (8) s{In -B[8]} [P}s{Q')

Google, 2025/09/17 30 © P. Cousot

Surprised to find a variant of HL proof system

We also have (post is increasing):

yields the sound and complete proof system:

C comes from —
Th.1l.3.1

no (strict) need for Hoare left consequence rule (but for iteration):

il

»

If FP{OIE anc)t H

30

5. Calculational design of Incorrectness Logic IL
® Theory of IL (for iteration):

To(W) = post(€.2) o T (W)
= {(P,Q)|3(J" neN).J"=PA(J"nB[B], J") e Tu(s) ~nQ < (U J") nB[-B]}

neN

31

5. Calculational design of IL
® Theory of IL (for iteration):

To(W) = post(€.2) o T (W)
= {(P,Q)|3(J" neN).J"=PA(J"nB[B], J") e Tu(s) ~nQ < (U J") nB[-B]}

neN

® |L proof system:
THEOREM 5 (IL RULES FOR CONDITIONAL ITERATION).

J°=P, [J"nB[[]s[J""], Q< (UJ") nB[-8]

nen

| Plwhile (B) S[O]

(similar to O’Hearn backward variant since the consequence rule can also be separated)

31

Calculational design of IL

3 CALCULATIONAL DESIGN OF REVERSE HOARE AKA INCORRECTNESS LOGIC
(IL)

3.1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory
THEOREM 3.1 (THEORY OF IL).

To(W) = post(c.2) o T (W)
= {(P.O)[3(J" neN). J"=PA{J"nB[B], J") e Tu(s) nQ < (LU J") n B[-B]}

Proor orF TH. 3.1. neN

T (W)
= post(S.2) o T (W) (def. T §

(c-order dual of Lem. 1.4§
(Th. 1.7 where F5(X) 2 P U post([B] 5 [S]¢)X§

- {(P. Q)| Qcpostl]P}
- {(P. Q)| Q = post[-8] (Ifp" F5))

= {(P, Q)| 3I.Q c post[-B](I) Al C IfpS F&}
((©) Takel = Ifp*© If"l‘i and reflexivity;
(2) By Galois connection (12), post[-B] is increasing so Q ¢S post[-B](I) ¢
post[-B](Ifp© F§) and transitivity §
= {{P, Q) |31.Q cpost[-B](I) A3(J", n<w).] =@ A] s Fp(J") nlc U J")

n<w

(fixpoint underapproximation Th. I1.3.6 §
= {(P.Q)|3(J" n<w). J =@] ¢ Fp(J") A Q < post[-B](J J™)}
((S) By Galois connection (12), post[-B] is increasi’rilfgw so Q ¢
post[-B] (Un<, J") and transitivity;
(2) take I =Upep J™§
= {(P.Q)[3(J" n<w).)" =@ A" c(Pupost([8] 5 [s]*)(J")) A Q € post[-8] (LU J™)}

n<w

{def. F&S§
= {{P, Q) |3{J", 1<n<w).J' =P AJ" cpost([8] 5 [s]*)(J") A Q < post[-B](U J")}

1<n<w

(getting rid of J° = &
= {(P. Q) [3(J" neN). J° =P AJ"™" cpost([B] 5 [s]°)(J") A Q < post[-B] (LU J")}

neN

(changing n + 1 to n
= {{P, Q)| 3(J", neN) . J" =P AJ™ cpost[s]*(J" n B[B]) »Q = (LU J") n B[-8]}

neN

post[-B](I) <

(Lem. 1.2§

= {(P. Q) | 3" neN) . J" =Pa(J"nB[B] J"") € {{P", Q') | Q" < post[s]*)P)} A O <
(LEJ[N]”)DB[[ﬂB]]} (def. €§

= {(P,O)|3(J", neN).] =PA(J"nB[B], J"") e Ti(s) AQ < (L{q]”) nB[-B]} {def. Tr§
O

3.2 Calculational design of IL rules

J' =P, [J"nB[B]]s[J""], Q< (U J") nB[-8]

neN

[P]while (B) S[OQ]
Proor. We write [P]S[Q] 2 (P, Q) € Ti.(S);

