Theories, Solvers and
Static Analysis by
Abstract Interpretation

Patrick Cousot Radhia Cousot

di.ens.fr/~cousot di.ens.fr/~rcousot
cs.nyu.edu/~pcousot

joint work with Laurent Mauborgne

software.imdea.org/people/laurent.mauborgne/

MSR Talk Series, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C | © P.Cousot & R. Cousot

References

o Patrick Cousot, Radhia Cousot, and Laurent Mauborgne.
Logical Abstract Domains and Interpretations.
In The Future of Software Engineering, S. Nanz (Ed.).
© Springer 2010, Pages 48—71.

e Patrick Cousot, Radhia Cousot, and Laurent Mauborgne.
The reduced product of abstract domains and the combination of decision procedures.
In 14th International Conference on Foundations of Software Science and Computation
Structures (FoSSaCS 2011), March 26 — April 3, 2011, Saarbriicken, Germany, Martin
Hofmann (Ed.), Lecture Notes in Computer Science, Vol. 6604,
© Springer 2011, pages 456—472.

Combined, revised and extended into:

e Patrick Cousot, Radhia Cousot, and Laurent Mauborgne.
Theories, Solvers and Static Analysis by Abstract Interpretation.
Submitted to a journal.

Auvailable from the authors.

MSR Talk Series, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C 3 P.Cousot & R. Cousot

Abstract

® The algebraic/model theoretic design of static analyzers uses abstract domains
based on representations of properties and pre-calculated property transformers.
It is very efficient. The logical/proof theoretic approach uses SMT solvers/theorem
provers and computation of property transformers on-the-fly. It is very expressive.
We propose to unify both approaches, so that they can be combined to reach the
sweet spot best adapted to a specific application domain in the precision/cost
spectrum. We first give a new formalization of the proof theoretic approach in the
abstract interpretation framework, introducing a semantics based on multiple
interpretations to deal with the soundness of such approaches. Then we describe
how to combine them with any other abstract interpretation-based analysis using
an iterated reduction to combine abstractions. The key observation is that the
Nelson-Oppen procedure which decides satisfiability in a combination of logical
theories by exchanging equalities and disequalities computes a reduced product
(after the state is enhanced with some new "“observations" corresponding to alien
terms). By abandoning restrictions ensuring completeness (such as disjointness,
convexity, stably-infiniteness, or shininess, etc) we can even broaden the application
scope of logical abstractions for static analysis (which is incomplete anyway).

® Joint work with Laurent Mauborgne (IMDEA, Madrid)

© P.Cousot & R. Cousot

MSR Talk Series, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C 2

Objective

MSR Talk Series, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C 4 © P Cousot & R. Cousot

Algebraic abstractions

® Used in abstract interpretation for analysis/
verification of finite/infinite systems

® System properties and specifications are abstracted
as an algebraic lattice (abstraction-specific encoding
of properties)

® Fully automatic: system properties are computed as
fixpoints of algebraic transformers

® Abstractions can be combined using the reduced
product

Obijective

® Show that proof-theoretic/logical abstractions are
particular cases of algebraic abstractions

® Show that the Nelson-Oppen procedure is a
particular case of the reduced product

® Use this unifying point of view to introduce a new
combination of logical and algebraic abstractions

w Convergence of proof theoretic/
logical and algebraic property-
inference and verification methods

Proof theoretic/logical abstractions
® Used in deductive methods

® System properties and specifications are expressed
with formule of first-order theories (universal
encoding of properties)

® Partly automatic: system properties are provided
manually by end-users and automatically checked to
satisfy verification conditions (with implication
defined by the theories)

® Theories can be combined using Nelson-Oppen
procedure

Concrete semantics

Programs (syntax)

® Expressions (on a signature (f, p))

X,¥,Z,... € X variables

a,b,c,... € 0 constants

f,g,h,... € ", féUﬂ"’

n=0

function symbols of arity n > 1

t € T(x,f) t = x|c|f,..., ty) terms
p,a.T,... € P, P’ E{ff,tt), P2 UsoD" predicate symbols of arity n > 0,
a € A(x,f,p) a = f|p(,..., t,) | —a atomic formule
e € E(x, f,p) = TG f) U A £, p)

¢ € Cix, £, p) o u=aleAg

program expressions

clauses in simple conjunctive nor-
mal form

® Programs (including assignment, guards, loops, ...)

