Abstract Interpretation and (Hyper)-Logics

Patrick Cousot

Courant Institute, New York University

Google, 2025/09/17 © P. Cousot

Abstract Interpretation

 Abstract interpretation is a theory formalizing the abstraction of discrete systems properties (such as the semantics of programming languages)

Abstract Interpretation

- Abstract interpretation has been used to
 - formalize the hierarchy of program semantics (e.g. operational, denotational, axiomatic, ...)
 - formalize program refinement techniques
 - design sound program analysis methods (including model-checking, runtime and static analysis, typing, ...)

We show that it can also be used to design program logics

Program logics

- Program logics formally define what must be proved to ensure that the semantics of programs of a language has a specified property

 e.g. Hoare logic {P} C {Q}
- Program logics must be sound (and complete)
- So program logics define the soundness of static analyzes

Content

 Part I: logics to prove properties of any execution (e.g. safety, termination)

 Part II: logics to prove properties of any set of executions (e.g. security, privacy)

Part I:

Calculational Design of [In]Correctness Program Logics by Abstract Interpretation

Patrick Cousot:

Calculational Design of [In]Correctness Transformational Program Logics by Abstract Interpretation. Proc. ACM Program. Lang. 8(POPL): 175-208 (2024)

Objective

Method to design program transformational logics

Transformational logic = Hoare style logics {P} S {Q}

I. Define the natural relational semantics $[S]_{\perp}$ of the programming language (in structural fixpoint form)

- I. Define the natural relational semantics $[S]_{\perp}$ of the programming language (in structural fixpoint form)
- 2. Define the theory of the logics as an abstraction $\alpha(\{[S]_{\perp}\})$ of the collecting semantics $\{[S]_{\perp}\}$ (strongest (hyper) property)

Theory of a logic = the subset of all true formulas

- I. Define the natural relational semantics $[S]_{\perp}$ of the programming language (in structural fixpoint form)
- 2. Define the theory of the logics as an abstraction $\alpha(\{[S]_{\perp}\})$ of the collecting semantics $\{[S]_{\perp}\}$ (strongest (hyper) property)
- 3. Calculate the theory $\alpha(\{[S]_{||}\})$ in structural fixpoint form by fixpoint abstraction

Theory of a logic = the subset of all true formulas

- I. Define the natural relational semantics $[S]_{\perp}$ of the programming language (in structural fixpoint form)
- 2. Define the theory of the logics as an abstraction $\alpha(\{[S]_{\perp}\})$ of the collecting semantics $\{[S]_{\perp}\}$ (strongest (hyper) property)
- 3. Calculate the theory $\alpha(\{[S]_{||}\})$ in structural fixpoint form by fixpoint abstraction
- 4. Calculate the proof system by fixpoint induction and Aczel correspondence between fixpoints and deductive systems

Theory of a logic = the subset of all true formulas

Two simple examples*: (I) Hoare (HL)

(2) incorrectness logic (IL. aka reverse Hoare logic)

^{*} in ``On the Design of Program Logics'' to appear in Proc. Festschrift Podelski 65th Birthday. Springer (2024).

General Idea

- HL = strongest postcondition abstraction of the collecting semantics
 - + over approximating consequence abstraction
 - + over approximating fixpoint induction
 - + Aczel correspondence fixpoint ⇔ proof system

} theory
} proof system

General Idea

- HL = strongest postcondition abstraction of the collecting semantics
 - + over approximating consequence abstraction
 - + over approximating fixpoint induction
 - + Aczel correspondence fixpoint ⇔ proof system
- IL = strongest postcondition abstraction of the collecting semantics
 - + under approximating consequence abstraction
 - + under approximating fixpoint induction
 - + Aczel correspondence fixpoint +> proof system

theory

proof system

theory

proof system

I. Angelic relational semantics $[S]^e$

Syntax*:

$$S \in S := x = A \mid skip \mid S;S \mid if (B) S else S \mid while (B) S \mid x = [a,b] \mid break$$

• States: \sum

• Angelic relational semantics:
$$[S]^{e'} \in \wp(\Sigma \times \Sigma)$$

^{*} plus unbounded nondeterminism, breaks, and nontermination \bot in the POPL24 paper.

I. Angelic relational semantics [S] (in deductive form)

Notations using judgements:

•
$$\sigma \vdash S \stackrel{e}{\Rightarrow} \sigma' \text{ for } \langle \sigma, \sigma' \rangle \in [\![S]\!]^e$$

• $\sigma \vdash \text{while(B)} \ S \stackrel{i}{\Rightarrow} \sigma'$ for σ leads to σ' after 0 or more iterations

Google, 2025/09/17 12 © P. Cousot

1. Angelic relational semantics [S] (in deductive form)

Notations using judgements:

•
$$\sigma \vdash S \stackrel{e}{\Rightarrow} \sigma' \text{ for } \langle \sigma, \sigma' \rangle \in [\![S]\!]^e$$

- $\sigma \vdash \text{while(B)} \ S \stackrel{i}{\Rightarrow} \sigma'$ for σ leads to σ' after 0 or more iterations
- Semantics of the conditional iteration* W = while(B) S:

(a)
$$\sigma \vdash W \stackrel{i}{\Rightarrow} \sigma$$
 (b) $\frac{\mathcal{B}[\![B]\!]\sigma, \quad \sigma \vdash S \stackrel{e}{\Rightarrow} \sigma', \quad \sigma' \vdash W \stackrel{i}{\Rightarrow} \sigma''}{\sigma \vdash W \stackrel{i}{\Rightarrow} \sigma'}$ (2)
$$\sigma \vdash W \stackrel{i}{\Rightarrow} \sigma'$$
 (a) $\frac{\sigma \vdash W \stackrel{i}{\Rightarrow} \sigma', \quad \mathcal{B}[\![\neg B]\!]\sigma'}{\sigma \vdash W \stackrel{e}{\Rightarrow} \sigma'}$ (3)

(a)
$$\frac{\sigma \vdash \mathsf{W} \stackrel{i}{\Rightarrow} \sigma', \quad \mathcal{B}[\![\neg \mathsf{B}]\!]\sigma'}{\sigma \vdash \mathsf{W} \stackrel{e}{\Rightarrow} \sigma'}$$
(3)

^{*} plus breaks, and co-induction for nontermination \perp in the paper.

I. Angelic relational semantics [S] (in fixpoint form)

Semantics of the conditional iteration* W = while(B) S:

$$F^{e}(X) \triangleq \operatorname{id} \cup (\llbracket \mathsf{B} \rrbracket \, {}^{\varrho} \, \llbracket \mathsf{S} \rrbracket^{e} \, {}^{\varrho} X), \quad X \in \wp(\Sigma \times \Sigma)$$

$$[\llbracket \mathsf{while} \, (\mathsf{B}) \, \mathsf{S} \rrbracket^{e} \triangleq \mathsf{lfp}^{\subseteq} F^{e} \, {}^{\varrho} \, \llbracket \neg \mathsf{B} \rrbracket$$

$$(no break) \quad (51)$$

• Derived using Aczel correspondence between deductive systems and settheoretic fixpoints

Google, 2025/09/17 14

• Rules: $\frac{P}{c}$ (\mathcal{U} universe, $P \in \wp_{fin}(\mathcal{U})$ premiss, $c \in \mathcal{U}$ conclusion, $\frac{\emptyset}{c}$ axiom)

• Rules: $\frac{P}{c}$ (\mathcal{U} universe, $P \in \wp_{fin}(\mathcal{U})$ premiss, $c \in \mathcal{U}$ conclusion, $\frac{\emptyset}{c}$ axiom)

• Deductive system: $R = \left\{ \frac{P_i}{c_i} \mid i \in \Delta \right\}, \quad R \in \wp(\wp_{fin}(\mathcal{U}) \times \mathcal{U})$

Google, 2025/09/17 15

- Rules: $\frac{P}{c}$ (\mathcal{U} universe, $P \in \wp_{fin}(\mathcal{U})$ premiss, $c \in \mathcal{U}$ conclusion, $\frac{\varnothing}{c}$ axiom)
- Deductive system: $R = \{\frac{P_i}{c_i} \mid i \in \Delta\}, \quad R \in \wp(\wp_{fin}(\mathcal{U}) \times \mathcal{U})$
- ullet Subset of the universe ${\mathcal U}$ defined by R:

Subset of the difference of defined by
$$R$$
.

$$= \begin{cases} \{t_n \in \mathcal{U} \mid \exists t_1, \dots, t_{n-1} \in \mathcal{U} : \forall k \in [1, n] : \exists \frac{P}{c} \in R : P \subseteq \{t_1, \dots, t_{k-1}\} \land t_k = c\} \\ |fp = F(R)| & \leftarrow \text{model theoretic (gfp for coinduction)} \end{cases}$$

$$F(R)X \triangleq \left\{ c \mid \exists \frac{P}{c} \in R : P \subseteq X \right\} \qquad \leftarrow \text{consequence operator}$$

Google, 2025/09/17 16

- Rules: $\frac{P}{c}$ (\mathcal{U} universe, $P \in \wp_{fin}(\mathcal{U})$ premiss, $c \in \mathcal{U}$ conclusion, $\frac{\varnothing}{c}$ axiom)
- Deductive system: $R = \left\{ \frac{P_i}{c_i} \mid i \in \Delta \right\}, \quad R \in \wp(\wp_{fin}(\mathcal{U}) \times \mathcal{U})$
- ullet Subset of the universe ${\mathcal U}$ defined by R:

• Deductive system defining $|fp^{\subseteq}F: R_F \triangleq \left\{\frac{P}{c} \mid P \subseteq \mathcal{U} \land c \in F(P)\right\}$

• The composition of these abstractions is

 This is an oversimplification of Fig. I of the POPL24 paper, forgetting about nontermination including total correctness and relational predicates

• Hyper properties to properties abstraction:

$$\langle \wp(\wp(\Sigma \times \Sigma)), \subseteq \rangle \xrightarrow{\gamma_C} \langle \wp(\Sigma \times \Sigma), \subseteq \rangle$$
 $\alpha_C(P) \triangleq \bigcup P$ $\gamma_C(S) \triangleq \wp(S)$

• Hyper properties to properties abstraction:

$$\langle \wp(\wp(\Sigma \times \Sigma)), \subseteq \rangle \xrightarrow{\gamma_C} \langle \wp(\Sigma \times \Sigma), \subseteq \rangle$$
 $\alpha_C(P) \triangleq \bigcup P$ $\gamma_C(S) \triangleq \wp(S)$

Post-image isomorphism:

$$\langle \wp(\Sigma \times \Sigma), \subseteq \rangle \xrightarrow{\widetilde{\text{pre}}} \langle \wp(\Sigma) \to \wp(\Sigma), \subseteq \rangle \quad \text{post}(R) \triangleq \lambda P \cdot \{\sigma' \mid \exists \sigma \in P \land \langle \sigma, \sigma' \rangle \in R\}$$
$$\widetilde{\text{pre}}(R) \triangleq \lambda X \cdot \{\sigma \mid \forall \sigma' \in Q . \langle \sigma, \sigma' \rangle \in R\}$$

• Hyper properties to properties abstraction:

$$\langle \wp(\wp(\Sigma \times \Sigma)), \subseteq \rangle \xrightarrow{\gamma_C} \langle \wp(\Sigma \times \Sigma), \subseteq \rangle$$
 $\alpha_C(P) \triangleq \bigcup P$ $\gamma_C(S) \triangleq \wp(S)$