(2)

By structural induction (S being a strict component of while (B) S), the rule for [P]S[Q] have

already been defined;

By Aczel method, the (constant) fixpoint [fp= AX + S is defined by {% |l ceS};
%

{P}while (B) S{Q}
B[B]]s[J™'], O € (UnenJ™) n B[-BJ;

Traditionally, the side condition is written as a premiss, to get (2).

with side condition J°

So for while (B) S we have an axiom

32

P, [J"n

Much more in the POPL24 paper

33 © P. Cousot

Much more in the POPL24 paper

* Bi-inductive relational semantics with break and non termination (L),
for termination and nontermination proofs

34

Much more in the POPL24 paper

* Bi-inductive relational semantics with break and non termination (L),
for termination and nontermination proofs

* Many more abstractions and combinations = hundreds of
transformational logics theories (including property negations, proofs by
contradictions, backward logics, etc.)

34

Much more in the POPL24 paper

* Bi-inductive relational semantics with break and non termination (L),
for termination and nontermination proofs

* Many more abstractions and combinations — hundreds of
transformational logics theories (including property negations, proofs by
contradictions, backward logics, etc.)

* Taxonomies based on theory abstractions (not proof systems)

Fig. 3. Taxonomy of assertional logics

34

post(2,S) o ag

[Morris Jr. and

q)

post(2,S) o ag

pre(S]

[Zilberstein et al. 2023]
[Dijkstra 1982]

[Cousot and Cousot 1982, (i™)]
[Ascari et al. 2023, (SIL)]

@
©

post(2,S) o ag

post(2,S) o ag

post[S]

post(S,2) o ag

e NV

a Pe, post(S,2) © ag

5 [Hoare 1969]
‘ [Cousot and Cousot 1982, (i)] /

Wegbrelt 1977] @ _ o
[Cousot and Cousot 1982, (1)] R K
[Ascari et al. 2023, (NC) T / N
0(1 d_l post(2,€) o aG N\~ / ay
— post[S]
post(S,2) o ac;_; - post(S,2) o ag
] @3 - [de Vries and Koutavas 2011] @)
e [O'Hearn 2020] x .
- 1.
post(D C) o aG "o, - pOS’((Q,E) ? aG * pOSt[[S]]J_
> = . TR SR] P T A
pre[[s] L7 T post(S,2) o ag ay ! spost(S,2) ° ag
o° ‘e I
"\ [Apt and Plotkin 1986] ;"4
RN ~ @ , /, @
0‘(_1 post(2,S) o ag ///
+"post|[s],

pre|S],

post(S,2) o ag

Fig. 3. Taxonomy of assertional logics

-
-
—-—
-

post(S,2) o ag

©®

- =
-—
—_
—-
—
—
- =
-—

Possible accessibility or

nontermination logic

(application 2)

Galois connection (different logics to prove the same property)
35

Much more in the POPL24 paper

* Many more fixpoint induction principles (including P C IfpE F, |fpE F C P,

PC gfpE F, gtps FC P, fpE FN P # &, gfpt F M P+ &, etc)

36

Much more in the POPL24 paper

e Example I: calculational design of a logic for partial correctness + total
correctness + non termination

{n=nnf=1}

while (n!'=0) { f = f *n; n=n - 1;7%}
{(nz0nf=ln)v(n<Orn=f=1)}

37

Much more in the POPL24 paper

e Example ll: calculational design of an incorrectness logic including non
termination

38

Much more in the POPL24 paper

e Example ll: calculational design of an incorrectness logic including non
termination

A specification for factorial:

{nel-oco,00|Afel1,1]}

while (n!'=0@) { f = f *n; n=n - 1;}%}

1felloof)

e False alarm f €[-2.0] with a (totally imprecise) interval analysis

38

Much more in the paper

e Example ll: calculational design of an incorrectness logic including non
termination