P,... € P(x,f,p) Pu=x:i=el|gp]... programs

MSR Talk Series, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C 9 P. Cousot & R. Cousot

Programs (concrete semantics)

® The program semantics is usually specified relative to
a standard interpretation J € 3§

® The concrete semantics is given in post-fixpoint form
(in case the least fixpoint which is also the least post-
fixpoint does not exist, e.g. inexpressibility in Hoare

logic)
Ry concrete observables®
Py = 9(Ryg) concrete properties °
Fg4[P] € Pg—Pg concrete transformer of program P
Cy[P] = postfpS F4[P] € p(Py) concrete semantics of program P

where postfp* f = { x| f(x) < x|

5Examples of observables are set of states, set of partial or complete execution traces, infinite/transfinite execution trees, etc.
6 A property is understood as the set of elements satisfying this property.

Series, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C I P.Cousot & R. Cousot

Programs (mono-interpretation)

® |nterpretation I € J for a signature (£, p) is Ly, L)
such that
— Iy is a non-empty set of values,
— Veefl: (o) ely, VYn>1:VEfef": L(f) el},—ly,
— Vn>0:Vpep":L(p)el;,—8. B = {false, true}
® Environments
neR, = x—Ily environments

® Expression evaluation
[a],n € B of an atomic formula a € A(x, f, p)
[£],m € Iy of the term ¢ € T'(x, f)

Example of program concrete semantics

® Program P £ x=1; while true {x=incr(x)}
® Arithmetic interpretation J on integers Iy = Z
® | oop invariant IfpS Fy[P] = {n € Ry |0 < n0)
where Ry £ x— 34 concrete environments
Fy[P](X) £ {n € Ry | n(x) = 1} U {nlx < n(x) + 11| 7 € X}
® The strongest invariant is Ifp= F[P] = () postfp® F[P]

® Fxpressivity: the lfp may not be expressible in the
abstract in which case we use the set of possible
invariants Cgy[P] = postfp= Fy[P]

Concrete domains

The standard semantics describes computations of a
system formalized by elements of a domain of
observables Ry (e.g. set of traces, states, etc)

The properties g5 = 9(Rg) (a property is the set of
elements with that property) form a complete lattice
(Pg, S, 0, Ry, U, N)

The concrete semantics CylP] = postfp= F5[P] defines the
system properties of interest for the verification

The transformer F[P] is defined in terms of primitives,

e.g.
fy[x :=e]P = {n[x « [e],n] |7 € P)} Floyd’s assignment post-condition
pslelP = {neP|[e],n=true} test

Why using post-fixpoints is more
general than using the least fixpoint!?

® The least fixpoint may not exist (inexpressive logic)
while post-fixpoints do exist (invariants)

® When the least fixpoint does exist, there is a
bijection with the post-fixpoints (Tarski [1955])

Ifp= F [P] = (\postfp~ F[P] € postfp~ F[P]

Concrete property satisfaction

® A program P satisfies a property P ifand only if

ACeC[P]: Cc P

Multiple concrete
interpretations/
semantics

MSR Talk Series

About mathematical verification

A verification relative to a purely mathematical
semantics is of poor practical interest.

Example (Muller’s scheme as analyzed by Kahan)
x0 = 11/2.0;
xl = 61/11.0;
for (i=1 ; i<=100 ; i++) {
x2 = 111 — (1130 — 3000/x0) / x1;
x0 = x1; x1 = x2; }

With exact reals, converges to 6 (repulsive fixpoint)

With any finite precision, converges to 100
(attractive fixpoint)

Programs have many interpretations £ € @(3).

Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C 17 P. Cousot & R. Cousot

Example | of abstraction of a multi-interpreted semantics

® The float operations have 4 possible interpretations
depending on the rounding mode (towards -0, +oo,
0, closest)

® ASTREE over-approximates all four semantics
Example |l of abstraction of a multi-interpreted semantics

® |gnore some interpretations

IF>T . . .
(Pr, © ‘a: (P, ©)is a Galois connection where
71t

ar,p(P) = PNPp

Vrier(Q) {<1,n>‘leIAneRm(1eIﬁ:<I,n>eQ)}

II>

MSR Talk Series, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C 19 P.Cousot & R. Cousot

Multi-interpreted semantics

A generalization consists in considering multiple
interpretations of logics and programs

Multi-interpreted properties:
R program observables for interpretation / € I € ()
Pr =1elwb R interpreted properties for the set of interpretations 7