Post-image isomorphism:

$$\langle \wp(\Sigma \times \Sigma), \subseteq \rangle \xrightarrow{\widetilde{\text{pre}}} \langle \wp(\Sigma) \to \wp(\Sigma), \subseteq \rangle \quad \text{post}(R) \triangleq \lambda P \cdot \{\sigma' \mid \exists \sigma \in P \land \langle \sigma, \sigma' \rangle \in R\}$$
$$\widetilde{\text{pre}}(R) \triangleq \lambda X \cdot \{\sigma \mid \forall \sigma' \in Q . \langle \sigma, \sigma' \rangle \in R\}$$

• Graph isomorphism (a function is isomorphic to its graph, which is a function relation):.../...

$$\langle \wp(\Sigma) \to \wp(\Sigma), = \rangle \xrightarrow{\gamma_{G}} \langle \wp_{\text{fun}}(\wp(\Sigma) \times \wp(\Sigma)), = \rangle \quad f \in \wp(\Sigma) \to \wp(\Sigma)$$

$$\alpha_{G}(f) = \{\langle P, f(P) \rangle \mid P \in \wp(\Sigma)\}$$

$$\gamma_{G}(R) \triangleq \lambda P \cdot (Q \text{ such that } \langle P, S \rangle \in R)$$

 Strongest postcondition logic theory (common to HL and IL with no consequence rule):

```
\mathcal{T}(S) \triangleq \alpha_{G} \circ post \circ \alpha_{C}(\{[S]]\})
= \{\langle P, post[S]P \rangle \mid P \in \wp(\Sigma)\}
```

• Strongest postcondition logic theory (common to HL and IL with no consequence rule):

```
\mathcal{T}(S) \triangleq \alpha_{G} \circ post \circ \alpha_{C}(\{[S]]\})
= \{\langle P, post[S]P \rangle \mid P \in \wp(\Sigma)\}
```

- Notation: $\{P\} S \{Q\} \triangleq \langle P, Q \rangle \in \mathcal{T}(S)$
- The next step is to express this theory in fixpoint form

• The abstraction of a fixpoint is a fixpoint (POPL 79)

Theorem II.2.1 (Fixpoint abstraction). If $\langle C, \sqsubseteq \rangle \stackrel{r}{\Longleftrightarrow} \langle A, \preceq \rangle$ is a Galois connection between complete lattices $\langle C, \sqsubseteq \rangle$ and $\langle A, \preceq \rangle$, $f \in C \stackrel{i}{\longrightarrow} C$ and $\bar{f} \in A \stackrel{i}{\longrightarrow} A$ are increasing and commuting, that is, $\alpha \circ f = \bar{f} \circ \alpha$, then $\alpha(\mathsf{lfp}^{\sqsubseteq} f) = \mathsf{lfp}^{\preceq} \bar{f}$ (while semi-commutation $\alpha \circ f \preceq \bar{f} \circ \alpha$ implies $\alpha(\mathsf{lfp}^{\sqsubseteq} f) \preceq \mathsf{lfp}^{\preceq} \bar{f}$).

Google, 2025/09/17 21

• The abstraction of a fixpoint is a fixpoint (POPL 79)

Theorem II.2.1 (Fixpoint abstraction). If $\langle C, \sqsubseteq \rangle \stackrel{r}{\longleftrightarrow} \langle A, \preceq \rangle$ is a Galois connection between complete lattices $\langle C, \sqsubseteq \rangle$ and $\langle A, \preceq \rangle$, $f \in C \stackrel{i}{\longrightarrow} C$ and $\bar{f} \in A \stackrel{i}{\longrightarrow} A$ are increasing and commuting, that is, $\alpha \circ f = \bar{f} \circ \alpha$, then $\alpha(\mathsf{lfp}^{\sqsubseteq} f) = \mathsf{lfp}^{\preceq} \bar{f}$ (while semi-commutation $\alpha \circ f \preceq \bar{f} \circ \alpha$ implies $\alpha(\mathsf{lfp}^{\sqsubseteq} f) \preceq \mathsf{lfp}^{\preceq} \bar{f}$).

- We get a fixpoint definition of the theory of strongest postconditions logics (common to HL and IL with no consequences at all)
- For the iteration W = while (B) S:

```
\mathcal{T}(\mathsf{W}) \triangleq \{\langle P, \, \mathsf{post}[\neg \mathsf{B}](\mathsf{lfp}^{\subseteq} \boldsymbol{\lambda} X \cdot P \cup \mathsf{post}([\![\mathsf{B}]\!] \circ [\![\mathsf{S}]\!]^e) X) \rangle \mid P \in \wp(\Sigma)\}
```

```
1 PROPERTIES OF STRONGEST POSTCONDITIONS
    LEMMA 1.1 (COMPOSITION). post(X \circ Y) = post(Y) \circ post(X).
     Proof of Lem. 1.1.
     post(X \circ Y)
= \lambda P \cdot \{ \sigma'' \mid \exists \sigma \in P : \langle \sigma, \sigma'' \rangle \in X \circ Y \}
                                                                                                                                                                                7 def. post ∫
= \lambda P \cdot \{ \sigma'' \mid \exists \sigma \in P . \exists \sigma' . \langle \sigma, \sigma' \rangle \in X \land \langle \sigma', \sigma'' \rangle \in Y \}
                                                                                                                                                                                      ?def. ; \
= \lambda P \cdot \{ \sigma'' \mid \exists \sigma' : \sigma' \in \{ \sigma' \mid \exists \sigma \in P : \langle \sigma, \sigma' \rangle \in X \} \land \langle \sigma', \sigma'' \rangle \in Y \}
                                                                                                                                                                         \emptyset def. \exists and \in \S
= \lambda P \cdot \{ \sigma'' \mid \exists \sigma' \in post(X)P . \langle \sigma', \sigma'' \rangle \in Y \}
                                                                                                                                                                                7 def. post \
= \lambda P \cdot post(Y)(post(X)P)
                                                                                                                                                                                7 def. post \
= post(Y) \circ post(X)
                                                                                                                            ∂ def. function composition ∘ ∫
    Lemma 1.2 (Test). post [B]P = P \cap \mathcal{B}[B].
     Proof of Lem. 1.2.
     post[B]P
= \{ \sigma' \mid \exists \sigma \in P : \langle \sigma, \sigma' \rangle \in [\![B]\!] \}
                                                                                                                                                                               7 def. post 5
= \{ \sigma \mid \sigma \in P \land \sigma \in \mathcal{B}[\![B]\!] \}
                                                                                                                                      \langle \operatorname{def.} [B] \triangleq \{ \langle \sigma, \sigma \rangle \mid \sigma \in \mathcal{B}[B] \} \}
= P \cap \mathcal{B}[\![B]\!]
                                                                                                                                               \partial def. intersection \cup \mathcal{L}
    Lemma 1.3 (Strongest postcondition). \mathcal{T}(S) = \alpha_G \circ post[S] = \{\langle P, post[S]P \rangle \mid P \in \wp(\Sigma)\}.
     Proof of Lem. 1.3.
     \mathcal{T}(\mathsf{S})
= \alpha_{G} \circ post \circ \alpha_{I} \circ \alpha_{C}(\{[\![S]\!]_{\perp}\})
                                                                                                                                                                                    \partial \operatorname{def} \mathcal{T}
= \alpha_{G} \circ post \circ \alpha_{I}([S]_{\perp})
                                                                                                                                                                                   \partial \operatorname{def.} \alpha_C 
= \alpha_{G} \circ post([S]_{\perp} \cap (\Sigma \times \Sigma))
                                                                                                                                                                                   \partial \operatorname{def.} \alpha_{I}
= \alpha_{G} \circ post[S]
                                                                                                                         \partial def. (1) of the angelic semantics [S]
= \{ \langle P, \text{ post} [S] P \rangle \mid P \in \wp(\Sigma) \}
                                                                                                                                                                      \partial \operatorname{def.} \alpha_{G} \subseteq \Box
     LEMMA 1.4 (STRONGEST POSTCONDITION OVER APPROXIMATION).
            \mathcal{T}_{\mathrm{HL}}(\mathsf{S}) \triangleq \mathsf{post}(\supseteq.\subseteq) \circ \mathcal{T}(\mathsf{S}) = \{\langle P, Q \rangle \mid \mathsf{post}[\![\mathsf{S}]\!] P \subseteq Q\} = \mathsf{post}(=,\subseteq) \circ \mathcal{T}(\mathsf{S})
     Proof of Lem. 1.4.
     \mathsf{post}(\supseteq.\subseteq) \circ \mathcal{T}(\mathsf{S})
= post(\supseteq.\subseteq)(\mathcal{T}(S))
                                                                                                                                          ?def. function composition ∘ \
= post(\supseteq.\subseteq)(\{\langle P, post[S]P \rangle \mid P \in \wp(\Sigma)\})
                                                                                                                                                                                7Lem. 1.3\
= \{\langle P', Q' \rangle \mid \exists \langle P, Q \rangle \in \{\langle P, post[S]P \rangle \mid P \in \wp(\Sigma)\} . \langle \langle P, Q \rangle, \langle P', Q' \rangle \rangle \in \supseteq \subseteq \} \quad \text{(def. (10) of post)}
= \{ \langle P', Q' \rangle \mid \exists P . \langle \langle P, post [S] P \rangle, \langle P', Q' \rangle \rangle \in \supseteq \subseteq \}
                                                                                                                                                                                       7 def. ∈ \
= \{ \langle P', Q' \rangle \mid \exists P . \langle P, post \llbracket S \rrbracket P \rangle \supseteq \subseteq \langle P', Q' \rangle \}
                                                                                                                                                                                      ?def. ∈ \
= \{ \langle P', Q' \rangle \mid \exists P . P \supseteq P' \land \mathsf{post}[S] P \subseteq Q' \}
                                                                                                                                                                                 (def. ⊇.⊆)
= \{ \langle P', Q' \rangle \mid \exists P . P' \subseteq P \land \mathsf{post}[S] P \subseteq Q' \}
                                                                                                                                                                                      (def. ⊇)
```

```
= \{ \langle P', Q' \rangle \mid post \llbracket S \rrbracket P' \subseteq Q' \}
              (\subseteq) by Galois connection (12), post is increasing so that P' \subseteq P \land post[S]P \subseteq Q' implies
                post[S]P' \subseteq post[S]P \land post[S]P \subseteq Q' hence post[S]P' \subseteq Q' by transitivity;
                (⊇) take P = P' \
= \{ \langle P', Q' \rangle \mid \exists P . P' = P \land post [S] P \subseteq Q' \}
                                                                                                                                                                             \frac{7}{\text{def.}} = \frac{5}{3}
= \{ \langle P', Q' \rangle \mid \exists P . \langle P, post[S]P \rangle = \subseteq \langle P', Q' \rangle \}
                                                                                                                                                                         ? def. =, ⊆ \
= \{ \langle P', Q' \rangle \mid \exists P : \langle \langle P, post [S] P \rangle, \langle P', Q' \rangle \rangle \in =, \subseteq \}
                                                                                                                                                                             ? def. ∈ \
= \{ \langle P', Q' \rangle \mid \exists \langle P, Q \rangle \in \{ \langle P, post \llbracket S \rrbracket P \rangle \mid P \in \wp(\Sigma) \} : \langle \langle P, Q \rangle, \langle P', Q' \rangle \rangle \in =, \subseteq \}
                                                                                                                                                                             7 def. ∈ \
= \{ \langle P', Q' \rangle \mid \exists \langle P, Q \rangle \in \mathcal{T}(S) . \langle \langle P, Q \rangle, \langle P', Q' \rangle \rangle \in =, \subseteq \}
                                                                                                                                                                       {Lem. 1.3}
= post(=,\subseteq)(\mathcal{T}(S))
                                                                                                                                                          \int def. (10) of post \int
= post(=,\subseteq) \circ \mathcal{T}(S)
                                                                                                                       7 def. function composition ∘ \
    For simplicity, we consider conditional iteration W = while (B) S with no break.
    LEMMA 1.5 (COMMUTATION). post \circ F'^e = \bar{F}^e \circ \text{post } where \ \bar{F}^e(X) \triangleq \text{id } \dot{\cup} \ (\text{post}(\llbracket \mathsf{B} \rrbracket \, \mathring{\circ} \, \llbracket \mathsf{S} \rrbracket^e) \circ X)
and F'^e \triangleq \lambda X \cdot id \cup (X \circ [B] \circ [S]^e), X \in \wp(\Sigma \times \Sigma) \ by (70).
    Proof of Lem. 1.5.
    post(F'^e(X))
                                                                                                                                                         where X \in \wp(\Sigma)
= \operatorname{post}(\operatorname{id} \cup (X \, \operatorname{gn} \, \mathbb{B}) \, \operatorname{gn} \, \mathbb{S}^{e}))
                                                                                                                                                                           \int \mathrm{def.} \, F^e \, \mathcal{L}
= post(id) \dot{\cup} post(X \circ [B] \circ [S]^e)
                                                                                                     i join preservation in Galois connection (12)
                                                                                                                     7 def. post and composition Lem. 1.1
= id \dot{\cup} (post(\llbracket B \rrbracket ; \llbracket S \rrbracket^e) \circ post(X))
= \bar{F}^e(post(X))
                                                                                                                                                              \partial \operatorname{def.} \bar{F}^e \setminus \square
    LEMMA 1.6 (POINTWISE COMMUTATION). \forall X \in \wp(\Sigma) \to \wp(\Sigma). \forall P \in \wp(\Sigma). \bar{F}^e(X)P \triangleq \bar{\bar{F}}^e_P(X(P))
where \bar{F}_{P}^{e}(X) \triangleq P \cup \operatorname{post}(\llbracket \mathsf{B} \rrbracket \, \S \, \llbracket \mathsf{S} \rrbracket^{e}) X.
    Proof of Lem. 1.6.
    \bar{F}^e(X)P
= (id \dot{\cup} (post(\llbracket B \rrbracket \circ \llbracket S \rrbracket^e) \circ X))P
                                                                                                                                                                           7 \operatorname{def.} \bar{F}^e 
= id(P) \cup (post(\llbracket B \rrbracket ; \llbracket S \rrbracket^e) \circ X)(P)
                                                                                                  ?pointwise def. \dot{\cup} and function composition \circ \}
= P \cup post(\llbracket B \rrbracket ; \llbracket S \rrbracket^e)(X(P))
                                                                                                           ?def. identity id and function application \
                                                                                                        \langle \operatorname{def.} \bar{F}_{P}^{e}(X) \triangleq P \cup \operatorname{post}(\llbracket B \rrbracket \circ \llbracket S \rrbracket^{e}) X \rangle \square
= \bar{F}_P^e(X(P))
    Theorem 1.7 (Iteration strongest postcondition). post [W]P = post[\neg B](fp^{\subseteq}\bar{F}_{P}^{e}) where
\bar{F}_{P}^{e}(X) \triangleq P \cup \operatorname{post}(\llbracket \mathsf{B} \rrbracket \, \mathring{\S} \, \llbracket \mathsf{S} \rrbracket^{e}) X.
    Proof of Th. 1.7.
    post[W]
= post(lfp^{\subseteq} F^{e} \circ \llbracket \neg B \rrbracket)
                                                                                                                     ? def. (49) of [w] in absence of break \
= post[\neg B] \circ post(lfp^{\subseteq} F^e)
                                                                                                                                              (composition Lem. 1.1)
= post[\neg B] \circ post(lfp^{\subseteq} F'^{e})
                                                                                                                               \langle \text{since Ifp}^{\subseteq} F^e = \text{Ifp}^{\subseteq} F'^e \text{ in } (70) \rangle
= post[\neg B](Ifp^{\subseteq}\bar{F}^e)
                                                                            ?commutation Lem. 1.5 and fixpoint abstraction Th. II.2.2
```