A specification for factorial:

{nel-oco,00|Afel1,1]}

while (n!'=0) { f = f *n; n=n - 1;}%}

1 felloof}
e False alarm f €[-2.0] with a (totally imprecise) interval analysis

* The alarm is false by nontermination, not provable with IL

38

About incorrectness

® |L is not Hoare incorrectness logic (sufficient, not necessary)

Z [p)s[-Q]
< dRep(X).|[P|S|[RIARN-0Q + T
< doeX.[P|s|{o}|Acé¢Q

~(1P}$10Q})

® The logic T (W) = post(S,2)ca oTm(W) = o o7y (W) can be
calculated by the desigh method (and does not need a consequence
rule)

39

Calculational design of Hoare incorrectness logic HL

def. F¢(X) 2 P u post([B $1S[€)X, S, and post, which is @-strict
P p p

4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC _((P,OQ) | I ep(3).PcTnpost([B]3[S[)V CIAIW, <) eBf . Tvel W . o el,
4.1 Calculational Design of Hoare Incorrectness Logic Theory i€[l,00]) .01 € PAVie[l,00]. {0541} < post([B] 5 [S]°){oi} AVie[l,00].(0; # 0is1) =
THEOREM 4.1 (EQUIVALENT DEFINITIONS OF HL THEORIES). (v(o;) > v(oi41) A Vi€ [1, oo] . (v(07) # v(0iy1) = 0j € pre[[—-B]](—lQ)}
Tez(W) = post(S,2)ca” o Tugr(W) = a o Tur(W) W =while (B) S (since if 0,11 € P, we can equivalently consider the sequence (oj €I, j € [i+1,00])}
Observe that Th. 4.1 shows that post (S, 2) can be dispensed with. This implies that the consequence = {(P, Q)| ep(X).PcInpost([B]s[S|)IcIATn>1.3(o;el,ic[l,n]).o1 € PAViec
rule is useless for Hoare incorrectness logic. [1,n].{oi+1} S post([B] ¢ [S]®){oi} A o € pre[-B](-Q)}

Z(E) By (W, S) € mf, velLl— W, Vi € [1,00] . (O'i F O'i+1) = (V(O'i) > V(Gi+1), the
sequence is ultimately stationary at some rank n. For then on, 0,41 = 03, i > n and so

Proor orF TH. 4.1.