R

oL I TeT AneR)®

Multi-interpreted transformer:
F[[[P]] € ProPr

2 AP ePre Al € I+ F[P](P(])
Multi-interpreted semantics:

£ postfp< F,[P]

where C is the pointwise subset ordering.

ries, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C 18 P Cousot & R. Cousot

Background on
abstract interpretation

MSR Talk Series, Friday Aug 12,201 1, 13:30-15:00,99/1919 Research Lecture Room C 20 P. Cousot & R. Cousot

Abstract domains

<A’ ;9 J‘? T, |—I’ |_|7 v’ A’f? 6’ ﬁ’ * '>

where
1_3, é, ... €A abstract properties
CecAxXA-SB abstract partial order’
1, T eA infimum, supremum (Vﬁ €A:1CPC T)

L, V,A €e AXA—A abstract join, meet, widening, narrowing

€ (xx E(x,f,p))>A—A abstract forward assignment transformer

O —l

€ (xx E(x,f,p))>A—A abstract backward assignment transformer
e Cx,f,p)>A—A abstract condition transformer.

joll

21

Concretization

y € AL Py

® Soundness of abstract domains:
(PC Q) = (y(P) Cy(Q)) order y(L)=0 infimum
y(PU Q)2 (y(P)Uy(Q) join ¥(T)=Tg supremum

® Up to an encoding, the abstraction consists in
reasoning on a subset of the concrete properties

YI[A]
where yIX] 2 (y(x) | x € X}

23

Abstract semantics

o« A abstract domain
e L abstract logical implication

o F[P] € A > A zbstract transformer defined in term

of abstract primitives
f e (xxE(x,f,p)>A—A abstract forward assignment transformer

b € (xxE(x,f,p))>A—A abstract backward assignment transformer
p € Cx,f,ppoA—A abstract condition transformer.

A

e C[P] = {fp=F[P]} |east fixpoint semantics, if any

C[P] = {P | FP C P} or else, post-fixpoint
abstract semantics

22

Soundness and completeness of abstract semantics
® The abstract semantics is sound iff
VPeA:(ACeC[P]: CCP)= ACeC[P]: C<yP)

(any abstract proof of an abstract property can be
done in the concrete)

® The abstract semantics is complete iff
VPeA:(ACeC[P]: C<y(P))= ACeC[P]: CCP)

(any concrete proof of an abstract property can be
done in the abstract)

24

MSR

Sufficient soundness condition

o THEOREM 4.4 (SOUNDNESS OF AN ABSTRACT POST-FIXPOINT SEMANTICS). If C[P] 2 postfp= F[P],

C[P] £ postfp" F[P] and y : A— C increasing, then
VP e A : F[P] o y(P) < y o FP
implies that the abstract semantics is sound.
® This is usually implied by local conditions to be

checked on the abstract domain

y({[x := e]P) 2 f3[x := e[y(P)

y(b[x := €]P) 2 by[x := e]y(P)

Y(®l¢lP) 2 pslely(P)

U

® Compositionality:

THEOREM 4.3 (COMPOSITIONALITY OF ABSTRACTIONS). The composition of sound (resp. complete)
abstractions is sound (resp. complete).

Talk Series, Friday Aug 12,2011, 13:30-15:00, 99/1919 Research Lecture Room C 25 P. Cousot & R. Cousot

Beyond bounded verification: Widening

DEerINITION 4.6 (WIDENING). Let (A, E) be a poset. Then an over-approximating widening V €
A XA — Alis such that

(a) Vx,y€ A: xCxVyAyCxVy"“
A terminating widening V € A X A +— A is such that

(a) Given any sequence {x", n > 0), the sequence y° = x°, ..., y"*! = y" V x",
...converges (i.e. I € N : Vn > £ : y* = y' in which case y' is called the limit
of the widened sequence (y", n > 0)).

