The paper in one slide
. . Problem: Automatic inference of preconditions
AU to m a tl C I nfe re n Ce Of Define: What is a precondition?

Sufficient precondition: if it holds, the function is correct

Necessary precondition: if it does not hold, the function is definitely wrong

When automatic inference is considered, only necessary preconditions make sense

necessary preconditions

P. Cousot, R. Cousot Sufficient preconditions impose too large a burden to callers

Necessary preconditions are easy to explain to users

M. Fahndrich, F. Logozzo

Implementation in Clousot
Precision improvements 9% to 21%
Extremely low false positive ratio

Example Example

int Examplel(int x, object[] a) void Example2(object[] a)

Sufficient precondition: a != null Sufficient precondition: false
if (x >= 0) Contract.Requires(a != null);
{ Too strong for the caller

It may fail, so eliminate all runs
return a.lLength;

No runtime errors when x < 0 and a == null

for (var i = @; i <= a.Length; i++)
} "
return -1; a[i] = F(a[i]); Necessary precondition: @ < a.Length
} Clousot users complained about it if (20"0"“()) If a.Length == @ it will always fail
“wrong preconditions” } return;

Necessary precondition is weaker than the
weakest precondition!!!




Program semantics

Program traces: T=G U B U |
G = good traces, terminating in a good state
B = bad traces, terminating in an assertion violation
Assertions:
Language-induced: division by zero, null pointers, buffer overrun ...
User-supplied annotations: assertions, preconditions, postconditions, object invariants
| = infinite traces, non-termination

Semantics

Notation: X(s) are the traces starting with s

Necessary and sufficient

In S = N we say that
S in a sufficient condition for N
N is a necessary condition for S
For a program P

A condition S is sufficient if its truth ensures that P is correct S u fﬁ C i e nt P re CO n d iti O n S

A condition N is necessary if its falsehood ensures P is incorrect




Weakest (liberal) preconditions

Provide sufficient preconditions guaranteeing partial correctness:
wlip(P, true)(s,) ¥ (B(s,) = 2)
Drawbacks of wlp for the automatic inference of preconditions:

1. With loops, there is no algorithm to compute wlp(P, true)
Solution in deductive verification: Use loop invariant

2. Inferred preconditions are sufficient but not the weakest anymore
Under-approximation of loops

3. Sufficient preconditions rule out good runs
Callers should satisfy a too strong condition

Example

int Sum(int[] xs) Overflows are not an error
Ex. Sum([-2147483639, 2147483638, -10]) = 19

In deductive verification, provide loop invariant

Contract.Requires(xs != null);

int sum = @; S L
for (var i : @; i < xs.Length; i++) Whichis the weakest precondition?

sum += xs[i]; The method itself
Contract.Assert(sum >=0); Sufficient preconditions:
Vi € [0, xs.Length], 0 < xs[/] < MaxInt/
return sum; stength
’ or
xs.Length == 3 A xs[0] + xs[1] == 0 A xs[2] >=0
or

Under-approximation of wip

Formally, with loop invariants, we compute a sufficient condition S:
S(s,) = wip(P, true)(s,)
Which is equivalent to
[I{sp) = 2] = [S(s,) = G(s() # 7]
So that it may exists some initial state s such that
-S(s) A G(s)#@
i.e., sdoes not satisfy S, but it does not lead to a bad state

Consequences

Sufficient preconditions impose too large a burden to the caller
They just ensure the correctness of the callee
Not practical in a realistic setting

Users complained about “wrong” preconditions
“wrong preconditions” = sufficient preconditions




Strongest necessary preconditions

N If the program terminates in a good state for s,then N(s,) should hold:
ecessary sy = 2) = [6ls) %> = (5]

Equivalently
[I(sp) = 2] = [=N(sp) = (G(s,) =2 A B(s,) # 2)]
i.e., if N does not hold, either

The program diverges, or
The program reaches a bad state

preconditions

Strongest (liberal) necessary precondition:
snp(P, true)(s,) £ -[G(sy) =2 A B(sy) # 2]= [G(s,) #2 V B(s) = 2]

