GALOIS CONNECTION BASED
ABSTRACT INTERPRETATIONS
FOR STRICTNESS ANALYSIS

) Patrick COUSOT
Ecole Normale Supérieure

and

Radhia COUSOT
Ecole Polytechnique

1

ABSTRACT INTERPRETATION

ABSTRACT INTERPRETATION [CCT77, CC79] is method for con-
structing conservative approximations of the semantics of pro-
gramming languages.

ABSTRACT INTERPRETATION is used to:

e Specify hierarchies of semantics of programming languages
at different levels of abstraction;

e Design program proof methods;

e | Specify automatic program analyzers (by interpretation
of programs in abstract domains);

e [Hitc.

P. Cousot & R. Cousot -2-

STRICTNESS ANALYSIS

STRICTNESS ANALYSIS [Myc80] is an abstract interpretation,
due to Alan Mycroft, for determining statically which call-by-
need parameters of lazy functional programs can be replaced
by call-by-value.

Traditional example (addition):

f(x,)=(x=0 —y, 1+ £f&x-1, y)))

e x is always evaluated on first call, hence x can be passed by-
value;

e y is evaluated on final call or £ does not terminate, hence y can
be passed by-value.

STRICTNESS ANALYSIS BY ABSTRACT INTERPRETATION

The traditional abstract interpretation framework using:
e An operational-based collecting semantics;
e Fixpoints of monotone operators on complete lattices;
e Galois connections;

was considered difficult to apply to strictness analysis because
one had to use denotational semantics to take non-termination
into account [MN83, Nie88].

-4- FMPA™93

CRITIQUE OF THE DENOTATIONAL THEORY
OF ABSTRACT INTERPRETATION

The simplicity of the original abstract interpretation is lost:

e CPOs/powerdomains are more complicated than powersets/-
complete lattices;

e Analysis inversion is lost: denotational semantics is well-suited
for forward analyses but present difficulties for backward anal-
yses;

e Logical relations are weaker than Galois connections: the con-
structive aspect of the original abstract interpretation frame-
work is lost (only safeness verification remains);

OBJECTIVES

e Objective of the paper:

Show that the Galois connection-based abstract interpretation
framework is applicable to strictness analysis.

e Next objectives:

Use this abstract interpretation framework to compare the strict-
ness analysis algorithms known in the literature with Mycroft’s
method:

- Forward and backward analyses are isomorphic;

- Projection analysis is a very simple variant.

P. Cousot & R. Cousot -6-

PLAN

1. Relational semantics;

2. The Galois connection-based abstract interpretation frame-
work;

3. Application to Mycroft’s strictness analysis algorithm;
4. Principle of Johnson’s algorithm;

5. Using widening operators as a compromise between the pre-
cision of Mycroft’s algorithm and the efficiency of Johnson’s
algorithm.

RELATIONAL SEMANTICS

Represent a computation by a relation between initial and final
states (€ for run-time errors, L for non-termination);

Rule-based presentation using “iterated well-founded systems
of bi-inductive definitions” [CC92d];

Equivalent presentation based upon fixpoints of monotonic op-
erators on complete lattices.

-8- FMPA™93

A LAZY FIRST-ORDER FUNCTIONAL LANGUAGE RELATIONAL SEMANTICS

SYNTAX OF EXPRESSIONS

e The semantics f* of a function f is a relation between the
values of its actual parameters and the corresponding result;

e ==k constant
| v variable (formal parameter) e These values and results may include run-time errors {2 and
| be basic operation non-termination 1 ;
| fe funct‘u?n call e Fonctions may be non-deterministic (for example
| (eq1 — e9, e3) conditional
¥ = (v1,...,v5) tuple of formal parameters £() = 70;
€ == (e1,---,¢€n) tuple of actual arguments returns a random natural number);
SEMANTIC DOMAINS
SYNTAX OF PROGRAMS
T values of variables
qu_ Flf T¢ =T U {Q} values or errors
v =
fef T, =Y U{L} values or non-termination
is a shorthand for: T = 7T U {Q, L} values, errors or non-termination
filvr, - om) = €1 DR = T values of expressions
fr(vi, .o ony) = e pr 2 1 D® values of tuples of expressions
o)
where the body F[f;] = e; of function f; depends on the parame- FRou p(f)’% x D®) values of functions
ters ¥ = (v1, ..., v;;) and may call other functions f;, 5 =1,..., k. (The semantics f* of a function f is a relation between the values

v of its actual parameters and the corresponding result f(7).)