Traditionally a widening is considered to be both over-approximating and terminating. m]

MSR Talk Series, Friday Aug 12,2011, 13:30-15:00,99/1919

=

27 P. Cousot & R. Cousot

Best abstraction

® [f the concretization preserves existing meets then
we have a Galois connection

(Ps.) £ (A, D)

® [f no two abstract properties have the same
concretization, the abstraction is surjective

(P3, ©) — (A,)

SR Talk Series, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C 26 P Cousot & R. Cousot

Iteration with widening

DeriNiTION 4.7 (ITERATES WITH WIDENING). The iterates of a transformer f[[P]] € A - A from the

infimum L € A with widening V € AXA v A in a poset (A, C) are defined by recurrence as F = 1,
F™ = F" when F[PI(F")c F" and F=F'v FIP|(F") otherwise. m]
THEOREM 4.8 (LIMIT OF THE ITERATES WITH WIDENING). The iterates in a poset (A, C, L) of a trans-

former F[[P]] from the infimum L with widening NV converge and their limit is a post-fixpoint of the
transformer. m]

Implementation notes

® Each abstract domain (A,C, 1, T,U,M,V,A,f,b,p,...)
is implemented separately, by providing a specific
computer representation of properties in A,
and algorithms for the logical operations C, 1, T,u,m,

and transformers f,b,p,...

® Different abstract domains are combined into a
reduced product

® Very efficient but requires skilled experts

MSR Talk Series, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C 29 © P.Cousot & R. Cousot

First-order logical formulae & satisfaction

® Syntax
Y e F(x, f,p) Y i=al|Y|YAY|Ix:¥Y quantified first-order formula
a distinguished predicate = (#;, t;) which we write t; = f,

® Free variables Xy

® Satisfaction
I |:n ¥, interpretation / and an environment 7 satisfy a formula ¥

® Equality
1 '=17 h=n = [[fl]]ﬂl =1 [[tZ]]ﬂI

where =, is the unique reflexive, symmetric, antisymmetric, and transitive relation on /.

MSR Talk Series, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C 31 P.Cousot & R. Cousot

Multi-interpreted
first-order logic

Extension to multi-interpretations

® A property is described by a formula for multiple
interpretations

I € p3)
® Semantics of first-order formula

77 € F(x. £, p) 5P
v = L plIelnlE,Y)

® But how are we going to describe sets of
interpretations I € o(3) !

Defining multiple interpretations as models of theories

® Theory: set 4 of theorems (closed sentences
without any free variable)

® Models of a theory (interpretations making true all
theorems of the theory)

MT) = {eI|VWeT :dn: 1k, V)
={IeJ|VWeT :Vn:1E, Y}

33

Checking satisfiability modulo theory
® Validity modulo theory

validy-(¥) £ VI e W(T): Vn: 1k, ¥
® Satisfiability modulo theory (SMT)

satisfiables(¥) £ 37 € M(T) : Ay : [E, P

® Checking satisfiability for decidable theories

satisfiable (V) & - (decide(YXy : =\F)) (when 7 is decidable and deductive)

satisfiable -(¥) & (decide+(3xy : V) (when 7™ is decidable and complete)

® Most SMT solvers support only limited forms of
quantified formula

35

Classical properties of theories

® Decidable theories: V¥ e F(x, f, p) : decide(¥) £ (¥ € 7) is
computable

® Deductive theories: closed by deduction
YW e T VY € F(x,f,p), if ¥ = ¥ implies ¥ € T

® Satisfiable theory:
M(T) + 0

® Complete theory:

for all sentences W in the language of the theory, either ¥ is in the
theory or =¥ is in the theory.

34

Example of abstraction:
Logical abstractions

36

Logical abstract domains

® (A, 7):A € p(F(x,f,p)) abstract properties

T theory of F(x,f,p)
® Abstract domain (A,LC, ff, tt,V, A, V, A, ., B, P - -)
® [ogical implication (P C¥) 2 (VX UZp : ¥ =>P)eT)

® A lattice but in general not complete

® The concretization is

Ve (0) = (X | 1 e MT) A TR, ¥)

MSR Talk Series, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C 37 P. Cousot & R. Cousot

Implementation notes ...

® Universal representation of abstract properties by
logical formulze

® Trivial implementations of logical operations ff, tt, v, A,

® Provers or SMT solvers can be used for the abstract
implication. C,

® Concrete transformers are purely syntactic

fo € (x X T(x,) > F(x, £, p) > F(x, £, p)
folx =¥ £ v : P[x « X'TAR =1[x « X']
b, € (xxXT(x,1)—F(x,f,p)—>F(x,f,p)
bofx:=1]¥ £ V[x < 1]
P € CGx. £, p)=>Fx, £ p) > FGx, £, p)
Polle]¥ = WA

axiomatic forward assignment trans-
former

axiomatic backward assignment trans-
former

axiomatic transformer for program test
of condition ¢.