Google, 2025/09/17 23

3. Approximation

• The component wise approximation:

$$\langle x, y \rangle \sqsubseteq, \leq \langle x', y' \rangle \triangleq x \sqsubseteq x' \land y \leq y'$$

3. Approximation

• The component wise approximation:

$$\langle x, y \rangle \sqsubseteq, \leq \langle x', y' \rangle \triangleq x \sqsubseteq x' \land y \leq y'$$

• The over approximation abstraction for HL:

$$post(\subseteq, \supseteq) = \lambda R \cdot \{\langle P, Q \rangle \mid \exists \langle P', Q' \rangle \in R . P \subseteq P' \land Q' \subseteq Q\}$$

$$\mathcal{T}_{HL}(S) \triangleq post(\supseteq.\subseteq) \circ \mathcal{T}(S)$$

3. Approximation

• The component wise approximation:

$$\langle x, y \rangle \sqsubseteq, \leq \langle x', y' \rangle \triangleq x \sqsubseteq x' \land y \leq y'$$

• The over approximation abstraction for HL:

$$post(\subseteq, \supseteq) = \lambda R \cdot \{\langle P, Q \rangle \mid \exists \langle P', Q' \rangle \in R . P \subseteq P' \land Q' \subseteq Q\}$$

$$\mathcal{T}_{HL}(S) \triangleq post(\supseteq.\subseteq) \circ \mathcal{T}(S)$$

• The (order dual) under approximation abstraction for IL:

$$post(\supseteq, \subseteq) = \lambda R \cdot \{\langle P, Q \rangle \mid \exists \langle P', Q' \rangle \in R \cdot P' \subseteq P \land Q \subseteq Q'\}$$

$$\mathcal{T}_{RL}(S) \triangleq post(\subseteq, \supseteq) \circ \mathcal{T}(S)$$

• Shows what it shared by HL and IL: all but the consequence rule (?)

4. Fixpoint induction

- Deriving the proof system at this stage by Aczel correspondence would be great!
- A common part and different consequence rules for HL and IL

4. Fixpoint induction

- Deriving the proof system at this stage by Aczel correspondence would be great!
- A common part and different consequence rules for HL and IL
- But then the HL proof system for iteration would be
 - 1. Prove strongest postconditions (>>>>>> total correctness)
 - 2. Approximate with a consequence rule to get partial correctness
- This is sound and complete

4. Fixpoint induction

- Deriving the proof system at this stage by Aczel correspondence would be great!
- A common part and different consequence rules for HL and IL
- But then the HL proof system for iteration would be
 - 1. Prove strongest postconditions (>>>>>> total correctness)
 - 2. Approximate with a consequence rule to get partial correctness
- This is sound and complete
- But too demanding → not so great!
- What we miss is fixpoint induction

4. Fixpoint induction

Theorem II.3.1 (Park fixpoint over approximation) Let $\langle L, \sqsubseteq, \bot, \top, \sqcup, \sqcap \rangle$ be a complete lattice, $f \in L \xrightarrow{i} L$ be increasing, and $p \in L$. Then $\mathsf{lfp}^{\sqsubseteq} f \sqsubseteq p$ if and only if $\exists i \in L \ . \ f(i) \sqsubseteq i \land i \sqsubseteq p$.

4. Fixpoint induction

Theorem II.3.6 (Fixpoint Under Approximation by Transfinite Iterates) Let $f \in L \xrightarrow{i} L$ be an increasing function on a CPO $\langle L, \sqsubseteq, \bot, \sqcup \rangle$. $P \sqsubseteq \mathsf{lfp}^{\sqsubseteq} f$, if and only if there exists an increasing transfinite sequence $\langle X^{\delta}, \delta \in \mathbb{O} \rangle$ such that

- $(1) X^0 = \bot,$
- (2) $X^{\delta+1} \subseteq f(X^{\delta})$ for successor ordinals,
- (3) $\bigsqcup_{\delta < \lambda} X^{\delta}$ exists for limit ordinals λ such that $X^{\lambda} \subseteq \bigsqcup_{\delta < \lambda} X^{\delta}$, and
- $(4) \ \exists \delta \in \mathbb{O} \ . \ P \sqsubseteq X^{\delta}.$

 δ bounded by ω for continuous f.

5. Calculational design of HL

• Theory of HL (for iteration):

```
\mathcal{T}_{HL}(\mathsf{W}) \triangleq \mathsf{post}(\supseteq.\subseteq) \circ \mathcal{T}(\mathsf{W})
= \{ \langle P, Q \rangle \mid \exists I . P \subseteq I \land \langle I \cap \mathcal{B}[\![\mathsf{B}]\!], I \rangle \in T_{HL}(\mathsf{S}) \land (I \cap \neg \mathcal{B}[\![\mathsf{B}]\!]) \subseteq Q \}
```

5. Calculational design of HL

• Theory of HL (for iteration):

```
\mathcal{T}_{HL}(\mathsf{W}) \triangleq \mathsf{post}(\supseteq.\subseteq) \circ \mathcal{T}(\mathsf{W})
= \{ \langle P, Q \rangle \mid \exists I . P \subseteq I \land \langle I \cap \mathcal{B}[\![\mathsf{B}]\!], I \rangle \in T_{HL}(\mathsf{S}) \land (I \cap \neg \mathcal{B}[\![\mathsf{B}]\!]) \subseteq Q \}
```

HL proof system:

THEOREM 3 (HOARE RULES FOR CONDITIONAL ITERATION).

$$P \subseteq I, \ \{I \cap \mathcal{B}[\![\mathsf{B}]\!]\} \ \mathsf{S} \ \{I\}, \ (I \cap \neg \mathcal{B}[\![\mathsf{B}]\!]) \subseteq Q$$

$$\{P\} \ \mathsf{while} \ \ (\mathsf{B}) \ \mathsf{S} \ \{Q\}$$

2 CALCULATIONAL DESIGN OF HOARE LOGIC HL

2.1 Calculational Design of Hoare Logic Theory

```
THEOREM 2.1 (THEORY OF HOARE LOGIC HL).
```

$$\mathcal{T}_{HL}(\mathsf{W}) \triangleq \mathsf{post}(\supseteq.\subseteq) \circ \mathcal{T}(\mathsf{W})$$

$$= \{ \langle P, Q \rangle \mid \exists I . P \subseteq I \land \langle I \cap \mathcal{B}[\![\mathsf{B}]\!], I \rangle \in T_{HL}(\mathsf{S}) \land (I \cap \neg \mathcal{B}[\![\mathsf{B}]\!]) \subseteq Q \}$$

Proof of Th. 2.1.