Tar(W) = post(S.2) e a™ o Trn.(W) (def. T v(o;) = v(0i41). Therefore Vi € [1,00] . (v(0;) # v(0ir1) = o0; ¢ Q implies that o, €
= post((S,2)(={(P, Q) | post[W]P ¢ O}) pre[-B](-Q);
(Lem. 1.4 and def. (30) of a™'} (2) Conversely, from (o; € I, i € [1,n]) we can define W = {0; | i € [1,n]} U {—o0} with
= post(S,2)({{P, Q) | ~(post[W]P c Q)}) {def. —§ —oo < 05 < 0j41 and v(x) = (x ¢ {a,-.| i € [1,n] @ x s —oo) and the sequence (o; € I,
- post(<.2)({(P, Q) | post[W[P 1 -Q = 2}) {def. and -5 g el s oyt 0y - v
I A rA = {(P, Q)| AT ep(X).PcInpost([B]s[s])IcIAndn>1.3(o;€l,icl,n]).01€PAVie
= {(P, (P, P, Pn— (P, Q)52 (P, def. e
] {(P, Q,> | 3(P Q) € {{ t Q>P| post[w]P n PQigc} 3(p’Q>’ (P, Q")) (de dPEStS (Ln[. {ois1} € post([8] 3 [S]°){ci} A o ¢ BIB] A 0y ¢ O} def. preS
= UP, Q0[P Q) posthi]Pn-Q =@ n{P Q) &2 (P, Q) o et _ {(P,O)|Fn31. o el ie[Ln]). oy ePAVie[Ln[. {ons} < post([B] 3 [S]°){oi} A on ¢
= {(P’, Q) [3I(P. Q) . post[W[Pn-Q # G APS P AQ20Q} (component wise def. of ¢, 2§ B[B] Aon ¢ Q} (I is not used and can always be chosen to be 2§
= {(P', Q') | 3Q . post[W|[P'n-Q @A Q2Q"} = {(P,Q)|3In>1.Foielie[,n]).orePAVie[1l,n].post([B]s[S]®){oi}n{oit1} + Bro, ¢
((€) if P ¢ P’ then post[W|P < post[W]P’ by (12) so that post[W]P n -Q # @& implies B[B] Aoy, ¢ O} (since x € X < X n{x} + &
post[W]P' n =Q + @; _ _ ; : o TV, 5.} A —(=4 &,
(2) conversely, if 3Q . post[W]P’, then 3P . post[W]P n =Q # @ A P € P’ by choosing {@<}/Z,0Q>¢|l§|[ﬁ3]]>/\lg Eléo&}e bielbnl).ovePavielinl. post({e]s[s]){O.lz};l:f (X{_Uz£1\}§;§
P = P’. n n . p—
- (P Q')|po§t[[W]]P'ﬂﬁQ'¢®} ={(P,Q)|In>1.Fo; e Lic|ln]).o € PaViel[ln .-(post([B]¢[S]®){oi} <
((c) if Q2 Q" then =Q’ 2 =Q so post[W]|P’ n =Q # & implies post[W]P' n -Q’ # &; (={0is1})) Aon ¢ B[B] Aoy £ Q} (~(XcY) e (Xn-Y+a)
(2) conversely post[W|P'Nn-Q" # @ implies 3Q . post[W]P'n-Q + FAQ 2 Q' by choosing ={(P,Q)|In>1.Foyel,ic[ln]).or€PAVie[Ln].=(post([s])(B[B] n{oi}) <
Q=0"§ (={oi+1})) ANon ¢ B[B] Aon ¢ O} (def. post, [B], and §§
= {(P, Q) | ~(post[W]P < Q)} (def. € and -§ ={(P,Q)|dn>21.FHo;eLic[Ln]).o e€ParVie[l,n] . (B[B]n{o}, ~{ois1}) € {(P,
= o o TaL(W) (def. a™ and Ty, for Hoare logic O Q) | =(post([S[*)P Q)} Aon ¢ B[B] Aon ¢ Q} (def. €§
THEOREM 4.2 (THEORY OF HL). = Z{SU;, Q)|In>21.Hoiel ie[Ln]). o1 e PAVie[ln[.(B[B]n{oi}, ﬁ{0i+(11}z ;_ZH_%S()S) /\Gné
T7zW) = {(P,Q)|3In>1.3oyel ic[L,n]).o1€PA Bl ~on € Q) (def. Ter(S)]
vie[Ln|. (B[B] n{oi}, {ois1}) € Tap(S) Aon ¢ B[B] A ow £ Q] 4.2 Calculational Design of HL Proof Rules

THEOREM 4.3 (HL RULES FOR CONDITIONAL ITERATION).
HojeLie[lL,n]).opePaVie|[l,n[.(B[B]n{oi})S(|-{ois1}) Aon ¢ B[B] Aon ¢ QO

Proor orF TH. 4.2.

. P)while (B) S ()
= {(P, Q) | POSt[[—'B]](lngﬁﬁ) Nn-Q + g} (Lem. 1.3, where If“f,(X) 2 Pupost([B] 5[s]¢)X § (P)while (B) S(Q)
= {(P, Q) | Ifp® Fi n pre[-B] (-Q) # &} ((39.d)§

PROOF OF (3). We write (P))S(Q) = (P, Q) € HL(S);

By structural induction (S being a strict component of while (B) S), the rule for (P) S (Q| have
already been defined;

By Aczel method, the (constant) fixpoint Ifp=AX « S is defined by {2 | c € §};