Comparison, ignoring non-termination Approximation of necessary conditions

Static analyses to infer an error condition E such that

Weakest sufficient preconditions Strongest necessary preconditions
E(s)) = [G(s)) =2 A B(s,) # 9]
6(sy &lsy) i.e., Eis sufficient to guarantee the presence of definite errors or non-termination
E is an under-approximation of the error semantics
S(so) @ 0 N(s,) & 0 -
The negation, —E = N is weaker than the strongest (liberal) necessary precondition:
2 true true 2 true true G(Sg) 20 \/ B(SD) -0 = _'E(SU)
B(s,) B(sp)
20 false %0 false




Main Algorithm

Iterate until stabilization
For each method m
Analyze m using the underlying static analysis
| f Collect proof obligations A
n e re n C e Use the analysis to prove the assertions in A
Let W € A be the set of warnings
If W # @ then
Infer necessary preconditions for assertions in W
Simplify the inferred preconditions
Propagate the necessary preconditions to the callers of m

Static analyses for the inference Examples

All-Paths precondition analysis

int FirstOccurence(int[] a) All-paths infers
Hoists unmodified assertions to the code entry al=null
o o ) int i = @; . .

Conditional-path precondition analysis e Conditional-paths also infers

Hoist assertions by taking into account assignments and tests while (a[i] != 3) a.length>0 A (a[0] !=3 = a.Length >1)

Use dual-widening for loops e Quantified infers

Dual-widening under-approximates its arguments return i; 3 j € [0, a.Length]. alj] ==

Quantified precondition analysis }

Deal with unbounded data structures Details in the paper




Simplification
We can infer many preconditions for a given method
Simplification allows reducing them

Key to scalability
Pretty print preconditions for the user

Implementation

Simplification is a set of rewriting rules to iterate to fixpoint
Examples

P, [b= a], [-b = a] - P, [true = a]

P, [true=a]—> P a

Code Contracts static checker User experience

. | -%c ) -] © 0Emors || 1\ 4 Warnings | (D 4Messages |

Clousot/cccheck static analyzer for .NET public int InferfiotNull(int x, string p) = Descrption lne
Downloaded more than 80,000 times L (x >= 0) “Jo1 codeContracts: requires: Contract Requires((x < 0 || p = null); 21
Use preconditions/postconditions to reason on method calls { D2 CodeContracts: requires: Contract Requires(s = nul); EY
S t d t . f d dtl d t dtl return p.GetHashCode(); & 3 CodeContracts: requires is false 35
uggest and propagates inferred preconditions and postconditions [ e+ tocoton eloteato previous waming 2
Users complained about sufficient preconditions &5+ - Cause requires obligation: s = null o
46+ -- Cause NonNull obligation: p != null 23

public veid CallInferNotNull(string s) . N
(i) 7 CodeContracts: requires: Contract. 35

(i) 8 CodeContracts: Checked 7 assertions: 6 correct 1 false 1

Starting point for this work
InferNotNull(l, s);

public void CallWithNull()

{
CallInferNotNull(null);
}




Experimental results

Un-annotated code (.net base libraries)
All paths analysis
Infer 18,643 preconditions

Precision

Number of inferred preconditions is not a good measure

We are interested in the precision, i.e., fewer methods with warnings
Precision gain is between 9% (framework libraries) and 21% (facebook C# SDK)
Simplification removes >32%
Conditional path analysis Missing preconditions public surface are errors
Infers 28,623 preconditions The library does not defend against “bad inputs”
Simplification removes >24% On mscorlib, the core library of .Net, we found 129 new bugs
Similar results for partially annotated code (Facebook C# SDK) Only one false positive
Conditional path analysis is more precise but up to 4x slower than all-paths analysis Because of exception handling in clousot
Because of inferred disjunctions

Sic transit gloria mundi

The violation of a necessary precondition guarantee a definite error
When automatically inferring preconditions, only necessary preconditions make sense
Sufficient preconditions are too strict for callers
Advantages
Easy to explain to the users
Provide chain leading to errors
No false positives

Conclusions

Implemented, and used in a widely downloaded tool (Clousot/cccheck)