39 P. Cousot & R. Cousot

Logical abstract semantics

® [ogical abstract semantics
c'[p] £ {¥|F.[Plc®) C. ¥}

® The logical abstract transformer ' E[P] € A—A is
defined in terms of primitives

fo € (xxXT(x,f))>A—A abstract forward assignment trans-

_ former
b, € (xxT(x,f))>A—A abstract backward assignment
transformer

P, € LoASA condition abstract transformer

38

but ...

...l...so the abstract transformers follow by abstraction

fox ;== f]¥ £ @’ (f[x :=]¥) abstract forward assignment transformer

b.[x := ¥
Pale]¥

a'ﬁ (bo[[x := f]¥) abstract backward assignment transformer

Il>

a'ﬁ (P, [¢]P) abstract transformer for program test of condition

13

e The abstraction algorithm @3 € FGx,f,p)—>A to
abstract properties in A may be non-trivial (e.g.
quantifiers elimination)

® A widening V is needed to ensure convergence of
the fixpoint iterates (or else ask the end-user)

Example | of widening: thresholds

® Choose asubset W of A satisfying the
ascending chain condition for L.

® Define X VY to be (one of) the strongest ¥ € W
such that ¥ = V¥

Example Il of bounded widening: Craig interpolation

® Use Craig interpolation (knowing a bound e.g.
the specification)

® Move to thresholds to enforced convergence
after k widenings with Craig interpolation

41

Cartesian product

® Definition of the Cartesian product:

Let (A;, T;), i € A, A finite, be abstract domains with
increasing concretization y; € A; - EB?). Their Carte-
sian product is (A, B) where A = Xien Ay (PE Q) =

- - = - > - o, a -
Niea(Pi i Q) and y € A—P° is Y(P) = Niea Vi(P)).

43

Reduced Product

Patrick Cousot & Radhia Cousot. Systematic design of program analysis frameworks. In Conference Record of the Sixth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages pages 269—282, San Antonio, Texas, 1979. ACM Press,
New York, US.A.

42

Reduced product

® Definition of the Reduced product:

Let (A;, C;), i € A, A finite, be abstract domains with in-
creasing concretization y; € A; 5 513?) where A = Kiep Ai
is their Cartesian product. Their reduced product is (A_) /2,
C) where (P 2 Q) = ()7(13)) = 7(@)) and 3 as well as €
are naturally extended to the equivalence classes [ﬁ] /2,
P € A of 2 by ¥(Pl/2) = J(P) and [P]/z € [0]/= £
AP €[P]/2:3Q €[Q0]/=: PPC Q. O

® |n practice, the reduced product may be complex to
compute but we can use approximations such as the
iterated pairwise reduction of the Cartesian product

44

Reduction
® Example:intervals x congruences
p(xe[-1,5]Ax=2mod4) = xe[22] Ax=2mod0
are equivalent
® Meaning-preserving reduction:

Let (A, T) be a poset which is an abstract domain with
concretization y € A - C where (C, <) is the concrete
domain. A meaning-preserving map is p € A — A such
that VP € A : y(o(P)) = y(P). The map is a reduction if
and only if it is reductive that is VP € A : p(P) C P. O

45

Iterated reduction

® Definition of iterated reduction:

Let (A, C) be a poset which is an abstract domain with
concretization y € A5 C where (C, C) is the concrete do-
main and p € A— A be a meaning-preserving reduction.

The iterates of the reduction are p° = AP+ P, p™*! =
p(p*) for successor ordinals and p* = [;_, p° for limit
ordinals.

The iterates are well-defined when the greatest lower
bounds [| (glb) do exist in the poset (A, C). O

47

Why is reduction important

® Without reduction (signs and parity):

\\ x 2 0 — odd(x)
i X = 0) then

// x == 0 — odd(x)
® With reduction:

\\ x 2 0 — odd(x)
\\ x > 0 — odd(x)

if (x = 0) then
// false — odd(x)
// false <2 reduction

<) reduction

46

Finite versus infinite iterated reduction

® Finite iterations of a meaning preserving reduction
are meaning preserving (and more precise)

e Infinite iterations, limits of
meaning-preserving
reduction, may not be
meaning-preserving
(although more precise). It is
when ¥ preserves glbs.