P. Cousot & R. Cousot -10- -12- FMPA’93

FIXPOINT PRESENTATION OF THE RELATIONAL SEMANTICS

The relational semantics FR of the program:

[1r7=Fif
fef

is the least fixpoint: .
ZR a0 B 2R
fr= lpriF

of a monotonic operator:

FRe 7% cEL o

on a complete lattice:
PR I TR O AY

13

EXAMPLE OF FIXPOINT PRESENTATION OF THE RELATIONAL
SEMANTICS

For the program:
f(x)=(x=0—0, x<0—=£f(?0), f(x - 1))
the fixpoint equation is:
¢ = FAe]
where:

Fm[f][[@’]] = {<J-’ J—>7<Q’ Q>7<07 0>}
U{(z, y) |2 <0AIn>0:(n,y) € B[f]}
U{{z, y) |z >0A{x -1, y) € 3[f]}

P. Cousot & R. Cousot 14—

The transfinite iterates <,0A = ﬁ’%[f]/\(J_%) are:
o = 1¥=7Zx {1}
{(L, L), (2, 2),0, 0)} U {(z, L) [z # 0}

e = {(L, L)@ Dru{{z, 0) [z <2}U
{z, LY |z <OVz>2}

©
I

@ = (L 1) (2, Q) U {{a. 0) | 2 < n} U
{{z, L) |z <0Vax>n}

.90 = (L D (@, U, 0) e e ZyU{{r, L) |z <0}
e = {(L 0@ Nu{{z, 0)]zeZ;

w2 w1
¥ = ¥
proving that the program returns 0 for all integer parameters.

15

COMPUTATIONAL ORDERING

Initially, non termination is assumed for all actual parameters:
def

TR SRR

Terminating functions are a subset of:

def

TR = 70 xx?

Each iterate introduces new possible finite behaviors and elim-

inates previous infinite behaviors now shown to be impossible:
1

eV E (onTHC@NTH A (pnLt™ D (¢ nLh)

Passing to the limits collects the possible finite behaviors and
the infinite behaviors which are not impossible:

T M TR LR
|—|i€A Yi = UiEA((pZmT) U ﬂiEA((‘OlmL)

-16- FMPA’93

FIXPOINT OPERATOR

The fixpoint operator:

—

F§R

associated with a program:
[1r7=Fis
ref

is defined componentwise for each function f e f of the program,
by induction on the syntax of the body of this function f:

e=F[f]

RELATIONAL SEMANTICS OF AN EXPRESSION

e The relational semantics e® of an expression e:

- is a set of pairs (77, v) specifying the possible values v of
expression e given the values 7 [v] of the variables v which
are free within e;

- it depends on the relational semantics @[f] of the functions
f of the program called within e;

e (7, 1) € e® means that non-termination is possible for values
of the free variables;

v
e (7,) € ¥ means that a run-time error is possible for values
U of the free variables;

P. Cousot & R. Cousot —18-

CONSTANT

e The evaluation of a constant k in a function body always ter-
minates and returns its value k;

e The relational semantics &% of the constant k is therefore a
relation which holds between the vector of values U of the pa-
rameters ¥ and the value k of this constant k:

R £ {7, k) |7 e DY

FORMAL PARAMETER

e The evaluation of a formal parameter v in a function body
returns the value ¥/ [v] of the corresponding actual parameter;

e The relational semantics v” of the variable v is therefore a
relation which holds between the vector of values 7 of the pa-
rameters and the actual value 7[v] of this variable v:

gl = (7, 7)) | 7 € D)

e In particular this value [v] may be L if the evaluation of the
actual parameter does not terminate, and €2 if it is erroneous.