 $\mathcal{T}_{\mathrm{HL}}(\mathtt{W})$

```
= \operatorname{post}(\supseteq.\subseteq) \circ \mathcal{T}(\mathsf{W}) \qquad \qquad (\operatorname{def.} \mathcal{T}_{\operatorname{HL}})
= \operatorname{post}(=,\subseteq) \circ \mathcal{T}(\mathsf{W}) \qquad (\operatorname{Lem.} 1.4)
= \{\langle P', Q' \rangle \mid \langle P, Q \rangle \in \mathcal{T}(\mathsf{W}) . \langle P, Q \rangle =, \subseteq \langle P', Q' \rangle\} \qquad (\operatorname{def.} \operatorname{post})
= \{\langle P', Q' \rangle \mid \langle P, Q \rangle \in \mathcal{T}(\mathsf{W}) . P = P' \land Q \subseteq Q'\} \qquad (\operatorname{component wise def.} =, \subseteq)
= \{\langle P, Q' \rangle \mid \exists Q . \langle P, Q \rangle \in \mathcal{T}(\mathsf{W}) . Q \subseteq Q'\} \qquad (\operatorname{def.} =)
= \{\langle P, Q' \rangle \mid \exists Q . \operatorname{post}[\neg \mathsf{B}](\operatorname{lfp}^\subseteq \bar{F}_P^e) \subseteq Q \land Q \subseteq Q'\} \qquad (\operatorname{Th.} 1.7)
```

 $= \{ \langle P, Q' \rangle \mid \exists Q . \mathsf{post} \llbracket \neg \mathsf{B} \rrbracket (\mathsf{lfp}^{\subseteq} \bar{F}_P^e) \subseteq Q' \}$

 $(\subseteq) \exists Q : \mathsf{post}[\neg \mathsf{B}](\mathsf{lfp}^\subseteq \bar{F}_P^e) \subseteq Q \land Q \subseteq Q' \text{ and transitivity};$

(⊇) take Q = Q'∫

$$= \{ \langle P, Q' \rangle \mid \exists Q . \mathsf{lfp}^{\subseteq} \bar{\bar{F}}_{P}^{e} \subseteq Q \land \mathsf{post}[\![\neg \mathsf{B}]\!](Q) \subseteq Q' \}$$

$$(\subseteq)$$
 take $Q = \mathsf{lfp}^{\subseteq} \bar{F}_P^e$; (\supseteq) post $[\neg B]$ is increasing by (12)

$$= \{\langle P, Q' \rangle \mid \exists Q . \exists I . \bar{F}_P^e(I) \subseteq I \land I \subseteq Q \land \mathsf{post}[\neg B](Q) \subseteq Q'\} \quad \text{Park fixpoint induction Th. II.3.1} \}$$

$$= \{ \langle P, Q' \rangle \mid \exists I . \bar{F}_P^e(I) \subseteq I \land \mathsf{post}[\neg B](I) \subseteq Q' \}$$

 $(\subseteq) I \subseteq Q \text{ implies post}[\neg B](I) \subseteq \text{post}[\neg B](Q) \text{ since post}[\neg B] \text{ is increasing by (12) hence post}[\neg B](I) \subseteq Q' \text{ by transitivity;}$

(⊇) take Q = I∫

$$= \{ \langle P, Q \rangle \mid \exists I . P \cup \mathsf{post}(\llbracket \mathsf{B} \rrbracket \, {}^e_{\mathcal{F}} \llbracket \mathsf{S} \rrbracket^e)(I) \subseteq I \land \mathsf{post} \llbracket \neg \mathsf{B} \rrbracket(I) \subseteq Q \}$$
 (renaming, def. \bar{F}_P^e)

$$= \{\langle P, Q \rangle \mid \exists I . P \cup \mathsf{post}(\llbracket \mathsf{B} \rrbracket \, \mathring{\varsigma} \, \llbracket \mathsf{S} \rrbracket)(I) \subseteq I \land \mathsf{post} \llbracket \neg \mathsf{B} \rrbracket(I) \subseteq Q\} \qquad \text{$\langle \llbracket \mathsf{S} \rrbracket \, ^e = \llbracket \mathsf{S} \rrbracket \, in \, absence \, of \, breaks \rangle}$$

$$= \{ \langle P, Q \rangle \mid \exists I . P \subseteq I \land \mathsf{post}(\llbracket \mathsf{B} \rrbracket \, \mathring{\varsigma} \, \llbracket \mathsf{S} \rrbracket) I \subseteq I \land \mathsf{post} \llbracket \neg \mathsf{B} \rrbracket (I) \subseteq Q \}$$
 $(\mathsf{def.} \subseteq \mathsf{and} \cup \mathcal{S})$

$$= \{ \langle P, Q \rangle \mid \exists I . P \subseteq I \land \mathsf{post}[S](\mathsf{post}[B]I) \subseteq I \land \mathsf{post}[\neg B](I) \subseteq Q \}$$
 \(\frac{1}{2}\) composition Lem. 1.1\(\frac{1}{2}\)

$$= \{ \langle P, Q \rangle \mid \exists I . P \subseteq I \land \mathsf{post}[S](I \cap \mathcal{B}[B]) \subseteq I \land (I \cap \neg \mathcal{B}[B]) \subseteq Q \}$$
 (test Lem. 1.2)

$$= \{ \langle P, Q \rangle \mid \exists I . P \subseteq I \land \langle I \cap \mathcal{B}[B], I \rangle \in \{ \langle P, Q \rangle \mid \mathsf{post}[S]P \subseteq Q \} \land (I \cap \neg \mathcal{B}[B]) \subseteq Q$$
 \(\langle \def. \in \rangle \)

$$= \{ \langle P, Q \rangle \mid \exists I . P \subseteq I \land \langle I \cap \mathcal{B}[\![\mathsf{B}]\!], I \rangle \in \mathsf{post}(=, \subseteq) \circ \mathcal{T}(\mathsf{S}) \land (I \cap \neg \mathcal{B}[\![\mathsf{B}]\!]) \subseteq Q$$
 \(\lambda \text{Lem. 1.4}\rangle

$$= \{ \langle P, Q \rangle \mid \exists I . P \subseteq I \land \langle I \cap \mathcal{B}[\![\mathsf{B}]\!], I \rangle \in T_{\mathsf{HL}}(\mathsf{S}) \land (I \cap \neg \mathcal{B}[\![\mathsf{B}]\!]) \subseteq Q$$
 (Lem. 1.4)

2.2 Hoare logic rules

THEOREM 2.2 (HOARE RULES FOR CONDITIONAL ITERATION).

$$\frac{P \subseteq I, \{I \cap \mathcal{B}[\![\mathsf{B}]\!]\} \, \mathsf{S} \, \{I\}, \ (I \cap \neg \mathcal{B}[\![\mathsf{B}]\!]) \subseteq Q}{\{P\} \, \mathsf{while} \ (\mathsf{B}) \, \, \mathsf{S} \, \{Q\}} \tag{1}$$

PROOF OF TH. 2.2. We write $\{P\} S \{Q\} \triangleq \langle P, Q \rangle \in \mathcal{T}_{HL}(S)$;

By structural induction (S being a strict component of while (B) S), the rule for $\{P\}$ S $\{Q\}$ have already been defined;

By Aczel method, the (constant) fixpoint $\mathsf{lfp}^{\subseteq} \lambda X \cdot S$ is defined by $\{ \frac{\emptyset}{c} \mid c \in S \}$;

So for while (B) S we have an axiom $\frac{\varnothing}{\{P\} \text{ while (B) S } \{Q\}}$ with side condition $P \subseteq I$, $\{I \cap \{P\} \}$

$$\mathcal{B}\llbracket \mathsf{B} \rrbracket \} \mathsf{S} \{I\}, \ (I \cap \neg \mathcal{B}\llbracket \mathsf{B} \rrbracket) \subseteq Q;$$

Traditionally, the side condition is written as a premiss, to get (1).

Sound and complete by construction

Machine checkable, if not machine checked!

Surprised to find a variant of HL proof system

We also have (post is increasing):

$$\mathcal{T}_{HL}(S) = post(=, \subseteq) \circ \mathcal{T}(S)$$

yields the sound and complete proof system:

$$\{P\} S \{Q\}, \quad Q \subseteq Q'$$

$$\{P\} S \{Q'\}$$

Surprised to find a variant of HL proof system

We also have (post is increasing):

$$\mathcal{T}_{\mathrm{HL}}(\mathtt{S}) = \mathsf{post}(=, \subseteq) \circ \mathcal{T}(\mathtt{S})$$
 ete proof system: $\mathcal{B}[\![\mathtt{B}]\!] \mathsf{S}\{I\} \qquad \{P\} \mathsf{S}\{Q\}, \quad Q \subseteq Q'$ $\mathsf{S}\{I \cap \neg \mathcal{B}[\![\mathtt{B}]\!]\} \qquad \{P\} \mathsf{S}\{Q'\}$

yields the sound and complete proof system:

no (strict) need for Hoare left consequence rule (but for iteration):

If
$$P\{Q\}R$$
 and $S \Rightarrow P$ then $S\{Q\}R$

5. Calculational design of Incorrectness Logic IL

• Theory of IL (for iteration):

```
\mathcal{T}_{IL}(\mathsf{W}) \triangleq \mathsf{post}(\subseteq :\supseteq) \circ \mathcal{T}(\mathsf{W})
= \{ \langle P, Q \rangle \mid \exists \langle J^n, n \in \mathbb{N} \rangle : J^0 = P \land \langle J^n \cap \mathcal{B}[\![\mathsf{B}]\!], J^{n+1} \rangle \in \mathcal{T}_{IL}(\mathsf{S}) \land Q \subseteq (\bigcup_{n \in \mathbb{N}} J^n) \cap \mathcal{B}[\![\neg \mathsf{B}]\!] \}
```

5. Calculational design of IL

• Theory of IL (for iteration):

$$\mathcal{T}_{IL}(\mathsf{W}) \triangleq \mathsf{post}(\subseteq : \supseteq) \circ \mathcal{T}(\mathsf{W})$$

$$= \{ \langle P, Q \rangle \mid \exists \langle J^n, n \in \mathbb{N} \rangle : J^0 = P \land \langle J^n \cap \mathcal{B}[\![\mathsf{B}]\!], J^{n+1} \rangle \in \mathcal{T}_{IL}(\mathsf{S}) \land Q \subseteq (\bigcup_{n \in \mathbb{N}} J^n) \cap \mathcal{B}[\![\neg \mathsf{B}]\!] \}$$

• IL proof system:

THEOREM 5 (IL RULES FOR CONDITIONAL ITERATION).

$$J^{0} = P, \ [J^{n} \cap \mathcal{B}[\![\mathsf{B}]\!]] \, \mathsf{S}[J^{n+1}], \ Q \subseteq (\bigcup_{n \in \mathbb{N}} J^{n}) \cap \mathcal{B}[\![\neg \mathsf{B}]\!]$$

$$[P] \, \mathsf{while} \, (\mathsf{B}) \, \, \mathsf{S}[Q]$$

(similar to O'Hearn backward variant since the consequence rule can also be separated)