48

Pairwise reduction

® Definition of pairwise reduction
Let (A;, ;) be abstract domains with increasing con-
cretization y; € A; > L into the concrete domain (L, <).
Fori,je A i# j letp;j € (AiXxAj, Cij) = (A;xAj, Cij)
be pairwise meaning-preserving reductions (so that ¥{x,
Y €A XA pii{x, ¥)) Eij {x, ¥) and (y; X ;) ° pij =
(i X vj)). . .
Define the pairwise reductions p;; € (A, C) — (A, C) of
the Cartesian product as
Gii(P) £ let (P}, Py £ p;; (P, P)))in Pli — P/][j < P/]

where ﬁ[i — x|; = x and ﬁ[i —x];= ﬁj wheni # j.

* We define (f x g)((x, y)) 2 (f(x), g))-

49

Iterated pairwise reduction

® The iterated pairwise reduction of the Cartesian
product is meaning preserving

If the limit p ' of the iterated reductions is well defined
thfn the reductions are such that VP € A : Vn € N, :
2 (P)Eg"(P) iﬁij(ﬁ) C P i jeA, i+ jand meaning-
preserving since p /1(13)), Oi j(ﬁ), Pe[P])=

If, moreover, y preserves greatest lower bounds then
g7 (P) e [P)/-. O

51

Pairwise reduction (cont’d)

* =

Define the iterated pairwise reductions 3, A, 0 €{(A,
i) — (A_), i), n > 0 of the Cartesian product for

P= Oi,jeA, Pij
i#j
n
where O f; £ fz, © ... © fx, is the function composition
i=1

for some arbitrary permutation «t of [1, n]. O

50

Iterated pairwise reduction

® In general, the iterated pairwise reduction of the
Cartesian product is not as precise as the reduced
product

e Sufficient conditions do exist for their equivalence

52

Counter-example

e L = 9(a,b,c}

o A = {0,{a}, T} where T = {a, b, ¢}
o A ={0,{a,b},T)

o A3=1{01{a,c}, T}

o (T, {a,b}, {a,ch/2 = ({a}, {a,b}, {a,c})

o O;(T, {a,b}, {a,ch) = (T, {a, b}, {a,c})
for A = {1,2,3},i,j € A,i # j

L4 ﬁ*(<T’ {Cl, b}’ {a’ C}>) = <Ta {a’ b}’ {a,ﬁc}) is not
a minimal element of [{T, {a, b}, {a,c})]/=

53

The Nelson-Oppen combination procedure

® Prove satisfiability in a combination of theories by
exchanging equalities and disequalities

® Example: ¢ £ (x=aVx=b)A£(x) # f(a) A £(x) # £(b) 2

® Purify: introduce auxiliary variables to separate
alien terms and put in conjunctive form

¢ = @1 A ¢ where
g2 (x=avVx=b)Ay=aAz=Db
2 = £(0) # £O) A £(x) # £(7)

22where a, b and f are in different theories
MSR Talk Series, Friday Aug 12,201 1, 13:30-15:00,99/1919 Research Lecture Room C 55

Nelson-Oppen
combination procedure

54

The Nelson-Oppen combination procedure

© = @1 A @ Where
pr=(x=aVvVx=b)Ay=aAz=b
@2 = £(x) # £(y) A £(x) # £(2)
® Reduce g(¢): each theory 7; determines E;; , a (dis-
junction) of conjunctions of variable (dis)equalities
implied by ¢; and propagates it in all other compo-
nants @i

Ep=(x=y)Vx=2)
Exy 2(x#yY)A (X #2)

® |terate [(p) : until satisfiability is proved in each
theory or stabilization of the iterates

56

The Nelson-Oppen combination procedure

Under appropriate hypotheses (disjointness of the
theory signatures, stably-infiniteness/shininess,
convexity to avoid disjunctions, etc), the Nelson-
Oppen procedure:

® Terminates (finitely many possible (dis)equalities)

® |s sound (meaning-preserving)

® |s complete (always succeeds if formula is satisfiable)

57

The Nelson-Oppen
procedure is an iterated
pairwise reduced
product

59

Is completeness of the Nelson-Oppen procedure needed?
® Yes, if you want to win the smT-comp competition)
® No, for program static analysis/verification

® Verification is undecidable anyway so requiring
completeness is useless.

® Therefore these hypotheses (disjointness of the
theory signatures, stably-infiniteness/shininess,
convexity, etc) can be lifted, the procedure is then
sound and incomplete.

® No change to SMT solvers is needed.