-20- FMPA’93

ACTUAL PARAMETERS

e The evaluation of a list of actual parameters € consists in eval-
uating each parameter €[v],v e € in the list;

e The relational semantics €% of the vector of expressions € is
therefore a relation which holds between the vector of values
U of the parameters used in these expressions and the actual
values 7'[v] of these expressions [v], v e €:

eMgl = (7. 7)) |Voed (7, 7']) € 2[]"[B])
e This evaluation:
- may terminate: 7#'[v] € T;
- may be erroneous: #'[v] = Q;
- may not terminate: #'[v] = 1;

—91—

BASIC OPERATION

The relational semantics of a basic operation b is specified by a
total relation b® € P(T x T%):

be"[g] = eM[p] o 0"

Ezample (left-to-right addition):

+7 = {{(L, V),)|V eTiiu
(. /). Q) v € T~ ZAV € T} U
{{{v, 1), L) |vez}uU
(v, V), Q) |lverarer’—2Z}U
Ui, v v+) [veZnd ez}

P. Cousot & R. Cousot -22-

CONDITIONAL

v, L)€ efl2]}

Jv e T — {tt, ff} : (¥, v) € e‘gf[[g'o']]}
] {(y, u) | (7. tt) € T[] A (7, v) € eX[B]}
U{(7, v) [(7, ff) € T[BI A (7. v) € ef[5]}

Evaluation of the conditional (e — es, e3):

does not terminate, if evaluation of ey does not terminate;

e is erroneous, if evaluation of e; does not terminate;

is the value of e%%, if evaluation of ey is true;

is the value of e%%, if evaluation of e; is false.

23

FUNCTION CALL

The semantics of a function call:

reiel = %@l 3l
is obtained by composition of the semantics @[f] of function f
and the semantics €% of the actual arguments €.

-24- FMPA’93

CALL-BY-NEED VERSUS CALL-BY-NAME: EXAMPLE

Call-by-value or call-by-need f(x) = x + x:
(L 1), (2 Q) U {(e, 20) | @ € 2}
Non-deterministic choice 102 with free variable x:
102" = {(z, 1) |z € Z7} U {(z, 2) |z € Z1}
Call-by-need g(x) = £(102):
g% = 102% . *
= {(z, 2) |y : (z, y) € 1028 A (y, 2) € [T}
= {(z,2) [z €Z}U{(z, 4) | w € 2]

Call-by-name g(x) = £(102) would be:
{{, 2) [w € Z7}U{(. 3) | v € Z}} U {(w. 4) | w € Z{}

25

THE GALOIS CONNECTION-BASED
ABSTRACT INTERPRETATION FRAMEWORK

1. Define a concrete collecting semantics of programs (as a fix-
point of a monotonic operator on a complete lattice) and an
approximation relation (to deal with undecidability);

2. Choose an approximation of concrete properties by abstract
properties (defined by a Galois connection/surjection);

3. Constructively derive the abstract semantics (specifying the
abstract interpreter) from the concrete fixpoint semantics.

P. Cousot & R. Cousot -26-

PRINCIPLE OF THE FIXPOINT APPROXIMATION

The intuitive idea is to mimic the iterative computation of the
collecting semantics:

C A
lfp F =)\|€|(DF (L)

in a concrete domain F(C, L, L) by the abstract iterative com-
putation:

LF F 1t

A€0
in an abstract domain fﬁ(J_ﬁ, Fﬁ, I_Iﬁ) such that:

C D)
lfp F < 7<A|E|o F(1F))

i.e. the concretization 7 of the abstract iteration is a safe approx-
imation of the collecting semantics.

COMPLETE LATTICE OF CONCRETE PROPERTIES

The set of concrete properties of a program:
F(C, L, T,u,m)

is a complete lattice for the concrete computational ordering C.

-28- FMPA’93

FIXPOINT DEFINITION OF THE
CONCRETE PROPERTIES OF A PROGRAM

The concrete properties of a program are defined by the collecting
semantics as the least fixpoint:

C
lprF
of a monotonic operator:
FeF=F
on the complete lattice F(C, L, U).

CONSTRUCTIVE VERSION OF TARSKI’S FIXPOINT THEOREM

The least fixpoint of F' greater than or equal to L for the com-
putational ordering C:

C A
ifp F = L F'(L
i = (L)

is obtained by transfinite iterates:

Fl(X)=X
F(X) = F(F'(X))

for successor ordinals A + 1

for limit ordinals A

P. Cousot & R. Cousot -30-

CONCRETE APPROXIMATION RELATION <

e Since the collecting semantics is not effectively computable and
sometimes not even computer representable, approximations
must be considered;

e The concrete approximation relation:
< is a partial order on F
¢ < 1 means that property 1 safely approximates ¢ ;

e The concrete semantic function preserves approximations:

FeF+S F

31

ABSTRACT APPROXIMATION ORDERING Sﬁ

e We can consider an abstract version Sﬁ on Ft of the concrete
approximation ordering < on F;

e The abstract approximation relation:

<l isa partial order on F

-32- FMPA’93

(GALOIS CONNECTION

The correspondence between the concrete properties F and the
abstract properties F ! is given by a Galois connection, written:

F(<) == Fh<h

del

Vo € F:Vpl e Fiip <y & a(p) <!yt

INTUITION BEHIND THIS (GALOIS CONNECTION

e The concretization function v gives the concrete meaning ’y((/)ﬁ)
of abstract properties wﬁ;

e The abstraction function « gives the best abstract approxima-
tion a(g) of a concrete property :

- ap) is an approximation that correctly describes ¢, so:
Yo € F:p < ’y(a(go))

- afy) is the most precise approximation that correctly de-
scribes ¢, so:

Vo € F:Vpt e FLop <q(9h) = alp) <Py

P. Cousot & R. Cousot _34-

APPROXIMATION OF THE INFIMUM

The abstract infimum L¥ is a safe approximation of the concrete
infimum L :

LE>ta(l)

_35—

APPROXIMATION OF THE COMPUTATIONAL JOIN

The abstract computational join |_|ﬁ is a safe approximation of
the concrete join LI of chains increasing for the computational
ordering C:

(Y8 <8 < A 0s € oy Aalps) <Fof)
=

a(L goﬁ> <t l_lﬁ 1/1§

B<A B

-36- FMPA’93

APPROXIMATION OF THE SEMANTIC FUNCTION

e Abstraction of a concrete function:

e The abstract semantic function F* upper approximates the
concrete semantic function I'. We have:

CKoFo’y Sﬁ _Ftt

def

for the pointwise ordering ¢ <! £ Vaz : o(x) <t P(x)

FIXPOINT APPROXIMATION

e The abstract approximation of the concrete collecting seman-
tics is safe:

C R
lprF < 7<)\|E|®Fﬁ (J_ﬁ)>

P. Cousot & R. Cousot _38-

(GALOIS SURJECTION

e When no abstract property is useless, that is the abstraction
function « is surjective;

e In a Galois connection « is surjective iff 7 is injective iff a o
is the identity;

o A “Galois surjection” is a Galois connection with « surjective,
written:

F(<) == F<h

def

F(<) 55 FU<H) A Ve Fliaoy(i) =

—39-

COINCIDENCE OF THE ABSTRACT APPROXIMATION AND
COMPUTATIONAL ORDERING

If the abstract ordering is an abstraction of both concrete com-
putational and approximation orderings:

FQ) == FUsh FO) = FUL
then]—"ﬁ(gﬁ, 18 78 U, I‘Iﬁ) is a complete lattice such that:
1f = (L)
S !
L of = o U +(ed))

Ae0

-40- FMPA’93

APPLICATION TO STRICTNESS ANALYSIS

DEFINITION OF STRICTNESS

f is strict in its parameters v € [if and only if for all v € DR
and v € D¥:

Voel:Pp]e{l, Q A{{#, Vet = vell Q)

41—

TAKING ERRORS INTO ACCOUNT

o Left-to-right addition + is strict in its first parameter:

l+v =1 WweTy

o Left-to-right addition + is strict in its second parameter:

v+ 1 =1 VV € TJ_
only if errors are included in the definition of strictness:
Q4+ 1L =Q

P. Cousot & R. Cousot _ 42—

CONCRETE APPROXIMATION ORDERING

The concrete approximation ordering is C

Proposition 1 For all p, o' € FX, if o C ¢ and ¢’ is strict in
its parameters v € I then ¢ is strict in its parameters v € I.