Calculational design of IL

32

3 CALCULATIONAL DESIGN OF REVERSE HOARE AKA INCORRECTNESS LOGIC (IL)

3.1 Calculational Design of Reverse Hoare aka Incorrectness Logic Theory Theorem 3.1 (Theory of IL).

```
\mathcal{T}_{IL}(\mathsf{W}) \triangleq \mathsf{post}(\subseteq . \supseteq) \circ \mathcal{T}(\mathsf{W})
                       = \{\langle P, Q \rangle \mid \exists \langle J^n, n \in \mathbb{N} \rangle : J^0 = P \land \langle J^n \cap \mathcal{B}[\![\mathsf{B}]\!], J^{n+1} \rangle \in \mathcal{T}_{I\!L}(\mathsf{S}) \land Q \subseteq (\bigcup J^n) \cap \mathcal{B}[\![\neg \mathsf{B}]\!] \}
     Proof of Th. 3.1.
      \mathcal{T}_{\mathrm{IL}}(\mathtt{W})
= post(\subseteq .\supseteq) \circ \mathcal{T}(W)
                                                                                                                                                                                                                             \partial def. \mathcal{T}_{IL}
= \{ \langle P, Q \rangle \mid Q \subseteq post[W]P \}
                                                                                                                                                                                 ζ⊆-order dual of Lem. 1.4∫
                                                                                                                              = \{ \langle P, Q \rangle \mid Q \subseteq post \llbracket \neg B \rrbracket (\mathsf{lfp}^{\subseteq} \bar{F}_{P}^{e}) \}
= \{ \langle P, Q \rangle \mid \exists I . Q \subseteq \mathsf{post}[\neg B](I) \land I \subseteq \mathsf{lfp}^{\subseteq} \bar{\bar{F}}_P^e \}

\hat{I}(\subseteq)
 Take I = \mathsf{lfp}^{\subseteq} \bar{F}_{P}^{e} and reflexivity;
                    (⊇) By Galois connection (12), post\llbracket \neg B \rrbracket is increasing so Q \subseteq \text{post} \llbracket \neg B \rrbracket(I) \subseteq
                     post \llbracket \neg B \rrbracket (Ifp^{\subseteq} \bar{F}_P^e) and transitivity)
= \{ \langle P, Q \rangle \mid \exists I . Q \subseteq \mathsf{post}[\neg B](I) \land \exists \langle J^n, n < \omega \rangle . J^0 = \varnothing \land J^{n+1} \subseteq \bar{F}_P^e(J^n) \land I \subseteq \bigcup J^n \}
                                                                                                                                              ?fixpoint underapproximation Th. II.3.6
= \{ \langle P, Q \rangle \mid \exists \langle J^n, n < \omega \rangle : J^0 = \emptyset \land J^{n+1} \subseteq \bar{F}_P^e(J^n) \land Q \subseteq \mathsf{post}[\neg B](\bigcup J^n) \}
                  (\subseteq) By Galois connection (12), post [\neg B] is increasing so Q \subseteq \text{post} [\neg B](I) \subseteq
                     post \llbracket \neg B \rrbracket (\bigcup_{n < \omega} J^n) and transitivity;
                    (\supseteq) take I = \bigcup_{n < \omega} J^n 
= \{\langle P, Q \rangle \mid \exists \langle J^n, n < \omega \rangle : J^0 = \emptyset \land J^{n+1} \subseteq (P \cup \mathsf{post}(\llbracket \mathsf{B} \rrbracket \, \mathring{\mathsf{g}} \, \llbracket \mathsf{S} \rrbracket^e)(J^n)) \land Q \subseteq \mathsf{post} \llbracket \neg \mathsf{B} \rrbracket (\bigcup J^n) \}
= \{ \langle P, Q \rangle \mid \exists \langle J^n, 1 \leqslant n < \omega \rangle : J^1 = P \land J^{n+1} \subseteq \mathsf{post}(\llbracket \mathsf{B} \rrbracket \, {}^\circ_{9} \, \llbracket \mathsf{S} \rrbracket^e)(J^n) \land Q \subseteq \mathsf{post} \llbracket \neg \mathsf{B} \rrbracket (\bigcup J^n) \}
                                                                                                                                                                                           \langle getting rid of J^0 = \emptyset \rangle
= \{ \langle P, Q \rangle \mid \exists \langle J^n, n \in \mathbb{N} \rangle : J^0 = P \wedge J^{n+1} \subseteq \mathsf{post}(\llbracket \mathsf{B} \rrbracket \circ \llbracket \mathsf{S} \rrbracket^e)(J^n) \wedge Q \subseteq \mathsf{post}\llbracket \neg \mathsf{B} \rrbracket (\bigcup J^n) \}
                                                                                                                                                                                             ? changing n + 1 to n \}
= \{ \langle P, Q \rangle \mid \exists \langle J^n, n \in \mathbb{N} \rangle : J^0 = P \wedge J^{n+1} \subseteq \mathsf{post}[\![ \mathsf{S} ]\!]^e (J^n \cap \mathcal{B}[\![ \mathsf{B} ]\!]) \wedge Q \subseteq (\bigcup J^n) \cap \mathcal{B}[\![ \neg \mathsf{B} ]\!] \}
                                                                                                                                                                                                                         {Lem. 1.2}
= \{\langle P, Q \rangle \mid \exists \langle J^n, n \in \mathbb{N} \rangle : J^0 = P \land \langle J^n \cap \mathcal{B}[\![\mathsf{B}]\!], J^{n+1} \rangle \in \{\langle P', Q' \rangle \mid Q' \subseteq \mathsf{post}[\![\mathsf{S}]\!]^e)P\} \land Q \subseteq \mathcal{A} 
      (\bigcup J^n) \cap \mathcal{B}[\![\neg B]\!]
= \{ \langle P, Q \rangle \mid \exists \langle J^n, n \in \mathbb{N} \rangle : J^0 = P \land \langle J^n \cap \mathcal{B}[\![\mathsf{B}]\!], J^{n+1} \rangle \in \mathcal{T}_{\mathrm{IL}}(\mathsf{S}) \land Q \subseteq (\bigcup J^n) \cap \mathcal{B}[\![\neg \mathsf{B}]\!] \}
                                                                                                                                                                                                                            \partial \operatorname{def.} \mathcal{T}_{\operatorname{IL}}
```

3.2 Calculational design of IL rules

$$\frac{J^{0} = P, [J^{n} \cap \mathcal{B}[\![\mathsf{B}]\!]] S[J^{n+1}], Q \subseteq (\bigcup_{n \in \mathbb{N}} J^{n}) \cap \mathcal{B}[\![\neg \mathsf{B}]\!]}{[P] \text{ while (B) } S[Q]} \tag{2}$$

PROOF. We write $[P] S [Q] \triangleq \langle P, Q \rangle \in \mathcal{T}_{IL}(S)$;

By structural induction (S being a strict component of while (B) S), the rule for [P] S [Q] have already been defined;

By Aczel method, the (constant) fixpoint $\mathsf{lfp}^{\subseteq} \lambda X \cdot S$ is defined by $\{\frac{\emptyset}{c} \mid c \in S\}$; So for while (B) S we have an axiom $\frac{\emptyset}{\{P\} \text{ while (B) S }\{Q\}}$ with side condition $J^0 = P$, $[J^n \cap \mathcal{B}] \subseteq [J^{n+1}]$, $Q \subseteq (\bigcup_{n \in \mathbb{N}} J^n) \cap \mathcal{B}[-B]$;

Traditionally, the side condition is written as a premiss, to get (2).

• Bi-inductive relational semantics with break and non termination (\perp), for termination and nontermination proofs

Google, 2025/09/17 34

- Bi-inductive relational semantics with break and non termination (\perp), for termination and nontermination proofs
- Many more abstractions and combinations → hundreds of transformational logics theories (including property negations, proofs by contradictions, backward logics, etc.)

Google, 2025/09/17 34

- Bi-inductive relational semantics with break and non termination (\perp), for termination and nontermination proofs
- Many more abstractions and combinations → hundreds of transformational logics theories (including property negations, proofs by contradictions, backward logics, etc.)
- Taxonomies based on theory abstractions (not proof systems)

Fig. 3. Taxonomy of assertional logics

----- Galois connection (different logics to prove the same property)

• Many more fixpoint induction principles (including $P \sqsubseteq \mathsf{lfp} \vdash F$, $\mathsf{lfp} \vdash F \sqsubseteq P$,

 $P \sqsubseteq gfp \sqsubseteq F$, $gfp \sqsubseteq F \sqsubseteq P$, $lfp \sqsubseteq F \sqcap P \neq \emptyset$, $gfp \sqsubseteq F \sqcap P \neq \emptyset$, etc)

 Example I: calculational design of a logic for partial correctness + total correctness + non termination

```
 \left\{ \begin{array}{l} n=\underline{n} \wedge f=1 \end{array} \right\}  while (n!=0) { f = f * n; n = n - 1;}  \left\{ \begin{array}{l} \left(\underline{n} \geqslant 0 \wedge f= !\underline{n}\right) \vee \left(\underline{n} < 0 \wedge n=f=\bot \right) \end{array} \right\}
```

• Example II: calculational design of an incorrectness logic including non termination

- Example II: calculational design of an incorrectness logic including non termination
- A specification for factorial:

```
 \left\{ \begin{array}{l} n \in \left[ -\infty, \infty \right] \land f \in \left[ 1, 1 \right] \right\} \\ \text{while (n!=0) } \left\{ \begin{array}{l} f = f \, * \, n; \, n = n \, - \, 1; \right\} \\ \left\{ \begin{array}{l} f \in \left[ 1, \infty \right] \right\} \end{array} \right.
```

• False alarm $f \in [-\infty, 0]$ with a (totally imprecise) interval analysis

Much more in the paper

- Example II: calculational design of an incorrectness logic including non termination
- A specification for factorial:

```
 \left\{ \begin{array}{l} n \in [-\infty, \infty] \land f \in [1,1] \right\} \\ \text{while (n!=0) } \left\{ \begin{array}{l} f = f \, * \, n; \, n = n \, - \, 1; \right\} \\ \left\{ \begin{array}{l} f \in [1, \infty] \end{array} \right\} \\ \end{array}
```

- False alarm $f \in [-\infty, 0]$ with a (totally imprecise) interval analysis
- The alarm is false by nontermination, not provable with IL

About incorrectness

• IL is not Hoare incorrectness logic (sufficient, not necessary)

$$\neg(\{P\} \, \mathsf{S}\{Q\}) \quad \stackrel{\not=}{\Leftarrow} \quad [P] \mathsf{S}[\neg Q]$$

$$\Leftrightarrow \quad \exists R \in \wp(\Sigma) \, . \, [P] \, \mathsf{S}[R] \land R \cap \neg Q \neq \varnothing$$

$$\Leftrightarrow \quad \exists \sigma \in \Sigma \, . \, [P] \, \mathsf{S}[\{\sigma\}] \land \sigma \notin Q$$

• The logic $\mathcal{T}_{\overline{HL}}(W) \triangleq \operatorname{post}(\subseteq, \supseteq) \circ \alpha \cap \mathcal{T}_{HL}(W) = \alpha \cap \mathcal{T}_{HL}(W)$ can be calculated by the design method (and does not need a consequence rule)

Calculational design of Hoare incorrectness logic HL

4 CALCULATIONAL DESIGN OF HOARE INCORRECTNESS LOGIC

4.1 Calculational Design of Hoare Incorrectness Logic Theory

Theorem 4.1 (Equivalent definitions of $\overline{\text{HL}}$ theories).

$$\mathcal{T}_{\overline{HI}}(\mathsf{W}) \triangleq \mathsf{post}(\subseteq, \supseteq) \circ \alpha \ \circ \mathcal{T}_{HL}(\mathsf{W}) = \alpha \ \circ \mathcal{T}_{HL}(\mathsf{W})$$
 W = while (B) S

Observe that Th. 4.1 shows that post(\subseteq , \supseteq) can be dispensed with. This implies that the consequence rule is useless for Hoare incorrectness logic.

PROOF OF TH. 4.1.