= {(P,O) A ep(®) . FS(D) cITAIW, <) e Wf . Ivel > W .o el ie[loo]). oy
Fp(@) AVie[l,00] . 0141 € Fp({oi}) AVie[1,00] . (07 # 0i11) = (v(0;) > v(0ir1) A Vi €
[1,00] . (v(0y) # v(0ir1) = {0} npre[-B](-Q) #0} {induction principle Th. H.3§
={(P, Q) | AT ep(Z).PcInpost([B]s[S][)IcIAFW,<)eWf.Ivel >W.Io;€l, %)
ie[l,00]).01ePAVie[l,00].(0i41€PV{0is1} Cpost([B][s]°){oi}) AVie[l,00]. (0;% P)while (B) S(Q)
oir1) = (v(01) > v(0ir1) AVie[1,00]. (v(o:) # v(0ir1) = o; € pre[-B](-Q)} [Ln]) . ov e PAVie [Lnl . (B[B] n{oi})s(~{oim1}) A on ¢ B[B] A on ¢ Q where (B[B] n
40 {o:}) S(—{0i+1}] is well-defined by structural induction;

So for while (B) S we have an axiom (] with side condition 3(o; € I, i €

Traditionally, the side condition is written as a premiss, to get (3). O

Conclusion of part |

A transformational logic is
an abstract interpretation of
a natural relational semantics

41

Part ll:

Calculational Design of Hyperlogics by
Abstract Interpretation

Patrick Cousot, Jeffery Wang:
Calculational Design of Hyperlogics by Abstract Interpretation. Proc. ACM Program. Lang. 9(POPL):
446-478 (2025)

42

https://dblp.org/pid/c/PCousot.html
https://dblp.org/db/journals/pacmpl/pacmpl9.html#CousotW25

Objective

Conceive a method to design program
transformational hyperlogics

Transformational logic = Hoare style logics {P} S {Q}

43

Understanding a program logic in Part |

* What is the program semantics? S[F]

* \What is the strongest program semantic property (collecting
semantics)? {S[P]}

 What is the strongest program property of interest? os{S[P]}

* The properties of interest derive by implication (consequence
rule) ocoas{S[P]} (theory of the logic)

e \What are the proof rules??

44

Reminder (of Part |, POPL 2024)

Relational semantics S[P] <-------- Structural fixpoint definition
l AS.{S} ::..calcu‘us
”

Collecting sem. {S[P]}<«---Structural fixpoint characterization
l X = Xc o Us Ca{CM{MS

"A
Theory of the logic a{S[P]}+-Structural fixpoint characterization

l Aczel+Park & ... 7 caleulus

‘e

Proof rules of the logiC «--------------------- Deductive system

Methodology

Can we calculate hyperlogics proof systems by
structural abstractions of the program semantics?

46

We will conclude that Yes”, but

* For hyperlogics, the strongest program property of interest
IS the collecting semantics itself {S[P]}

* There is no abstraction os (in general)

* Any proof of a general hyperproperty must characterize the
program semantics exactly!

 Unmanageable In practice!

* The only workaround Is to consider only abstract
hyperproperties!

47

Which semantics?

Which semantics?

* Hoare logic soundness/completeness for invariants
IS with respect to a relational semantics

* The logic would be essentially the same with
execution traces (but for primitives)

* |Is there a semantics covering both cases (and even
many others)?

49

Algebraic semantics:
a structural fixpoint definition

Algebraic semantics

 Parameterized by an abstract semantic domain
providing the model of executions and effect of
primitives

)ﬂ = ([L_HF, EL L_”F, |_|”, init! assignﬂﬂx Al
rassign®[x, a, b], test![B], break!, skip*, s*)

o2 (! TH |—|E>O, gﬂ)

oY) —OO

51

Algebraic semantics (contd)

o Structural fixpoint definition of the effect of
commands

* E£.g. assignment

* £.9. break
[x = A]! = assignt{x, A] [break])* =)b
[x = AJ! SR [break]! £ break!