Proof: If Vo € I : #[v] € {L, Q} and (7, v) € ¢¥ then (7, v) € ¢
whence (7, v) € ¢ since p C ¢ that is (7, v) € ¢* so that
v € {1, Q} since ¢ is strict in its parameters v € I proving that
@ is strict in v € 1. O

43

CONSTRUCTION OF MYCROFT’S ALGORITHM

Mycroft’s algorithm can be derived from the relational semantics
using the approximation formalized by the Galois surjection:
7
p(DM(C) =5 D<)

%

o D! ={0,1} with0<0<1<1;
o 74(0) £ {L,Q} and 74 (1) £ T
e b (V)= (VC{LQ}—0 1)

—44- FMPA’93

ABSTRACTION OF SETS OF ARGUMENTS

A set of vectors in D® = J] D¥ is approximated componentwise:
vet

i
T
p(D)(C) = DHL)
D
o Df & II Dl is a complete lattice for the componentwise
ver
ordering:

PSP ENMued: O] <))

ABSTRACTION OF ARGUMENTS-RESULT RELATIONS

An arguments-result relation in F* = p(l_j§R x D¥) is approximat-
ed by:

i
FCQ) == FHQ)
(8
o Fi X Pt = Dlis a complete lattice for the pointwise
ordering:

P. Cousot & R. Cousot —46-

ABSTRACTION OF A RELATION BY A FUNCTION

Q = Shhas
)

D* @f } f‘ ok
l \/

Ve P (DAxD®) @)

,Bsn 5ﬁ

ABSTRACTION OF VECTORS OF RELATIONS

A vector of relations in F® = [T F* is approximated componen-

Jef
twise by: ti
FC) = FH2)

[0

o FI U Hf =F% is a complete lattice for the componentwise

.Ef

-48- FMPA’93

PROPERTIES OF THIS ABSTRACTION

The abstract ordering < on vectors of abstract functions in F¥ is
an abstraction both of the concrete computational ordering:
FEY = F

and of the concrete approximation ordering:

CONSTRUCTION OF MYCROFT’S ALGORITHM

o OF @, =at(d® 74g;)) definition of I

1EA 1€EA
= 'VﬁA c‘éﬁ('? (i) &t is a complete Ij%—morphism
1€
= Vi @, since @ o 47 is the identity
1EA
o II=aHI®™ = = =11 ~A7EO
° &'ﬁoﬁ%oﬁl’ﬁ =...Z Ft

After three pages of hand-computation ...proceeding by induc-
tion on the syntax of the programs and consisting in expanding
these definitions and then in simplifying them, we have construc-
tively derived Mycroft’s algorithm from the above specification.

P. Cousot & R. Cousot -50-

F[f]

Mycroft’s strictness semantics of erffﬁ

v o D01} ¢ EFE S DS D
P BEILD . SR L
o ff . P *jgpt B ol
SFFENy P | e L PR
Klelv |

V17 = P[]

be[A]v Zp V(eF[F]7) where bF >F o(b*)
(e1 — ea, e3)F[F]P o eg[[aﬁ]]ﬁ A (62[[80]]7/ v 63[[80]]5)
VLK 1 = GlAEe1)

&gy = [€ 0FIE]7

e Hf;/\y -0

fre lfp Ft V,en F(19)

SAFENESS OF MYCROFT’S ALGORITHM

By construction we have:
Proposition 2 The strictness semantics is an abstrac-

tion of the relational semantics:

&W%):&ﬁafp Y Ef=p B

Fl IAL

so that Mycroft’s algorithm is safe:

Proposition 3 If fﬁ[f](f[v — 0,v € 1)
fRIf] is strict in its parameters I.

= 0 then

-32- FMPA’93

EXAMPLE

Program: f(x, y)=((x=0) —-y, 1 + f(x -1, y)))
Equation: fﬁ(:zz,y) =(@xAL)A(yV (LA fﬁ(:(: A1y)))

Strictness of first parameter:

0,1y = 0
F10,1) = (0A) A1V (1A f0A1,1)))
=0
Strictness of second parameter:
2(1,0) = 0
FH1L0) = LAD AV (LA FO1AL,0))
=0

COMPARISON OF MYCROFT’S
AND

JOHNSON’S ALGORITHMS

e Mycroft’s algorithm may be exponential since in the worst

case we have to compute fﬁ(xl,...,xn) for all z; € {0,1},
¢t = 1,...,n that is 2" possibilities for each function f of the
program.

Johnson’s algorithm is linear since in the worst case we have
to compute f*, (x;) for all ; € {0, 1}, that is 2n possibilities

i

for each function f of the program.