THOOF OF IN. 4. II.

$$\mathcal{T}_{\overline{\text{HL}}}(\mathbb{W}) = \operatorname{post}(\subseteq, \supseteq) \circ \alpha^{\neg} \circ \mathcal{T}_{\text{HL}}(\mathbb{W}) \qquad (\text{def. } \mathcal{T}_{\overline{\text{HL}}})$$

$$= \operatorname{post}((\subseteq, \supseteq)(\{\langle P, Q \rangle \mid \operatorname{post}[\mathbb{W}]P \subseteq Q \}) \qquad (\text{def. } \neg)$$

$$= \operatorname{post}(\subseteq, \supseteq)(\{\langle P, Q \rangle \mid \operatorname{post}[\mathbb{W}]P \cap \neg Q \neq \varnothing \}) \qquad (\text{def. } \subseteq \text{ and } \neg)$$

$$= \{\langle P', Q' \rangle \mid \exists \langle P, Q \rangle \in \{\langle P, Q \rangle \mid \operatorname{post}[\mathbb{W}]P \cap \neg Q \neq \varnothing \} . \langle P, Q \rangle \subseteq, \supseteq \langle P', Q' \rangle \} \qquad (\text{def. } \subseteq \text{ and } \neg)$$

$$= \{\langle P', Q' \rangle \mid \exists \langle P, Q \rangle : \operatorname{post}[\mathbb{W}]P \cap \neg Q \neq \varnothing \wedge \langle P, Q \rangle \subseteq, \supseteq \langle P', Q' \rangle \} \qquad (\text{def. } \subseteq \mathbb{W})$$

$$= \{\langle P', Q' \rangle \mid \exists \langle P, Q \rangle : \operatorname{post}[\mathbb{W}]P \cap \neg Q \neq \varnothing \wedge \langle P, Q \rangle \subseteq, \supseteq \langle P', Q' \rangle \} \qquad (\text{component wise def. of } \subseteq, \supseteq)$$

$$= \{\langle P', Q' \rangle \mid \exists \langle P, Q \rangle : \operatorname{post}[\mathbb{W}]P' \cap \neg Q \neq \varnothing \wedge \langle P, Q \rangle \subseteq Q' \} \qquad (\text{component wise def. of } \subseteq, \supseteq)$$

$$= \{\langle P', Q' \rangle \mid \exists \langle P, Q \rangle : \operatorname{post}[\mathbb{W}]P' \cap \neg Q \neq \varnothing \wedge \langle P, Q \rangle \subseteq Q' \} \qquad (\text{component wise def. of } \subseteq, \supseteq)$$

$$= \{\langle P', Q' \rangle \mid \exists \langle P, Q \rangle : \operatorname{post}[\mathbb{W}]P' \cap \neg Q \neq \varnothing \wedge \langle P, Q \rangle \subseteq Q' \} \qquad (\text{component wise def. of } \subseteq, \supseteq)$$

$$= \{\langle P', Q' \rangle : \exists \langle P, Q \rangle : \operatorname{post}[\mathbb{W}]P' \cap \neg Q \neq \varnothing \wedge \langle P, Q \rangle \subseteq \varphi \cong \text{implies post}[\mathbb{W}]P' \cap \neg Q \neq \varnothing \text{ implies post}[\mathbb{W}]P' \cap \neg Q \neq \varnothing \text{ implies post}[\mathbb{W}]P' \cap \neg Q' \neq \varnothing;$$

$$(\supseteq) : \operatorname{conversely, if } \exists Q : \operatorname{post}[\mathbb{W}]P' \cap \neg Q \neq \varnothing \text{ implies post}[\mathbb{W}]P' \cap \neg Q' \neq \varnothing;$$

$$(\supseteq) : \operatorname{conversely, if } \exists Q : \operatorname{post}[\mathbb{W}]P' \cap \neg Q \neq \varnothing \text{ implies post}[\mathbb{W}]P' \cap \neg Q' \neq \varnothing;$$

$$(\supseteq) : \operatorname{conversely, post}[\mathbb{W}]P' \cap \neg Q' \neq \varnothing \text{ implies } \exists Q : \operatorname{post}[\mathbb{W}]P' \cap \neg Q' \neq \varnothing,$$

$$(\supseteq) : \operatorname{conversely, post}[\mathbb{W}]P' \cap \neg Q' \neq \varnothing \text{ implies } \exists Q : \operatorname{post}[\mathbb{W}]P' \cap \neg Q' \neq \varnothing,$$

$$(\supseteq) : \operatorname{conversely, post}[\mathbb{W}]P' \cap \neg Q' \neq \varnothing \text{ implies } \exists Q : \operatorname{post}[\mathbb{W}]P' \cap \neg Q' \neq \varnothing,$$

$$(\supseteq) : \operatorname{conversely, post}[\mathbb{W}]P' \cap \neg Q' \neq \varnothing \text{ implies } \exists Q : \operatorname{post}[\mathbb{W}]P' \cap \neg Q' \neq \varnothing,$$

$$(\supseteq) : \operatorname{conversely, post}[\mathbb{W}]P' \cap \neg Q' \neq \varnothing \text{ implies } \exists Q : \operatorname{post}[\mathbb{W}]P' \cap \neg Q' \neq \varnothing \wedge Q \supseteq Q' \text{ by choosing }$$

$$Q : Q' : \mathcal{N} :$$

 $\forall i \in [1, n[. \langle \mathcal{B}[\![\mathsf{B}]\!] \cap \{\sigma_i\}, \ \{\sigma_{i+1}\}\}) \in \mathcal{T}_{\overline{HL}}(\mathsf{S}) \land \sigma_n \notin \mathcal{B}[\![\mathsf{B}]\!] \land \sigma_n \notin \mathcal{Q}\}$

Proof of Th. 4.2.

 $\mathcal{T}_{\overline{HL}}(\mathsf{W}) = \{\langle P, Q \rangle \mid \exists n \geqslant 1 : \exists \langle \sigma_i \in I, i \in [1, n] \rangle : \sigma_1 \in P \land A\}$

 $\mathcal{T}_{\overline{\mathrm{HL}}}(\mathtt{W})$

$$= \{ \langle P, Q \rangle \mid \mathsf{post}[\neg \mathsf{B}] (\mathsf{lfp}^{\subseteq} \bar{\bar{F}}_P^e) \cap \neg Q \neq \emptyset \} \qquad \text{(Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{S}]\!]^e) X \text{ (Lem. 1.3, where } \bar{\bar{F}}_P^e(X) \triangleq P \cup \mathsf{post}([\![\mathsf{B}]\!] \, , [\![\mathsf{B}]\!] \, , [\![\mathsf{B$$

$$= \{ \langle P, Q \rangle \mid \mathsf{lfp}^{\subseteq} \bar{F}_{P}^{e} \cap \mathsf{pre}[\neg B](\neg Q) \neq \emptyset \}$$
 (39.d)

- $= \{\langle P, Q \rangle \mid \exists I \in \wp(\Sigma) : \bar{F}_P^e(I) \subseteq I \land \exists \langle W, \leqslant \rangle \in \mathfrak{Wf} : \exists v \in I \to W : \exists \langle \sigma_i \in I, i \in [1, \infty] \rangle : \sigma_1 \in \bar{F}_P^e(\varnothing) \land \forall i \in [1, \infty] : \sigma_{i+1} \in \bar{F}_P^e(\{\sigma_i\}) \land \forall i \in [1, \infty] : (\sigma_i \neq \sigma_{i+1}) \Rightarrow (v(\sigma_i) > v(\sigma_{i+1}) \land \forall i \in [1, \infty] : (v(\sigma_i) \not> v(\sigma_{i+1}) \Rightarrow \{\sigma_i\} \cap \text{pre}[\neg B](\neg Q) \neq 0\}$ \quad \text{induction principle Th. H.3}
- $= \{\langle P, Q \rangle \mid \exists I \in \wp(\Sigma) : P \subseteq I \land \mathsf{post}(\llbracket \mathsf{B} \rrbracket)^e , \llbracket \mathsf{S} \rrbracket^e) I \subseteq I \land \exists \langle W, \leqslant \rangle \in \mathfrak{Wf} : \exists v \in I \to W : \exists \langle \sigma_i \in I, i \in [1, \infty] \rangle : \sigma_1 \in P \land \forall i \in [1, \infty] : (\sigma_{i+1} \in P \lor \{\sigma_{i+1}\}) \subseteq \mathsf{post}(\llbracket \mathsf{B} \rrbracket)^e , \llbracket \mathsf{S} \rrbracket^e) \{\sigma_i\}) \land \forall i \in [1, \infty] : (\sigma_i \neq \sigma_{i+1}) \Rightarrow (v(\sigma_i) > v(\sigma_{i+1}) \land \forall i \in [1, \infty] : (v(\sigma_i) \not> v(\sigma_{i+1}) \Rightarrow \sigma_i \in \mathsf{pre}[\llbracket \neg \mathsf{B} \rrbracket](\neg Q) \}$

```
(\text{def. } \bar{\bar{F}}_{P}^{e}(X) \triangleq P \cup \text{post}([\![B]\!] \circ [\![S]\!]^{e})X, \subseteq, \text{ and post, which is } \emptyset\text{-strict})
```

 $= \{\langle P, Q \rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \land \mathsf{post}(\llbracket \mathsf{B} \rrbracket \circ \llbracket \mathsf{S} \rrbracket^e) I \subseteq I \land \exists \langle W, \leqslant \rangle \in \mathfrak{Wf} . \exists v \in I \to W . \exists \langle \sigma_i \in I, i \in [1, \infty] \rangle . \sigma_1 \in P \land \forall i \in [1, \infty] . \{\sigma_{i+1}\} \subseteq \mathsf{post}(\llbracket \mathsf{B} \rrbracket \circ \llbracket \mathsf{S} \rrbracket^e) \{\sigma_i\} \land \forall i \in [1, \infty] . (\sigma_i \neq \sigma_{i+1}) \Rightarrow (v(\sigma_i) > v(\sigma_{i+1}) \land \forall i \in [1, \infty] . (v(\sigma_i) \not> v(\sigma_{i+1}) \Rightarrow \sigma_i \in \mathsf{pre}[\llbracket \neg \mathsf{B} \rrbracket(\neg Q)] \}$

 $\langle i \text{ since if } \sigma_{i+1} \in P, \text{ we can equivalently consider the sequence } \langle \sigma_i \in I, j \in [i+1, \infty] \rangle \rangle$