[x = A]! = b [break]! S,

52

Algebraic semantics (cont’d)
e £.9. Iteration while (B) S
Fi 2 2AXel! «inith Ut ([B;S]! oF X)
Ft 2 AXeld -[B;S]lst X
[while (8) S|t = (Ifp™ Fi) st ([-8]% Lt [B;S]})
[while (B) S]i = !
[while (B) S]i. = (Ifp=* F!) st [B;s]!
[while (B) S]J}. = gfp=c F!
[while (B) SJ' = [while (B) SJi. uf, [while (B) S|

(2

Algebraic semantics (cont’d)

* [he classic postulated presentation by equational
axioms "’ can be calculated by

e structural induction

* Aczel correspondence between fixpoints and
deductive systems (see Part | on POPL 2024)

(*) C. A.R. Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W. Roscoe, Jeft W. Sanders, Ib Holm Serensen, J. Michael
Spivey, and Bernard Sufrin. 1987. Laws of Programming. Commun. ACM 30, 8 (1987), 672—-686. https://doi.org/10.
1145/27651.27653

53

How to express
program properties?

“Programs are predicates’ °

* \We are only interested in properties of programs (not
in arbitrary properties)

e A program encodes a program execution property
defined by its semantics

* So defining properties as programs, we don’t need a
language for programs + another language for
predicates!

(*) Eric C. R. Hehner. 1990. A Practical Theory of Programming. Sci. Comput. Program. 14, 2-3 (1990), 133-158. https:

//doi,org/10.1016/0167-6423(90)90018-9 -

Property transformer

Algebraic property transformer

* Forward property transformer:

posth e L# 2> 0 25 |
post'(S)P = Pgts

A structural fixpoint
characterization of the property
transformer

58 © P. Cousot

A calculus of algebraic execution properties

e (Galois connection

pre(S)
VSel . (L c) ﬁ (L, &) ((L,E, u) is a poset)
pOS
* Using the abstraction methodology of POPL 2024, we

generalize POPL 2024 to

e a structural fixpoint algebraic calculus of execution
properties

* (and the lattice of algebraic transformational logics)

59

Hyperproperties

Algebraic hyperproperties

e | is the semantic domain (e.g. set of finite and
infinite traces, input-output relation)

e ©O([) is the set of hyperproperties (defined in
extension)

e C Is logical implication

o1

Hyperproperty transformer

Algebraic hyperproperty transformer

e Transformer

Post € Lt (L) —Zp(Lh)
Post!(S)P = {post!(S)P | P e P}

e (Galois connection

Pre(S)

(p(LF), c) 2 > (p (L), c)

Post? (S)

03

Structural fixpoint characterization
of the hyperproperty transformer

Incomplete structural characterization of Post#($)

* Counter-example

Post![if (B) S; else S,['P
= {post|1 B; S, |FP U post|1 -B;S,|'P | P e P}

C {pOStH B;Sl le |_||1 pOSJ[|1 —lB;SZ HPZ P1 S PAPZ S 7)}
— {Ql |_||1 Qz | Q1€POStH B,Sl HP A\ QzEPOStH —IB;SZ HP}

* This structural collecting semantics () is incomplete

() Thibault Dardinier and Peter Miiller. 2024. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties. Proceedings
of the ACM on Programming Languages (PACMPL) 8, Issue PLDI, Article No.: 207 (June 2024), 1485-1509. https:

//doi.org/10.1145/3656437 o

Complete structural characterization of Post#($S)

{post!(S)P} = Post'(S){P}
* Example:
Post'[if (B) S; else S,[IP
= {post|1 B;S,['P L post|1 -B;S,|'P| P eP)
= {0, Ut O, | O; € {post![B; S, [P} A O, € {post'[-B;S,]{P} AP e P}
= {0; ut Q, | Oy € Post![[B; S,]*{P} A O, € Post![-B;S,[{P} AP e P}