JOHNSON’S ALGORITHM

Johnson’s algorithm is obtained by a further approximation:
i, y)
is approximated by a pair a functions:
fra(x) £ fa1) Pyy) £ FLy)
Johnson’s algorithm is constructed formally in the paper;

The formal construction lead to an algorithm better than those
given in the literature [Joh81, Hug8§]

P. Cousot & R. Cousot _34—

Johnson’s algorithm is less precise since one cannot express join
strictness in several parameters:

- Program:
f(x, y, 2) =(x—vy, z)
- Mycroft’s equation:
A,y 2) = (@A (yV 2))
f is jointly strict in y and z since f#(1,0,0) =0

- Johnson’s equation:

fFa()
fxy(y) =
[F(z) =
f is not jointly strict in y and z since f%,(0) A f*.(0) =1

T
1
1

-36- FMPA’93

A COMPROMISE USING WIDENINGS

We can limit the dependencies to a given x (for example k =
3);

fﬁ(azl, ..., Tp) with less than s 0-valued parameters z; is eval-
uated normally;

fﬁ(xl, ..., &p) with more than s 0-valued parameters x; is up-
per approximated by:

1
€Ly

Johnsson’s algorithm corresponds to k = 1.

CONCLUSION

Relational semantics seems to be more convenient than deno-
tational semantics for abstract interpretation;

Constructive derivation of the abstract interpreter specifica-
tion is preferable to empirical design with a posteriori safeness
verification;

Abstract interpretation is not, contrary to a common believe,
intrinsically exponential;

Well-chosen widening operators often offer a good compromise
between precision and cost of the analysis.

P. Cousot & R. Cousot _38—

[CC77]

[CCT9]

[CC92a]

[CC92b]

[CCI2c]

[CC92d]

REFERENCES

P. Cousot & R. Cousot. Abstract interpretation: a uni-
fied lattice model for static analysis of programs by con-

struction or approximation of fixpoints. In 4t POPL,
pp- 238252, Los Angeles, California, 1977. ACM Press.

P. Cousot & R. Cousot. Systematic design of program

analysis frameworks. In gth POPL, pp. 269282, San
Antonio, Texas, 1979. ACM Press.

P. Cousot & R. Cousot. Abstract interpretation and ap-
plication to logic programs. .J. Logic Prog., 13(2-3):103—
179, 1992.

P. Cousot & R. Cousot. Abstract interpretation frame-
works. J. Logic and Comp., 2(4):511-547, Aug. 1992.

P. Cousot & R. Cousot. Comparing the Galois con-
nection and widening/narrowing approaches to abstrac-
t interpretation, invited paper. In M. Bruynooghe &
M. Wirsing, eds., Programming Language Implementa-
tion and Logic Programmaing, Proceedings of the Fourth
International Symposium, PLILP 92, Leuven, Belgium,
13-17 Aug. 1992, LNCS 631, pp. 269-295. Springer-
Verlag, 1992.

P. Cousot & R. Cousot. Inductive definitions, semantics

and abstract interpretation. In 1 gth POPL, pp. 83-94,
Albuquerque, New Mexico, 1992. ACM Press.

-39- FMPA’93

[Hug88]

[Joh81]

IMNS83]

[Myc80]

[Nie8§]

R. J. M. Hughes. Backwards analysis of functional pro-
grams. In A. P. Bjorner D., Ershov & N. D. Jones, eds.,
Partial Evaluation and Mixed Computation, Proceed-
ings IFIP TC2 Workshop, Gammel Avernas, Denmark,
pp. 187-208. Elsevier, Oct. 1988.

T. Johnsson. Detecting when call-by-value can be used
instead of call-by-need. Research Report LPM MEM-
O 14, Laboratory for Programming Methodology, De-
partment of Computer Science, Chalmers University of
Technology, S-412 96 Goteborg, Sweden, Oct. 1981.

A. Mycroft & F. Nielson. Strong abstract interpretation
using power domains. In J. Diaz, ed., Tenth ICALP,
LNCS 154, pp. 536-547. Springer-Verlag, 1983.

A. Mycroft. The theory and practice of transform-
ing call-by-need into call-by-value. In B. Robinet,
ed., Proc. Fourth International Symposium on Program-
mang, Paris, France, 22-24 Apr. 1980, LNCS 83, pp. 270—
281. Springer-Verlag, 1980.

F. Nielson. Strictness analysis and denotational abstract
interpretation. Inf. & Comp., 76(1):29-92, 1988.

P. Cousot & R. Cousot _38—

-39-

FMPA’93