- $= \{\langle P, Q \rangle \mid \exists I \in \wp(\Sigma) : P \subseteq I \land \mathsf{post}(\llbracket \mathsf{B} \rrbracket \, \mathring{\circ} \, \llbracket \mathsf{S} \rrbracket^e) I \subseteq I \land \exists n \geqslant 1 : \exists \langle \sigma_i \in I, \ i \in \llbracket 1, n \rrbracket \rangle : \sigma_1 \in P \land \forall i \in \llbracket 1, n \llbracket : \{\sigma_{i+1}\} \subseteq \mathsf{post}(\llbracket \mathsf{B} \rrbracket \, \mathring{\circ} \, \llbracket \mathsf{S} \rrbracket^e) \{\sigma_i\} \land \sigma_n \in \mathsf{pre} \llbracket \neg \mathsf{B} \rrbracket (\neg Q) \}$
 - $\langle (\subseteq) \text{ By } \langle W, \leqslant \rangle \in \mathfrak{Wf}, \ v \in I \to W, \ \forall i \in [1, \infty] \ . \ (\sigma_i \neq \sigma_{i+1}) \Rightarrow (v(\sigma_i) > v(\sigma_{i+1}), \text{ the sequence is ultimately stationary at some rank } n. \text{ For then on, } \sigma_{i+1} = \sigma_i, \ i \geqslant n \text{ and so } v(\sigma_i) = v(\sigma_{i+1}). \text{ Therefore } \forall i \in [1, \infty] \ . \ (v(\sigma_i) \not\geqslant v(\sigma_{i+1}) \Rightarrow \sigma_i \notin Q \text{ implies that } \sigma_n \in \text{pre}[\neg B](\neg Q);$
 - (2) Conversely, from $\langle \sigma_i \in I, i \in [1, n] \rangle$ we can define $W = \{ \sigma_i \mid i \in [1, n] \} \cup \{ -\infty \}$ with $-\infty < \sigma_i < \sigma_{i+1}$ and $v(x) = \{ x \in \{ \sigma_i \mid i \in [1, n] \} \mid x \mid x \mid -\infty \}$ and the sequence $\langle \sigma_j \in I, j \in [1, \infty] \rangle$ repeats σ_n ad infimum for $j \geq n$.
- $= \{\langle P, Q \rangle \mid \exists I \in \wp(\Sigma) . P \subseteq I \land \mathsf{post}(\llbracket \mathsf{B} \rrbracket \, \mathring{\varsigma} \, \llbracket \mathsf{S} \rrbracket^e) I \subseteq I \land \exists n \geqslant 1 . \exists \langle \sigma_i \in I, i \in [1, n] \rangle . \sigma_1 \in P \land \forall i \in [1, n[. \{\sigma_{i+1}\} \subseteq \mathsf{post}(\llbracket \mathsf{B} \rrbracket \, \mathring{\varsigma} \, \llbracket \mathsf{S} \rrbracket^e) \{\sigma_i\} \land \sigma_n \notin Q\}$ \(\tag{def. pre}\)
- $= \{ \langle P, Q \rangle \mid \exists n \geqslant 1 . \exists \langle \sigma_i \in I, i \in [1, n] \rangle . \sigma_1 \in P \land \forall i \in [1, n[. \{\sigma_{i+1}\} \subseteq \mathsf{post}(\llbracket \mathsf{B} \rrbracket \, \mathring{\circ} \, \llbracket \mathsf{S} \rrbracket^e) \{\sigma_i\} \land \sigma_n \notin \mathcal{B}[\llbracket \mathsf{B} \rrbracket \land \sigma_n \notin Q \}$ \(\text{\$I\$ is not used and can always be chosen to be \$\Sigma\$.}\)
- $= \{\langle P, Q \rangle \mid \exists n \geqslant 1 . \exists \langle \sigma_i \in I, i \in [1, n] \rangle . \sigma_1 \in P \land \forall i \in [1, n[. post([B]]; [S]]^e) \{\sigma_i\} \cap \{\sigma_{i+1}\} \neq \emptyset \land \sigma_n \notin \mathcal{B}[B] \land \sigma_n \notin Q\}$ $\langle \text{since } x \in X \iff X \cap \{x\} \neq \emptyset \rangle$
- $= \{ \langle P, Q \rangle \mid \exists n \geqslant 1 . \exists \langle \sigma_i \in I, i \in [1, n] \rangle . \sigma_1 \in P \land \forall i \in [1, n[. post(\llbracket B \rrbracket \, \mathring{\varsigma} \, \llbracket S \rrbracket^e) \{ \sigma_i \} \cap \neg (\neg \{ \sigma_{i+1} \}) \neq \emptyset \land \sigma_n \notin \mathcal{B} \llbracket B \rrbracket \land \sigma_n \notin Q \}$ $\langle \operatorname{def.} \neg X = \Sigma \setminus X \rangle$
- $= \{ \langle P, Q \rangle \mid \exists n \geqslant 1 : \exists \langle \sigma_i \in I, i \in [1, n] \rangle : \sigma_1 \in P \land \forall i \in [1, n[: \neg(\mathsf{post}(\llbracket \mathsf{B} \rrbracket)^e) \{\sigma_i\} \subseteq (\neg \{\sigma_{i+1}\})) \land \sigma_n \notin \mathcal{B}[\llbracket \mathsf{B} \rrbracket \land \sigma_n \notin Q \}$ $(\neg \{X \subseteq Y\} \Leftrightarrow (X \cap \neg Y \neq \emptyset)$
- $= \{\langle P, Q \rangle \mid \exists n \geqslant 1 . \exists \langle \sigma_i \in I, i \in [1, n] \rangle . \sigma_1 \in P \land \forall i \in [1, n[. \langle \mathcal{B}[B]] \cap \{\sigma_i\}, \neg \{\sigma_{i+1}\} \rangle \in \{\langle P, Q \rangle \mid \neg (\mathsf{post}([S]^e)P \subseteq Q)\} \land \sigma_n \notin \mathcal{B}[B] \land \sigma_n \notin Q\}$ $\langle \mathsf{def.} \in \mathcal{S} \rangle$
- $= \{ \langle P, Q \rangle \mid \exists n \geqslant 1 . \exists \langle \sigma_i \in I, i \in [1, n] \rangle . \sigma_1 \in P \land \forall i \in [1, n[. \langle \mathcal{B}[B]] \cap \{\sigma_i\}, \neg \{\sigma_{i+1}\} \rangle \in \mathcal{T}_{\overline{\operatorname{HL}}}(S) \land \sigma_n \notin \mathcal{B}[B] \land \sigma_n \in Q \}$ $\langle \operatorname{def.} \mathcal{T}_{\overline{\operatorname{HL}}}(S) \rangle \square$

4.2 Calculational Design of HL Proof Rules

Theorem 4.3 ($\overline{\text{HL}}$ rules for conditional iteration).

$$\frac{\exists \langle \sigma_i \in I, i \in [1, n] \rangle . \sigma_1 \in P \land \forall i \in [1, n[. (B[B] \cap \{\sigma_i\}) \land (\sigma_{i+1}\}) \land \sigma_n \notin B[B] \land \sigma_n \notin Q}{(P) \text{ while (B) } \land (Q)}$$
(3)

PROOF OF (3). We write $(P) S (Q) \triangleq \langle P, Q \rangle \in \overline{HL}(S)$;

By structural induction (S being a strict component of while (B) S), the rule for (P) S (Q) have already been defined;

By Aczel method, the (constant) fixpoint $\mathsf{lfp}^{\subseteq} \lambda X \cdot S$ is defined by $\{\frac{\emptyset}{c} \mid c \in S\}$;

So for while (B) S we have an axiom $\frac{\varnothing}{(P) \text{ while (B) } S(Q)}$ with side condition $\exists \langle \sigma_i \in I, i \in [1, n] \rangle$. $\sigma_1 \in P \land \forall i \in [1, n[. (|\mathcal{B}[B]] \cap \{\sigma_i\}) S(\neg \{\sigma_{i+1}\}) \land \sigma_n \notin \mathcal{B}[B]] \land \sigma_n \notin \mathcal{Q}$ where $(|\mathcal{B}[B]] \cap \{\sigma_i\}) S(\neg \{\sigma_{i+1}\})$ is well-defined by structural induction;

Traditionally, the side condition is written as a premiss, to get (3).

Conclusion of part l

A transformational logic is an abstract interpretation of a natural relational semantics

Part II:

Calculational Design of Hyperlogics by Abstract Interpretation

Patrick Cousot, Jeffery Wang:

Calculational Design of Hyperlogics by Abstract Interpretation. Proc. ACM Program. Lang. 9(POPL): 446-478 (2025)

Objective

Conceive a method to design program transformational hyperlogics

Transformational logic = Hoare style logics {P} S {Q}

Understanding a program logic in Part I

- What is the program semantics? S[P]
- What is the strongest program semantic property (collecting semantics)? {S[P]}
- What is the strongest program property of interest? $\alpha_s\{S[P]\}$
- The properties of interest derive by implication (consequence rule) $\alpha_c \circ \alpha_s \{S[P]\}$ (theory of the logic)
- What are the proof rules?

Reminder (of Part I, POPL 2024)

```
Relational semantics S[P] *----- Structural fixpoint definition
                                            : calculus
  Collecting sem. {S[P]]} +--- Structural fixpoint characterization
                                            : calculus
Theory of the logic \alpha\{S[P]\}+-Structural fixpoint characterization
                 Aczel+Park & ...
  Proof rules of the logic -
                                                Deductive system
```

Google, 2025/09/17 45

Methodology

Can we calculate hyperlogics proof systems by structural abstractions of the program semantics?

We will conclude that "Yes", but

- For hyperlogics, the strongest program property of interest is the collecting semantics itself {S[P]}
- There is no abstraction α_s (in general)
- Any proof of a *general* hyperproperty must characterize the program semantics exactly!
- Unmanageable in practice!
- The only workaround is to consider only abstract hyperproperties!

Which semantics?

Which semantics?

- Hoare logic soundness/completeness for invariants is with respect to a relational semantics
- The logic would be essentially the same with execution traces (but for primitives)
- Is there a semantics covering both cases (and even many others)?

Algebraic semantics: a structural fixpoint definition

Algebraic semantics

 Parameterized by an abstract semantic domain providing the model of executions and effect of primitives

$$\mathbb{D}_{+}^{\sharp} \triangleq \langle \mathbb{L}_{+}^{\sharp}, \mathbb{L}_{+}^{\sharp}, \mathbb{L}_{+}^{\sharp}, \mathbb{L}_{+}^{\sharp}, \text{ init}^{\sharp}, \text{ assign}^{\sharp} [\![x, A]\!],$$

$$\text{rassign}^{\sharp} [\![x, a, b]\!], \text{ test}^{\sharp} [\![B]\!], \text{ break}^{\sharp}, \text{ skip}^{\sharp}, \S^{\sharp} \rangle$$

$$\mathbb{D}_{\infty}^{\sharp} \triangleq \langle \mathbb{L}_{\infty}^{\sharp}, \mathbb{L}_{\infty}^{\sharp},$$

Algebraic semantics (cont'd)

- Structural fixpoint definition of the effect of commands
- E.g. assignment

• E.g. break

Algebraic semantics (cont'd)

• E.g. iteration while (B) S

$$\begin{split} & \ddot{F}_{e}^{\sharp} \triangleq \lambda X \in \mathbb{L}_{+}^{\sharp} \cdot \operatorname{init}^{\sharp} \sqcup_{+}^{\sharp} \left(\llbracket \mathsf{B}; \mathsf{S} \rrbracket_{e}^{\sharp} \, \mathring{\mathsf{S}}^{\sharp} \, X \right) \\ & F_{\perp}^{\sharp} \triangleq \lambda X \in \mathbb{L}_{\infty}^{\sharp} \cdot \llbracket \mathsf{B}; \mathsf{S} \rrbracket_{e}^{\sharp} \, \mathring{\mathsf{S}}^{\sharp} \, X \\ & \llbracket \mathsf{while} \ (\mathsf{B}) \ \mathsf{S} \rrbracket_{e}^{\sharp} \triangleq \left(\mathsf{Ifp}^{=\sharp} \, \ddot{F}_{e}^{\sharp} \right) \, \mathring{\mathsf{S}}^{\sharp} \left(\llbracket \neg \mathsf{B} \rrbracket_{e}^{\sharp} \sqcup_{e}^{\sharp} \, \llbracket \mathsf{B}; \mathsf{S} \rrbracket_{b}^{\sharp} \right) \\ & \llbracket \mathsf{while} \ (\mathsf{B}) \ \mathsf{S} \rrbracket_{b}^{\sharp} \triangleq \bot_{+}^{\sharp} \\ & \llbracket \mathsf{while} \ (\mathsf{B}) \ \mathsf{S} \rrbracket_{bi}^{\sharp} \triangleq \left(\mathsf{Ifp}^{=\sharp} \, \ddot{F}_{e}^{\sharp} \right) \, \mathring{\mathsf{S}}^{\sharp} \, \llbracket \mathsf{B}; \mathsf{S} \rrbracket_{\perp}^{\sharp} \\ & \llbracket \mathsf{while} \ (\mathsf{B}) \ \mathsf{S} \rrbracket_{li}^{\sharp} \triangleq \mathsf{gfp}^{=\sharp} \, F_{\perp}^{\sharp} \\ & \llbracket \mathsf{while} \ (\mathsf{B}) \ \mathsf{S} \rrbracket_{li}^{\sharp} \triangleq \mathsf{\llbracket} \mathsf{while} \ (\mathsf{B}) \ \mathsf{S} \rrbracket_{bi}^{\sharp} \sqcup_{\infty}^{\sharp} \, \llbracket \mathsf{while} \ (\mathsf{B}) \ \mathsf{S} \rrbracket_{li}^{\sharp} \end{split}$$

Algebraic semantics (cont'd)

- The classic postulated presentation by equational axioms ^(*) can be calculated by
 - structural induction
 - Aczel correspondence between fixpoints and deductive systems (see Part I on POPL 2024)

(*) C. A. R. Hoare, Ian J. Hayes, Jifeng He, Carroll Morgan, A. W. Roscoe, Jeff W. Sanders, Ib Holm Sørensen, J. Michael Spivey, and Bernard Sufrin. 1987. Laws of Programming. *Commun. ACM* 30, 8 (1987), 672–686. https://doi.org/10.1145/27651.27653

How to express program properties?