(*) congratulations to Z3 for SMT-COMP 201 |, http://www.smtexec.org/exec/?jobs=856

58

Observables in Abstract Interpretation

® (Relational) abstractions of values (vi,...,va) of
program variables (xy,..,Xn) is often too imprecise.

Example : when analyzing quaternions (a,b,c,d) we
need to observe the evolution of +a2+bZ+c2+d?
during execution to get a precise analysis of the
normalization

® An observable is specified as the value of a function f
of the values (vi,..,vn) of the program variables
(x21,-..,Xn) assigned to a fresh auxiliary variable X,

Xo == f(vi,...,Vn)

(with a precise abstraction of f)

60

Purification = Observables in A.l.

The purification phase consists in introducing new
observables

The program can be purified by introducing auxiliary
assighments of pure sub-expressions so that forward/
backward transformers of purified formulae always
yield purified formula

Example (f and a,b are in different theories):

y = f(x) == fla+1) & f(x) == f(2*b)

becomes
z=a+[;t=2%b;y = f(x) == f(z) & f(x) = f(¢)

6l

Static analysis combining
logical and algebraic
abstractions

63

Reduction

The transfer of a (disjunction of) conjunctions of
variable (dis-)equalities is a pairwise iterated
reduction

This can be incomplete when the signatures are not
disjoint

62

Reduced product of logical and algebraic domains

Logical theories Algebraic domains

7-1 7; _____________ 77[Al A2 _____________ Am
(p.l (p2 (pn -"Pl -ez Pm
[_______ |
p pal pla p

® When checking satisfiability of ®, A @, A .. A @, the

Nelson-Oppen procedure generates (dis)-equalities that
can be propagated by p;, to reduce the P, i=I,...m, or

® (P, A P, A .. A @,) can be propagated by p;, to
reduce the P}, i=1,..,m

® The purification to theory 7; of y;(P;) can be propagated
to (; by p,; in order to reduce it to @; A y;(P) (in 7;)

Advantages
® No need for completeness hypotheses on theories

® Bidirectional reduction between logical and algebraic
abstractions

® No need for end-users to provide inductive
invariants (discovered by static analysis)(

® Easy interaction with end-user (through logical
formulae)

® Easy introduction of new abstractions on either side

— Extensible expressive static analyzers / verifiers

) may need occasionally to be strengthened by the end-user

MSR Talk Series, Friday Aug 12,2011, 13:30-15:00, 99/1919 Research Lecture Room C 65 P. Cousot & R. Cousot

Conclusion

® Future convergence between logic-based proof-
theoretic deductive methods using SMT solvers/
theorem provers and algebraic methods using
abstract interpretation for infinite-state systems?

® Expressiveness is important
e Efficiency is decisive

® Reproducibility is crucial

MSR Talk Series, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C 67 P.Cousot & R. Cousot

Future work
® Still at a conceptual stage

® More experimental work on a prototype is needed
to validate the concept

MSR Talk Series, Friday Aug 12,201, 13:30-15:00,99/1919 Research Lecture Room C 66 P Cousot & R. Cousot

Another relation between SAT-solvers and abstract interpretation

%x Vendredi 10 Juin 2011, Salle R, 14h00-15h00 *%kkxkkkkxkkkkkkhhhhk ks
DPLL is Abstract Interpretation

Leopold Haller (Oxford University)

Re'sume'/ Abstract:

The DPLL algorithm for deciding propositional satisfiability is a
fundamental algorithm with applications in several, diverse areas of
computer science. In its modern formulation, it combines intelligent
model search, deduction, and lemma generation in an elegant and highly
efficient manner. An important question is whether the DPLL algorithm
can be generalised to richer classes of problems.

In this talk, I will outline how DPLL can naturally be viewed as an
instance of abstract interpretation. The resulting abstract DPLL
framework is a strict generalisation of DPLL to significantly richer
logics and to non-Boolean domains. The instantiation of this framework
with safety properties and abstract domains yields a powerful class of
program analysis techniques which perform dynamic, property-driven
domain-refinement.

These results have immediate consequences for building program analysis
tools. I will present an instantiation of the abstract DPLL framework in
the domain of floating point intervals. This instantiation dynamically
constructs a trace-partitioning over the base domain that is precise
enough to prove complex programs correct, yet coarse enough to enable
efficient analysis.

The End
Thank You

MSR Talk Series, Friday Aug 12,2011, 13:30-15:00,99/1919 Research Lecture Room C 69

P. Cousot & R. Cousot