* We get a complete elementwise characterization of Post#(S)

006

Calculational design of the
algebraic hyperlogic rules

Upper and lower algebraic hyperlogics

e Definition

Post![s]'P c O
O c Post![s]tP

{Pls{elt
iPisicl

* The proof system is derived by calculational design
(as in POPL 2024)

63

Upper algebraic hyperlogic for iteration

(Pe=1ip™ Ef(P') A {{Pe} | -B{{Qe} b A {{Pe}}B;S{{Qb}] A
[{P}}B;S{{Que} b A Qup=gfp™Fi A P eP) =
((e:Qe E Op, L:Quel, Qp, br : Py,) € Q)

{Z) while B) S{Qf

* Requires an EXACT characterization of the program
semantics

» Unmanageable In practice

69

Abstractions

Abstractions

* Since proofs of general hyperproperties are
unmanageable, we consider abstractions of

-+ the algebraic semantics

0..
~
-
by

*e program properties

.
o**
.
R
.
N

0..
~
-
by

A)
Y 2
.
.
.
o*
'S

31

Algebraic semantics abstraction

* An abstraction of the algebraic semantics is another
iInstance of the algebraic semantics

* e.g. trace semantics — relational semantics
* This extends to logics and hyperlogics

* But still proofs require exact characterizations of the
(abstract) semantics

82

Hyperproperty abstraction

Hyperproperty abstraction

A dozen abstractions are considered In the paper
* This leads to a lattice of hyperlogics

34

Hierarchy of hyperlogics

subset closed

[67] .
F sub‘set closed <---#;-veeeinnens 5
[64, Th. 1] . .
T e e 57,65] *
e e e a e \v/*El* ... D> \v/ (k_safety) > V(HL)

Chain limit order ideal
abstraction

Chain limit order ideal abstraction (cont'd)

* The chain limit order ideal abstraction of algebraic
hyperproperties is an algebraic generalization of the
abstraction to v*3" hyperproperties

e v*3* hyperproperties (for traces in 1) AEH =
{{Pep(Il) |Vm €eP.3meP . (m, m)ecA} |Acp(Il xII)}

87

Chain limit order ideal abstraction

OKT(P) = {| |Pi| (Pi, i € N) € P isanincreasing chain with existing lub }
1€N
a(P) = {P'elL|3PeP.P cP}
O(ET L - o O(T (extensive, increasing, not idempotent)
a=T(P) = IfpsAX-Pua(X) (upper closure operator hence G.C.)

* In particular for traces:

AEH < &'(p(p(1D)))

83

Conclusion of Part Il

Conclusion of Part Il

* \We have introduced a new algebraic semantics (instantiable
to any classic semantics)

* \We have considered programs (i.e. their semantics) as
properties

* We have designed by calculus a general algebraic logic
(sound & complete and generalizing POPL 2024)

* We have designed by calculus a general algebraic hyperlogic
(sound & complete but unmanageable in practice)

* All this for terminating and nonterminating executions

89

Conclusion of Part |l (cont'd)

* \We have considered abstractions of algebraic
nyperproperties :

* [ess expressive than general hyperproperties

* pbut with sound and complete hyperlogics using only
approximations of the program semantics

e This was illustrated by an algebraic generalization of v*3*
hyperproperties

90

More in the POPL25 paper

 Various instanciations of the algebraic semantics

* Abstractions of the algebraic semantics leading to complete
hyperlogics

* A dozen of other abstractions of hyperproperties

* Including algebraic generalizations of 3"v* as well as v*v*
hyperproperties

» Correction of errors and generalizations of results in the literature
* etC

91

Conclusion of the conclusion

A transformational [hyper]logic

IS

an abstract interpretation
of

an [hyper|transformer
of
an Instantiation

of

an algebraic semantics.

92

(Conclusion of the conclusion)-!

A [hyperllogic is
another (complicated) way
of defining
an abstract interpretation
of

an Instantiation
of
an algebraic semantics.

93

The End, Thank You