"Programs are predicates" (*)

- We are only interested in properties of programs (not in arbitrary properties)
- A program encodes a program execution property defined by its semantics
- So defining properties as programs, we don't need a language for programs + another language for predicates!
- Other encodings of properties are mere abstractions.
- Eric C. R. Hehner. 1990. A Practical Theory of Programming. Sci. Comput. Program. 14, 2-3 (1990), 133–158. https://doi.org/10.1016/journal.2016/10.1016/journal.2 //doi.org/10.1016/0167-6423(90)90018-9

Property transformer

Algebraic property transformer

• Forward property transformer:

$$\mathsf{post}^{\sharp} \in \mathbb{L}^{\sharp} \xrightarrow{\mathcal{I}} \mathbb{L}^{\sharp}$$
$$\mathsf{post}^{\sharp}(S)P \triangleq P \, ^{\sharp}S$$

A structural fixpoint characterization of the property transformer

A calculus of algebraic execution properties

Galois connection

$$\forall S \in \mathbb{L} . \langle \mathbb{L}, \sqsubseteq \rangle \xrightarrow{\widetilde{\mathsf{pre}}(S)} \langle \mathbb{L}, \sqsubseteq \rangle \qquad (\langle \mathbb{L}, \sqsubseteq, \sqcup \rangle \text{ is a poset})$$

- Using the abstraction methodology of POPL 2024, we generalize POPL 2024 to
 - a structural fixpoint algebraic calculus of execution properties
 - (and the lattice of algebraic transformational logics)

Hyperproperties

Algebraic hyperproperties

- L is the semantic domain (e.g. set of finite and infinite traces, input-output relation)
- (L) is the set of hyperproperties (defined in extension)
- <u>s</u> is logical implication

Hyperproperty transformer

Algebraic hyperproperty transformer

Transformer

$$\mathsf{Post}^{\sharp} \in \mathbb{L}^{\sharp} \to \wp(\mathbb{L}^{\sharp}) \xrightarrow{} \wp(\mathbb{L}^{\sharp})$$
$$\mathsf{Post}^{\sharp}(S)\mathcal{P} \triangleq \{\mathsf{post}^{\sharp}(S)P \mid P \in \mathcal{P}\}$$

Galois connection

$$\langle \wp(\mathbb{L}^{\sharp}), \subseteq \rangle \xrightarrow{\operatorname{Pre}(S)} \langle \wp(\mathbb{L}^{\sharp}), \subseteq \rangle$$

$$\xrightarrow{\operatorname{Post}^{\sharp}(S)} \langle \wp(\mathbb{L}^{\sharp}), \subseteq \rangle$$

Structural fixpoint characterization of the hyperproperty transformer

Incomplete structural characterization of Post#(S)

Counter-example

```
\begin{aligned} &\operatorname{Post}^{\sharp} \llbracket \operatorname{if} \ (\mathsf{B}) \ \mathsf{S}_{1} \ \operatorname{else} \ \mathsf{S}_{2} \rrbracket^{\sharp} \mathcal{P} \\ &= \left\{ \operatorname{post}^{\sharp} \llbracket \mathsf{B}; \mathsf{S}_{1} \rrbracket^{\sharp} P \sqcup^{\sharp} \operatorname{post}^{\sharp} \llbracket \neg \mathsf{B}; \mathsf{S}_{2} \rrbracket^{\sharp} P \mid P \in \mathcal{P} \right\} \\ &\subseteq \left\{ \operatorname{post}^{\sharp} \llbracket \mathsf{B}; \mathsf{S}_{1} \rrbracket^{\sharp} P_{1} \sqcup^{\sharp} \operatorname{post}^{\sharp} \llbracket \neg \mathsf{B}; \mathsf{S}_{2} \rrbracket^{\sharp} P_{2} \mid P_{1} \in \mathcal{P} \wedge P_{2} \in \mathcal{P} \right\} \\ &= \left\{ Q_{1} \sqcup^{\sharp} Q_{2} \mid Q_{1} \in \operatorname{Post}^{\sharp} \llbracket \mathsf{B}; \mathsf{S}_{1} \rrbracket^{\sharp} \mathcal{P} \wedge Q_{2} \in \operatorname{Post}^{\sharp} \llbracket \neg \mathsf{B}; \mathsf{S}_{2} \rrbracket^{\sharp} \mathcal{P} \right\} \end{aligned}
```

- This structural collecting semantics (*) is incomplete
- (*) Thibault Dardinier and Peter Müller. 2024. Hyper Hoare Logic: (Dis-)Proving Program Hyperproperties. *Proceedings of the ACM on Programming Languages (PACMPL)* 8, Issue PLDI, Article No.: 207 (June 2024), 1485–1509. https:

Google, 2025/09/10.01145/3656437 65

Complete structural characterization of Post#(S)

$${post^{\sharp}(S)P} = Post^{\sharp}(S){P}$$

• Example:

```
Post^{\sharp} [if (B) S<sub>1</sub> else S<sub>2</sub>]^{\sharp}\mathcal{P}
```

- $= \{ \mathsf{post}^{\sharp} \llbracket \mathsf{B}; \mathsf{S}_1 \rrbracket^{\sharp} P \sqcup^{\sharp} \mathsf{post}^{\sharp} \llbracket \neg \mathsf{B}; \mathsf{S}_2 \rrbracket^{\sharp} P \mid P \in \mathcal{P} \}$
- $= \{Q_1 \sqcup^{\sharp} Q_2 \mid Q_1 \in \{\mathsf{post}^{\sharp} \llbracket \mathsf{B}; \mathsf{S}_1 \rrbracket^{\sharp} P\} \land Q_2 \in \{\mathsf{post}^{\sharp} \llbracket \neg \mathsf{B}; \mathsf{S}_2 \rrbracket^{\sharp} P\} \land P \in \mathcal{P} \}$
- $= \{Q_1 \sqcup^{\sharp} Q_2 \mid Q_1 \in \mathsf{Post}^{\sharp} \llbracket \mathsf{B}; \mathsf{S}_1 \rrbracket^{\sharp} \{P\} \land Q_2 \in \mathsf{Post}^{\sharp} \llbracket \neg \mathsf{B}; \mathsf{S}_2 \rrbracket^{\sharp} \{P\} \land P \in \mathcal{P} \}$

We get a complete elementwise characterization of Post#(S)

Calculational design of the algebraic hyperlogic rules

Upper and lower algebraic hyperlogics

Definition

$$\overline{\{|\mathcal{P}|\} S \{|\mathcal{Q}|\}} = \operatorname{Post}^{\sharp} [\![S]\!]^{\sharp} \mathcal{P} \subseteq \mathcal{Q}
\underline{\{|\mathcal{P}|\} S \{|\mathcal{Q}|\}} = \mathcal{Q} \subseteq \operatorname{Post}^{\sharp} [\![S]\!]^{\sharp} \mathcal{P}$$

 The proof system is derived by calculational design (as in POPL 2024)

Upper algebraic hyperlogic for iteration

$$\begin{array}{c} \left(P_{e} = \mathsf{lfp}^{\sqsubseteq \sharp} \vec{F}_{pe}^{\sharp}(P') \land \overline{\{\}} \{P_{e}\} \overline{\}} \neg \mathsf{B} \overline{\{\}} \{Q_{e}\} \overline{\}} \land \overline{\{\}} \{P_{e}\} \overline{\}} \mathsf{B}; \mathsf{S} \overline{\{\}} \{Q_{b}\} \overline{\}} \land \\ \overline{\{\}} \{P_{e}\} \overline{\}} \mathsf{B}; \mathsf{S} \overline{\{\}} \{Q_{\perp \ell}\} \overline{\}} \land Q_{\perp b} = \mathsf{gfp}^{\sqsubseteq \sharp} F_{p\perp}^{\sharp} \land P' \in \mathcal{P} \right) \Rightarrow \\ \left(\langle e: Q_{e} \sqcup_{e}^{\sharp} Q_{b}, \bot: Q_{\perp \ell} \sqcup_{\infty}^{\sharp} Q_{\perp b}, br: P_{br} \rangle \in \mathcal{Q} \right) \\ \overline{\{\}} \mathcal{I} \overline{\}} \mathsf{ while (B) } \mathsf{S} \overline{\{\}} \mathcal{Q} \overline{\}}$$

- Requires an *EXACT* characterization of the program semantics
- Unmanageable in practice

Abstractions

Abstractions

- Since proofs of general hyperproperties are unmanageable, we consider abstractions of
 - the algebraic semantics
 - program properties
 - ** program hyperproperties
 - * program logics

Algebraic semantics abstraction

- An abstraction of the algebraic semantics is another instance of the algebraic semantics
 - e.g. trace semantics → relational semantics
- This extends to logics and hyperlogics
- But still proofs require exact characterizations of the (abstract) semantics

Hyperproperty abstraction

Hyperproperty abstraction

- A dozen abstractions are considered in the paper
- This leads to a lattice of hyperlogics

Hierarchy of hyperlogics

Chain limit order ideal abstraction

Chain limit order ideal abstraction (cont'd)

 The chain limit order ideal abstraction of algebraic hyperproperties is an algebraic generalization of the abstraction to ∀*∃* hyperproperties

• \forall *3* hyperproperties (for traces in Π) $\mathcal{AEH} \triangleq$

 $\{\{P \in \wp(\Pi) \mid \forall \pi_1 \in P : \exists \pi_2 \in P : \langle \pi_1, \pi_2 \rangle \in A\} \mid A \in \wp(\Pi \times \Pi)\}$

Chain limit order ideal abstraction

$$\alpha^{\uparrow}(\mathcal{P}) \triangleq \{ \bigsqcup_{i \in \mathbb{N}} P_i \mid \langle P_i, i \in \mathbb{N} \rangle \in \mathcal{P} \text{ is an increasing chain with existing lub} \}$$

$$\alpha^{\sqsubseteq}(\mathcal{P}) \triangleq \{ P' \in \mathbb{L} \mid \exists P \in \mathcal{P} \cdot P' \sqsubseteq P \}$$

$$\alpha^{\sqsubseteq \uparrow} \triangleq \alpha^{\sqsubseteq} \circ \alpha^{\uparrow} \qquad \text{(extensive, increasing, not idempotent)}$$

$$\mathring{\alpha}^{\sqsubseteq \uparrow}(\mathcal{P}) \triangleq \mathsf{lfp}^{\sqsubseteq} \lambda X \bullet \mathcal{P} \cup \alpha^{\sqsubseteq \uparrow}(X) \qquad \mathsf{(upper closure operator hence G.C.)}$$

• in particular for traces:

$$\mathcal{AEH} \subseteq \overset{*}{\alpha}^{\uparrow}(\wp(\wp(\Pi)))$$

Conclusion of Part II

Conclusion of Part II

- We have introduced a new algebraic semantics (instantiable to any classic semantics)
- We have considered programs (i.e. their semantics) as properties
- We have designed by calculus a general algebraic logic (sound & complete and generalizing POPL 2024)
- We have designed by calculus a general algebraic hyperlogic (sound & complete but unmanageable in practice)
- All this for terminating and nonterminating executions

Conclusion of Part II (cont'd)

- We have considered abstractions of algebraic hyperproperties:
 - less expressive than general hyperproperties
 - but with sound and complete hyperlogics using only approximations of the program semantics
- This was illustrated by an algebraic generalization of ∀*∃* hyperproperties

More in the POPL25 paper

- Various instanciations of the algebraic semantics
- Abstractions of the algebraic semantics leading to complete hyperlogics
- A dozen of other abstractions of hyperproperties
- Including algebraic generalizations of ∃*∀* as well as ∀*∀* hyperproperties
- Correction of errors and generalizations of results in the literature
- etc

Conclusion of the conclusion

A transformational [hyper]logic an abstract interpretation an [hyper]transformer an instantiation an algebraic semantics.

(Conclusion of the conclusion)-1

A [hyper]logic is another (complicated) way of defining an abstract interpretation an instantiation an algebraic semantics.

The End, Thank You